
An Abstract Proof Checker�Fausto GiunchigliaMechanized Reasoning GroupIRST, Loc. Pant�e di PovoI 38050 TrentoItalyfausto@irst.it
Toby WalshMathematical Reasoning GroupDept of Arti�cial IntelligenceUniversity of EdinburghScotlandT.Walsh@ed.ac.ukMathematicians rarely present proofs in all their detail; usually they givejust an outline or abstraction of the proof. This paper describes our attempt toreproduce such activity within a computer proof system.1 IntroductionAbstraction has been proposed as a powerful heuristic for controlling search in AI. Des-pite some promising theoretical results (eg. Korf has demonstrated that abstraction canpotentially reduce an exponential search to a linear one [Kor79]), abstraction has proved,in theorem proving at least, less useful than expected. Plaisted, for example, claims:\... Although some reductions in search time [using abstraction] were ob-tained, usually the performance was disappointing. ..."Abstraction is, we agree, too weak a heuristic for unguided search. It should thereforebe integrated with more powerful heuristics; the approach we propose here is to use it inguided search. In this radically new use, abstraction guides a proof checking system. Theidea is that, since the abstract space ignores irrelevant details, we can interactively build aproof in the abstract space which is an outline of the original proof. The details can thenintegrated back into the outline, again with the help of the proof checker, in a provablycorrect way. We call a proof checker which supports this kind of reasoning, an abstractproof checker.�The second author is a SERC PostDoctoral Fellowship. All the members of the Mathematical Reason-ing group in Edinburgh and the Mechanized Reasoning group in Trento are thanked for their contributionsto this work. Both authors would especially like to thank Alan Bundy.1

The main motivation underlying our work is that this kind of reasoning is used all the timeby human mathematicians: they �rst build an outline of the proof, then re�ne this outlineby adding in details which have been abstracted away. For instance, Polya [Pol45] pro-poses a four part strategy for solving mathematical problems: understanding the problem,devising a plan, carrying out this plan, and �nally examining the solution.\... The way from understanding a problem to conceiving a plan may belong and tortuous. In fact, the main achievement in the solution of a problemis to conceive the idea of a plan ... To carry out a plan is much easier; what weneed is mainly patience. The plan gives a general outline; we have to convinceourselves that the details �t into the outline." [Pol45][pages 8 and 12]Abstraction is one way of tackling the di�cult problem of �nding the plan. There are othertechnical motivations for this proposal (which, in part, also motivate the strategies used bymathematicians themselves):Complexity: abstraction can greatly reduce proof complexity; for example, in this paperwe demonstrate how a proof of G�odel's First Incompleteness theorem can be approximatelyhalved in size from 59 steps to 30.Explanation: such reductions in proof complexity make proofs more comprehensible andmore easily explained. Just as mathematicians often only give an outline to their proofs, aproof system should be able to describe proofs without all the inessential details.Analogy: abstractions of proofs might also provide a way to tackle analogy since analogicalproofs will often have similar abstractions.Our abstract proof checker is built on top of GETFOL [GW91], which is an extension and re-implementation of the FOL proof checking system [Wey80] 1. There are many reasons for thischoice. Most important is the conversational nature of GETFOL [GW91]: the interface withGETFOL is designed to make the interaction with the user more a dialogue than a sequenceof orders. Thus, the user engages in a conversation with the proof system in which he/shedescribes the abstraction, and the outline of the proof, and then progressively re�nes thisabstraction. The two-way nature of this conversation is essential for abstraction to be ofpractical utility, and to overcome the criticisms of Plaisted et al.1Actually, GETFOL is far more than a conventional proof checker. For instance, it includesderived inference rules and complex deciders. A single proof step in GETFOL can thusrepresent very complex reasoning. We could perhaps call it an \interactive theorem prover".However, we shall stick to \proof checker" as we wish to emphasize our interest in theinteraction with the system rather than in the automation of the construction of proofs.2

The other main reason for using GETFOL is that it provides facilities for multitheoretic reas-oning. That is, GETFOL allows for multiple distinct logical theories and provides inferencerules, so called bridge rules, to \link" reasoning between distinct theories. This feature isessential for an abstract proof checker as the ground and the abstract space need to be twodistinct theories. Bridge rules determine the properties which hold between ground andabstract spaces.2 AbstractionIn [GW89a] we argued that abstraction can be seen as the mapping of one representationof a problem, the ground representation onto a new and simpler representation, the ab-stract representation. Problems can be represented by axiomatic formal systems; anabstraction is then simply a mapping from one formal system to another [GW90].De�nition 1 (Abstraction) : An abstraction f , written \f : �1) �2" isa triple consisting of the formal systems �1, �2 and a total and computablefunction, which maps the language of �1 onto that of �2.�1 is the ground space, and �2 the abstract space. Since our focus is on proving theorems,an interesting restriction is to abstractions that preserve provability. As we show in [GW90,GW89a], one of the most interesting classes of abstractions (and one which captures nearlyall the abstractions proposed in the past), is the class of TI-abstractions2.De�nition 2 (TI-abstraction) : An abstraction f : �1) �2 is a TI-abstractioni�, for any w� ', if ' 2 TH(�1) then f(') 2 TH(�2).TI-abstractions are complete but not correct. The abstraction of a ground theoremis a theorem of the abstract space but not vice versa; there may be theorems of the abstractspace which do not correspond to any theorem of the ground space. The existence of anabstract theorem must be understood more as a \suggestion" than as an assurance. Weneed a further step (that ofmapping back) where we take this suggestion and informationabout the abstract proof, and try to prove the ground theorem.2\T" stands for theorem and \I" for increasing.3

Our aim is therefore to �nd abstractions in which the structure of abstract proofs is similarto that of ground proofs. Usually, the similarity is that the ground and abstract proofshave the same global structure. Hopefully, the abstract proof will also be shorter andeasier to construct. As the following sections will show, there is a very general monotonicityproperty, called tree subsumption which is preserved by a very large class of abstractions,and which captures the relationship between ground and abstract proofs for practically allthe abstractions of which we are aware.3 Mapping BackTo de�ne this monotonicity property, we must �rst give some notions for describing thestructure of proofs. Proofs are special types of formulae trees, trees with every nodelabelled by a w�. Arcs describe the local structure of a tree. They also induce a globalstructure on trees; we can de�ne when one node is below another, when it is above another,or (when neither of these two cases is true) when it is adjacent to another.De�nition 3 (�) : For any two nodes n1; n2 in a formulae tree, n1 is belown2, in symbols, n1�n2 i�� n1 = n2;� hn1; ni 2 arcs(�) and n�n2.The below relation is a weak partial order. We will say that n1 is above n2 i� n2�n1, andthat n1 is adjacent to n2, written n1 ./n2 i� n1 is not below or above n2. Adjacency is anincomparability relation.The below, above and adjacency relations allow us to formalise a monotonicity propertybetween ground and abstract proof trees. Such a property satis�es the following two con-ditions:� the preservation of the global structure of trees; the below, above and adja-cency relations should be maintained.� the preservation of the nodes; all the nodes in the abstract tree (plus possiblymore) should correspond to nodes in the ground tree.These conditions motivate the following de�nition.4

De�nition 4 (Tree subsumption) : If �1 and �2 are trees then �1 sub-sumes �2, written �1��2, i� there exists an injective map, � : nodes(�1) 7! nodes(�2)such that� label(n) = label(�(n))� if n1�n2 then �(n1)� �(n2)� if n1 ./ n2 then �(n1) ./ �(n2)The intuitive meaning of this de�nition is that the same w�s occur in �2 as in �1 (�rstcondition) with the same global ordering (second and third conditions). The second con-dition guarantees that the relationship between w�s within a subtree remains the same,whilst the third condition guarantees that the relationship between w�s in distinct subtreesremains the same. Tree subsumption is a preorder being transitive, and re
exive. It is alsoa monotonicity property on the depth, the weight, the number of formulae occurrences,the ordering of w�s and the branches. We can represent tree subsumption graphically asfollows:

1 is subsumed by 2Tree subsumption can be used to de�ne a very general class of abstractions called PI-abstractions3 which preserve the structure of proofs.De�nition 5 (PI-abstraction) : An abstraction, f : �1) �2 is said to be aPI-abstraction i�, for any proof �1 of a theorem ' in �1, there exists a proof�2 of f(') in �2 with �2� f(�1).3\P" stands for proof, and \I" for increasing.5

Note that it is the number of proofs in the abstract space (and not their weight or depth)that is increasing; indeed, their weight and depth is actually decreasing. By preserving thestructure of proofs, a PI-abstraction preserves provability. That is, a PI-abstraction is alsoa TI-abstraction.4 An Abstract Proof CheckerWe can now outline how PI-abstractions can be used to guide proof checking. As a subsetof the nodes of the proof in the ground space map onto the nodes of the proof in theabstract space, the individual steps in the abstract proof provide the islands to be bridgedby proof checking in the ground space.The process of abstract proof checking can thus be broken down into four steps:(i) we abstract the formula to be proved from the ground space onto the abstract space;(ii) we \proof check" an abstract proof;(iii) we map back (unabstract) the abstract proof; this gives us a plan that provides themajor steps (or islands) we will jump between in the ground proof;(iv) we re�ne the plan by �lling in the gaps between the islands.This process can be represented graphically as follows:
Ground Space Abstract Space

1

)f(goal:

proof:

plan:plan:

proof:

goal:
i) abstract

after step iv

ii) proof check

"guided proof checking"

iv) refine

goal:

proof:

plan:

)f(

2
))2f (-1

goal:

proof:

plan: iii) map back

6

Notice that this process can be repeated for any single theorem or subgoal. The abstractproof checker provides a set of primitives for each of the four steps. GETFOL's context mech-anism [GW91] allows for the simultaneous representation of ground and abstract spaces. AGETFOL context is a very complex notion, only part of which we need to use. It can be seenas a logical theory with its own language, axioms and deductive machinery. The abstractproof checker allows for the creation of and the switching between di�erent contexts. Step(i), the mapping from ground to abstract spaces, is built on top of the context mechanism;essentially it consists of a rewriting step plus a context switch. A lot of complexity arisesfrom the need to keep track of the appropriate signature (either that of the abstract spaceor that of the ground space). We also need commands to abstract axioms, to abstracttheorems and so on. For example, the following sequence of commands declares a groundand abstact space, de�nes an abstraction, declares an axiom in the ground space and thenmaps this onto an axiom of the abstract space (the axioms and abstraction are taken fromthe example in the next section).GETFOL:: NAMECONTEXT maths;You have named the current context: mathsGETFOL:: MAKECONTEXT absmaths;You have created the context: absmathsGETFOL:: DEFINE ABSTRACTION f:maths=>absmaths BY ...;GETFOL:: AXIOM m0: provable(peano,diag(x) IFF ~ prf(formno(diag(x)),x));GETFOL:: SHOW AXIOM m0;m0: provable(peano,diag(x) IFF ~ prf(formno(diag(x)),x))GETFOL:: ABSTRACT m0 to absmaths by f;GETFOL:: SWITCHCONTEXT absmaths;You are now using context: absmathsGETFOL:: SHOW AXIOM m0;m0: provable(peano,~d IFF d)Steps (iii) and (iv), unabstracting the outline and �lling in the details, are more di�cult toimplement than the �rst two steps. The problem is that, with TI-abstractions, the result ofmapping back an asbtract theorem is not in general a theorem. Even worse, abstractionsare usually not bijective; as a consequence, we must chose what we map back to. Weare considering a technique based on higher order uni�cation, and \middle-out" reasoning(that is, reasoning not from the beginning or the end but the middle of the proof) for thistask. This part will be discussed only brie
y in the paper.7

5 An ExampleWe consider a theorem closely related to G�odel's First Incompleteness theorem4. For sim-plicity, we will skip much of the proof, and assume that G�odel numbering has been de�nedand several of the key lemmas have been proved. In particular, we'll assume the diagonal-isation lemma:AXIOM m0: provable(peano,diag(x) IFF ~ prf(formno(diag(x)),x));where prf(Fn,Pn) is true i� Pn is the G�odel number of a proof of the formula whose G�odelnumber is Fn.Additionally we'll need various properties of consistency, provability, validity and substitu-tion, and of the theory peano and the model arith. For example:AXIOM m2: consistent(peano);AXIOM m3: consistent(Th) imp not provable(Th,F) or not provable(Th,~F);AXIOM m4: provable(peano,F) imp valid(arith,F);AXIOM m7: provable(Th,F) and provable(Th,F IFF G) imp provable (Th,G));AXIOM m11: subst(el(M),X,F,G) and valid(M,G) imp valid(M,all(X,F)));el(M) is a random element of the model M, and subst(T,X,F,G) is true if G is the resultof substituting term T for variable X in the formula F.We want to prove that:exists F. valid(arith,F) and not provable(peano,F)That is, there exists a formula F which is valid in the model arith but not provable inpeano arithmetic. A complete proof of this theorem is very complicated, requiring some 59steps. In his unpublished note, Alan Bundy has proposed a PI-abstraction which simpli�esthe proof greatly but still provides the key steps. The terms diag(x), diag(el(arith)),all(x,diag(x)), ~prf(formno(diag(x)),x), and ~prf(formno(diag(x)),el(arith))are abstracted onto ~d. Similarly, the two terms prf(formno(diag(x)),x), andprf(formno(diag(x)),el(arith)) are mapped onto d. All the other terms (and all pre-dicate names) are left unchanged. Formally, this mapping is a function abstraction (whichcollapses functions onto constants) [GW90, GW89a].4This example is adapted from an (unpublished) note by Alan Bundy. We are greatlyindebted to Alan Bundy for this contribution.8

Under such an abstraction, more than half the axioms become redundant and the proofhalves in size; more importantly, every step in the abstract proof corresponds to (theabstraction of) an important step in the ground proof; that is, the abstract proof treesubsumes (the abstraction of) the ground proof. In the long paper we will describe thisproof in more detail. In the �gure below, the key steps of the two proofs are illustratedside by side:Abstract Proof Ground Proof15 not provable(peano,~d) 32 not provable(peano,all(x,diag(x))20 not provable(peano,d) 38 not provable(peano,prf(formno(diag(x),el(arith)))27 provable(peano,~d) 53 provable(peano,diag(el(arith)))29 valid(arith,~d) 58 valid(arith,all(x,diag(x))30 valid(arith,~d) and 59 valid(arith,all(x,diag(x))) andnot provable(peano,~d) not provable(peano,all(x,diag(x)))Note that the abstract space is inconsistent; indeed at line 15 we demonstrate that not provable(peano,~d)whilst later on, at line 27, we prove that provable(peano,~d). In [GW89b] we demon-strate that inconsistency is inevitable with the use of abstractions like this. However,provided we are careful not to exploit this inconsistency in our proofs, this does not causeproblems [GW89b].6 ConclusionsWe have proposed using abstraction to guide a proof checking system. This is very similar tothe way abstraction is used by human mathematicians. We have demonstrated the utilityof this strategy by means of a computer assisted proof of G�odel's First Incompletenesstheorem. This use of abstraction seems to overcome many of the problems associated withthe use of abstraction in automated theorem proving. Such a use of abstraction has thepotential to transform traditional mechanized reasoning.References[GW89a] F. Giunchiglia and T. Walsh. Abstract Theorem Proving. In Proceedings ofthe 11th IJCAI, International Joint Conference on Arti�cial Intelligence, 1989.9

Also available as DAI Research Paper No 430, Dept. of Arti�cial Intelligence,Edinburgh.[GW89b] F. Giunchiglia and T. Walsh. Abstracting into inconsistent spaces (or thefalse proof problem). In Proceedings of AI*IA 89, Associazione Italiana perl'Intelligenza Arti�ciale, 1989. Also available as DAI Research Paper, Dept. ofArti�cial Intelligence, Edinburgh.[GW90] F. Giunchiglia and T. Walsh. A Theory of Abstraction. Research Paper 516,Dept. of Arti�cial Intelligence, University of Edinburgh, 1990. Submitted toJournal of Arti�cial Intelligence.[GW91] F. Giunchiglia and T. Walsh. Abstract theorem proving: mapping back. ResearchPaper 460a, Dept. of Arti�cial Intelligence, University of Edinburgh, 1991. Thisis a revised version of DAI Research Paper 460.[Kor79] R.E. Korf. Planning as search: a quantitative approach. Arti�cial Intelligence,33:65{88, 1979.[Pol45] G. Polya. How to Solve It. Princeton University Press, Princeton, NJ, 1945.[Wey80] R.W. Weyhrauch. Prolegomena to a theory of Mechanized Formal Reasoning.Arti�cial Intelligence. Special Issue on Non-monotonic Logic, 13(1), 1980.

10

