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Learning constraint networks is known to require a number of membership queries 
exponential in the number of variables. In this paper, we learn constraint networks by 
asking the user partial queries. That is, we ask the user to classify assignments to subsets 
of the variables as positive or negative. We provide an algorithm, called QuAcq2, that, 
given a negative example, elucidates a constraint of the target network in a number of 
queries logarithmic in the size of the example. The whole constraint network can then 
be learned with a polynomial number of partial queries. We give information theoretic 
lower bounds for learning some simple classes of constraint networks and show that our 
generic algorithm is optimal in some cases. We provide a version of QuAcq2 with a cutoff 
mechanism that controls the time to generate a query. Our experiments illustrate the good 
behavior of QuAcq2 in practice, especially in the case where QuAcq2 is executed to learn 
the missing constraints in a partially filled constraint model. Our experiments also show 
that QuAcq2 requires significantly fewer queries to learn a network than its predecessor
QuAcq1.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

Constraint programming (CP) has been used more and more frequently to solve combinatorial problems in industrial 
applications. One of the strengths of CP is that it is declarative, which means that the user specifies the problem as a 
constraint network (or constraint model), and the solver finds solutions. However, it appears that specifying the constraints 
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of a problem is not always easy for non-specialists. Hence, the modeling phase constitutes a major bottleneck in the use 
of CP. Research on constraint acquisition tackles this bottleneck. In most of the constraint acquisition systems (e.g., Conacq.1
[10,12,17], ModelSeeker [7], Arnold [29], SeqAcq [36]), the user provides examples of solutions (positive) and non-solutions 
(negative). Positive examples can come from historical data whereas negative examples can come from failed executions of 
attempted solutions. The system is also provided with a learning bias (i.e., a space of possible constraints). For instance, in 
Conacq.1, the bias is the set of all constraints that can be specified by using a given language of bounded-arity relations. In 
ModelSeeker, variables are arranged as a matrix, the language is composed of global constraints, and the bias is the set of 
all possible occurrences of these global constraints on specific subsets of variables such as rows or columns. Given the bias 
and the set of examples, all these constraint acquisition systems learn sets of constraints that correctly classify all examples 
(or most of the examples) given so far. This is a form of passive learning.

In some cases, learning the constraints with passive learning is not sufficient to obtain a satisfactory constraint model. 
For instance, ModelSeeker or Arnold cannot learn constraints that fall outside of the kind of structures (rows, columns, etc.) 
that those systems use to build their bias. Conacq.1 does not have such strong restrictions on the kind of structures on 
which the constraints of its bias can occur. But if we do not have enough training examples, or if they are not diverse 
enough, Conacq.1 may return a set of possible constraint networks that is too large to be useful to the user. Active learning 
can address this issue. An active learner asks queries of the user to elucidate the uncertain parts of the network until it 
has converged on the unique constraint network (up to equivalence) correctly classifying all examples. (See Section 2 for 
more details.) Active learning may also be useful when the user, because of cognitive limitations, is not able to formulate 
the whole set of constraints representing the problem. For instance, Fumagalli et al. use active learning in the context of 
conceptual modeling to assist the user in acquiring the missing constraints [25]. The user is simply asked to classify model 
interpretations as allowed or forbidden.

Conacq.2, proposed by Bessiere et al. [14,17], was the first constraint acquisition system in the literature using active 
learning. Conacq.2 proposes complete assignments of the variables of the problem to the user to classify as solutions (pos-
itive examples) or non solutions (negative examples). Such questions are called membership queries by Angluin [2]. For 
instance, Menguy et al. use Conacq.2 in the system PreCa to automatically infer program preconditions from input-output 
observations of the behavior of the program to analyze [33]. Interestingly, PreCa does not require any human action in the 
learning process because the classification of examples is obtained by running the program on the given assignment of vari-
ables. However, when this is a human who classifies examples, the concern with active learning with membership queries 
is the large number of queries that may be required to converge on the target set of constraints. Bessiere et al. proved that 
the number of membership queries required to converge can be exponentially large [16,17].

In this paper, we propose QuAcq2 (for Quick Acquisition, version 2), a new member in the family of QuAcq algorithms, 
whose first version –called QuAcq1 from now on– was proposed by Bessiere et al. in [11]. QuAcq algorithms are active 
learners that ask the user to classify partial queries as positive or negative. As opposed to membership queries, partial 
queries only involve a subset of the variables of the problem. Given a negative example, QuAcq1 and QuAcq2 are able to 
learn a constraint of the target constraint network in a number of queries logarithmic in the number of variables. As a 
result, QuAcq1 and QuAcq2 converge on the target constraint network in a polynomial number of queries. In addition, most 
of these partial queries are easier to classify for a human user than membership queries. Many of those partial queries 
are either subsets of queries already asked, or they are extremely short (i.e., containing a bounded number of variables).
QuAcq algorithms have other advantages. We identify information theoretic lower bounds on the complexity of learning 
constraint networks that show that QuAcq2 is optimal on some simple languages and close to optimal on others. We 
provide a complete complexity map for languages composed of the relations <, =, and/or �=. Another advantage of QuAcq

algorithms is that as opposed to most existing techniques, the user does not need to give positive examples. This might be 
useful if the problem has never been solved before, so that there are no examples of past solutions. However, QuAcq1 has 
several limitations. QuAcq1 cannot learn constraint networks in which two constraints involve exactly the same variables. 
Another limitation of QuAcq1 is that some queries –especially at the end of the learning process– can require so much 
time to generate that it makes difficult to use QuAcq1 in an interactive learning process. QuAcq2 has several new features 
compared to QuAcq1, and in particular, it addresses the two issues above. QuAcq2 learns any kind of constraint network, 
regardless of whether the constraints are organized in a specific structure or not (like QuAcq1) and regardless of whether 
the network has several constraints defined on the same variables or not (unlike QuAcq1). QuAcq2 can be used when 
part of the network is already known from the user or from another learning technique. The larger the number of known 
constraints, the fewer the queries required to converge on the target network. Finally, thanks to partial queries, we are able 
to propose a version of QuAcq2 with a cutoff mechanism that controls the time to generate a query. This solves the issue 
of prohibitive generation time of queries in QuAcq1. We provide several experiments on various benchmark problems to 
validate these advantages in practice.

The rest of the paper is organized as follows. Section 2 positions our approach with respect to the existing literature. 
Section 3 gives the necessary definitions to understand the technical presentation. Section 4 describes and analyzes QuAcq2, 
an algorithm that learns constraint networks by asking partial queries. In Section 5, we show that QuAcq2 behaves optimally 
on some simple languages and close to optimally on others. Section 6 reports the results of an experimental evaluation of
QuAcq2. Section 7 concludes the paper.
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2. Related work

Constraint acquisition has already been addressed in the literature. The two main approaches are passive learning, where 
the system learns constraints from a given set of examples, and active learning, where the system asks queries of the user 
in order to elucidate the constraints.

2.1. Passive constraint acquisition

An early approach to passive constraint acquisition is the algorithm Conacq.1, proposed by Bessiere et al. [10,12,17]. 
Conacq.1 uses the version space learning paradigm. Based on the examples of solutions (positive) and non-solutions (nega-
tive) that are provided by the user, Conacq.1 builds a version space that only contains those constraint networks that accept 
all positive examples and reject all negative examples. The version space is compactly represented by a clausal formula. 
Conacq.1 is a generic algorithm in the sense that it does not require the problem to have any specific structure.

Recently, several other generic passive learners have been proposed. Prestwich et al. proposed BayesAcq, a technique that 
trains a Naive Bayes classifier to discriminate between solutions and non-solutions. A constraint network is then derived 
from the trained classifier [37]. In the standard setting proposed by Prestwich et al., BayesAcq generally returns the network 
containing all constraints violated by at least one negative example and not violated by any positive example. This network 
belongs to the version space returned by Conacq.1. However, a noticeable difference is that if there exists a constraint 
rejecting one positive example e+ and also rejecting many (i.e., more than 100 in the standard setting) negative examples, 
Conacq.1 discards all networks containing this constraint from the version space whereas BayesAcq considers e+ as an error. 
Prestwich also proposed SeqAcq, another passive learner robust to errors [36]. SeqAcq uses a statistical approach based 
on sequential analysis. Given two parameters A and R and a set of examples, SeqAcq returns a network that contains all 
constraints from the bias that reject fewer than R positive example and at least A negative examples. In its standard setting 
(R = 1, A = 50), SeqAcq returns a network that belongs to the version space of Conacq.1.

Lallouet et al. proposed a passive learning method based on inductive logic programming [30]. Their system uses back-
ground knowledge describing the structure of the problem and, given a set of examples, learns a representation of the 
problem that correctly classifies the examples. A limitation of this approach is that the user has to be able to provide the 
whole structure of the problem.

A successful approach to passive learning is ModelSeeker, proposed by Beldiceanu and Simonis [7]. The user provides 
positive examples to the system, which arranges their variables as a matrix. Then ModelSeeker uses the global constraints 
catalog ([5]) to identify global constraints that are satisfied by particular subsets of variables in all the examples. Such 
particular subsets are for instance rows or columns. The candidate constraints are ranked and proposed to the user for 
selection. This ranking/selection combined with the representation of examples as matrices allows ModelSeeker to find a 
good model with few examples when the problem has an underlying matrix structure. In ModelSeeker, we assume that 
the user has enough expertise in CP to select the right global constraints among the candidate constraints that the system 
proposes. ModelSeeker cannot find constraints other than global constraints from the catalog holding on specific structures 
it can recognize. Beldiceanu et al. have successfully used ModelSeeker in conjunction with Conacq.1 to extract a constraint 
model for computing the power output for power plants at EDF, the national electricity company in France [6].

Pawlak and Krawiec proposed a passive learner in the context of mathematical programming [35]. Given a set of pos-
itive and negative examples, their system formulates a mixed integer linear program that will return a set of constraints 
that correctly classifies all examples. The constraints are picked from a predefined bias containing linear, quadratic, and 
trigonometric constraints. The returned set of constraints is the one that minimizes a simplicity criterion that can be pa-
rameterized. More recently, Kumar et al. have proposed a passive learner called Arnold [29]. Arnold takes positive examples 
as input and learns an integer program that accepts these examples as solutions. Arnold relies on a tensor-based language 
for describing polynomial constraints between multi-dimensional vectors. Like ModelSeeker, Arnold requires that the problem 
has an underlying matrix structure, and it has to be given as input.

There exist other works related to constraint acquisition, though a bit more distant from our current contribution. In 
[34], Paramonov et al. apply passive constraint learning to the specific case of Excel sheets. Their system, TaCLe, takes 
an Excel sheet as input and returns a set of constraints in the form of formulas that hold on regions of the sheet (e.g., 
columns, rows, rectangles). The system Hassle proposed by Kumar et al. learns MAX-SAT formulas encoding combinatorial 
optimizations problems [28]. The originality of the approach is that the system learns both hard and soft clauses and that 
it works when provided with examples labeled by a context. A context is a partial assignment under which the example 
holds. Even more remotely related is the Empirical Model Learning (EML) system from Lombardi et al. [31]. EML learns a 
single constraint that will be embedded into a constraint model. Given real data or a simulator, the constraint is learned 
with a pure machine learning technique such as decision tree or neural network classifiers. The tuples of the constraint are 
those classified positive by the classifier. Interestingly, the classifier is transformed into a propagator that can be used inside 
a CP solver exactly like a standard constraint propagator.

2.2. Active constraint acquisition

Active constraint acquisition is a special case of query-directed learning known as exact learning (see Angluin [2], or 
Bshouty [19]). In the learning formalism introduced by Angluin [2] and used in most approaches to exact learning, two 
3
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types of queries are used. A membership query requests the user to classify a given example as positive or negative whereas 
an equivalence query asks the user to decide whether the given concept is equivalent to the target concept. In case of 
a negative answer to an equivalence query, the user must provide a counter example that proves that the two concepts 
are not equivalent. In applications where we need a proof that the learning system has converged on the target set of 
constraints, active learning is a good candidate because it can select the queries that will lead to convergence. Nevertheless, 
in the context of constraint acquisition, Bessiere et al. observed that requiring the user to answer equivalence queries is far 
too difficult because we assume that the users do not have the skills to express the target network by themselves [17].

An early work in active constraint acquisition is the Matchmaker agent proposed by Freuder and Wallace [24]. The 
matchmaker suggests examples to the user as potential solutions of the problem. A negative answer from the user comes 
with a “correction” that indicates why the suggestion (i.e., the example) fails. The correction is composed of one (or more) 
of the constraints that are violated. This approach requires enough expertise from the user to be able to express constraints 
that are violated.

Bessiere et al. proposed another active learner called Conacq.2 [14,17]. In Conacq.2, membership queries are asked of the 
user. As Conacq.2 works with membership queries only, it does not require any other expertise from the user than being 
able to classify examples as solutions or non solutions. An important drawback though, is that the number of membership 
queries required to converge on the target network can be exponentially large [16,17].

In [41], Shchekotykhin and Friedrich extend Conacq.2 to allow the user to attach arguments to the classification of 
examples. An argument is a set of constraints and/or variable assignments labeled as positive, necessary, sufficient, etc. Such 
arguments allow the system to converge with fewer examples than Conacq.2. However, it puts more effort on the user (some 
arguments are NP-hard to generate) and again requires more expertise in CP.

Recently, Tsouros and Stergiou have proposed the PrefAcq algorithm [43]. PrefAcq is able to learn soft constraints in Max-
CSPs via active constraint acquisition. A new type of queries is introduced, namely (partial) preference queries, inspired by 
works on preference elicitation. Driven by the user’s answers to preference queries, PrefAcq is able to learn all the soft 
constraints appearing in a Max-CSP.

2.3. QuAcq1 and related acquisition techniques

The first version of QuAcq, that we call QuAcq1 in this paper, was published by Bessiere et al. [11]. It was the first time 
partial queries were used to learn constraint networks. As opposed to QuAcq2, QuAcq1 is devoted to constraint networks for 
which there does not exist any constraint involving a set of variables included in the set of variables of another constraint. 
This limitation was partially fixed in the version published in [15] but the network is still required to be normalized (i.e., 
two constraints cannot be defined on the same set of variables). A second weakness of QuAcq1 is that it is not built on 
the neat framework of exact learning. This leads to a behavior that is not well-founded. When the target network is not a 
subset of the bias, QuAcq1 can either converge on a wrong network or return a “collapse” state. Another consequence of
QuAcq1 being ill-defined is that QuAcq1 can ask useless queries, that is, queries that are redundant wrt the learning process. 
In QuAcq2, the problem of constraint acquisition is formulated in a way that is more in line with the exact learning setting 
used in active concept learning [3,38]: The target network is a subset of the constraints in the bias. As a consequence,
QuAcq2 never asks redundant queries and never collapses.1

All the contributions that we present in the rest of this subsection are extensions of QuAcq1. As such, they suffer from 
the same weaknesses as QuAcq1. They would directly benefit from moving to a QuAcq2-based architecture.

The MultiAcq algorithm, proposed by Arcangioli et al. [4], comes from the observation that a negative complete example 
may violate several constraints from the target network whereas QuAcq1 learns only one constraint from this example. 
MultiAcq learns all the constraints of the target network that are violated by a complete example that is classified as 
negative. The downside is that MultiAcq needs a number of queries linear in the size of the example to learn a constraint, 
instead of logarithmic for QuAcq1. In the algorithm MQuAcq, Tsouros et al. combine ideas from MultiAcq and QuAcq1 [46]. 
MQuAcq learns a maximum number of constraints, like MultiAcq, but keeps the logarithmic complexity from QuAcq1 to 
learn each constraint. Tsouros et al. extended MQuAcq to MQuAcq-2, an algorithm that exploits the structure of the learned 
network to focus its queries on specific parts of the problem [45]. When no more constraint can be learned by exploiting the 
structure, MQuAcq-2 looks for non-overlapping constraints of the target network, alleviating the high run time that MQuAcq
incurs when searching for all the constraints violated by a negative example.

Interestingly, QuAcq1 does not require complete positive examples in order to learn a constraint network. This observa-
tion was used by Bessiere et al. to propose Ask&Solve, a QuAcq1-based solver that can find a solution to a problem without 
modeling it [13]. Ask&Solve tries to find the best trade-off between learning and solving to converge as soon as possible on 
a solution of the target network rather than learning the whole target network.

One of the drawbacks of active constraint acquisition in general, and QuAcq1 in particular, is that generating membership 
queries can be very time-consuming. Attempts to reduce the time needed to generate a query were presented by Addi et 
al. [1] and by Tsouros and Stergiou [42]. In [1], T-Quacq generates queries in a bounded amount of time. Unfortunately, 

1 If QuAcq2 is called to learn a target network that is not in the bias, QuAcq2 will stop asking queries when there remains a unique network (up to 
equivalence) consistent with all examples classified so far. QuAcq2 returns that network.
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this bounded time comes at the risk of failing to learn the target network (called premature convergence). In [42], sev-
eral heuristics are proposed to speed up query generation. In QuAcq2, query generation does not suffer from premature 
convergence and the time to generate a query can be controlled by the use of a predefined time cutoff.

In [9], Bessiere et al. observe that in many problems, variables can be of different types (e.g., nurses, doctors, patients), 
and that variables of the same type are often involved in constraints with the same relation. A new type of queries is 
introduced, namely generalization queries. Generalization queries ask the user whether a constraint learned on variables of a 
given type can be applied to all variables of this type. Such queries are shown to speed up convergence when plugged into
QuAcq1. In the paper of Daoudi et al. [21], the user no longer needs to provide the types in advance because they are learned 
by analyzing the structure of the currently learned constraint network. In [22], Daoudi et al. introduce recommendation 
queries. By using techniques from the link prediction field, the system Predict&Ask asks the user whether or not a predicted 
constraint belongs to the target network. It is shown that when plugged into QuAcq1, Predict&Ask reduces the number of 
queries. All these techniques require enough expertise from the user to be able to answer these new types of queries.

Finally, Tsouros et al. release the assumption that the user is always able to answer queries by yes or no [44]. The 
MQuAcq-2 algorithm is modified so that it can accommodate from omissions, that is, when the user’s answer is ‘I don’t 
know’. It is shown that when the omissions are related to a gap in the user’s knowledge, the proposed algorithm can find 
that gap.

3. Background

The learner and the user need to share some common knowledge to communicate. We suppose this common knowledge, 
called the vocabulary, is a (finite) set of n variables X and a domain D = {D(X1), . . . , D(Xn)}, where D(Xi) ⊂Z is the finite 
set of values for Xi . A constraint c is defined by a sequence scp(c) of variables from X , called the constraint scope, and a 
relation rel(c) over Z specifying which sequences of |scp(c)| values are allowed for the variables scp(c). The notation var(c)
will refer to the set of variables occurring in scp(c), and we abusively call it ‘scope’ too when no confusion is possible. 
A constraint network (or simply network) is a set C of constraints on the vocabulary (X, D). An assignment eY ∈ DY , where 
DY = �Xi∈Y D(Xi), is called a partial assignment when Y ⊂ X and a complete assignment when Y = X . An assignment eY

on a set of variables Y ⊆ X is rejected by a constraint c (or eY violates c) if var(c) ⊆ Y and the projection eY [scp(c)] of eY

on the variables scp(c) is not in rel(c). If eY does not violate c, it satisfies it. An assignment eY on Y satisfies a set C of 
constraints (or eY is accepted by C ) if and only if eY satisfies all constraints in C . An assignment on X that is accepted by C
is a solution of C . We write sol(C) for the set of solutions of C . We write C[Y ] for the set of constraints in C whose scope 
is included in Y , and CY for the set of constraints c in C such that var(c) = Y , that is, constraints whose scope exactly fits 
Y . We say that two networks C and C ′ are equivalent if sol(C) = sol(C ′).

In addition to the vocabulary, the learner owns a language � of bounded arity relations from which it can build con-
straints on specified sequences of variables. Adapting terms from machine learning, the constraint bias, denoted by B , is a 
set of constraints built from the constraint language � on the vocabulary (X, D) from which the learner builds a constraint 
network.

The target network is the subset T of B that the user has in mind to represent her problem, without necessarily being 
able to formulate it. In the following, we assume that T does not contain any pair of constraints that directly contradict
each other. By ‘directly contradict’, we mean two constraints c and c′ such that var(c) ⊆ var(c′) and sol({c, c′}) = ∅.2

A membership query A S K (e) takes as input a complete assignment e in D X and asks the user to classify it. The answer 
to A S K (e) is yes if e ∈ sol(T ), otherwise the answer is no. A partial query A S K (eY ), with Y ⊆ X , takes as input a partial
assignment eY in DY and asks the user to classify it. The answer to A S K (eY ) is yes if and only if eY does not violate any 
constraint in T . It is important to observe that “A S K (eY )=yes” does not mean that eY extends to a solution of T , which 
would put an NP-complete problem on the shoulders of the user. A classified assignment eY is called positive or negative 
example depending on whether A S K (eY ) is yes or no. For any assignment eY on Y , κB(eY ) denotes the set of all constraints 
in B that reject eY . We will also use κ�(eY ) to denote the set of constraints in a given set � that reject eY .

We now define convergence, which is the constraint acquisition problem we are interested in. Given a set E of (partial) 
examples labeled yes or no by the user, we say that a network C agrees with E if C accepts all examples labeled yes in E
and does not accept those labeled no. The learning process has converged on the network L ⊆ B if L agrees with E and for 
every other network L′ ⊆ B agreeing with E , we have sol(L′) = sol(L). We are thus guaranteed that L is equivalent to T . It is 
important to note that L is not necessarily unique and equal to T . This is because of redundant constraints. Given a set C of 
constraints, a constraint c /∈ C is redundant wrt C if sol(C) = sol(C ∪ {c}). We also say that C implies c (denoted by C |= c).

In the algorithms presented in the rest of the paper we will use the join operation, denoted by �, which itself uses 
the conjunction of constraints, denoted by ∧. Given two constraints c and c′ defined on the same set var(c) (= var(c′)) of 
variables, the conjunction c ∧ c′ of c and c′ is the constraint whose relation is the intersection of rel(c) and rel(c′).3 Given 
two sets S and S ′ of constraints defined on the same set of variables, the join of S with S ′ is the set of constraints with 
non-empty relation obtained by pairwise conjunction of a constraint in S with a constraint in S ′ . That is, S � S ′ = {c ∧c′ | c ∈

2 This minor restriction could easily be released but would lead to slightly more work for the learning algorithm we describe in this paper.
3 By convention, we will assume the scope is lexicographically ordered to avoid duplicates.
5
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Fig. 1. Comparison of the version spaces of Conacq.2 and QuAcq2 after processing a positive example e+
1 and two negative examples e−

2 and e−
3 , violating 

constraints {c1}, {c2, c4}, and {c3, c4}, respectively. After processing e+
1 , Conacq.2 removes all networks containing c1 from its version space (grey nodes) 

because they would reject e+
1 . Hence, the most specific bound of the version space becomes the green node {c2, c3, c4}. When processing the two negative 

examples e−
2 and e−

3 , Conacq.2 stores two clauses stating that at least one constraint among {c2, c4} and at least one constraint among {c3, c4} must belong 
to the learned network. The most general bound of the version space then becomes the red nodes {c4} and {c2, c3}. Concerning QuAcq2, e+

1 leads to the 
removal of c1 from its bias B , leading to the most specific bound L ∪ B = {c2, c3, c4}, as in Conacq.2. When processing e−

2 and e−
3 , thanks to FindScope

and FindC, QuAcq2 learns a unique constraint for each of these two examples, respectively c2 and c3 in the figure. This leads to a unique most general 
bound: the bold red node L = {c2, c3} in the version space. (For interpretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

S, c′ ∈ S ′, c ∧ c′ �|= ⊥}. A constraint belonging to the bias B will be called elementary in contrast to a constraint composed of 
the conjunction of several elementary constraints, which will be called conjunction. A conjunction will sometimes be referred 
to as a set of elementary constraints. Given a set S of conjunctions, we will use the notation S p to refer to the subset of 
S containing only the conjunctions composed of at most p elementary constraints. When a network does not contain any 
conjunction of constraints on any scope, that is, all its constraints are elementary, we call it a normalized network.

4. Constraint acquisition with partial queries

In this Section, we describe QuAcq2, a novel active learning algorithm. QuAcq2 takes as input a bias B on a vocabulary 
(X, D). QuAcq2 asks partial queries of the user until it has converged on a constraint network L equivalent to the target 
network T , which is expressed with constraints from B .

4.1. Preamble

Before entering in the algorithmic description of QuAcq2, let us give the intuition behind its basic principles. At first 
glance, QuAcq2 may seem close to Conacq.2. However, there are significant differences with Conacq.2. Conacq.2 is a version 
space learning algorithm. Conacq.2 only uses membership queries, that is, it asks the user to classify complete assignments 
of the variables as positive or negative examples. Each example is used to remove networks from the version space. To avoid 
storing a version space of exponential size, Conacq.2 compactly represents the version space through a SAT formula, whose 
solutions represent networks in the version space. When an example e+ is classified as positive by the user, we know that 
the constraints in the set κB (e+) of constraints violated by that example cannot be part of the learned network (otherwise 
the example would be rejected). A set of negative unary clauses (one per constraint in κB (e+)) is added to the SAT formula 
to prevent the use of these constraints. When an example e− is classified as negative, we know that at least one of the 
constraints in κB(e−) must belong to the learned network (otherwise the example would not be rejected). A single positive 
clause (with all constraints in κB (e−) as atoms) is added to the SAT formula to enforce the presence of at least one of these 
constraints. There is a one-to-one mapping between the set of solutions of the SAT formula and the networks belonging 
to the version space. Any solution to the SAT formula with a minimal set of atoms assigned true corresponds to a most 
general bound of the version space, that is, a network with a minimal set of constraints. There can be exponentially many 
such networks. The unique solution to the SAT formula with a maximal set of atoms assigned true corresponds to the 
network that is the unique most specific bound of the version space. (See Fig. 1 for an illustrative example.)
6
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Even if QuAcq2 has similarities with Conacq.2, it is a very degenerated case of version space learning. QuAcq2 does 
not only ask membership queries. QuAcq2 is able to ask partial queries. When processing a positive example e+ , QuAcq2

behaves in a way similar to Conacq.2, except that QuAcq2 works directly on the constraints, not on a SAT formula. That is,
QuAcq2 directly rules out the set κB(e+) of constraints violated by the positive example from the bias B . When processing a 
negative example e− , the behavior of QuAcq2 is quite different from that of Conacq.2. Instead of storing a clause containing 
the set κB(e−) of constraints from B that are candidate to reject e− , QuAcq2 calls the subprocedures FindScope and
FindC to learn a constraint. FindScope and FindC ask a sequence of queries of the user until one of the constraints 
of the target network rejecting e− is elucidated and added to the learned network L. (See again Fig. 1 for an illustrative 
example.)

Whereas the main procedure QuAcq2 generates its queries in a way that has similarities with the way Conacq.2 does, 
the queries asked by the subprocedures FindScope and FindC are generated in a very different way. Given a query e−

Y
generated in the main procedure QuAcq2 and classified as negative by the user, the queries that FindScope asks have the 
form e−

Y [R] for some subset R of Y . That is, FindScope does not generate any new assignment of the variables. It just 
projects e−

Y on subsets of Y . Once FindScope has found a scope S that contains a constraint from the target network,
FindC generates queries on scope S until the constraint is found and added to the learned network. By construction of the 
bias B , S has bounded size.

Thanks to partial queries, QuAcq2 can isolate the scope of one of the constraints from the target network (FindScope) 
and elucidate the constraint that appears on this scope in the target network (FindC) in a number of queries logarithmic 
in the number of variables in the target network. In comparison, Conacq.2 can require exponentially many queries. A second 
benefit of QuAcq2 is that it does not need to maintain any kind of compact representation of the version space. The version 
space of QuAcq2 is a degenerated one. The most specific network is simply the union of the current learned network L and 
of the constraints remaining in B . The most general network (which is unique, as opposed to standard version spaces) is 
the current learned network L itself. Therefore, the version space is the set of networks {C | L ⊆ C ⊆ L ∪ B}.

4.2. Technical description of QuAcq2

In our description of QuAcq2, we make explicit the possible use of background knowledge in the form of already known 
constraints. In practical applications, it is indeed often the case that the user already knows some of the constraints of her 
problem. These constraints can be known because they are easy to express, or because they are implied by the structure of 
the problem, or because they have been learned by another tool. We can also inherit constraints from a past/obsolete model 
that needs to be updated because some changes have occurred in the problem. For instance, if new workers have joined 
the company, we need to learn constraints on them, but the rest of the problem remains unchanged. It is this set of already 
known constraints that we will call the background knowledge in the rest of the paper. That is, the background knowledge 
is a set K of constraints, where K is the part that we already know of the target network T (i.e., K ⊆ T ).

QuAcq2 (see Algorithm 1) initializes the network L that it will learn to the set K of already known constraints (line 2). If 
K is not empty, B probably contains constraints that are either directly contradicted by L or implied by L. Constraints that 
are directly contradicted can safely be removed from B (line 3). Implied constraints can safely be transferred from B to L. 
As it may be very time consuming to check whether a constraint c is such that L |= c, we propose a lighter version, which, 
for each constraint c ∈ B , simply checks whether there exists a constraint c′ in L such that var(c) ⊆ var(c′) and c′ |= c. If 
there exists such a c′ , we add c to L (line 4). Line 5 removes all constraints (implied or coming from K ) already in L from 
B . It is important to note that lines 3 and 4 are optional. Skipping them does not hurt correctness of QuAcq2. Nevertheless, 
it can lead to additional queries asked of the user just to understand that a constraint is contradicted or implied. Another 
point to bear in mind is that the (redundant) constraints added to L in line 4 can be removed from the returned network 
once QuAcq2 has converged.4 After this initialization step, QuAcq2 enters its main loop (line 6). In line 7, QuAcq2 calls 
function GenerateQuery that computes an assignment eY on a subset of variables Y satisfying the constraints of L that 
have a scope included in Y , and violating at least one constraint from B .5 We will see later that there are multiple ways 
to design function GenerateQuery. If GenerateQuery is able to prove that there does not exist any assignment on X
accepted by L and rejected by B (i.e., all constraints in B are implied by L), then GenerateQuery returns ⊥ and QuAcq2

has converged (line 8). If QuAcq2 has not converged, we ask the user the classification of the assignment eY (line 9). If the 
answer is yes (i.e., eY does not violate any constraint of the target network T ), we remove from B the set κB(eY ) of all 
constraints in B that reject eY (line 10). If the answer is no, we are sure that eY violates at least one constraint of T . We 
then call function FindScope to discover the scope S of one of these violated constraints. Procedure FindC will learn 
(that is, put in L) all constraints of T whose scope is S (line 11).

The structure of the recursive function FindScope (see Algorithm 2) is inspired from the QuickXplain algorithm of 
Junker [27]. QuickXplain was proposed to extract a minimal inconsistent subset of an inconsistent set of constraints. As 
shown by Rodler [39], the principle of QuickXplain can be applied to any problem in which the property of the subset we 

4 These constraints were added to L just to guarantee correctness of QuAcq2, as we will see later.
5 For this task, the constraint solver needs to be able to express the negation of the constraints in B . This is not a problem as we have only bounded 

arity constraints in B .
7
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Algorithm 1: QuAcq2.
In : bias B
In : background knowledge K ⊆ B
Out : learned network L

1 begin
2 L ← K ;
3 B ← B \ {c | c is directly contradicted by c′ ∈ L}; // optional
4 L ← L ∪ {c ∈ B | ∃c′ ∈ L, var(c) ⊆ var(c′) ∧ c′ |= c}; // optional
5 B ← B \ L;
6 while true do
7 eY ← GenerateQuery(L, B);
8 if eY = ⊥ then return “convergence on L”;
9 if A S K (eY ) = yes then

10 B ← B \ κB (eY );
11 else FindC(eY , FindScope(eY , ∅, Y ), L);

Algorithm 2: Function FindScope.
In : negative example e
In : scopes R, Y
Out : scope of a constraint in T

1 begin
2 if κB (e[R]) �= ∅ then
3 if A S K (e[R]) = yes then B ← B \ κB (e[R]);
4 else return ∅;

5 if |Y | = 1 then return Y;
6 split Y into < Y1, Y2 > such that |Y1| = |Y |/2�;
7 if κB (e[R ∪ Y1]) = κB (e[R ∪ Y ]) then S1 ←∅;
8 else S1 ← FindScope(e, R ∪ Y1, Y2);
9 if κB (e[R ∪ S1]) = κB (e[R ∪ Y ]) then S2 ← ∅;

10 else S2 ← FindScope(e, R ∪ S1, Y1);
11 return S1 ∪ S2;

are looking for is monotone. In FindScope, given an assignment e on variables Y , we are looking for a minimal subset 
S of Y such that e[S] violates some constraint from the target network T . This is a monotone property because for any 
S ′ superset of S , e[S ′] violates a constraint from T . The queries to an NP-complete oracle in QuickXplain become simple 
checks of constraint satisfaction, where the oracle is the user.

FindScope takes as parameters an example e and two sets R and Y of variables. An invariant of FindScope is that 
e violates at least one constraint of the target network T whose scope is a subset of R ∪ Y . A second invariant is that any 
recursive call to FindScope returns a subset of Y that is also a subset of the scope of a constraint in T violated by e. If 
there is at least one constraint in B rejecting e[R] (i.e., κB(e[R]) �= ∅, line 2), we ask the user whether e[R] is positive or 
not (line 3). If the answer is yes, we can remove all the constraints that reject e[R] from B . If the answer is no, we are sure 
that R itself contains the scope of a constraint of T rejecting e. As Y is not needed to cover that scope, we return the empty 
set (line 4). We reach line 5 only in case e[R] does not violate any constraint. We know that e[R ∪ Y ] violates a constraint. 
Hence, if Y is a singleton, the variable it contains necessarily belongs to the scope of a constraint that violates e[R ∪ Y ].
FindScope returns Y . If none of the return conditions are satisfied, the set Y is split into two balanced parts Y1 and Y2
(line 6) and we recursively call FindScope to elucidate the variables of a constraint violating e[R ∪ Y ] in a logarithmic 
number of steps (lines 8 and 10). In the first recursive call (line 8), if R ∪ Y1 does not contain any scope S of constraint 
rejecting e, FindScope returns a subset S1 of such a scope such that S1 = S ∩ Y2 and S ⊆ R ∪ Y . In the second recursive 
call (line 10), the variables returned in S1 are added to R . if R ∪ S1 does not contain any scope S of constraint rejecting e,
FindScope returns a subset S2 of such a scope such that S2 = S ∩ Y1 and S ⊆ R ∪ Y . The rationale of lines 7 and 9 is to 
avoid entering a recursive call to FindScope when we know the answer to the query in line 3 of that call will necessarily 
be no. It happens when all the constraints rejecting e[R ∪ Y ] have a scope included in the set of variables that will be R
inside that call (that is, R ∪ Y1 for the call in line 8, and R union the output of line 8 for the call in line 10). Finally, line 
11 of FindScope returns the union of the two subsets of variables returned by the two recursive calls, as we know they 
all belong to the same scope of a constraint of T rejecting e.

Procedure FindC (see Algorithm 3) is designed to learn the constraint of the target network T that has the given scope 
Y . (By ‘the constraint of T ’ we mean a conjunction of elementary constraints from B that is equivalent to the conjunction of 
the constraints in T with scope Y .) FindC maintains a set � of constraints that are candidate to be learned on the scope 
Y . An invariant of FindC is that at any time during its execution, each elementary constraint composing the constraint c
to be learned is contained in a subset of c that belongs to �. FindC learns the constraint on Y by generating assignments 
on Y that violate some but not all constraints from �. When an assignment is classified as positive example, all violated 
8
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Algorithm 3: Procedure FindC.
In : negative example e
In : scope Y
In Out : network L

1 begin
2 � ← BY ;
3 � ← � � κ�(e);
4 while true do
5 choose e′

Y in sol(L[Y ]) such that ∅ � κ�(e′
Y ) ��;

6 if e′
Y = ⊥ then

7 pick c in �;
8 L ← L ∪ {c}; B ← B \ BY ; exit;
9 else

10 if A S K (e′
Y ) = yes then

11 � ← � \ κ�(e′
Y ); B ← B \ κB (e′

Y );
12 else
13 S ← FindScope(e′

Y , ∅, Y );
14 if S � Y then FindC(e′

Y , S, L);
15 else � ← � � κ�(e′

Y );

constraints are removed from �, and when classified negative, new constraints are generated by joining � with its subset 
of constraints violated by the assignment.

FindC takes as parameters e, Y , and L, e being the negative example that led FindScope to find that there is a 
constraint from the target network T over the scope Y . The set � is initialized to all candidate elementary constraints, that 
is, the set BY of all constraints from B whose scope exactly fits Y (line 2). As we know from FindScope that T contains 
a constraint with scope Y rejecting e, we join � with the set of constraints with scope Y rejecting e (line 3). In line 5, an 
assignment e′ is chosen in such a way that � contains both constraints satisfied by e′ and constraints violated by e′ . If no 
such assignment exists (line 6), this means that all constraints in � are equivalent wrt L[Y ]. Any of them is added to L and 
B is emptied of all its constraints with scope Y (line 8). If a suitable assignment e′ was found, the user is asked to classify 
e′ (line 10). If e′ is classified positive, all constraints rejecting it are removed from � and B (line 11). Otherwise we call
FindScope to seek constraints with scope strictly included in Y that violate e′ (line 13). If FindScope returns the scope 
of such a constraint, we recursively call FindC to find that smaller arity constraint before the one having scope Y (line 14). 
If FindScope has not found such a scope (that is, it returned Y itself), we do the same join as in line 3 to keep in � only 
constraints rejecting the example e′ (line 15). Then, we continue the loop of line 4.

At this point we can make an observation on the kind of response the user is able to give. QuAcq2 is designed to 
communicate with users who are not able to provide any more hint than “Yes, I’m ok: Nothing is wrong on this example” or 
“No, this example does not satisfy my requirements”. We can imagine cases where the user is a bit more skilled than that and 
can provide answers such as (a): “This example does not work because there is something wrong on this subset of variables”, or 
(b): “This example does not work because it violates this constraint”, or (c): “This example does not work: here is the set of all the 
constraints that it violates”. QuAcq2 can easily be adapted to these more informative types of answers. In the case of (a) 
we just have to skip the call to FindScope. In the case of (b), we can both skip FindScope and FindC. The case (c) 
corresponds to the matchmaker agent described in [24]. The more informative the query, the more dramatic the decrease 
in number of queries needed to find the target constraint network.

4.3. Illustrative examples

We illustrate the behavior of QuAcq2 and its two sub-procedures FindScope and FindC on two simple illustrative 
examples. In the first illustrative example, we focus on how FindScope and FindC work. In the second illustrative 
example, we show that even if the target network is inconsistent, QuAcq2 is able to work and then returns an inconsistent 
set of constraints. The reason is that QuAcq2 never requires complete positive examples, as opposed to most other constraint 
acquisition systems.

4.3.1. Illustrative example showing the details of FindScope and FindC
Consider the variables X1, . . . , X5 with domains {−10..10}, the language � = {≤, �=, 

∑�=}, and the bias B = {≤i j, ≥i j, �=i j|
i, j ∈ 1..5, i < j} ∪ {∑�=k

ij | i, j, k ∈ 1..5, i < j �= k �= i}, where ≤i j is the constraint Xi ≤ X j , ≥i j is X j ≤ Xi , �=i j is Xi �= X j , and ∑ �=k
ij is Xi + X j �= Xk . The target network is T = {=15, <23, 

∑ �=4
23 }, where <i j denotes the conjunction ≤i j ∧ �=i j .

Suppose that the first query e1 generated in line 7 of QuAcq2 is {X1 = 0, X2 = 1, X3 = 2, X4 = 3, X5 = 4}, denoted by 
(0, 1, 2, 3, 4). The query is proposed to the user in line 9 of QuAcq2 and the user replies no because the constraints =15

and 
∑ �=4

23 are violated. As a result, FindScope(e1, ∅, {X1 . . . X5}) is called in line 11 of QuAcq2.
9
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Table 1
FindScope on the negative example e1 = (0, 1, 2, 3, 4).

call R Y ASK return

0 ∅ X1, X2, X3, X4, X5 × X2, X3, X4

1 X1, X2, X3 X4, X5 yes X4

1.1 X1, X2, X3, X4 X5 no ∅
1.2 X1, X2, X3 X4 × X4

2 X4 X1, X2, X3 × X2, X3

2.1 X1, X2, X4 X3 yes X3

2.2 X3, X4 X1, X2 yes X2

2.2.1 X1, X3, X4 X2 × X2

Running FindScope
The trace of the execution of FindScope(e1, ∅, {X1 . . . X5}) is displayed in Table 1. Each row corresponds to a call to

FindScope. Queries are always on the variables in R . ‘×’ in the column A S K means that the question is skipped because 
κB(e1[R]) = ∅. This happens when R is of size smaller than 2 (the smallest constraints in B are binary) or because a 
(positive) query has already been asked on e1[R] and κB(e1[R]) has been emptied.

• The initial call (call-0 in Table 1) does not ask the query because R = ∅ and κB(e1[∅]) = ∅. Y is split into two sets 
Y1 = {X1, X2, X3} and Y2 = {X4, X5}. Line 7 detects that κB(e1[X1, X2, X3]) and κB(e1[X1, X2, X3, X4, X5]) are different 
(e.g., ≥25 is still in B), so the recursive call call-1 is performed.

• Call-1: R = {X1, X2, X3} (i.e., the R ∪ Y1 of call-0) and Y = {X4, X5} (i.e., the Y2 of call-0). e1[X1, X2, X3] is classified 
positive. Hence, line 3 of FindScope removes all constraints in κB (e1[X1, X2, X3]) (i.e., ≥12, ≥13, ≥23) from B . Y is 
split into two sets Y1 = {X4} and Y2 = {X5}. Again, κB(e1[X1, X2, X3, X4]) and κB(e1[X1, X2, X3, X4, X5]) are different 
in line 7 (≥25 is still in B), so call-1.1 is performed.

• Call-1.1: e1[X1, X2, X3, X4] is classified negative. The empty set is returned in line 4 of call-1.1. We are back to call-1. 
Line 9 of call-1 detects that κB (e1[X1, X2, X3]) and κB(e1[X1, X2, X3, X4, X5]) are different, so call-1.2 is performed in 
line 10 of call-1.

• Call-1.2: R = {X1, X2, X3} (i.e., the S1 ∪ Y1 of call-1) and Y = {X4} (i.e., the Y2 of call-1). Call-1.2 does not ask the query 
because κB(e1[X1, X2, X3]) is already empty (see call-1). In line 5, call-1.2 detects that Y is a singleton and returns 
{X4}. We are back to call-1. In line 11, call-1 returns {X4} one level above in the recursion. We are back to call-0. As 
κB(e1[X4]) and κB(e1[X1, X2, X3, X4, X5]) are different, we go to call-2.

• Call-2 does not ask the query because κB (e1[X4]) is empty. Y is split into two sets Y1 = {X1, X2} and Y2 = {X3}. As 
κB(e1[X1, X2, X4]) and κB(e1[X1, X2, X3, X4]) are different (≥34 is still in B), we go to call-2.1.

• Call-2.1: e1[X1, X2, X4] is classified positive. FindScope removes the constraints in κB(e1[X1, X2, X4]) from B and 
returns the singleton {X3}. We are back to call-2. As κB (e1[X3, X4]) and κB(e1[X1, X2, X3, X4]) are different, we go to 
call-2.2.

• Call-2.2: e1[X3, X4] is classified positive. FindScope removes the constraints in κB (e1[X3, X4]) from B . Y is split into 
two sets Y1 = {X1} and Y2 = {X2}. As κB(e1[X1, X3, X4]) and κB(e1[X1, X2, X3, X4]) are different (

∑�=4
23 is still in B), 

we go to call-2.2.1.
• Call 2.2.1 does not ask the query because κB (e1[X1, X3, X4]) is empty. (Binary constraints have been removed by former 

yes answers and there is no ternary constraint on {X1, X3, X4} that is violated by e1.) As Y is a singleton. Call-2.2.1 
returns {X2}. We are back to call-2.2.

• Line 9 of call-2.2 detects that κB(e1[X2, X3, X4]) = κB(e1[X1, X2, X3, X4]) because all constraints between X1 and 
X2, X3, X4 that were in κB(e1) have been removed by yes answers. Call-2.2.2 is skipped and ∅ is added to {X2} in 
line 11 of call-2.2. {X2} is returned to call-2. Call-2 returns {X2, X3}, and call-0 returns {X2, X3, X4}. Line 11 of QuAcq2

then calls FindC with e1[X2, X3, X4] = (1, 2, 3) and Y = {X2, X3, X4}.

Running FindC
The trace of the execution of FindC((1, 2, 3), {X2, X3, X4}) is displayed in Table 2. Each row reports the results of the 

actions performed after generating a new assignment in line 5 of FindC. For each of these assignments, we report the 
assignment generated, its classification, and the new state of �, L, and B[X2, X3, X4]. We also specify in which lines of
FindC these changes occur.

• Row-0: The assignment (1, 2, 3) was not generated in FindC but inherited from FindScope. By definition of Find-
Scope, we know that it is a negative example (denoted by “(no)” in the table). In line 2 of FindC, � is initialized to 
the set of constraints from B having scope {X2, X3, X4}, that is {∑�=4

23 , 
∑ �=3

24 , 
∑�=2

34 }, and then in line 3 these constraints 
are joined with 

∑ �=4
23 , the only constraint in κ�((1, 2, 3)). At this point the learned network L is still empty because

FindScope did not modify it. B[X2, X3, X4] contains all the constraints from the original B with scope included in 
{X2, X3, X4}, except ≥23, ≥24, and ≥34, which were discarded during call-1, call-2.1 and call-2.2 of FindScope, respec-
tively.
10
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Table 2
FindC on the negative example e1[X2, X3, X4] = (1, 2, 3).

assignment ASK � L B[X2, X3, X4]
(line 5) (line 10) (lines 2-3, 11, and 15) (line 8) (lines 8 and 11)

FindC((1,2,3), {X2, X3, X4})

0. (1,2,3) (no)
∑�=4

23 ∅

∑�=4
23 ,

∑ �=3
24 ,

∑ �=2
34∑�=4

23 ∧ ∑�=3
24 ,

∑ �=4
23 ∧ ∑�=2

34 ≤23,≤24,≤34, �=23, �=24, �=34

1. (2,3,1) yes
∑�=4

23 ,
∑ �=4

23 ∧ ∑ �=2
34 ∅

∑�=4
23 ,

∑ �=2
34

≤23, �=23, �=24, �=34

2. (3,2,1) no unchanged ∅ unchanged

FindC((3,2), {X2, X3})
3. (3,2) (no) ≤23,<23 ∅ unchanged

4. (1,1) no <23 <23
∑�=4

23 ,
∑ �=1

34 , �=24, �=34

back to FindC((1,2,3), {X2, X3, X4})
5. (1,2,−1) yes

∑�=4
23 <23,

∑�=4
23 �=24, �=34

• Row-1: In line 5, FindC generates the assignment (2, 3, 1), satisfying some constraints from � but not all. The query 
on (2, 3, 1) is classified as positive example in line 10. Hence, the violated conjunction 

∑ �=4
23 ∧∑ �=3

24 is removed from �
and all violated constraints in B (i.e., 

∑�=3
24 , ≤24, and ≤34) are removed (line 11). L remains unchanged.

• Row-2: FindC generates the assignment (3, 2, 1), which is classified as negative example. The call to FindScope in 
line 13 returns S = {X2, X3}. Line 14 then recursively calls FindC on the scope {X2, X3}.

• Row-3: The assignment (3, 2) is known to be a negative example without asking. Lines 2-3 initialize � to the set of 
constraints in B{X2,X3} and then join them to those rejecting the example. (Note that <23 is a shortcut for ≤23 ∧ �=23.) 
L and B remain unchanged.

• Row-4: FindC generates the assignment (1, 1), which is classified as negative example. The call to FindScope in line 
13 returns the same scope S = {X2, X3} because B does not contain any smaller arity constraints. Line 15 reduces � to 
the singleton <23. As a result, the next loop of FindC cannot generate any new assignment in line 5. Line 8 adds <23
to L and removes all the constraints with scope {X2, X3} from B . This subcall to FindC exits.

• Row-5: We are back to the original call to FindC with the same � as in row-2. Line 5 must generate an assignment 
accepted by L and violating part of �. It generates (1, 2, −1), which is classified as positive example. The violated 
conjunction 

∑ �=4
23 ∧ ∑ �=2

34 is removed from � and 
∑ �=2

34 is removed from B (line 11). The next loop of FindC cannot 
generate any new assignment in line 5 because � is now a singleton. Line 8 adds 

∑ �=4
23 to L and removes all the 

constraints with scope {X2, X3, X4} from B . FindC exits.

4.3.2. Learning an inconsistent network
In the previous illustrative example, we can observe that no complete positive example is necessary to learn the con-

straint 
∑ �=4

23 . The same could happen for learning the two remaining constraints. Indeed, as opposed to other techniques,
QuAcq2 does not need examples of solutions to learn the target network. In the extreme case of a target network that does 
not have any solution, QuAcq2 is able to learn an inconsistent set of constraints.6 Here is a simple illustrative example.

Consider the variables X1, X2, X3 with domains {0..10}, the language � = {�=, =}, the bias B = {�=i j, =i j| i, j ∈ 1..3, i < j}, 
and the inconsistent target network T = {=12, =23, �=13}.

A compact representation of the trace of the execution of QuAcq2 is displayed in Table 3. Each row reports the results 
of the actions performed after a query asked of the user. For each of these queries, we report the assignment generated, its 
classification by the user, the procedure that asked the query (main QuAcq2, FindScope, or FindC), and the new state of 
B and L after that query.

• Row-0. L is empty and B contains all possible constraints.
• Row-1. QuAcq2 asks (1, 1, 1), classified as negative, which leads to a call to FindScope.
• Row-1.1. FindScope asks (1, 1, −), classified as positive, leading to the removal of �=12 from B . As a result of this 

query, FindScope knows that X3 belongs to the scope it is looking for.
• Row-1.2. Another call to FindScope asks (1, −, 1), classified as negative. It is enough to elucidate the scope {X1, X3}

because B does not contain any unary constraint, so {X3} cannot be the scope of a constraint of T . Interestingly, FindC
does not need any query to learn �=13 because (1, −, 1) satisfies the only other constraint in B{X1,X3} (i.e., =13), which 
cannot be joined with �=13 as it is its complement.

6 Bear in mind though, that by definition of join operation presented in Section 3, QuAcq2 cannot learn an empty constraint. It thus cannot learn a 
network that is inconsistent for such a trivial reason.
11
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Table 3
QuAcq2 with an inconsistent target network.

assignment ASK by whom B L

0. =12, �=12,=23, �=23,=13, �=13 ∅
1. (1,1,1) no QuAcq2 =12, �=12,=23, �=23,=13, �=13 ∅
1.1. (1,1,−) yes FindScope =12, =23, �=23,=13, �=13 ∅
1.2. (1,−,1) no FindScope =12, =23, �=23 �=13

2. (1,1,2) no QuAcq2 =12 =23, �=13

3. (1,2,2) no QuAcq2 ∅ =12,=23, �=13

• Row-2. QuAcq2 asks (1, 1, 2), classified as negative. Interestingly again, FindScope returns the scope {X2, X3} without 
asking any query because =23 is the only constraint in B violated by (1, 1, 2). For the same reason as above, FindC
does not need any query to learn =23.

• Row-3. QuAcq2 asks (1, 2, 2), classified as negative. As =12 is the only constraint remaining in B , it is learned without 
any query from FindScope or FindC. B is now empty. QuAcq2 returns the constraint network {=12, =23, �=13}, on 
which it has converged.

QuAcq2 has learned the target network T with five queries. None of these queries is a solution of T because T is 
inconsistent.

4.4. Theoretical analysis

We first show that QuAcq2 is a correct algorithm to converge on a constraint network equivalent to a target network that 
can be specified within a given bias. We then analyze the complexity of running QuAcq2, both in terms of computational 
complexity and number of queries. We finally provide a small change in function FindC that allows us to bound its 
complexity when the target network is normalized. This bound holds even if QuAcq2 does not know that the target network 
is normalized.

4.4.1. Correctness of QuAcq2

We first prove that QuAcq2 is sound, complete, and terminates.

Proposition 1 (Soundness). Given a bias B, a target network T ⊆ B, and optionally background knowledge K ⊆ T , the network L
returned by QuAcq2 is such that sol(T ) ⊆ sol(L).

Proof. Suppose sol(T ) \ sol(L) �= ∅ when QuAcq2 terminates. This means that there exists a constraint in L that rejects 
a solution of T . That constraint cannot be added to L in line 2 of QuAcq2 because, by definition, K ⊆ T . That constraint 
cannot be added to L in line 4 of QuAcq2 because constraints added in line 4 are implied by K , and thus cannot reject a 
solution of T . Hence, there exists at least one scope on which QuAcq2 has learned a conjunction of constraints rejecting 
a solution of T . Let us consider the first conjunction c∗ learned by QuAcq2 that rejects an assignment e1 ∈ sol(T ) \ sol(L), 
and let us denote its scope by Y . By assumption, c∗ contains an elementary constraint c1 rejecting e1. The only place where 
we add a conjunction of constraints to L is line 8 of FindC. This conjunction has been built by join operations in lines 
3 and 15 of FindC. By construction of FindScope, e1[Y ] is rejected by a constraint with scope Y in T and by none 
of the constraints on subscopes of Y in T when the join operation in line 3 of FindC is executed. By construction of
FindC, the join operations in line 15 of FindC are executed for and only for e′

Y generated in this call to FindC that are 
rejected by a constraint with scope Y in T and by none of the constraints on subscopes of Y . As a result, � contains all 
minimal conjunctions of elementary constraints from BY rejecting both e1[Y ] and all e′

Y generated in this call to FindC that 
violate a constraint of scope Y in T and satisfy all the constraints on subscopes of Y . One of those minimal conjunctions is 
necessarily a subset of the conjunction in T . In line 8, when we put one of these conjunctions in L, they are all equivalent 
wrt L because line 5 was not able to produce an assignment e′

Y violating some conjunctions from � and satisfying the 
others. As scope Y is, by assumption, the first scope on which QuAcq2 learns a wrong conjunction of constraints, we know 
that we still have T |= L at this point and we can deduce that all conjunctions in � are equivalent wrt to T . We already 
saw that one of the conjunctions in � is a subset of the conjunction on scope Y in T . As a consequence, none of these 
conjunctions can contain c1 because c1 rejects e1 that T does not reject. Therefore, adding one of them to L cannot reject 
e1. �
Proposition 2 (Completeness). Given a bias B, a target network T ⊆ B, and optionally background knowledge K ⊆ T , the network L
returned by QuAcq2 is such that sol(L) ⊆ sol(T ).

Proof. Suppose there exists e1 ∈ sol(L) \ sol(T ) when QuAcq2 terminates. Hence, there exists an elementary constraint c1 in 
B that rejects e1, and c1 belongs to c∗ , the conjunction of the constraints in T with same scope as c1. We now prove that it 
12
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is not possible for QuAcq2 to terminate with L accepting e1 as solution. There is only one way for QuAcq2 to terminate, it 
is line 8 of QuAcq2. This means that in line 7 of QuAcq2, GenerateQuery was able to prove that there does not exist any 
assignment on X accepted by L and rejected by B . Thus, c1 is not in B when QuAcq2 terminates, otherwise e1 would have 
been such an assignment. We know that c1 ∈ T , so c1 was in B before starting QuAcq2. Constraints can be removed from 
B in lines 3, 5, and 10 of QuAcq2, line 3 of FindScope, and lines 8 and 11 of FindC. In line 3 of QuAcq2, a constraint 
c2 can be removed from B if there exists a constraint c′ in L that directly contradicts c2. c2 cannot be c1 because c′ is in 
L, which is equal to K , K is included in T and, by convention, T does not contain any pair of constraints that contradict 
each other. In line 5 of QuAcq2, a constraint c2 is removed from B if c2 is in L. c2 cannot be c1 because e1 ∈ sol(L) when
QuAcq2 terminates. In line 10 of QuAcq2, line 3 of FindScope, and line 11 of FindC, a constraint c2 is removed from B
because it rejects a positive example. This removed constraint c2 cannot be c1 because c1 belongs to T , so it cannot reject 
a positive example. In line 8 of FindC, all (elementary) constraints with scope Y are removed from B . Let us see if one of 
them could be our c1. Given an elementary constraint c2 with scope Y that is removed from B in line 8 of FindC, either 
c2 is still appearing in one conjunction of � when FindC terminates, or not. By construction of e′

Y in line 5 of FindC, 
lines 6 and 7 of FindC tell us that L ∪ {c} |= �, where c is the conjunction selected in line 7. Thus, if c2 is in one of the 
conjunctions of �, then L |= c2 after the addition of c to L in line 8, the only line where FindC can terminate. Thus, c2
cannot be c1 because by assumption c1 rejects e1, which itself is accepted by L. If c2 is not in any of the conjunctions of 
� when FindC terminates, these conjunctions must have been removed in line 11 or in line 15, the two places where �
is modified. Let us denote by ĉ2 a conjunction in � composed of c2 and a subset of c∗ . It necessarily exists at the first 
execution of the loop in line 4 because c2 ∈ B and line 3 either keeps c2 (if c2 is violated by e), or joins it with elements 
of c∗ (if c2 is satisfied by e). Line 15 is executed after a negative query e′

Y . If c2 rejects e′
Y , all the conjunctions containing 

it remain in �. If c2 is satisfied by e′
Y , there necessarily exists a conjunction in κ�(e′

Y ) which is a subset of the conjunction 
c∗ because QuAcq2 is sound (Proposition 1). ĉ2 is joined with this subset. Thus, � still contains a conjunction composed 
of c2 and a subset of c∗ . Each time a negative example will be generated, this subset will either stay in � or be joined 
with another subset of c∗ . As a result, line 15 cannot remove all conjunctions composed of c2 and a subset of c∗ . These 
conjunctions ĉ2 must then have been removed in line 11 because they were rejecting the example e′

Y classified positive in 
line 10. These conjunctions can be removed only if c2 rejects e′

Y because the rest of the conjunction is a subset of c∗ . Again 
c2 cannot be c1 because c1 cannot reject positive examples. Therefore, c1 cannot reject an example accepted by L, which 
proves that sol(L) ⊆ sol(T ). �
Proposition 3 (Termination). Given a bias B, a target network T ⊆ B, and optionally background knowledge K ⊆ T , QuAcq2 termi-
nates.

Proof. Let us first prove termination of the two subprocedures FindScope and FindC. The first part of FindScope is 
composed of two termination conditions that obviously terminate. The second part of FindScope contains two recursive 
calls. In these two recursive calls, the last parameter is either Y2 (line 8), or Y1 (line 10). Both are strict subsets of Y —the 
last parameter from the parent call. As line 5 terminates FindScope when this last parameter is a singleton, FindScope
is guaranteed to terminate.

FindC is composed of a main loop (line 4) that terminates when the condition in line 6 is true. Each time FindC enters 
this loop, if the condition in line 6 is false, FindC executes either line 11, or line 14, or line 15. By construction of e′

Y in 
line 5 we know that there is at least one conjunction in � that rejects e′

Y and thus at least one elementary constraint from 
BY that rejects e′

Y . If line 11 is executed (because e′
Y is positive), all the conjunctions containing this elementary constraint 

are removed from � and will never reappear. Hence, line 11 cannot be executed an unbounded number of times. In line 
14, FindC is recursively called with a strict subset S of Y . This sequence of recursive calls will then necessarily terminate 
when |S| will have reached the smallest arity of a constraint in the bias B . Finally, in line 15, by definition of the join 
operation, FindC cannot add any conjunction other than supersets of conjunctions already in �. By construction of e′

Y in 
line 5, we know that at least one conjunction is in � and not in κ�(e′

Y ). In line 15 this conjunction is replaced by a strict 
superset. As the total number of conjunctions that can enter � is bounded (i.e., the powerset of BY ), line 15 cannot be 
executed an unbounded number of times.

Let us now prove termination of QuAcq2. Each execution of the loop in line 6 of QuAcq2 either executes line 10 of
QuAcq2 or enters FindC. By construction of eY in line 7 of QuAcq2 we know that κB (eY ) is not empty. Hence, in line 10
of QuAcq2, B strictly decreases in size. By definition of FindScope, the set Z returned by FindScope is such that there 
exists a constraint c with var(c) = Z in B rejecting eY . Thus, κB(eY [Z ]) is not empty. As a result, each time FindC is called, 
B strictly decreases in size because FindC always executes line 8 before exiting. Therefore, at each execution of the loop in 
line 6 of QuAcq2, B strictly decreases in size. As B has finite size, we have termination. �
Theorem 1 (Correctness). Given a bias B, a target network T ⊆ B, and optionally background knowledge K ⊆ T , QuAcq2 converges 
on a network L such that sol(L) = sol(T ).

Proof. From Proposition 3 we know that QuAcq2 always returns a network L. If QuAcq2 had not yet converged when 
returning L there would exist a network L′ such that sol(L′) �= sol(L) and L′ agrees with the set of queries asked of the 
13
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user. Hence, T could equally be L or L′ . But then, either sol(L′) � sol(L) and soundness would not hold, contradicting 
Proposition 1, or sol(L) � sol(L′) and completeness would not hold, contradicting Proposition 2. Therefore, QuAcq2 has 
converged and sol(L) = sol(T ). �
4.4.2. Complexity of running QuAcq2

We can wonder what is the cost of running QuAcq2. The resources needed to run QuAcq2 are both a computer and 
a user. We can then wonder what is the cost of running QuAcq2 in terms of the cpu time required (i.e., computational 
complexity) or in terms of the user’s effort (i.e., number of queries). The latter is the most important as long as the former 
is kept under control.

Concerning computational complexity, the complexity of FindScope is dominated by its number of recursive calls. The 
depth of the recursion in FindScope is bounded above by a logarithm in the size of the initial set Y because Y is split 
evenly into two parts before each new recursive call (line 6). Hence, the total number of recursive calls to FindScope for 
a given set Y is linear in |Y |. FindC deals with a scope Y , which by definition of the bias B , is of bounded size. Thus, 
the complexity of one call to FindC is bounded. Finally, the main procedure QuAcq2 executes its main loop a number of 
times that is bounded by the size of the bias B because at each iteration, either line 10 of QuAcq2 or line 8 of FindC
is executed, and both remove constraints from B . At each execution of its main loop, QuAcq2 calls GenerateQuery. As 
we will see in Section 6, there are several ways to design GenerateQuery. In its most basic version, GenerateQuery
generates membership queries (i.e., queries on the full set X of variables). This task is similar to that in Conacq.2 and it was 
proved NP-hard in Proposition 12 of [17]. In Section 6, we will see that if we allow GenerateQuery to produce partial 
queries, its time complexity is bounded.

Let us analyze now the complexity of QuAcq2 in terms of the number of queries it asks of the user. Queries are proposed 
to the user in line 9 of QuAcq2, line 3 of FindScope and line 10 of FindC.

Proposition 4. Given a vocabulary (X, D), a bias B, a target network T , and an example eY ∈ DY rejected by T , FindScope uses 
O (|S| · log |Y |) queries to return the scope S of one of the constraints of T violated by eY .

Proof. Let us first consider a version of FindScope that would execute lines 8 and 10 unconditionally. That is, a version 
without the tests in lines 7 and 9. FindScope is a recursive algorithm that asks at most one query per call (line 3). Hence, 
the number of queries is bounded above by the number of nodes of the tree of recursive calls to FindScope. We show 
that a leaf node is either on a branch that leads to the elucidation of a variable in the scope S that will be returned, or is a 
child of a node of such a branch. By construction of FindScope, we observe that no answers to the query in line 3 always 
occur in leaf calls and that the only way for a leaf call to return the empty set is to have received a no answer to its query 
(line 4). Let Rchild, Ychild be the values of the parameters R and Y for a leaf call with a no answer, and R parent , Y parent be the 
values of the parameters R and Y for its parent call in the recursive tree. We know that S � R parent because the parent call 
necessarily received a yes answer. Furthermore, from the no answer to the query A S K (e[Rchild]), we know that S ⊆ Rchild . 
Consider first the case where the leaf is the left child of the parent node. By construction, Rchild � R parent ∪ Y parent . As a 
result, Y parent intersects S , and the parent node is on a branch that leads to the elucidation of a variable in S . Consider 
now the case where the leaf is the right child of the parent node. As we are on a leaf, if the test of line 2 is false (i.e., 
κB(e[Rchild]) =∅), we necessarily exit from FindScope through line 5, which means that this node is the end of a branch 
leading to a variable in S . If the test of line 2 is true (i.e., κB(e[Rchild]) �= ∅), we are guaranteed that the left child of the 
parent node returned a non-empty set, otherwise Rchild would be equal to R parent and we know that κB(e[R parent]) has 
been emptied in line 3 as it received a yes answer. Thus, the parent node is on a branch to a leaf that elucidates a variable 
in S .

We have proved that every leaf is either on a branch that elucidates a variable in S or is a child of a node on such a 
branch. Hence the number of nodes in the tree is at most twice the number of nodes in branches that lead to the elucidation 
of a variable from S . Branches can be at most log |Y | long. Therefore the total number of queries FindScope can ask is at 
most 2 · |S| · log |Y |, which is in O (|S| · log |Y |).

Let us come back to the complete version of FindScope, where lines 7 and 9 are active. The purpose of lines 7 and 
9 is only to avoid useless calls to FindScope that would return ∅ anyway. These lines do not affect anything else in the 
algorithm. Hence, by adding lines 7 and 9, we can only decrease the number of recursive calls to FindScope. As a result, 
we cannot increase the number of queries. �
Theorem 2 (Complexity in number of queries). Let � be a language of bounded-arity relations. QuAcq2 learns constraint networks 
over � in O (m log n + b) queries, where n and m are respectively the number of variables and the number of constraints of the target 
network, and b is the size of the bias.

Proof. Each time line 9 of QuAcq2 classifies an example as negative, the scope var(c) of a constraint c from the target 
network is found in O (|var(c)| · log n) queries (Proposition 4). As the bias only contains constraints of bounded arity, var(c)
is found in O (log n) queries. Finding c with FindC requires a number of queries in O (1) because the size of � does not 
depend on the size of the target network. Hence, the number of queries necessary for finding the target network is in 
14
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O (m log n). Convergence is obtained once the bias is wiped out of all its constraints or those remaining are implied by the 
learned network L. Each time an example is classified positive in line 9 of QuAcq2 or line 3 of FindScope, this leads to at 
least one constraint removal from the bias because, by construction of QuAcq2 and FindScope, this example violates at 
least one constraint from the bias. Concerning queries asked in FindC, their number is in O (1) at each call to FindC, and 
there are no more calls to FindC than constraints in the target network because FindC always adds at least one constraint 
to L during its execution (line 8). This gives a total number of queries required for convergence that is bounded above by 
the size b of the bias. �
4.4.3. QuAcq2 on normalized networks

The complexities stated in Theorem 2 are based on the size of the target network and size of the bias. The size of the 
language � is not considered because it has a fixed size, independent of the number of variables in the target network. 
Nevertheless, line 15 of FindC can lead to a size of � and a number of queries exponential in |�|. By reformulating line 
5 of FindC as shown below, we can bound the size of �, and then the number of queries. In the following, we use the 
notation �p as defined at the very end of Section 3.

...
bis choose e′

Y in sol(L[Y ]) and ∅ � κ�(e′
Y ) ��, minimizing p such that ∅ � κ�p (e′

Y ) ��p if possible, κ�p (e′
Y ) ��p otherwise;

...

We can first observe that soundness, completeness, and termination are robust to replacing line 5 by line 5bis. The only 
requirement used in the proofs of Propositions 1, 2, and 3 for ensuring soundness, completeness, and termination, is that 
the assignment e′

Y generated in line 5 of FindC satisfies L and violates at least one constraint from � but not all. Line 5bis
above satisfies this requirement.

Proposition 5 and Corollary 1 prove the new bound on the number of queries that we obtain by replacing line 5 by line 
5bis in FindC.

Proposition 5. Given a bias B, a target network T , and a scope Y , the number of queries required by FindC to learn a subset of BY

equivalent to the conjunction of constraints of T with scope Y is in O (|BY | + 2max(|c∗|,|Ic∗ |)), where c∗ is the smallest such conjunction 
and Ic∗ = {ci ∈ BY | c∗ → ci}.

Proof. We first compute the number of queries required to generate c∗ in �, and then the number of queries required to 
remove all conjunctions of constraints not equivalent to c∗ from �.

Let us first prove that line 5bis of FindC will not stop generating assignments before c∗ is one of the conjunctions in 
�. Let us take as induction hypothesis that when entering a new execution of the loop in line 4, if c∗ is not in �, then 
the set of the conjunctions in � that are included in c∗ covers the whole set of elementary constraints from c∗ . That is, ⋃{sub ∈ � | sub ⊂ c∗} = c∗ . The only way to modify � is to ask a query e′

Y . If e′
Y is positive, this means that c∗ is satisfied 

and all its subsets remain in �. If e′
Y is negative, either this is due to a constraint of T on a subscope of Y or not. If it 

is due to a constraint on a subscope, line 14 is executed and not line 15, so � remains unchanged. If it is not due to a 
constraint on a subscope, this guarantees that at least one elementary constraint of c∗ is violated, and according to our 
induction hypothesis, at least one subset of c∗ , call it sub1, is in κ�(e′

Y ). Hence, line 15 generates a conjunction of sub1
with each of the other subsets of c∗ that are in �. As a result, every elementary constraint in c∗ belongs to at least one 
of these conjunctions with sub1 that are uniquely composed of elementary constraints from c∗ . Furthermore, before line 3, 
by construction, all elementary constraints composing c∗ are in � and line 3 is similar to line 15. As a consequence, our 
induction hypothesis is true. We prove now that as long as c∗ is not in �, line 5bis is able to generate a query e′

Y . By 
definition, we know that c∗ is the smallest conjunction equivalent to the constraint of T with scope Y . Thus, no subset of 
c∗ can be implied by any other subset of c∗ . This guarantees that there exists an assignment e′

Y such that one subset sub1
of c∗ is in κ�(e′

Y ) and another subset, sub2, is in � \ κ�(e′
Y ). e′

Y is a valid query to be generated in line 5bis and to be 
asked in line 10. As a consequence, we cannot exit FindC as long as c∗ is not in �.

We now prove that c∗ is in � after a number of queries linear in |BY |. We first count the number of positive queries. 
Thanks to the condition in line 5/5bis of FindC, we know that at least one elementary constraint ci of BY is violated 
by the query. Thus, all the conjunctions containing ci are removed from � in line 11, and no conjunction containing ci
will be able to occur again in �. As a result, the number of positive queries is bounded above by |BY |. Let us now count 
the number of negative queries. A query can be negative because of a constraint on a subscope of Y or because of c∗ . If 
because of a subscope we do not count it in the cost of learning c∗ . If because of c∗ , we saw that there exists a subset 
sub1 of c∗ in κ�(e′

Y ). Line 15 generates a conjunction of sub1 with each of the other subsets of c∗ that are in �. Before the 
joining operation, either sub1 is included in the largest subset maxsub or not. If sub1 is included in maxsub, then maxsub
also belongs to κ�(e′

Y ) and it produces a larger subset by joining with any other non-included subset of c∗ . If sub1 is not 
included in maxsub, they are necessarily joined together, generating again a subset strictly larger than maxsub. Thus, the 
number of queries that are negative because of c∗ is bounded above by |c∗|. Therefore, the number of queries necessary to 
have c∗ in � is in O (|BY |).
15
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Once c∗ has been generated, it will remain in � until the end of this call to FindC because it can be removed neither 
by a positive query (it would not be in κ�(e′

Y )) nor by a negative (either it is in the κ�(e′
Y ) or a subconstraint is found and 

� is not modified).
We now show that the number of queries required to remove all conjunctions of constraints not equivalent to c∗ from 

� is in O (|BY | + 2max(|c∗|,|Ic∗ |)). We first have to prove that once a conjunction rem has been removed from �, it will never 
reappear in � by some join operation. The conjunction rem can reappear in � if and only if there exist a and b in � such 
that rem = a ∧ b. If rem was removed due to a positive query e′

Y , then rem was in κ�(e′
Y ) and then, either a or b was 

in κ�(e′
Y ) too. Thus, a or b has been removed from � at the same time as rem, which contradicts the assumption that 

rem reappeared due to the join of a and b. If rem was removed due to a negative query e′
Y , then rem was not in κ�(e′

Y )

and then, none of a and b were in κ�(e′
Y ). a and b have thus both been joined with other elements of κ�(e′

Y ) and have 
disappeared from � at the same time as rem. This again contradicts the assumption.

We are now ready to show that all conjunctions not equivalent to c∗ are removed from � in O (|BY | + 2max(|c∗|,|Ic∗ |))
queries. For that, we first prove that all conjunctions not implied by c∗ are removed from � in O (|BY | + 2|c∗|) queries. 
As long as there exists a conjunction nimp in � such that c∗ �|= nimp, line 5bis can generate a query e′

Y with p ≤ |c∗|. 
If ∅ � κ�p (e′

Y ) � �p cannot be satisfied for any p ≤ |c∗|, then there necessarily exists an e′
Y (satisfying c∗ and violating 

nimp) with κ�|c∗|(e′
Y ) = ∅ � �|c∗| and nimp ∈ κ�(e′

Y ), otherwise we would have c∗ |= nimp. As a result, line 5bis can never 
return a query e′

Y with p > |c∗| if there exists nimp in � such that c∗ �|= nimp. Suppose first that A S K (e′
Y ) = yes. By 

construction of e′
Y , we know that at least one elementary constraint ci of the initial BY (line 2) is violated by e′

Y . Thus, all 
the conjunctions containing ci are removed from � and the number of positive queries is bounded above by |BY |. Suppose 
now that A S K (e′

Y ) = no. By construction of e′
Y , we know that �p \ κ�p (e′

Y ) is not empty for some p ≤ |c∗|, and all these 
conjunctions in �p \ κ�p (e′

Y ) disappear from �p in line 15 because they are joined with other conjunctions of κ�(e′
Y ). 

Hence, the number of negative queries is bounded above by the number of possible conjunctions in �|c∗ | , which is in 
O (2|c∗|).

Once all the conjunctions not implied by c∗ have been removed from �, � only contains c∗ and conjunctions included 
in the set Ic∗ of elementary constraints implied by c∗ . We show that removing from � all conjunctions implied by c∗
is performed in O (2|Ic∗ |) queries. As all conjunctions remaining in � are implied by c∗ , all queries will be negative. By 
construction of such a negative query e′

Y , we know that � \ κ�(e′
Y ) is not empty. All these conjunctions in � \ κ�(e′

Y )

disappear from � in line 15 because they are joined with other conjunctions of κ�(e′
Y ). Thus, each query removes at least 

one element from �, which is a subset of {c∗} ∪ 2Ic∗ . As a result, the number of such queries is in O (2|Ic∗ |). �
Corollary 1 (Normalized networks). Given a bias B, a normalized target network T , and a (elementary) constraint c∗ in T with scope 
Y such that there does not exist any c in BY with c∗ → c, FindC requires O (|BY |) queries, which is in O (|�|).

The good news brought by Corollary 1 is that despite the join operation required in FindC to be able to learn constraints 
that are conjunctions of several elementary constraints from the bias, QuAcq2 is linear in the size of the language � when 
the target network does not contain such conjunctions and � does not contain constraints subsuming others.

5. Learning simple languages

The performance of QuAcq2 (in terms of the number of queries submitted to the user) crucially depends on the nature 
of the relations in the language �. Some constraint languages are intrinsically harder to learn than others, and there may 
exist languages that are easy to learn using a specialized algorithm but difficult to learn using QuAcq2.

Determining precisely how QuAcq2 fares when compared with an optimal learning algorithm (that uses partial queries) 
on a given language � is in general a very difficult question. However, if � is simple enough then a complete analysis of 
the efficiency of QuAcq2 is possible. In this section, we focus on constraint languages built from the elementary relations 
{=, �=, >} and systematically compare QuAcq2 with optimal learning algorithms. We will measure the number of queries as 
a function of the number n of variables; our analysis only assumes that the assignment eY generated in line 7 of QuAcq2 is 
complete (i.e., Y = X) and is a solution of L that maximizes the number of violated constraints in the bias B .7

The next Theorem summarizes our findings. For the sake of readability, its proof is delayed until the end of the section.

Theorem 3. Let � ⊆ {=, �=, >} be a non-empty constraint language over a finite domain D ⊂Z, |D| > 1. The following holds:

• If |D| = 2, then QuAcq2 learns networks over � in �(n log n) queries in the worst case. This is asymptotically optimal, except for 
� = {>} for which the optimum is �(n).

• If |D| > 2, then in the worst case QuAcq2 learns networks over � in
(i) �(n log n) queries if � = {=}, which is asymptotically optimal, and
(ii) �(n2 log n) queries otherwise, while the optimum is �(n2).

7 Finding a complete assignment maximizing violation in B is NP-hard, but we are interested here in the complexity in terms of number of queries.
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Note that for all these languages, the asymptotic number of queries made by QuAcq2 differs from the best possible by a 
factor that is at most logarithmic.

The proof of Theorem 3 is based on the following six lemmas. The first three (Lemmas 1, 2 and 3) derive unconditional 
lower bounds on the number of queries necessary to learn certain constraint languages from a simple counting argument. 
Lemmas 4, 5 and 6 (together with Theorem 2) will then establish matching upper bounds.

Lemma 1. Let � be a constraint language over a finite domain D ⊂ Z, |D| > 2, such that {>, �=} ∩ � �= ∅. Then, learning constraint 
networks over � requires �(n2) partial queries in the worst case.

Proof. Let d1, d2, d3 be three values in D such that d1 > d2 > d3 and (X, D) be a vocabulary with an even number n of 
variables. Let Cn denote the set of all possible solution sets of constraint networks over � with vocabulary (X, D). For any 
(i, j) ∈ [1, . . . , n/2] × [n/2 + 1, . . . , n] we define the assignment φi j : X → D as follows:

φi j(Xq) =
⎧⎨
⎩

d1 if q ∈ [1, . . . ,n/2]\{i}
d2 if q ∈ {i, j}
d3 if q ∈ [n/2 + 1, . . . ,n]\{ j}

Now, let R denote a relation in {>, �=} ∩ � and observe that R contains the three tuples (d1, d2), (d1, d3), (d2, d3) but 
not the tuple (d2, d2). Then, for any subset S ⊆ S = {φi j | (i, j) ∈ [1, . . . , n/2] × [n/2 + 1, . . . , n]} the constraint network 
C S = {R(Xi ,X j) : φi j /∈ S} over � has the property that sol(C S ) ∩ S = S . In particular, for any two distinct sets S1, S2 ⊆ S we 
have sol(C S1 ) �= sol(C S2 ) and hence

|Cn| ≥ |{C S | S ⊆ S}| = 2|S| = 2(n/2)2
.

It follows that learning constraint networks over � requires �(n2) partial queries since each query only provides a single 
bit of information on the target network. �
Lemma 2. Let � be a constraint language such that {=} ⊆ �. Then, learning constraint networks over � requires �(n log n) partial 
queries in the worst case.

Proof. In a constraint network over {=}, all variables of a connected component must be equal. In particular, two constraint 
networks over {=} with the same variable set X are equivalent (i.e. have the same solution set) if and only if the partitions 
of X induced by the connected components are identical. The number of possible partitions of n objects is known as the 
nth Bell Number C(n). It is known that log C(n) = �(n log n) [23], so this entails a lower bound of �(n log n) queries to learn 
constraints networks over �. �
Lemma 3. Let � be a constraint language over a domain D ⊂Z, |D| = 2, such that {�=} ⊆ �. Then, learning constraint networks over 
� requires �(n logn) partial queries in the worst case.

Proof. Since |D| = 2 and {�=} ⊆ �, we can simulate an equality constraint Xi = X j over D by introducing one fresh variable 
Xij and two constraints Xi �= Xij , Xij �= X j . It follows that for every set S= of non-equivalent constraint networks over {=}
with domain D , n variables and O (n) constraints, we can construct a set S �= of non-equivalent constraint networks over �
with n∗ = O (n) variables and such that |S �=| = |S=|. As we have seen in the proof of Lemma 2, |S=| can be chosen such 
that log |S=| = �(n log n). In that case, we have log |S �=| = �(n∗ log n∗) and the desired lower bound follows. �
Lemma 4. For any finite domain D ⊂ Z with |D| ≥ 2, QuAcq2 learns constraint networks over the constraint language {=} in 
O (n log n) partial queries.

Proof. We consider the queries submitted to the user in line 9 of QuAcq2 and count how many times they can receive the 
answers yes and no.

For each no answer in line 9 of QuAcq2, a new constraint will eventually be added to L. This new constraint c cannot 
be entailed by L because the (complete) query generated in line 7 of QuAcq2 must be accepted by L and rejected by c. In 
particular, c cannot induce a cycle in L. It follows that at most n − 1 queries in line 9 are answered no, each one entailing 
O (log n) more queries through the function FindScope and O (1) through the function FindC.

Now we bound the number of yes answers in line 9 of QuAcq2. Let eY be an assignment generated by QuAcq2 in line 7. 
Let B L �|= denote the set of constraints in B that are not entailed by L. In order to obtain a lower bound on the number 
of constraints in B L �|= that eY violates, we consider an assignment φ to X that maps each connected component of L to a 
value in D drawn uniformly at random. We will show that the expected number of constraints that φ violates is |B L �|=|/2. 
Since QuAcq2 selects the assignment that maximizes the number of violated constraints, it will follow that eY violates at 
least half of B L �|= .
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By construction, the random assignment φ is accepted by L. Furthermore, each constraint c in B L �|= involves two variables 
belonging to distinct connected components of L so the probability that φ satisfies c is |rel(c)|/|D|2 = 1/|D|, where |rel(c)|
denotes the number of tuples in |D|2 that belong to the equality relation (the relation of the constraint c). By linearity of 
expectation, the expected number of constraints that φ violates is therefore |B L �|=| · (1 − 1/|D|) ≥ |B L �|=| · 1/2. As discussed 
in the previous paragraph, this implies in particular that eY violates at least half the constraints in B L �|= . It follows that 
throughout its execution QuAcq2 will receive at most log |B|� = log n2� yes answers at line 9.

Putting everything together, the total number of queries that QuAcq2 may submit before it converges is bounded by 
O (n log n), as claimed. �
Lemma 5. If |D| = 2, then QuAcq2 learns constraint networks over the constraint language {=, �=, >} in O (n logn) partial queries.

Proof. The proof follows the same strategy as that of Lemma 4, although the details are a little more involved. Again, we 
will count how many queries can be submitted to the user in line 9 of QuAcq2.

Each (complete) query submitted in line 9 that receives a negative answer will eventually add a new, non-redundant 
constraint to L. Observe that if (L=, L �=, L>) denotes the partition of L into sub-networks containing only constraints =, 
�= and > respectively, then neither L= nor L �= may contain a cycle; if L> does then the solution set of L is empty and
QuAcq2 will halt at line 8 the next time it goes through the main loop. Therefore, at most 3n queries may receive a 
negative answer in line 9, each entailing O (log n) additional queries through the function FindScope and O (1) through 
the function FindC.

In order to bound the number of yes answers in line 9 of QuAcq2, consider an assignment eY generated by QuAcq2 at 
line 7. Let B L �|= denote the set of constraints in B that are not entailed by L. Again, we claim that eY violates at least half 
the constraints in B L �|= .

We assume without loss of generality that D = {0, 1}, interpreted as the Boolean values true and false. Let S denote the 
set of connected components in the constraint network L=, �= (the restriction of L to constraints that are either equalities or 
disequalities). We say that a connected component S ∈ S is free if there does not exist a constraint in L of the form Xi > X j
with either Xi or X j in S . Because L is satisfiable, free connected components S have exactly two satisfying assignments 
s, s, where s is the logical negation of s. All other components have exactly one satisfying assignment s.

We construct a random assignment φ to X as follows. For each connected component S ∈ S , the restriction of φ to S is 
either s or s (chosen uniformly at random) if S is free, and s otherwise. By construction φ is accepted by L, and for each 
variable Xk ∈ X that belongs to a free component, the probability that φ assigns Xk to 1 is exactly 1/2. It follows that, for 
each constraint c in B L �|= , the probability that φ violates c is either 1/2 (if c is an equality or disequality, or a constraint 
Xi > X j involving exactly one free component) or 3/4 (if c is a constraint Xi > X j involving two free components). Overall, 
the expected number of constraints in B L �|= that φ violates is at least 1/2 · |B L �|=|. In particular, there exists an assignment 
that violates at least half the constraints in B L �|= , and by the way QuAcq2 generates assignments in line 7, eY does as well.

In conclusion, QuAcq2 will receive log |B|� = O (log n) yes answers and O (n) no answers at line 9, plus O (n log n) an-
swers within FindScope and FindC. The total number of queries made by QuAcq2 is therefore bounded by O (n log n). �
Lemma 6. If |D| = 2, then constraint networks on the language {>} can be learned in O (n) partial queries.

Proof. Suppose that the constraint network we are trying to learn has at least one solution. Observe that in order to 
describe such a problem, the variables can be partitioned into three sets: one for variables that must take the value 1 (i.e., 
on the left side of a > constraint), a second for variables that must take the value 0 (i.e., on the right side of a > constraint), 
and the third for unconstrained variables. In the first phase, we greedily partition variables into three sets, L, R, U initially 
empty and standing respectively for Left, Right and Unknown. During this phase, we have three invariants:

1. There is no Xi, X j ∈ U such that Xi > X j belongs to the target network
2. Xi ∈L iff there exists X j ∈ U and a constraint Xi > X j in the target network
3. Xi ∈R iff there exists X j ∈ U and a constraint X j > Xi in the target network

We go through all variables of the problem, one at a time. Let Xi be the last variable picked. We query the user with 
an assignment where Xi , as well as all variables in U are set to 1, and all variables in R are set to 0 (variables in L are 
left unassigned). If the answer is yes, then there are no constraints between Xi and any variable in U , hence we add Xi
to U without breaking any invariant. Otherwise we know that Xi is either involved in a constraint X j > Xi with X j ∈ U , 
or a constraint Xi > X j with X j ∈ U . In order to decide which way is correct, we make a second query, where the value 
of Xi is flipped to 0 and all other variables are left unchanged. If this second query receives a yes answer, then the former 
hypothesis is true and we add Xi to R, otherwise, we add it to L. Here again, the invariants still hold.

At the end of the first phase, we therefore know that variables in U have no constraints between them. However, they 
might be involved in constraints with variables in L or in R. In the second phase, we go over each variable Xi ∈ U , and 
query the user with an assignment where all variables in L are set to 1, all variables in R are set to 0 and Xi is set to 
1. If the answer is no, we conclude that there is a constraint X j > Xi with X j ∈ L and therefore Xi is added to R (and 
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removed from U ). Otherwise, we ask the same query, but with the value of Xi flipped to 0. If the answer is no, there must 
exist X j ∈R such that Xi > X j belongs to the network, hence Xi is added to L (and removed from U ). Last, if both queries 
get the answer yes, we conclude that Xi is not constrained. When every variable has been examined in this way, variables 
remaining in U are not constrained.

Once L, R, U are computed, we construct an arbitrary constraint network C over {>} that is consistent with these sets. 
At this point, either C is equivalent to the target network or our only assumption (the target network has at least one 
solution) was incorrect. We resolve this last possibility by submitting an arbitrary solution to C to the user. If the answer is 
yes, then we return C . Otherwise, the target network has no solution and we return an arbitrary unsatisfiable network over 
{>}. �

We are now ready to prove Theorem 3.

Proof of Theorem 3. We first consider the case |D| = 2. By Lemma 5, QuAcq2 learns constraint networks over any language 
� ⊆ {=, �=, >} in O (n log n) queries. Furthermore, if � contains either {=} or {�=} then this bound is optimal by Lemma 2
and Lemma 3. This leaves the case of � = {>}. By Lemma 6, this language is learnable in O (n) queries; this upper bound 
is tight since there are �(2n/2) non-equivalent constraint networks over {>} on n variables. (Take, for instance, the 2n/2

sub-networks of C = {(Xi > Xn/2+i) | 1 ≤ i ≤ n/2} for n even.) On the other hand, such constraint networks can have �(n)

non-redundant constraints and QuAcq2 learns O (1) constraints per call to FindScope. Each of these calls to FindScope
takes �(log n) queries, so in the worst case QuAcq2 requires �(n log n) queries. Combining this observation with Lemma 5
we obtain that QuAcq2 learns networks over {>} (with domain size 2) in �(n log n) queries in the worst case.

Now, assume that |D| > 2. If � = {=} then by Lemma 2 and Lemma 4, QuAcq2 learns networks over � in �(n log n)

queries in the worst case and this bound is optimal. For every other language, Lemma 1 establishes a universal worst-case 
lower bound of �(n2) queries. A straightforward learning algorithm that examines all possible ordered pairs of variables and 
uses partial queries to determine the constraints of the target network on each pair will converge after O (n2) partial queries. 
Such constraints networks can have �(n2) non-redundant constraints, so in the worst case QuAcq2 submits �(n2 log n)

queries. This matches the general upper bound from Theorem 2 since the bias has size O (n2). �
6. Experimental evaluation

In this section, we experimentally evaluate QuAcq2. The purpose of our evaluation is to answer the following questions:

[Q1] How does QuAcq2 behave in its basic setting?
[Q2] How to make QuAcq2 faster to generate queries?
[Q3] What do the queries look like?
[Q4] How does the size of the background knowledge impact the learning effort?

In the following subsections, we first describe the benchmark instances. Second, we evaluate QuAcq2 in its basic setting. 
This baseline version allows us to observe that QuAcq2 may be subject to long query-generation times. We then propose 
a strategy to make QuAcq2 faster in generating queries. We validate this strategy on our benchmark problems and analyze 
the characteristics of the queries. We evaluate the learning effort in terms of number of queries when the size of the 
background knowledge varies. We report the behavior of QuAcq2 on an exam time-tabling use case. Finally, we provide a 
brief comparison with QuAcq1.

For each of our experiments, QuAcq2 was run ten times on each problem and the reported results are the averages of 
the ten runs. (Several runs on the same problem do not give the exact same results because, as described later, function
GenerateQuery generates queries by selecting values in random order, and because function FindScope shuffles the 
variables to avoid a lexicographic bias in the order in which constraints are discovered.) For each run, we have set a time 
limit of one hour on the time to generate a query, after which a timeout (TO) was reported. All the results reported in 
this section were obtained with the version of FindC that uses line 5bis described in Section 4.4. We also tried the basic 
version that uses line 5 described in Algorithm 3. The results did not make any significant difference. All experiments were 
conducted using our C++ platform on an Intel(R) Xeon(R) E5-2667 CPU, 2.9 GHz with 8 Gb of RAM.

The tables and figures presented in this section report the following information:

[|T |] size (i.e., number of constraints) of the target network T ,
[|L|] size of the learned network L,

[#QA] total number of queries to find a network L equivalent to T ,
[#QC] total number of queries to converge (i.e., until it is proved that L is equivalent to T ),

[timeA] cumulated time to generate all queries until a network L equivalent to T is learned, that is, time needed to 
generate all the queries until this network L equivalent to T is found,

[timeC] cumulated time to generate all queries until convergence is reported,
[t] average time needed to generate a query,
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[tmax] maximum time needed to generate a query, and
[#C] number of runs that finished without reaching the 1-hour timeout.

6.1. Benchmark problems

In the following, the background knowledge is a set K of constraints, where K is the part of the target network that we 
already know, that is, K ⊆ T . In all experiments where background knowledge K is used, the two optional lines 3 and 4 in
QuAcq2 are implemented in a light way. In line 3 we only remove a constraint c from B if there exists a constraint c′ in L
with var(c) = var(c′) and {c, c′} |= ⊥. In line 4, we only add a constraint c to L if there already exists a constraint c′ in L
with var(c) = var(c′) and c′ |= c. We evaluated QuAcq2 on a variety of benchmark problems whose characteristics are the 
following.

Problem Purdey [32] Four families stopped by Purdey’s general store, each to buy a different item. They all paid with 
different means. Under a set of additional constraints given in the description, the problem is to match each family with the 
item they bought and how they paid for it. This problem has a single solution. The target network of Purdey has 12 variables 
with domains of size 4 and 27 binary constraints. There are three types of variables, family, bought and paid, each of them 
containing four variables. We initialized QuAcq2 with a bias of 396 constraints from the language � = {≥, ≤, <, >, �=, =}. 
Concerning the default background knowledge, we assume that the user was able to express that if four different families 
buy four different items with four different paying means then there is a clique of disequalities on each of these types of 
variables. Hence, the default background knowledge contains the three 4-cliques of disequalities on the variables of each 
type (families, bought item, paying mean). After lines 3 to 5 of QuAcq2, |B| = 324.

Problem Zebra The target network of the well-known Lewis Carroll’s zebra problem is formulated using 25 variables of 
domain size of 5 with 5 cliques of �= constraints and 14 additional constraints given in the description of the problem. The 
problem has a single solution. We initialized QuAcq2 with a bias of 2700 unary and binary constraints from the language 
� = {≥, ≤, <, >, �=, =, ◦val, �1, �1}, where ◦val denotes the unary relation (x ◦ val) with ◦ ∈ {≥, ≤, <, >, �=, =} and val ∈ 1..5, 
and where �1 and �1 respectively denote the distance relations |x − y| = 1 and |x − y| �= 1. Concerning the default background 
knowledge, similarly to Purdey, we assume that the user was able to express that if there are five people of five different 
nationalities, there is a clique of disequalities on the five variables representing nationalities. Idem on colors of houses, 
drinks, cigarettes and pets. Hence, the default background knowledge contains the five 5-cliques of disequalities on the 
variables of each type (house, nationality, pet, cigarette, drink). After lines 3 to 5 of QuAcq2, |B| = 2500.

Problem Golomb [26, prob006] A Golomb ruler problem is to put a set of n marks on a ruler so that the distances between 
marks are all distinct. This is encoded as a target network with n variables corresponding to the n marks, and constraints 
of varying arity. We learned the target network of 350 constraints encoding the 8-marks ruler. We initialized QuAcq2 with 
a bias of 1680 binary, ternary and quaternary constraints from the language � = {≥, ≤, <, >, �=, =, �zt

xy, �zt
xy}, where �zt

xy and 
�zt

xy respectively denote the distance relations |x − y| = |z − t| and |x − y| �= |z − t|. Observe that when x and z, or y and 
t represent the same variable, �zt

xy and �zt
xy yield ternary constraints. The default background knowledge contains the 28 

symmetry-breaking inequalities on the sequence of variables. After lines 3 to 5 of QuAcq2, |B| = 1512.

Problem Random We generated a binary random target network with 50 variables, domains of size 10, and 122 binary 
constraints. The 122 binary constraints are iteratively and randomly selected from the complete graph of binary constraints 
from the language � = {≥, ≤, <, >, �=, =}. When a constraint is randomly selected it is inserted in the target network only 
if this pair of variables is not already linked by a constraint and if the new constraint is not implied by the already selected 
constraints. We initialized QuAcq2 with a bias containing the complete graph of 7350 binary constraints from �. We did 
not use any default background knowledge on this benchmark.

Problem RLFAP [20] The Radio Link Frequency Assignment Problem is to provide communication channels from limited 
spectral resources so as to avoid interferences between channels. The constraint network of the instance we selected has 50 
variables with domains of size 40 and 125 binary constraints (arithmetic and distance constraints). We initialized QuAcq2

with a bias of 24,500 constraints from the language � = {≥, ≤, <, >, �=, =, =val
xy , >val

xy }, where =val
xy and >val

xy respectively 
denote the distance relations |x − y| = val and |x − y| > val, and val ∈ {12, 14, 28, 35, 56, 84, 238}. The possible values for 
val come from the kinds of interferences and from technological constraints on transmitters. They are known in advance. 
The default background knowledge contains the 25 constraints of the duplex links to establish. The constraints to learn are 
those preventing interferences between neighboring transmitters. After lines 3 to 5 of QuAcq2, |B| = 24, 000.

Problem Jigsaw The Jigsaw Sudoku logic puzzle is a 9 × 9 grid. It must be filled with numbers in such a way that all 
the rows, all the columns, and all the predefined (irregular) shapes contain the numbers 1 to 9. We used the predefined 
shapes displayed in Fig. 2. The target network has 81 variables with domains of size 9 and 811 binary �= constraints on 
rows, columns and shapes. We initialized QuAcq2 with a bias of 19,440 binary constraints from the language � = {≥, ≤
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Fig. 2. Our instance of Jigsaw problem.

Algorithm 4: Function GenerateQuery.basic.
In : a bias B
In : a learned network L
Out : an assignment on X

1 begin
2 C ← L;
3 foreach ci ∈ B do
4 introduce a Boolean variable bi ;
5 C ← C ∪ {bi ↔ ci}
6 C ← C ∪ {∑bi �= |B|};
7 e ← solve(C);
8 return e[X];

, <, >, �=, =}. The default background knowledge contains a 9-clique of disequalities on the variables of each row and each 
column. After lines 3 to 5 of QuAcq2, |B| = 16, 848.

6.2. [Q1] QuAcq2 in its basic setting

When QuAcq2 is used in its basic setting, we denote it by QuAcq2.basic. What we call the basic setting is when, in line 
7 of Algorithm 1, QuAcq2 uses the function GenerateQuery.basic described in Algorithm 4. GenerateQuery.basic
computes a complete assignment on X satisfying the constraints in L and violating at least one constraint from B . This is 
done the following way. We build a network C that contains the constraints from the network L already learned (line 2), 
plus a reification of the constraints in B . A Boolean bi is introduced for each ci ∈ B (line 4). This Boolean is forced to be true 
if and only if the constraint ci is satisfied (line 5). We then force the sum of bi ’s not to be equal to |B| (line 6). Function 
solve is called on C (line 7) and returns a solution of C , or ⊥ if no solution exists. Finally, the solution is projected8 on X
to get rid of the reification variables and it is returned (line 8). The constraint solver inside solve maintains arc consistency 
during search [40], uses the dom/wdeg variable ordering heuristic [18], and selects values in random order.

Table 4 reports the results of running QuAcq2.basic on all our benchmark problems when provided with background 
knowledge as described in Section 6.1. The first observation we can make by looking at the table is that there are problems 
on which QuAcq2.basic is not able to converge on all of the ten runs (Random) and problems on which QuAcq2.basic
is not able to converge on any run (RLFAP, Jigsaw). For Random, Table 4 reports the averages of the 7 runs on which
QuAcq2.basic converges.

We first focus our attention on the four problems where QuAcq2.basic always or sometimes converges: Purdey,
Zebra, Golomb, and Random. Let us first compare the size of the learned network to the size of the target network, that 
is, the sum of columns |K | and |L| \ |K | to column |T |. On Golomb, we observe that the size of the learned network L is 
much smaller than the size of the target network T (28+70=98 and 350 respectively). This is because the target network 
with all quaternary constraints |Xi − X j | �= |Xk − Xl| contains a lot of redundancies. QuAcq2.basic detects convergence 
before learning them. On Purdey, Zebra, and Random, the learned network L has exactly the size as the target network 
T . For Random it is not surprising as the network was constructed not to contain redundant constraints. For Purdey and
Zebra, it just means that the clues defining the problem were not found redundant wrt to the cliques of disequalities or 
among themselves. (Some of the disequalities are redundant but they were given as background knowledge.) If we compare 
now the number of queries #QC to the size of B after lines 3 to 5 have reduced it (see Section 6.1), we observe that #QC is 
4 to 13 times smaller. This is an indication that QuAcq2 asks queries that are effective for quickly leading to convergence. 
Let us now compare the costs of finding the right network (columns #QA and timeA) and the costs of converging (columns 
#QC and timeC). This tells us a lot about the end of the learning process. On Purdey and Zebra, #QA and timeA are 
very close to #QC and timeC (respectively). This means that QuAcq2.basic learns constraints until the very end of the 

8 We assume that ⊥[X] = ⊥.
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Table 4
QuAcq2.basic when provided with background knowledge as described in Section 6.1. Averages of ten 
runs (time in seconds).

Problem |T | |K | |L| \ |K | #QA #QC timeA timeC t tmax #C

Purdey 27 18 9 71.2 73.8 0.04 0.06 0.00 0.01 10
Zebra 64 50 14 187.1 188.0 1.76 1.78 0.01 1.09 10
Golomb 350 28 70 239.2 239.2 120.25 247.71 0.50 10.34 10
Random 122 0 122 1082.2 1092.0 2.08 85.94 0.08 83.80 7
RLFAP 125 25 71.1 752.9 – 151.13 – – TO 0
Jigsaw 811 648 117.0 – – – – – TO 0

TO = 1 hour

process. On Golomb, #QA and #QC are again similar, but timeC is much larger than timeA . The reason is that after having 
learned all the constraints necessary to have a L equivalent to T , GenerateQuery.basic spends more than two more 
minutes to show that L |= B , which proves convergence. On Random, we observe yet another behavior. As on Golomb, 
timeC is much larger than timeA (more than one order of magnitude larger), but #QC is also larger than #QA . The reason 
is that QuAcq2.basic has found a network L equivalent to T about ten queries before the end, and spends the end of the 
learning process generating complete queries that are positive and that allow QuAcq2.basic to remove useless constraints 
from B and eventually to prove convergence. This last phenomenon is probably due to the sparseness of T in Random. The 
column t tells us that most queries are very easy to generate (from milliseconds to half a second in average depending 
on the problem). However, we see in column tmax that the queries that are the hardest to generate can take orders of 
magnitude more time than the average. See Zebra, where the hardest query takes 100 times more time in average of 
the ten runs (most runs have a query requiring more than half a second) than the average time t to generate a query, or
Golomb, where the hardest query takes 20 times more time in average of the ten runs (all runs have a query requiring 
from 3 to 30 seconds) than the average time t. Random is an extreme case. In one of the ten runs, the query that is the 
hardest to generate requires almost ten minutes. That single query (over the ten runs) explains the very high value of tmax . 
(Bear in mind that on Random there are three runs on which QuAcq2.basic was not able to converge because the 1-hour 
timeout was reached.)

Let us now move our attention to the last two problems in Table 4, namely, RLFAP and Jigsaw. On these two problems, 
on each of the ten runs, QuAcq2.basic reaches the 1-hour timeout. However, on RLFAP, on all the runs, QuAcq2.basic
is able to find a network L equivalent to T in #QA queries and timeA time. This is the proof of convergence that leads
QuAcq2.basic to the timeout. The reason seems to be that when the bias B only contains constraints that are redundant 
with L, line 7 of GenerateQuery.basic becomes prohibitively expensive: it has to prove that C is inconsistent, which is 
coNP-hard. The presence of redundant constraints in RLFAP is confirmed by the difference between the size of the learned 
network |L| (= 25 +71.1 = 96.1) and the size of the target network T (= 125). This is a behavior similar to what we saw on
Golomb. On Jigsaw, the scenario is different. There are runs for which QuAcq2.basic reaches the timeout before having 
learned a network equivalent to T .

To illustrate a bit more the issue of the cost of generating queries in QuAcq2.basic, we selected one of the runs on
Jigsaw on which QuAcq2.basic does not converge and we plot the cost of all the queries generated by Generate-
Query.basic in Fig. 3. We observe that as long as B contains enough constraints that are non-redundant wrt L
–approximately until the 100th query, the time needed by GenerateQuery.basic to generate a query is negligible (about 
0.1 seconds). After the 100th query, L increased so much and B decreased so much that finding a query that violates some 
constraints from B while satisfying L is no longer a trivial problem. In the last 20 queries, half of them take more than 
10 seconds to be generated with two extreme cases taking two minutes and ten minutes. Finally, after the 124th query,
QuAcq2.basic gets stuck on a call to GenerateQuery.basic that is not able to generate a query before the 1-hour 
timeout.

The experiments presented in this subsection show us that QuAcq2.basic learns constraint networks in a number of 
queries always significantly smaller than the size of the bias. When the target network is small, QuAcq2.basic generates 
queries very fast. However, as soon as the size of the target network increases, the time to generate the last queries becomes 
prohibitive for an interactive learning process.

6.3. [Q2] Faster query generation

6.3.1. Generating (partial) queries with a time cutoff
The experiments in Section 6.2 have shown that QuAcq2.basic can be subject to excessive waiting time between two 

queries. This prevents its use in an interactive process where a human is in the loop. In this subsection we propose a 
new version of GenerateQuery that fixes this weakness. We start from the observation that the assignment generated 
by GenerateQuery in line 7 of Algorithm 1 does not need to be a complete assignment on X . Any partial assignment is 
satisfactory as long as it does not violate any constraint from L and violates at least one constraint from B . We thus propose
GenerateQuery.cutoff, a new version of GenerateQuery that quickly returns a partial assignment on a subset Y of 
X accepted by L and violating at least one constraint from B . The key idea is to modify the function solve so that it can be 
called with a cutoff.
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Fig. 3. Time to generate (membership) queries in GenerateQuery.basic on Jigsaw.

Algorithm 5: Function GenerateQuery.cutoff.
In Out : a bias B
In Out : a learned network L
Out : An assignment on a subset of X

1 begin
2 time← 0;
3 foreach c ∈ B do
4 (evar(c), t) ← solve(L ∪ {¬c}, var(c), nil, +∞);
5 time← time+ t;
6 if evar(c) = ⊥ then
7 mark c as redundant; L ← L ∪ {c}; B ← B \ {c};
8 else
9 (e′

Y , t′) ← solve(L ∪ {¬c}, var(c), |Y |, cutoff − time);
10 time← time+ t′;
11 if e′

Y = nil then return evar(c);
12 if e′

Y = ⊥ then
13 mark c as redundant; L ← L ∪ {c}; B ← B \ {c};
14 else return e′

Y ;

15 remove all constraints marked as redundant from L; // optional
16 return ⊥;

Function solve(C, S, obj, ub) takes as input a set C of constraints to satisfy, a set S of variables that must be included 
in the assignment, a parameter obj to maximize, and an upper bound ub on the time allocated. solve returns a pair (eY , t)
where eY is an assignment on a superset Y of S , and t is the time consumed by solve. If solve proves that C is inconsistent 
(that is, it found a set Y containing S for which every assignment on Y either violates C[Y ] or leads to arc inconsistency9

on C ), it returns the pair (⊥, t) where t is the time needed to prove that C is inconsistent. If the allocated time ub is not 
sufficient to find a satisfying assignment or prove inconsistency, solve returns the pair (nil, ub). Otherwise, solve returns 
a pair (eY , t) where eY is an assignment accepted by C and with highest value of obj found during the allocated time 
ub, and t is the time consumed. When solve is called with obj = nil, there is nothing to maximize and the first satisfying 
assignment (on S) is returned. Function solve uses the bdeg variable ordering heuristic proposed by Tsouros et al. [45]
and selects values in random order. bdeg selects the variable involved in a maximum number of constraints from B . By 
following bdeg, solve tends to generate assignments that violate more constraints from B , so that in case of yes answer, 
the size of B decreases faster.

Algorithm 5 describes GenerateQuery.cutoff. Given a time parameter cutoff, GenerateQuery.cutoff computes 
a (partial) assignment satisfying the constraints in L, violating at least one constraint from B , and tries to maximize the 
size of that assignment as long as cutoff has not been reached. GenerateQuery.cutoff operates by iteratively picking 
a constraint c from B until an assignment satisfying L and violating c is returned, or B is exhausted (line 3). The call to 
solve in line 4 computes an assignment evar(c) on var(c) satisfying L and violating c. The time t needed to compute evar(c)

is added to the time counter (line 5). If solve returns evar(c) = ⊥ (i.e., L ∪ {¬c} is inconsistent), c is marked as redundant 
because it is implied by L. c is then removed from B and added to L (line 7). Adding c to L is required to avoid that
QuAcq2 will later try to learn this constraint which is no longer in B . If solve returns an assignment evar(c) different from 
⊥, GenerateQuery.cutoff enters a second phase during which a second call to solve will use the remaining amount 

9 A network is said to be arc inconsistent if applying arc consistency leads to an empty domain [8].
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Table 5
QuAcq2.cutoff on the same problems as Table 4. cutoff = 1 second. Averages of ten runs (time in seconds).

Problem |T | |K | |L| \ |K | #QA #QC timeA timeC t tmax #C

Purdey 27 18 9 73.5 82.2 0.04 0.21 0.00 0.03 10
Zebra 64 50 14 183.0 197.9 1.05 2.09 0.01 0.58 10
Golomb 350 28 70 245.1 245.1 135.41 143.27 0.55 6.96 10
Random 122 0 122 1039.0 1041.8 2.14 2.16 0.00 0.07 10
RLFAP 125 25 100 818.4 818.4 42.61 42.61 0.05 1.05 10
Jigsaw 811 648 163 1 718.6 1 743.6 177.67 202.30 0.12 1.03 10

of time, cutoff − time, to compute an assignment e′
Y satisfying L and violating c, whilst maximizing |Y | as much as the 

remaining time permits (line 9).10 If no assignment satisfying L and violating c is found in the remaining time, solve returns 
an e′

Y equal to nil and GenerateQuery.cutoff returns the evar(c) found by the first call to solve (line 11). If solve proved 
the inconsistency of L ∪ {¬c} over a scope Y (i.e., e′

Y = ⊥), c is marked as redundant, removed from B , and added to L (line 
13), exactly as in line 7. GenerateQuery.cutoff then goes back to line 3 to select a new constraint from B . Otherwise 
(i.e., e′

Y /∈ {nil, ⊥}), GenerateQuery.cutoff returns the assignment e′
Y with the largest size of Y that has been found 

in the allocated time (line 14). Finally, if all constraints in B have been processed without finding a suitable assignment 
(line 3), this means that all the constraints that were in B were implied by L. The learning process has thus converged. We 
can remove all constraints marked as redundant from L (line 15) and GenerateQuery.cutoff returns ⊥ (line 16). It is 
not necessary to remove the redundant constraints but it usually makes the learned network more compact and easier to 
understand.

6.3.2. Evaluation of GenerateQuery.cutoff
We made the same experiments as in Section 6.2 but instead of using QuAcq2.basic, we used QuAcq2.cutoff, that 

is, QuAcq2 calling GenerateQuery.cutoff. We have set the cutoff to one second so that the acquisition process remains 
comfortable in the case where the learner interacts with a human user. Table 5 reports the results for the same problems 
and same measures as Table 4.

The main information that we extract from Table 5 is that the use of GenerateQuery.cutoff has a dramatic impact 
on the time consumption of generating queries. The cumulated generation time for all queries until convergence never 
exceeds five minutes on any run on any problem whereas QuAcq2.basic reached the 1-hour timeout for a query on some 
or all runs on three of the problems (Random, RLFAP and Jigsaw). Even on Golomb, where QuAcq2.basic was always 
converging, QuAcq2.cutoff shows a significant speed up.

To better understand the difference of behavior between QuAcq2.basic and QuAcq2.cutoff, we report an experiment 
with QuAcq2.cutoff similar to the one with QuAcq2.basic reported in Fig. 3. Fig. 4 reports the results of one run of
QuAcq2.cutoff on Jigsaw. At the top of Fig. 4, we display the time needed by GenerateQuery.cutoff to generate 
each of its queries, exactly as we did for GenerateQuery.basic in Fig. 3. At the bottom of Fig. 4 we report the length 
of each query. QuAcq2.basic was able to generate queries very fast until approximately the 100th query. QuAcq2.cutoff
seems to have more difficulties in this early stage. Around the 70th query, GenerateQuery.cutoff starts to frequently 
reach its cutoff of 1 second. After the 90th query it almost always reaches the cutoff. The consequence, as we see at the 
bottom of the figure, is the generation of shorter queries (less than 81 variables long). This lower efficiency in generating 
queries is due to the efficient dom/wdeg heuristic used in GenerateQuery.basic. GenerateQuery.cutoff does not 
use the dom/wdeg heuristic. It uses bdeg because it tries to violate more constraints from B . (See Section 6.3.1.) But the 
most interesting information that we learn from this experiment comes from the observation of the second half of the 
learning process. After the 124th query, when QuAcq2.basic has failed to learn the Jigsaw problem, QuAcq2.cutoff
continues generating queries, all taking one second to generate. As opposed to GenerateQuery.basic, Generate-
Query.cutoff is able to return queries on strict subsets of X when generating a query on X cannot be accomplished in 
one second. After the 124th query, most queries indeed have a size between 35 and 45 variables.

Coming back to Table 5, we observe that on RLFAP, QuAcq2.cutoff learns more constraints than QuAcq2.basic
despite QuAcq2.basic had learned a network equivalent to T before being stopped by the 1-hour timeout. The reason is 
that, when we are close to the end of the learning process, queries become hard to generate. GenerateQuery.cutoff
then generates shorter queries. Such short queries can lead to the acquisition of constraints that are in fact redundant with 
L. Golomb also contains redundancies but it does not exhibit the same behavior because Golomb is an easy problem on 
which GenerateQuery.cutoff has enough time to generate large queries. Regarding the number of queries, we could 
have expected that the generation of shorter queries at the end of the learning process causes an increase in the overall 
number of queries asked by QuAcq2.cutoff. Shorter positive queries have indeed more chances to rule out fewer violated 
constraints. But, when comparing #QC in Tables 4 and 5, we see that the increase is not dramatic. The largest increase for

10 We have experimentally tried several criteria other than the size of Y . Size of Y appears to be a good compromise though maximizing the size of 
κB (e′

Y ) was also a good criterion in some cases. More elaborated heuristics were analyzed by Addi et al. [1] in the context of QuAcq1 but could be used in
QuAcq2 as well.
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Fig. 4. GenerateQuery.cutoff on Jigsaw: Time to generate queries (top) and their length (bottom).

QuAcq2.cutoff is 11% more queries on Purdey. On the other problems on which QuAcq2.basic converged at least once, 
we either have a small increase (5% and 2% on Zebra and Golomb, respectively) or a small decrease (5% on Random). As 
a last observation on Table 5, it can seem surprising that tmax is more than six seconds on Golomb despite the cutoff of 
one second in GenerateQuery.cutoff. This is because on this problem, the bias contains a lot of redundant constraints. 
Hence, during the learning process, GenerateQuery.cutoff repetitively finds redundant constraints without asking a 
question to the user (lines 6-7 and 12-13 in Algorithm 5).

The experiments presented in this subsection show us that the introduction of a cutoff in the generation of queries 
completely solves the issue of extremely long query-generation times at the end of the process. QuAcq2.cutoff learned 
all our benchmark problems with fast query generation. The only price to pay is a slight increase in number of queries on 
the problems that are the easiest to learn.

6.4. [Q3] Properties of the queries in QuAcq2.cutoff

Let us now focus on the kind of queries the user has to answer when learning a network with QuAcq2.cutoff. In 
Table 5, we reported the number of queries #QA and #QC necessary to find the target network and to converge on it, 
respectively. However, the queries asked by QuAcq2 are not all of the same kind. QuAcq2 asks queries in three different 
places: in line 9 of the main procedure (Algorithm 1), in line 3 of FindScope (Algorithm 2), and in line 10 of FindC
(Algorithm 3). In Table 6, for the same problems as in Table 5, we recall the total number of queries #QC necessary to 
converge with QuAcq2.cutoff, but we also report the detail of how many queries were asked by the main procedure
QuAcq2 (#QGenerateQuery), by FindScope (#QFindScope), or by FindC (#QFindC).

The results reported in Table 6 contain interesting information that was not visible in the previous tables. First, we 
observe that the number of queries #QGenerateQuery generated by GenerateQuery.cutoff and asked by the main 
procedure is much smaller than the total number of queries #QC . #QGenerateQuery goes from 3.5 to 14 times less than #QC . 
Not surprisingly, #QGenerateQuery seems to depend on the number of constraints to learn. By comparing #QGenerateQuery
to the column |L|/|K | in Table 5, we see that the number of queries #QGenerateQuery is between 1.2 and 3 times larger 
than the number of constraints to learn. Second, on all the problems, the queries that are by far the most numerous 
are the queries asked by FindScope (column #QFindScope). This is good news because such queries are much easier to 
answer than queries coming from GenerateQuery.cutoff. Queries generated by GenerateQuery.cutoff are new 
assignments to be classified. Queries from FindScope are just subsets of a query already asked of the user. They are 
thus much easier to answer. In addition, it is often the case that the user, even if not able to formulate the constraints, is 
able to circumscribe the subset of variables where the given assignment is problematic. (See the discussion at the end of 
Section 4.2.) In such a case, the total number of queries to learn a network drops from #QC to #QGenerateQuery + #QFindC , 
which is significantly smaller. Finally, concerning the number of queries #QFindC asked by FindC, it is not obvious to 
find a general trend. #QFindC is of the same order of magnitude as #QGenerateQuery on all problems. Like queries from
FindScope, queries from FindC are very easy to answer: they involve the number of variables of the constraint to learn, 
which is bounded, by definition of �.
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Table 6
QuAcq2.cutoff: The different kinds of queries on the same problems as 
Table 4 and Table 5. Averages of ten runs.

Problem #QC #QGenerateQuery #QFindScope #QFindC

Purdey 82.2 18.9 53.8 9.5
Zebra 197.9 29.2 138.2 30.5
Golomb 245.1 71.3 147.0 26.8
Random 1041.8 141.7 859.8 40.3
RLFAP 818.4 199.3 541.3 77.8
Jigsaw 1 743.6 244.8 1 410.3 88.5
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Fig. 5. QuAcq2.cutoff: Number of queries #QC when varying the size of the background knowledge K .

6.5. [Q4] Impact of background knowledge on the learning effort

In Sections 6.2 and 6.3, we have presented experiments with fixed background knowledge K . We now want to assess 
the impact of the size of K on the cost of the learning process in terms of number of queries asked of the user.

We performed a new experiment. For each problem, QuAcq2.cutoff is called with background knowledge K whose 
size varies from 0% to 90% of the size of the target network. That is, for each percentage p ∈ {0, 10, . . . , 90}, K is built 
by randomly picking p% of the constraints in the target network. Similarly to the previous experiments, the two optional 
lines 3 and 4 in QuAcq2 are implemented as described at the beginning of Section 6.1.

Fig. 5 reports the number of queries #QC that QuAcq2.cutoff requires to converge depending on the percentage of 
constraints that were put in K . As the y-axis is logarithmic, Fig. 5 also displays a linear slope to make it easier to see 
how much the other curves follow a linear slope. These results confirm that when the size of K increases, the number of 
queries decreases. To which amount? We observe that on all problems except Golomb and RLFAP, the decrease is linearly 
correlated to the amount of background knowledge provided.11 This is very good news because this means that it is always 
beneficial to add more background knowledge.

6.6. Our use case

We have also experimented QuAcq2 on a simplified version12 of the exam time-tabling problem from the Department 
of Electrical and Computer Engineering of the University of Western Macedonia (UOWM), Greece. There are 24 courses 
to be examined and 2 weeks of exams, meaning that there are 10 possible days for each exam to be assigned. There 
are 3 time slots per day, i.e. 30 time slots in total. This resulted in a model with 24 variables and domains of size 30. 
There are �= constraints between any two exams because there is only one room for examination. Two courses of the 
same bachelor program cannot be examined on the same day. This is expressed by constraints �x/3� �= �y/3�, ∀x, y in the 
same program. The above constraints are fixed and do not vary from one year to the other. They are considered to be 

11 On Golomb and RLFAP, we observe a decrease that is faster than linear. The reason is that there is a lot of redundancy among the constraints of the 
target network. Some constraints redundant with K can be inferred without the need of queries.
12 The real version also contains preferences from the students.
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Table 7
QuAcq2.basic and QuAcq2.cutoff on our use case exam time-tabling problem. Averages of ten runs (time in 
seconds).

Algorithm |T | |K | |L| \ |K | #QA #QC timeA timeC t tmax #C

QuAcq2.basic 292 276 16 209.4 – 15.28 – – TO 0
QuAcq2.cutoff 292 276 16 203.2 259.9 12.89 27.07 0.10 6.77 10

TO = 1 hour

Algorithm #QC #QGenerateQuery #QFindScope #QFindC

QuAcq2.cutoff 259.9 81.4 134.6 43.9

known and given as background knowledge to QuAcq2. The problem of this year contains 16 additional constraints from 
the language � = {�=, =, <, >, ≤, ≥, |x − y| > k, |x − y| < k, |�x/3� − �y/3�| > k, |�x/3� − �y/3�| < k}, with k ∈ 1..5. These 
constraints capture the lecturers’ restrictions about the examination of specific courses. An instance of such restriction is 
that of a lecturer who lives far from the campus: She wants all her courses to be examined in two consecutive days. This 
can be expressed by the constraint |�x/3� − �y/3�| < 3, x and y being courses of that lecturer. These additional constraints 
are the ones that the person in charge of the exam time-tabling has to formulate on top of the background knowledge. 
Until now the time-table has been constructed manually by the person in charge, resulting in rigid and often infeasible 
assignments. Hence, there is a wish to move to an automated (or semi-automated) process which takes into account all the 
existing constraints. However, the additional constraints have proved to be an obstacle as the time-tabling person found it 
difficult to formulate them. These could be the constraints to be learned by QuAcq2 if that person was let alone with her 
exam time-tabling problem. We initialized QuAcq2 with a bias of 14,352 constraints from �. After lines 3 to 5 of QuAcq2, 
|B| = 9960.

Table 7 reports the results for both QuAcq2.basic and QuAcq2.cutoff. Like RLFAP and Jigsaw, Exam-TT is difficult 
enough to learn so that QuAcq2.basic fails to converge because of the 1-hour timeout on query generation. However, as on
RLFAP, QuAcq2.basic has in fact already learned a network equivalent to T when it reaches the timeout. This is the proof 
of convergence that leads to the timeout. If we look at what happens with QuAcq2.cutoff, we see a behavior similar 
to what we observed for the other benchmark problems. QuAcq2.cutoff converges at all runs, and it has a cumulated 
generation time for all queries that is less than half a minute. We also observe that approximately half of this time is 
consumed by the proof of convergence. In average on the ten runs, 203.2 queries and 12.89 seconds were necessary to find 
a network equivalent to the target network. 56.7 more queries and 14.18 more seconds are necessary to prove convergence. 
This is again due to redundant constraints in the bias. It is confirmed by the high value of tmax . As on Golomb, Generate-
Query.cutoff can spend six seconds repetitively proving the redundancy of constraints before being able to generate a 
query.

Concerning the kind of queries asked by QuAcq2.cutoff (bottom part of Table 7), we again observe that queries 
asked by FindScope are the most frequent. By comparing #QGenerateQuery (81.4 queries) to the number of queries 
from GenerateQuery.cutoff used to prove convergence (i.e., #QC − #QA = 56.7 queries), we see that QuAcq2.cutoff
has only asked 81.4 − 56.7 = 24.7 queries generated by GenerateQuery.cutoff before finding the actual target net-
work. Even more interestingly, by analyzing the sequence of queries asked by QuAcq2.cutoff (not reported here), we 
observe that, in average on the ten runs, GenerateQuery.cutoff returns a solution of the whole problem after hav-
ing generated 12.2 queries only. At this point in the learning process, FindScope and FindC have asked 105.8 and 40.7 
queries, respectively, for a total of 158.7 queries. As in this use case it is very easy to point out which variables violate 
a constraint (violations of constraints are only possible between courses of a same lecturer), the person in charge of the 
exam time-tabling would probably have been able to solve the instance of this year by answering 12.2 queries asked by the 
main procedure QuAcq2 plus 40.7 trivial queries from FindC. (On this problem, queries from FindC always involve two 
variables.)

6.7. Comparison of QuAcq2 with QuAcq1

We finish this experimental section with a comparison of the behaviors of QuAcq1 and QuAcq2. We cannot make 
an exact comparison of QuAcq1 with QuAcq2 because the function FindC in QuAcq1 is designed to learn networks 
that are normalized whereas QuAcq2 can learn networks that are not normalized. We then mimic QuAcq1 by running a
QuAcq2.basic version in which function FindScope has been replaced by the FindScope in [11]. The algorithm ob-
tained by this substitution of function FindScope in QuAcq2.basic is denoted by pseudoQuAcq1. Table 8 reports the 
results of pseudoQuAcq1 for the same problems as Table 4. For each measure, we give the percentage of difference with the 
results obtained by QuAcq2.basic.
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Table 8
Performance of pseudoQuAcq1 (a version of QuAcq2.basic that uses the FindScope version of QuAcq1) 
on the same problems as Table 4. The percentage of difference with the performance of QuAcq2.basic is 
given in brackets. Averages of ten runs (time in seconds).

Problem #QC timeC t tmax #C

Purdey 104.0 (+41%) 0.04 (-41%) 0.00 (-62%) 0.00 (-56%) 10
Zebra 212.8 (+13%) 3.66 (+106%) 0.02 (+80%) 2.50 (+130%) 10
Golomb 817.2 (+242%) 353.72 (+43%) 0.21 (-58%) 14.27 (+38%) 10
Random 1839.3 (+68%) 11.84 (-86%) 0.01 (-92%) 9.04 (-89%) 6
RLFAP∗ 1223.8 (+61%) – – – 0
Jigsaw∗ 1902.4 (+40%) – – – 0

TO = 1 hour

Problem #QGenerateQuery #QFindScope #QFindC

Purdey 11.8 (-5%) 81.9 (+64%) 10.3 (-10%)
Zebra 14.9 (+0%) 168.2 (+20%) 29.7 (-9%)
Golomb 70.9 (-0%) 716.9 (+417%) 29.4 (-1%)
Random 147.3 (-2%) 1653.8 (+85%) 38.2 (-15%)
RLFAP∗ 155.2 (-7%) 993.6 (+90%) 75.0 (+4%)
Jigsaw∗ 120.8 (+3%) 1699.2 (+46%) 82.4 (+7%)
∗The numbers in italic correspond to the number of queries asked when 
reaching the timeout.

The first information that we extract from the top part of Table 4 is that pseudoQuAcq1 fails to converge on the target 
network on the same problems –RLFAP and Jigsaw– as QuAcq2.basic.13 This is not a surprise because the reason why
QuAcq2.basic does not converge on these problems is not related to the behavior of its FindScope. If we focus now on 
the number of queries required to converge on the four other problems (column #QC in the top part of Table 8), we see 
that QuAcq2.basic is consistently better than pseudoQuAcq1 in terms of number of queries. The decay in performance 
when replacing the FindScope of QuAcq2.basic by the one of QuAcq1 goes from 13% to 242% depending on the prob-
lem. The bottom part of Table 8 displays the distribution of the number of queries asked by each of the three procedures:
pseudoQuAcq1 (column #QGenerateQuery), FindScope (column #QFindScope), and FindC (column #QFindC). These re-
sults confirm that the increase of the number of queries in pseudoQuAcq1 is due to FindScope. The FindScope of
pseudoQuAcq1 can ask from 20% to 417% more queries than the FindScope of QuAcq2.basic depending on the problem. 
The extremely bad performance of the FindScope of pseudoQuAcq1 on Golomb is due to the presence of constraints of 
various arities (two, three and four) in the bias and in the target network. When there are several arities involved, the risk 
of asking redundant queries is much higher. The small variations in #QGenerateQuery and #QFindC between pseudoQuAcq1

and QuAcq2.basic are due to the randomness introduced by the value selection heuristic and by the shuffling of the 
variables in FindScope. Different runs of QuAcq2.basic or pseudoQuAcq1 discover the constraints in a different order.

Let us now observe the time performance of pseudoQuAcq1 when compared to QuAcq2.basic (columns timeC , t, 
and tmax in the top part of Table 8). The randomness introduced by the value selection heuristic and the shuffling is also 
probably at the origin of the apparently stochastic variations that we observe. On the four problems on which the learning 
process converges, the time to generate a query is in general so short that a single more expensive query significantly 
impacts the averages. For instance, on Random, on one of the seven runs in which QuAcq2.basic converged, one query 
required ten minutes to be generated whereas most of the other queries were generated in a few milliseconds. On the 
same Random problem, the maximum time required by pseudoQuAcq1 to generate a query on the six runs in which it 
converged was ‘only’ 49 seconds. This explains the almost one order of magnitude smaller timeC , t and tmax , which are 
not negatively impacted by the fact that pseudoQuAcq1 failed to converge on one more run than QuAcq2.basic. (Averages 
are computed on the converging runs.) Concerning t, the lower values observed for pseudoQuAcq1 (except on Zebra) can 
also in part be explained by the fact that the proportion of queries asked by FindScope is higher in pseudoQuAcq1 than 
in QuAcq2.basic. (This is especially true on Golomb.) Remember that these queries are extremely fast to compute as they 
are just projections of an assignment on a subset of its variables.

6.8. Discussion

These experiments tell us several important features of QuAcq2. First of all, these experiments show us that QuAcq2

can learn any kind of network, independently of whether some of the constraints follow a specific structure (Purdey,
Zebra, Golomb, Jigsaw, Exam-TT), or there is no structure at all (Random, RLFAP). A second general observation is 
that QuAcq2 learns a network in a number of queries always significantly smaller than the size of the bias. This confirms 
that QuAcq2 is able to select the queries in a way that makes them very informative for the learning process.

13 For RLFAP and Jigsaw, the numbers reported (in italic) correspond to the number of queries asked by pseudoQuAcq1 and QuAcq2.basic when 
reaching the timeout.
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However, the experiment in Section 6.2 shows that when QuAcq2 is used in its basic version, the time to generate 
queries can be prohibitive, especially if interacting with a human user. We indeed observe that when we are close to the 
end of the learning process, it can be extremely time consuming to generate complete queries.

The experiment in Section 6.3 shows that a simple adaptation of the way queries are generated (see function
GenerateQuery.cutoff in Section 6.3.1), allows us to monitor the CPU time needed to generate a query thanks to a 
cutoff. In that experiment we see that a cutoff of one second leads to a very smooth interaction between the learner and 
the user. It is important to bear in mind that even with a cutoff, QuAcq2 ensures the property of convergence. Apart from 
the time to generate queries, another interesting information is the kind of queries asked of the user. We see in Section 6.4
that the most frequent queries are the ones asked by FindScope. This is good news because such queries are simply the 
projection of queries already asked of the user. They are thus easier to answer than brand new queries.

All experiments in Sections 6.2, 6.3, and 6.4 were performed with fixed background knowledge. The experiment in 
Section 6.5 shows that the amount of background knowledge provided at the start of the learning process has a strong 
impact on the number of queries asked by QuAcq2. The larger the set of constraints given as background knowledge, the 
fewer the queries needed to learn the network. On all our benchmark problems, the number of queries required to learn 
the network exhibits a decrease that is at least linear in the number of constraints given as background knowledge.

The experiment on our use case reported in Section 6.6 is very informative. A total of about 260 queries are required 
to completely learn the problem and to prove convergence. If we stop as soon as a solution to the problem has been 
generated, the number of queries falls to fewer than 160 queries, among which only 12 are queries asked by the main 
procedure QuAcq2. The rest is composed of about 106 queries from FindScope (that can be avoided if the user is able 
to spot the variables violating a constraint in the example), and about 40 from FindC that are trivial to answer (involving 
two variables).

Finally, in Section 6.7, we compare QuAcq2 to a version that uses the function FindScope of QuAcq1 as described in 
[11]. The results show that our new function FindScope asks significantly fewer queries than the version in QuAcq1.

7. Conclusion

We have proposed QuAcq2, an algorithm that learns constraint networks by asking the user to classify partial assign-
ments as positive or negative. Each time QuAcq2 receives a negative example, the algorithm converges on a constraint of 
the target network in a logarithmic number of queries. Asking the user to classify partial assignments allows QuAcq2 to 
converge on the target constraint network in a polynomial number of queries (as opposed to the exponential number of 
queries required when learning with membership queries only). We have shown that QuAcq2 is optimal on certain con-
straint languages and that it is close to optimal (up to log n worse) on others. Furthermore, as opposed to most other 
techniques, the user does not need to provide positive examples to learn the target network. This can be very useful when 
the problem has never been solved before. Our experiments show that QuAcq2 in its basic version can be time consum-
ing but they also show that QuAcq2 can be parameterized with a cutoff that allows it to generate queries quickly. These 
experiments also show that QuAcq2 can learn any kind of network, whatever its constraints follow a specific structure 
(such as matrices) or not. More, we observed that QuAcq2 behaves very well in the presence of background knowledge. 
The larger the background knowledge, the fewer the queries required to converge on the target network. This last feature 
makes QuAcq2 a perfect candidate to learn missing constraints in a partially filled constraint model, as illustrated on our 
use case. A comparison with QuAcq1 demonstrates that QuAcq2 requires significantly fewer queries to learn a network than 
its predecessor. As a last comment, we should bear in mind that most of the improvements of QuAcq1 already published in 
the literature (see Section 2), can be applied to QuAcq2.
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