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Abstract. We compare both pure SAT and hybrid CP/SAT models for solving
car sequencing problems, and close 13 out of the 23 large open instances in
CSPLib. Three features of these models are crucial to improving the state of
the art in this domain. For quickly finding solutions, advanced CP heuristics are
important and good propagation (either by a specialized propagator or by a so-
phisticated SAT encoding that simulates one) is necessary. For proving infeasi-
bility, clause learning in the SAT solver is critical. Our models contain a number
of novelties. In our hybrid models, for example, we develop a linear time mecha-
nism for explaining failure and pruning the ATMOSTSEQCARD constraint. In our
SAT models, we give powerful encodings for the same constraint. Our research
demonstrates the strength and complementarity of SAT and hybrid methods for
solving difficult sequencing problems.

1 Introduction

In the car sequencing problem [26], we sequence a set of vehicles along an assembly
line. Each class of cars requires a set of options. However, the working station handling
a given option can only deal with a fraction of the cars passing on the line. Each option
j is thus associated with a fractional number uj/qj standing for its capacity (at most uj
cars with option j occur in any sub-sequence of length qj). Several global constraints
have been proposed in the Constraint Programming (CP) literature to model this family
of sequence constraints. At present, CP models with the ATMOSTSEQCARD constraint
[23] or its combination with the Global Sequencing Constraint (GSC) [20] have pro-
vided the best performance. However, pure CP approaches suffer when we consider
proving unsatisfiability. The goal of this paper is to show that by exploiting Boolean-
Satisfiability (SAT), we can improve upon the state of the art in this domain. We are
able to close 13 out the 23 large open instances in CSPLib.

We propose several approaches combining ideas from SAT and CP for solving the
car sequencing problem. First, we capture CP propagation in SAT by a careful formula-
tion of the problem into conjunctive normal form (CNF). We propose a family of pure
SAT encodings for this problem and relate them to existing encoding techniques. They



are based on an extension of Sinz’s encoding for the CARDINALITY constraint [24]
and have similarities to the decomposition of the GEN-SEQUENCE constraint given in
[2]. Second, we introduce a linear time procedure for computing compact explanations
for the ATMOSTSEQCARD constraint. This algorithm can be used in a hybrid CP/SAT
approach such as SAT Modulo Theory or lazy clause generating solver, where non-
clausal constraints need a propagator and an explanation algorithm. In principle, the
hybrid approach has access to all the advances from the SAT world, whilst benefiting
from constraint propagation and dedicated branching heuristics from CP. However, our
experiments reveal that in practice, SAT solvers maintain an edge when proving unsat-
isfiability. Due to the most up to date data structures and tuning of parameters for literal
activity and clause deletion, encoding into SAT significantly outperforms the hybrid
approach on hard unsatisfiable instances.

We made three observations based on these experiments: First, CP heuristics are
good at quickly finding solutions. Whilst generic activity based heuristics are surpris-
ingly robust, dedicated CP can be much faster. Second, propagation, either through
finite domain propagators, or through unit propagation via a “strong” encoding, is ex-
tremely important for finding solutions reliably on harder instances. Strong propagation
makes it less likely to enter an unsatisfiable subproblem during search. In conjunc-
tion with this, restarting ensures that these unlikely cases do not matter. Third, clause
learning is critical for proving unsatisfiability. In this respect, the approaches that we
introduce (especially the SAT encodings) greatly improve the state of the art for the
car sequencing problem. Moreover, counter-intuitively, it does not seem that constraint
propagation of the ATMOSTSEQCARD constraint nor the “strength” of the SAT encod-
ing, has a significant impact on the ability of the solver to prove unsatisfiability.

The remainder of this paper is organized as follows. In Section 2, we give some
background on CP, SAT and their hybridization. In Section 3, we recall the state of the
art CP models for this problem and show the connection with SAT. In Section 4, we
show that how to build explanations for the ATMOSTSEQCARD constraint based on its
propagator. Then, we present advanced SAT encodings for this constraint in Section 5.
Finally, in Section 6, we compare experimentally the approaches we introduce against
pure CP and pseudo Boolean models.

2 Background

Constraint Programming. A constraint network is defined by a triplet P = (X ,D, C)
where X is a set of variables,D is a mapping of variables to finite sets of values and C is
a set of constraints that specify allowed combinations of values for subsets of variables.
We assume that D(x) ⊂ Z for all x ∈ X . We denote [x ← v] the assignment of the
value v to the variable x, that is the restriction of its domain D(x) to {v}, similarly,
we denote [x 8 v] the pruning of the value v from D(x). A partial instantiation S
is a set of assignments and/or pruning such that no variable is assigned more than one
value and no value is pruned and assigned for the same variable. Let ⊥ be a failure
or a domain wipe-out, by convention equal to the set of all possible assignments and
prunings. On finite domains, we can consider a closure of partial instantiations with
respect to initial domains. That is, if the assignment [x ← v] belongs to S, we also



assume that [x 8 v] for all v ∈ D(x) \ v belong to S. Similarly, if all but one of the
values are pruned, the remaining value is added as an assignment. This is similar to
expanded solutions in [16]. However, we shall restrict ourselves to Boolean domains in
this paper. We therefore have S ⊆ S′ iff S′ is a stronger (tighter) partial instantiation
than S. Given an initial domain D and a partial instantiation S, we can derive a current
domain taking into account the pruning and assignments of S in D. There will not be
ambiguities about the original domains, therefore we simply denote S(x) the domain
D(x) updated by the assignment or pruning associated to x in S.

A constraint C defines a relation Rel(C), that is, a set of instantations, over the
variables in Scope(C). Let S be a partial instantiation of Scope(C). The constraint C
is said generalized arc consistent (GAC) with respect to S iff, for every x in Scope(C)
and every v ∈ S(x), there exists an instantiation T ∈ Rel(C) such that [x 8 v] 6∈ T
(T is a support) and T ⊆ S (T is valid). We say that a constraint is dis-entailed with
respect to a partial instantiation S iff there is no T in Rel(C) such that S ⊆ T .

Throughout the paper we shall associate a propagator with a constraint C. This is
a function mapping partial instantiations to partial instantiations or to the failure ⊥.
Given a partial instantiation S, we denote C(S) for the partial instantiation (or failure)
obtained by applying the propagator associated to C on S, with S ⊆ C(S). We say that
S implies the assignment or pruning p with respect to C iff p 6∈ S & p ∈ C(S). Finally,
the level of an assignment or a pruning p is the order of appearance of the assignment
(respectively pruning) in the search tree, and we denote it lvl(p). For a comprehensive
introduction to CP solving in general and its techniques we refer to [21].

SAT-Solving. The Boolean Satisfiability problem (SAT) is a particular case of CSP
where domains are Boolean and constraints are only clauses (disjunction of literals).
A SAT solver computes a satisfying instantiation of a formula of propositional logic
in conjunctive normal form (CNF) or proves that no such instantiation exists. The most
widely used method to solve SAT problems is based on the DPLL algorithm ([8]), which
is a depth first search with backtracking and unit propagation. Unit propagation (UP)
prunes the assignment of the remaining literal in a clause when all other literals have
become false. An important improvement to the DPLL algorithms is Conflict-Driven
Clause Learning (CDCL). A CDCL solver records for each conflict an appropriate rea-
son in form of a clause, and adds it to the clause database. This can potentially prune
unseen parts of the search tree. Furthermore, SAT solvers are equipped with robust
domain-independent branching and decision heuristics (for instance VSIDS [17]). For
a comprehensive introduction to SAT solving in general and its techniques we refer to
[4].

Modelling in CNF is a crucial step for the success of solving problems with SAT.
A natural approach to find a good SAT model is to describe the problem with higher
level constraints and then translate these constraints to CNF. In accordance with this
methodology, the representation of integer domains and encodings of a variety of global
constraints have been proposed and analyzed [2, 13, 28]. Similarly the notion of GAC
has been adapted to SAT. UP is said to maintain GAC on the CNF encoding of a con-
straint if it forces all assignments to the variables representing values that must be set
to avoid unsatisfiability of the constraint. The quality of an encoding into SAT is mea-
sured by both its size and its level of consistency by UP. Moreover, we must taken into



account that SAT solvers cannot distinguish between the original variables and any aux-
iliary variables introduced to produce a more compact encoding. Thus, when aiming for
a good CNF encoding, we must consider how such auxiliary variables might increase
propagation.

2.1 Hybrid CP/SAT

The notion of nogood learning in constraint programming is not new, in fact it pre-
dates [22] similar concepts in SAT. However, CDCL learns and uses nogoods in a partic-
ular way, and such methods have been re=introduced into CP. For instance Katsirelos’s
generalized nogoods [15] [16] enable nogood learning with arbitrary domains. Another
complexity is that propagation is now not restricted to unit propagation. A given con-
straint can be associated with a specific propagator. However, to perform clause learn-
ing, it is necessary to explain either a failure or the pruning of a domain value.We say
that a partial instantiation S is an explanation of the pruning [x 8 v] with respect to a
constraint C if it implies [x8 v] (that is, [x8 v] ∈ C(S) \ S). Moreover, S is a valid
explanation iff lvl([x8 v]) > max({lvl(p) | p ∈ S}).

In this paper we use a solver with an architecture similar to Lazy Clause Generation
with backward explanations [12]. In addition to a propagator, an explanation algorithm
is associated with each constraint. However, as opposed to explanation based constraint
programming [6, 7], the explanations are used exactly as in CDCL, i.e., literals are
replaced by their explanation until the current nogood contains a Unique Implication
Point of the current level’s pruning. In this sense it is very close to the way some Pseudo-
Boolean CDCL solvers, such as PBS [1], PBChaff [9] or SAT4JPseudo [3] integrate
unit propagations on clauses, dedicated propagators and explanations (cutting planes)
for linear equations. On Boolean domains, the hybrid SAT/CP approach we use works
as follows:

Propagation: The propagation is performed by a standard CP engine, except that for
each pruned value we record the constraint responsible for this pruning (a simple pointer
to the constraint is stored). Both original and learned clauses are handled by a dedicated
propagator simulating the behavior of a clause base (i.e., using watched literals).

Learning: When a failure is raised, the standard CDCL conflict analysis algorithm is
used. The constraint C responsible for the failure is asked to provide an explanation for
this failure. The literals of this explanation form the base nogood Ng. Subsequently,
any assignment [x ← v] such that lvl([x← v]) ≥ lvl(d) where d is the last deci-
sion, is removed from Ng and replaced by its explanation by the constraint marked as
responsible for it. This process continues until Ng has a Unique Implication Point.

Search: Since a CP library (Mistral1) was used to implement this approach, it is possi-
ble to use hand made CP heuristics as well as built-in strategies such as VSIDS. How-
ever, as in CDCL algorithms, branching decisions are not refuted in a “right” branch.
Instead, we backjump to the second highest level of literals in the learned clauses, and
unit propagation for this clause is triggered.

1 https://github.com/ehebrard/Mistral-2.0



3 The Car Sequencing problem

In the car sequencing problem, n vehicles have to be produced on an assembly line.
There are c classes of vehicles and m types of options. Each class k ∈ {1, . . . , c} is
associated with a demand Dclass

k , that is, the number of occurrences of this class on
the line, and a set of options Ok ⊆ {1, . . . ,m}. Each option is handled by a working
station able to process only a fraction of the vehicles passing on the line. The capacity
of an option j is defined by two integers uj and qj , such that no subsequence of size qj
may contain more than uj vehicles requiring option j. A solution of the problem is then
a sequence of cars satisfying both demand and capacity constraints. For convenience,
we shall also define, for each option j, the corresponding set of classes of vehicles re-
quiring this option Cj = {k | j ∈ Ok}, and the option’s demand Dj =

∑
k∈Cj D

class
k .

3.1 CP Modelling

As in a standard CP Model, we use two sets of variables. The first set corresponds
to n integers {x1, . . . , xn} taking values in {1, . . . , c} and standing for the class of
vehicles in each slot of the assembly line. The second set of variables corresponds to
nm Boolean variables {o11, . . . , omn }, where oji stands for whether the vehicle in the ith

slot requires option j. For the constraints, we distinguish three sets:

1. Demand constraints: for each class k ∈ {1..c}, |{i | xi = k}| = Dclass
k . This

constraint is usually enforced with a Global Cardinality Constraint (GCC) [19] [18].
2. Capacity constraints: for each option j ∈ {1..m}, we post the constraint

ATMOSTSEQCARD(uj , qj , Dj , [o
j
1..o

j
n]) using the propagator introduced in [23].

3. Channelling: Finally, we channel integer and Boolean variables: ∀j ∈ {1, ...,m},∀i ∈
{1, ..., n}, oji = 1⇔ xi ∈ Cj

3.2 Default Pseudo-Boolean and SAT Models

The above CP Model can be easily translated into a pseudo Boolean model since the
majority of the constraints are sum expressions. We use the same Boolean variables oji
standing for whether the vehicle in the ith slot requires option j. Moreover, the class
variables are split into nc Boolean variables cji standing for whether the ith vehicle is
of class j. We have the same constraints as in the CP model, albeit expressed slightly
differently. Moreover, we need to constrain variables standing for class assignment of
the same slot to be mutually exclusive.

1. Demand constraints: ∀j ∈ [1..c],
∑
i c
j
i = Dj

2. Capacity constraints:
∑i+qj−1
l=i ojl ≤ uj , ∀i ∈ {1, . . . , n− qj + 1}

3. Channelling:
– ∀i ∈ [1..n], ∀l ∈ [1..c], we have:
• ∀j ∈ Ol, cli ∨ o

j
i

• ∀j /∈ Ol, cli ∨ o
j
i



– For better propagation, we add the following redundant clause:
∀i ∈ [1..n], j ∈ [1..m], oji∨∨ l∈Cj c

l
i

4. Domain constraints: a vehicle belong to only one class: ∀i ∈ [1..n],
∑
j c
j
i = 1

A SAT Encoding for this problem could translate each sum constraint (in this case
only CARDINALITY constraints) into a CNF formula. We will show in Section 5 how
such a translation can be improved.

4 Explaining the ATMOSTSEQCARD constraint

We present here an algorithm explaining the ATMOSTSEQCARD constraint. This algo-
rithm is based on the propagator for this constraint, which we therefore now recall. Let
[x1, x2..xn] be a sequence of Boolean variables, u, q and d be integer variables. The
ATMOSTSEQCARD constraint is defined as follows:

Definition 1.

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn])⇔
n−q∧
i=0

(

q∑
l=1

xi+l ≤ u) ∧ (

n∑
i=1

xi = d)

In [23], the authors proposed a O(n) filtering algorithm achieving AC on this con-
straint. We outline the main idea of the propagator.

Let X = [x1..xn] be a sequence of variables, and S a partial instantiation over
these variables. The procedure leftmost returns an instantiation −→w S ⊇ S of maxi-
mum cardinality by greedily assigning the value 1 from left to right while respecting the
ATMOST constraints. Let −→w i

S denote the partial instantiation −→w S at the beginning of
iteration i, and let −→w 1

S = S. The value maxS(i) denotes the maximum minimum car-
dinality, with respect to the current domain −→w i

S , of the q subsequences involving xi. It
is computed alongside−→w S and will be useful to explain the subsequent pruning/failure.
It is formally defined as follows (where min(−→w i

S(xk)) = 0 if k < 1 or k > n):

maxS(i) = max
j∈[1..q]

(

i+j−1∑
k=i−q+j

min(−→w i
S(xk)))

Definition 2. The outcome of the procedure leftmost can be recursively defined us-
ing maxS: at each step i, leftmost adds the assignment [xi ← 1] iff this assignment
is consistent with −→w i

S and maxS(i) < u, it adds the assignment [xi ← 0] otherwise.

Example 1. For instance, consider the execution of the procedure leftmost on the
constraint ATMOSTSEQCARD(2, 4, 6, [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10]). We sup-
pose that we start from the partial instantiation {[x2 ← 0], [x6 ← 1], [x8 ← 0]}. Ini-
tially, we have the following structures, for each i representing an iteration (and also the
index of a variable):



1 2 3 4 5 6 7 8 9 10
−→w 1
S(xi) {0, 1} 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}

−→w 2
S(xi) 1 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}

−→w 3
S(xi) 1 0 {0, 1} {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}

−→w 4
S(xi) 1 0 1 {0, 1} {0, 1} 1 {0, 1} 0 {0, 1} {0, 1}

. . .
−→w 11
S (xi) 1 0 1 0 0 1 1 0 0 1

maxS(i) 0 1 1 2 2 1 1 2 2 1

The partial solution −→w 1
S is equal to S. Then at each step i, leftmost adds the as-

signment [xi ← 1] or [xi ← 0] according to Definition 2. For instance, at the begining of
step 4, the subsequences to consider are [x1, x2, x3, x4], [x2, x3, x4, x5], [x3, x4, x5, x6]
and [x4, x5, x6, x7], of cardinality 2, 1, 2 and 1, respectively, with respect to the instan-
tiation −→w 4

S(xi). The value of maxS(4) is therefore 2.

To detect failure, we simply need to run this procedure and check that the final
cardinality of −→w S is greater than or equal to the demand d. We shall see that we can
explain pruning by using essentially the same procedure.

In order to express declaratively the full propagator, we need the following further
steps: The same procedure is applied on variables in reverse order [xn..x1], yielding
the instantiation←−w S . Observe that the returned instantiations−→w S and←−w S assign every
variable in the sequence to either 0 or 1. We denote respectively LS(i) and RS(i) the
sum of the values given by −→w S (resp.←−w S) to the i first variables (resp. n − i + 1 last
variables). That is:

LS(i) =

i∑
k=1

min(−→w S(xk)) , RS(i) =

n∑
k=i

min(←−w S(xk))

Now we can define the propagator associated to the constraint ATMOSTSEQCARD
described in [23], and which is a conjunction of GAC on the ATMOST (i.e.

∑q
l=1 xi+l ≤

u) constraints on each subsequence, of CARDINALITY constraint
∑n
i=1 xi = d, and of

the following:

ATMOSTSEQCARD(S) =



S, if LS(n) > d
⊥, if LS(n) < d
S ∪ {[xi ← 0] | S(xi) = {0, 1}

& LS(i) +RS(i) ≤ d}
∪ {[xi ← 1] | S(xi) = {0, 1}

& LS(i− 1) +RS(i+ 1) < d} otherwise

(4.1)

If a failure/pruning is detected by the CARDINALITY or an ATMOST constraint,
then it is easy to give an explanation. However, if a failure or a pruning is due to the
propagator defined in equation 4.1, then we need to specify how to generate a relevant
explanation. We start by giving an algorithm explaining a failure. We show after that
how to use this algorithm to explain pruning.



4.1 Explaining Failure

Suppose that the propagator detects a failure at a given level l. The original instantiation
S would be a possible naive explanation expressing this failure. We propose in the
following a procedure generating more compact explanations.

In example 2, the instantiation S = {[x1 ← 1], [x3 ← 0], [x6 ← 0]} is subject
to ATMOSTSEQCARD(2, 5, 3, [x1..x6]). S is unsatisfiable since LS(6) < d. Consider
now the sequence S∗ = {[x6 ← 0]}. The result of leftmost on S and S∗ is identical.
Therefore, S∗ and S are both valid explanations for this failure, however S∗ is shorter.
The idea behind our algorithm for computing shorter explanations is to characterise
which assignments will have no impact on the behavior of the propagator, and thus are
not necessary in the explanation.

Example 2.

S 1 . 0 . . 0
−→w (S) 1 1 0 0 0 0
max(S) 1 1 2 2 2 1
L(S) 1 2 2 2 2 2

d = 3
L(6) = 2
→ Failure

S∗ . . . . . 0
−→w (S∗) 1 1 0 0 0 0
max(S∗) 1 1 2 2 2 1
L(S∗) 1 2 2 2 2 2

d∗ = 3
L∗(6) = 2
→ Failure

Let I = [xk+1..xk+q] be a (sub)sequence of variables of size q and S be a partial in-
stantiation. We denote card(I, S) the minimum cardinality of I under the instantiation
S, that is: card(I, S) =

∑
xi∈I min(S(xi)).

Lemma 1. If S∗ = S \ ({[xi ← 0] | maxS(i) = u} ∪ {[xi ← 1] | maxS(i) 6= u})
then −→w S = −→w S∗ .

Proof. Suppose that there exists an index i ∈ [1..n] s.t.−→w S(xi) 6= −→w S∗(xi) and let k be
the smallest index verifying this property. Since the instantiation S∗ is a subset of S (i.e.,
S∗ is weaker than S) and since leftmost is a greedy procedure assigning the value
1 whenever possible from left to right, it follows that −→w S(xk) = 0 and −→w S∗(xk) = 1.
Moreover, it follows that maxS(k) = u and maxS∗(k) < u. In other words, there
exists a subsequence I containing xk s.t the cardinality of I in −→w k

S (i.e. card(I,−→w k
S))

is equal to u, and the cardinality of I in −→w k
S∗ (card(I,−→w k

S∗)) is less than u. From
this we deduce that there exists a variable xj ∈ I such that min(−→w k

S(xj)) = 1 and
min(−→w k

S∗(xj)) = 0.
First, we cannot have j < k. Otherwise, both instantiations −→w k

S(xj) and −→w k
S∗(xj)

contain an assignment for xj , and therefore we have −→w k
S(xj) = {1} and −→w k

S∗(xj) =
{0}, which contradicts our hypothesis that k is the smallest index of a discrepancy.

Second, suppose now that j > k. Since we have card(I,−→w k
S) = u, we can deduce

that card(I,−→w j
S) = u. Indeed, when going from iteration k to iteration j, leftmost

only adds assignments, and therefore card(I,−→w j
S) ≥ card(I,−→w k

S). It follows that
maxS(j) = u, and by construction of S∗, we cannot have [xj ← 1] ∈ S \S∗. However,
it contradicts the fact that min(−→w k

S(xj)) = 1 and min(−→w k
S∗(xj)) = 0.

ut

Theorem 1. If S is a valid explanation for a failure and S∗ = S\({[xi ← 0] |maxS(i) =
u} ∪ {[xi ← 1] |maxS(i) 6= u}), then S∗ is also a valid explanation.



Proof. By Lemma 1, we know that the instantiations −→w S and −→w S∗ , computed from,
respectively the instantiations S and S∗ are equal. In particular, we have LS(n) =
LS∗(n) and therefore ATMOSTSEQCARD(S) =⊥ iff ATMOSTSEQCARD(S∗) =⊥.

ut
Theorem 1 gives us a linear time procedure to explain failure. In fact, all the val-

ues maxS(i) can be generated using one call of leftmost. Example 3 illustrates the
explanation procedure.

Example 3.

S 1 0 1 0 0 . . 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
maxS(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1
LS(i) 1 1 2 2 2 3 3 3 3 3 4 5 5 5 5 5 6 6 6 6 6 7
S∗ 1 . 1 . . . . . . . 1 1 . . . 0 . 0 0 0 0 .

maxS∗(i) 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1
−→w S∗(xi) 1 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1

We illustrate here the explanation of a failure on ATMOSTSEQCARD(2, 5, 8, [x1..x22]).
The propagator returns a failure since LS(22) = 7 < d = 8. The default explanation
corresponds to the set of all the assignments in this sequence, whereas our procedure
shall generate a more compact explanation by considering only the assignments in S∗.
Bold face values in the maxS(i) line represent the variables that will not be included in
S∗. As a result, we reduce the size of the explanation from 20 to 9.

Observe, however, that the generated explanation is not minimal. Take for instance the
assignment [x1 ← 1]. Despite it does not meet Theorem 1 conditions (i.e. maxS(1) =
u), the set of assignments S∗ \ [x1 ← 1] is a valid explanation since leftmost would
return the same result between S∗ and S∗ \ [x1 ← 1].

4.2 Explaining Pruning

Suppose that a pruning [xi 8 v] was triggered by the propagator in equation 4.1
at a given level l on S (i.e. propagating ATMOSTSEQCARD(S) implies [xi 8 v]).
Consider the partial instantiation S[xi←v] identical to S on all assignments at level l
except for [xi ← v] instead of [xi 8 v]. By construction S[xi←v] is unsatisfiable. Let
S∗ be the explanation expressing this failure using the previous mechanism. We have
then S∗ \ [xi ← v] as a valid explanation for the pruning [xi 8 v].

5 SAT-Encoding for the ATMOSTSEQCARD constraint

In this section we present several SAT-encodings for the ATMOSTSEQCARD constraint
and relate them to existing encoding techniques. First we describe a translation of
Boolean cardinality constraints by a variant of the sequential counter encoding [24].
This encoding can be used to translate the decomposition of ATMOSTSEQCARD into
CARDINALITY and ATMOST. Then we introduce an encoding taking advantage of the
globality of ATMOSTSEQCARD by reusing the auxiliary variables for the cardinality
constraint and integrating the sequence of ATMOST constraints. Finally, we combine
the two encodings and prove that in this case UP maintains GAC on ATMOSTSEQCARD.



5.1 Sequential Counter

We describe first a translation of the cardinality expression l ≤
∑
i∈[1..n] xi ≤ u to

CNF by a sequential counter where l, u ∈ N and xi ∈ {0, 1}. For technical reasons we
use an additional variable x0 s.t. D(x0) = {0}.

– Variables:
• si,j : ∀i ∈ [0..n], ∀j ∈ [0..u+ 1], si,j is true iff |xk; s.t.D(xk) = {1}| ≥ j

– Encoding: ∀i ∈ [1..n]

• Clauses for restrictions on the same level: ∀j ∈ [0..u+ 1]

1. ¬si−1,j ∨ si,j
2. xi ∨ ¬si,j ∨ si−1,j

• Clauses for increasing the counter, ∀j ∈ [1..u+ 1]

3. ¬si,j ∨ si−1,j−1
4. ¬xi ∨ ¬si−1,j−1 ∨ si,j

• Initial values for the bounds of the counter:
5. s0,0 ∧ ¬s0,1 ∧ sn,l ∧ ¬sn,u+1

In the rest of the section we refer to the clauses by numbers 1 to 5. The intuition
is that the variables si,j represent the bounds for cumulative sums of the sequence
x1 . . . xi. The encoding is best explained by visualising si,j as a two dimensional grid
with positions (horizontal) and cumulative sums (vertical). The binary clauses 1 and 3
ensure that the counter (i.e. the variables representing the cumulative sums) is mono-
tonically increasing. Clauses 2 and 4 control the interaction with the variables xi. If xi
is true, then the counter has to increase at position i whereas if xi is false an increase is
prevented at position i. The conjunction 5 sets the initial values for the counter to start
counting at 0 and ensures that the partial sum at position n is between to l and u.

Example 4. We illustrate the auxiliary variables: Given a sequence of 8 variables and
l = u = 2. To the left the initial condition of the variables, followed assigning x2 to
true and then to the right x7 to true.

3 0 0 0 0 0 0 0 0 0
2 0 0 . . . . . . 1
1 0 . . . . . . 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi . . . . . . . .

3 0 0 0 0 0 0 0 0 0
2 0 0 . . . . . . 1
1 0 . 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi . 1 . . . . . .

3 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 1 1
1 0 0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
si,j 0 1 2 3 4 5 6 7 8
xi 0 1 0 0 0 0 1 0

By variants of the above set of clauses we introduce two encodings CC and CA,
that suffice to translate ATMOSTSEQCARD:

– CC(d, [x1, x2, . . . xn]) encodes
∑
i∈[1..n] xi = d using clauses 1 to 5 with u = l =

d.
– CA(u, q, [x1, x2, . . . xn]) encodes

∧n−q
i=0 (

∑q
l=1 xi+l ≤ u) by a set of separate

translations on each
∑q
l=1 xi+l ≤ u with i = 1 . . . n − q using clauses 1 to 5

with l = 0 and u the upper bound.



Since each of the above encodings is a superset of the encoding introduced in [24],
CS and CA have the following property regarding propagation:

Proposition 1. Unit Propagation enforces GAC on

1.
∑
i∈[1..n] xi = d by the encoding CC(d, [x1, x2, . . . xn]).

2. ATMOSTSEQ(u, q, [x1, . . . , xn]) by the encoding CA(u, q, [x1, x2, . . . xn]).

With these encodings at hand we can completely translate ATMOSTSEQCARD to
CNF and fulfil the first two properties of a GAC propagator as characterised in the end
of Section 4. However, we are missing the global propagation of Equation 4.1.

The sequential counter encoding in [24] uses only clauses 1 and 4. Indeed, they
are sufficient to enforce GAC by unit propagation in case of ATMOST. However, their
encoding does not necessarily force all auxiliary variables when all xi are assigned and
this effectively increases the number of models which can lead to unnecessary search.
Thus, we prefer the more constrained version of the counter encoding.

The encoding in [2] of the more general AMONG constraint has similarities to a
counter encoding. This encoding builds on the translation of the REGULAR constraint
and introduces variables for states and transitions of a deterministic finite automaton.
Regarding propagation, this encoding is equivalent to the sequential counter, but on the
clausal level, it is not identical. Our encoding consists only of binary and ternary clauses
whereas their encoding introduces longer clauses using two types of auxiliary variables.
Another difference is that the state variables represent exact partial sums whereas the
encoding presented here relate to the idea of an order encoding.

5.2 Extension to ATMOSTSEQCARD

We still need to capture the missing propagation of a GAC propagator of ATMOSTSEQCARD.
To do so we introduce the following binary clauses. They are referred to by CS(u, q, [x1 . . . xn])
and reuse the auxiliary variables si,j introduced by CC . ∀i ∈ [q..n], ∀j ∈ [u..d+ 1]:

6. ¬si,j ∨ si−q,j−u

We will show that the binary clauses capture the missing propagation for ATMOSTSEQCARD
as in Equation 4.1. For this, we precisely show how the auxiliary variables si,j relate to
LS and RS .

Proposition 2. Let CC and CS be the decomposition of ATMOSTSEQCARD(u, q, d, [x1 . . . xn]).
Given a partial assignment S on {x1, x2 . . . xn} and assuming that LS(n) ≤ d and
RS(0) ≤ d, for all i ∈ {0 . . . n} UP forces

1. si,LS(i)+1 to false and
2. si−1,d−RS(i) to true.

Proof. We concentrate on 1) since 2) is analogous. The proof follows an inductive ar-
gument on i. For i = 0 it holds from unit s0,1 in the clauses 5 of CC . For the inductive
step we have to show, assuming si,LS(i)+1 is set to false, that si+1,LS(i+1)+1 is en-
forced to false by UP. There are two cases to analyse: a) LS(i + 1) = LS(i) + 1, and



b) LS(i + 1) = LS(i). The first case follows from clauses 3 in CC . The second case
involves a complicated step, essentially showing that with the induction hypothesis,
clauses 6 in CS and GAC on CC , UP enforces si+1,LS(i)+1 to false.

For case b) there are two situations to consider using the definition of LS : xi+1 is
assigned to false in S or xi+1 is unassigned. The first situation is covered by clauses 2.
In the second situation it holds that −→w (xi+1) = 0. This is caused by leftmost not
evaluating xi+1 to true. Hence, there exists a window k+1...k+q that includes position
i + 1 and the maximal number of variables in this windows assigned to true by −→w is
equal to u. Let there be α true assignements in −→w before i + 1 and β after. We have
LS(k) = LS(i) − α. However, since k ≤ i, we know by induction that ¬sk,LS(k)+1,
that is, ¬sk,LS(i)−α+1 holds.

Now, clauses 6 of CS , instantiated to ¬sk+q,LS(i)−α+u+1 ∨ sk,LS(i)−α+1 infers by
UP ¬sk+q,LS(i)+β+1 (recall that α+ β = u).

Finally, observe that when leftmost computed LS(i), no assignment were made on
the interval i + 2...k + q. Hence we have

∑k+q
j=i+2 min(xj) = β. Standard cardinality

reasoning (clauses 1 and 4) is thus sufficient to show that ¬sk+q,LS(i)+β+1 implies
¬si+1,LS(i)+1. Since we are in the case where LS(i+ 1) = LS(i) we have shown that
UP infers ¬si+1,LS(i+1)+1. This concludes the inductive proof and it demonstrates that
UP maintains the values for LS(i) for all positions i. The case for RS follows a dual
argument. ut

The key idea of the binary clauses 6 can also be found behind the decomposition of
GEN-SEQUENCE into cumulative sums as in [5]. Furthermore, there is a strong similar-
ity between the combination of CC with CS and the encoding of GEN-SEQUENCE
in [2] and it is possible to show that also here in fact it detects dis-entailment on
ATMOSTSEQCARD similarly to Theorem 3 of [2]. The following case exemplifies
what kind of propagation is missing with the combination of CC and CS .

Example 5.

Consider the encodings CC and CS on u = 1, q =
2, d = 2, n = 5 and let x3 be true, then UP does
not enforce x2 nor x4 to false. Setting them to true
will lead to a conflict by UP through clauses 4 and
6 on positions 2, 3 and 4.

3 0 0 0 0 0 0
2 0 0 0 . . 1
1 0 . . 1 1 1
0 1 1 1 1 1 1
si,j 0 1 2 3 4 5
xi . . 1 . .

We see that the encoding CA would propagate in the case of the previous example.
If we combine all three encodings we can provide a CNF encoding that maintains the
desired property of GAC on ATMOSTSEQCARD:

Theorem 2. UP on CC+CA+CS enforces GAC on the ATMOSTSEQCARD constraint.

Proof. The proof follows from Proposition 1 and 2 showing that this encoding fulfils
all sufficient properties of a GAC propagator as described in Section 4.

In particular, UP maintains GAC on
∧n−q
i=0 (

∑q
l=1 xi+l ≤ u) and

∑
i∈[1..n] xi = d

by CC and CA. We elaborate on the interesting cases of Equation 4.1:
1. LetLS(i)+RS(i) ≤ d. By Proposition 2 , UP forces¬si,LS(i)+1 and si−1,d−RS(i)

on S, and by assumption we know that d − RS(i) is greater or equal to LS(i), so UP
forces also si−1,LS(i) to true. By clauses 4 instantiated to ¬xi ∨¬si−1,LS(i) ∨ si,L(i)+1

UP forces xi to false. Hence if LS(i) +RS(i) ≤ d holds then UP forces xi to false.



2. Let LS(i − 1) + RS(i + 1) < d. By Proposition 2, UP forces ¬si−1,LS(i−1)+1

and si,d−RS(i+1). Since LS(i − 1) < d − RS(i + 1) UP enforces by clauses 1 and 3
that si,LS(i−1)+1 is true. Now clauses 2 trigger by xi ∨ si−1,LS(i)+1 ∨ ¬si,LS(i)+1 and
set xi to true by UP. ut

6 Experimental results

We tested the different approaches on the three data sets available at CSPLib [14].
All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. For each instance, we
performed 5 randomized runs with a 20 minutes time cutoff. The first set contains 5
unsatisfiable and 4 satisfiable instances of relatively small size (100 cars). The second
set contains 70 instances generated with varying usage rate. All instances in this set
are satisfiable and involve 200 cars. The third set, proposed by Gagné, features larger
instances divided into three sets of ten each, involving respectively 200, 300 and 400
cars. Seven of these instances were solved using local search algorithms. To the best
of our knowledge the remaining 23 instances have never been proved unsatisfiable. To
facilitate the analysis, we grouped the instances into three categories:

In the first category (sat[easy]), we consider the 70 satisfiable instances of the
second set as well as the 4 satisfiable instances of the first set. All these instances are
extremely easy for all the methods we introduce in this paper;

In the second category (sat[hard]), we consider the 7 known satisfiable in-
stances of the second set. These instances are challenging and were often out of reach
of previous systematic approaches;

In the third category (unsat∗), we consider the remaining 5 unsatisfiable instances
of the first set as well as the 23 unknown instances form the third set. Those instances
are challenging and indeed open for 23 of them.

We ran the following methods:

SAT Encoding. We use Minisat (version 2.2.0) with default parameter settings on three
variants of the SAT encoding. Links between classes and options as well as the con-
straint for exactly one class of vehicle per position are translated as in the basic model.
For each option we encode one ATMOSTSEQCARD. The following three models differ
only in how this translation is performed (w.r.t Section 5):

1. SAT (1) encodes the basic model by using CC+CA for each ATMOSTSEQCARD.
2. SAT (2) uses CC+CS for each ATMOSTSEQCARD.
3. SAT (3) combines all of three encodings CC+CA+CS .

Hybrid CP/SAT. We use Mistral as a hybrid CP/SAT solver (Section 2) using our ex-
planation for the ATMOSTSEQCARD constraint. We tested four branching heuristics:

1. hybrid (VSIDS) uses VSIDS;
2. hybrid (Slot) uses the following heuristic (denoted Slot): we branch on option

variables from the middle of the sequence and towards the extremities following
the first unassigned Slot. The options are firstly evaluated by their dynamic usage
rate[25] then lexicographically compared.



3. hybrid (Slot/VSIDS) first uses the heuristic Slot, then switches after 100 non-improving
restarts to VSIDS.

4. hybrid (VSIDS/Slot) reverse of above.

Baseline methods. We also use three “control” approaches run in the same setting:

1. CP: A pure CP approach, implemented using Mistral without clause learning on
the model described in Section 3 using the Slot branching.

2. PBO-clauses: A pseudo-Boolean method relying on SAT encoding. We used Min-
iSat+ [11] on the pseudo-Boolean encoding described in Section 3 except that the
ATMOSTSEQCARD constraint is decomposed into CARDINALITY and ATMOST.

3. PBO-cutting planes: A pseudo-Boolean method with dedicated propagation and
learning based on cutting planes [10]. We used SAT4J [3] on the same model, with
the ”CuttingPlanes” algorithm.

For each considered data set, we report the total number of successful runs (#suc).2

Then, we report the number of fail nodes (fails) and the CPU time (time) in seconds
both averaged over all successful runs. We emphasize the statistics of the best method
(w.r.t. #suc, ties broken by CPU time) for each data set using bold face fonts.

Method
sat[easy] (74× 5) sat[hard] (7× 5) unsat∗ (28× 5)
#suc avg fails time #suc avg fails time #suc avg fails time

SAT (1) 370 2073 1.71 28 337194 282.35 85 249301 105.07
SAT (2) 370 1114 0.87 31 60956 56.49 65 220658 197.03
SAT (3) 370 612 0.91 34 32711 36.52 77 190915 128.09

hybrid (VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78
hybrid (VSIDS/Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
hybrid (Slot/VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
CP 370 43.06 0.03 35 57966 16.25 0 - -

PBO-clauses 277 538743 236.94 0 - - 43 175990 106.92
PBO-cutting planes 272 2149 52.62 0 - - 1 5031 53.38

Table 1: Evaluation of the models

We first observe that most of the approaches we introduce in this paper significantly
improve the state of the art, at least for systematic methods. For instance, in the experi-
ments reported in [23] several instances of the set sat[hard] were not solved within
a 20 minutes cutoff. Moreover we are not aware of other systematic approaches being
able to solve these instances. More importantly, we are able to close 13 out of the 23
large open instances proposed by Gagné. The set of open instances is now reduced to
pb 200 02/06/08, pb 300 02/06/09, and pb 400 01/02/07/08.

2 They all correspond to solutions found for the two first categories, and unsatisfiability proofs
for the last.



Second, on satisfiable instances, we observe that pure CP approaches are difficult to
outperform. It must be noticed that the results reported for CP are significantly better
than those previously reported for similar approaches. For instance, the best methods
introduced in [27] take several seconds on most instances of the first category and were
not able to solve two of them within a one hour time cutoff. Moreover, in [23], the same
solver on the same model had a similar behavior on the category sat[easy], but was
only able to solve 2 instances of the category sat[hard] due to not using restarts.

However, the best method on sat instances is the hybrid solver using a CP heuris-
tic. Moreover, we can see that even with a “blind” heuristic, MiniSat on the strongest
encodings has extremely good results (all sat instances were solved with a larger cutoff).

This study shows that propagation is very important to find solutions quickly, by
keeping the search “on track” and avoiding exploring large unsatisfiable subtrees. There
is multiple evidence for these claims: First, the pseudo Boolean models (PBO-clauses
and PBO-cutting planes) perform limited propagation and are consequently very poor
even on sat[easy]. Second, the best SAT models for sat[easy] and sat[hard]
are those providing the tightest propagation. Last, previous CP approaches that did not
enforce GAC on the ATMOSTSEQCARD constraint are all dominated by CP.

For proving unsatisfiability, our results clearly show that clause learning is by far
the most critical factor. Surprisingly, stronger propagation is not always beneficial when
building a proof using clause learning, as shown by the results of the different encod-
ings. One could even argue for a negative correlation, since the “lightest” encodings
are able to build more proofs than stronger ones. Similarly, the pure pseudo Boolean
model performs much better comparatively to the satisfiable case. The hybrid models
are slightly worse than pseudo Boolean but far better than the pure CP approach that
was not able to prove any case of unsatisfiability. To mitigate this observation, however,
notice that other CP models with strong filtering, using the Global Sequencing Con-
straint [20], or a conjunction of this constraint and ATMOSTSEQCARD [23, 27] were
able to build proofs for some of the 5 unsatisfiable instances of the CSPLib. However,
these models were not able to solve any of the 23 larger unsatisfiable instances.

7 Conclusion

We proposed and compared hybrid CP/SAT models for the car sequencing problem
against several SAT-encodings. Both approaches exploit the ATMOSTSEQCARD con-
straint. In particular, we proposed a linear time procedure for explaining failure and
pruning as well as advanced SAT-encodings for this constraint. Experimental results
emphasize the importance of advanced propagation for searching feasible solutions and
of clause learning for building unsatisfiability proofs. Our models advance the state of
the art in this domain, and close 13 out of the 23 large open instances in CSPLib.
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