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Fair allocation of indivisible objects under ordinal preferences is an important problem. Unfor-

tunately, a fairness notion like envy- freeness is both incompatible with Pareto optimality and is

also NP-complete to achieve. To tackle this predicament, we consider a different notion of fair-
ness, namely proportionality. We frame allocation of indivisible objects as randomized assignment

but with integrality requirements. We then use the stochastic dominance relation to define two

natural notions of proportionality. Since an assignment may not exist even for the weaker notion
of proportionality, we propose relaxations of the concepts — optimal weak proportionality and

optimal proportionality. For both concepts, we propose algorithms to compute fair assignments
under ordinal preferences. Both new fairness concepts appear to be desirable in view of the fol-

lowing: they are compatible with Pareto optimality, admit efficient algorithms to compute them,

are based on proportionality, and are guaranteed to exist.
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1. INTRODUCTION

The principled allocation of resources is one of most pressing problems faced by
society [see, e.g., Bezáková and Dani, 2005, Bouveret and Lemâıtre, 2014]. Within
the rich field of resource allocation, a typical allocation setting has a set of agents
N = {1, . . . , n}, a set of objects O = {o1, . . . , om} with m ≥ n and each agent
i ∈ N expressing complete and transitive ordinal preferences %i over O. The goal
is to allocate all the objects in O to the agents in a fair manner. Since eliciting
preferences over bundles of objects requires exponential time, we only assume that
agents express preferences over individual objects. These preferences over objects
can involve indifference (�i denotes strict preference whereas ∼i denotes indiffer-
ence). The setting is referred to as the assignment problem or the house allocation
problem [see, e.g., Baumeister et al., 2014, Bouveret et al., 2010, Gärdenfors, 1973,
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Manlove, 2013, Pruhs and Woeginger, 2012, Wilson, 1977]. The model is applicable
to many resource allocation or fair division settings in which multiple objects may
be allocated to agents.

Example 1 Assignment problem.

1 : o1 �1 o2 �1 o3 �1 o4 �1 o5 2 : o2 ∼2 o3 �2 o1 ∼2 o4 ∼2 o5

Since the goal is to identify fair allocations, there is a need to formalize what
fairness entails. Two of the most fundamental concepts of fairness are envy-freeness
and proportionality. Envy-freeness requires that no agent prefers another agent’s
allocation. Proportionality requires that each agent should get an allocation that
gives him at least 1/n of the utility that he would get if he got all the objects.
When agents’ ordinal preferences are known but utility functions are not given,
then ordinal notions of envy-freeness and proportionality need to be formulated.
Since envy-freeness is defined by comparing agents’ allocations, in order to reason
about envy-freeness we need to make some assumptions on how preferences over
objects are extended to preferences over objects. One basic assumption we can make
is that of responsiveness: if an agent gets an extra object or one of his objects is
replaced by a strictly more preferred object, he is happier. Based on the assumption
of responsiveness, one can define weak envy-freeness (another agent’s allocation is
not strictly more preferred) and strong envy-freeness (one’s allocation is weakly
preferred over others’ allocations). Not only are both notions incompatible with
Pareto optimality but it is NP-complete to check whether an envy-free assignment
exists [Aziz et al., 2014, Bouveret et al., 2010]. In view of this, we seek a fairness
concept that satisfies the following requirements: (1) captures a natural fairness
goal along similar lines as envy-freeness or proportionality, (2) guaranteed to exist,
(3) efficiently computable1, and (4) compatible with Pareto optimality.

2. PROPORTIONALITY BASED ON STOCHASTIC DOMINANCE

We take proportionality as a starting point and can define an ordinal version of pro-
portionality. On face value, proportionality appears to be based on cardinal utilities.
Indeed one can superimpose cardinal utilities consistent with the ordinal preferences
and check whether a proportional assignment exists. However checking whether a
proportional assignment exists for cardinal utilities is also NP-complete [Demko
and Hill, 1988]. We adopt instead a different perspective in which we define ordinal
notions of proportionality by first considering discrete assignments as special kind
of random assignments in which each agent gets a fraction (probability) of getting
each object as follows. We will still compute fair discrete assignments but will do
so via comparisons with fractional assignments.

A fractional assignment p is a (n×m) matrix [p(i)(oj)] such that p(i)(oj) ∈ [0, 1]
for all i ∈ N , and oj ∈ O, and

∑
i∈N p(i)(oj) = 1 for all j ∈ {1, . . . ,m}. The

value p(i)(oj) represents the probability of object oj being allocated to agent i.
Each row p(i) = (p(i)(o1), . . . , p(i)(om)) represents the allocation of agent i. The
columns correspond to the objects o1, . . . , om. A fractional assignment is discrete
if p(i)(o) ∈ {0, 1} for all i ∈ N and o ∈ O.

1The input is agents expressing preferences over objects. Hence we will say that an algorithm is
polynomial-time if it runs in time polynomial in the number of agents and objects.
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We then use the stochastic dominance relation [see e.g., Aziz et al., 2013] to
compare fractional allocations. Informally, an agent ‘SD-prefers’ one allocation over
another if for each object o, the former allocation gives the agent as many units
of objects that are at least preferred as o as the latter allocation. More formally,
given two fractional assignments p and q, p(i) %SD

i q(i), i.e., agent i SD prefers
allocation p(i) to allocation q(i) if∑

oj∈{ok:ok%io}

p(i)(oj) ≥
∑

oj∈{ok:ok%io}

q(i)(oj) for all o ∈ O.

Agent i strictly SD prefers p(i) to q(i) if p(i) %SD
i q(i) and ¬[q(i) %SD

i p(i)]. SD can
also be viewed from a utility perspective which underlines its fundamental nature:
an agent prefers one allocation over another with respect to the SD relation if he
gets at least as much utility from the former allocation as the latter for all cardinal
utilities consistent with the ordinal preferences.

Based on SD, one can define two fairness notions [Aziz et al., 2014]. In particular,
we define weak SD proportionality as requiring that no agent strictly prefers the
allocation in which 1/n of each object is obtained to his own allocation. We define
SD proportionality as requiring that each agent weakly SD-prefers his allocation
over the allocation in which 1/n of each object is obtained. An assignment p satisfies
weak SD proportionality if no agent strictly SD prefers the uniform assignment to
his allocation: ¬[(1/n, . . . , 1/n) �SD

i p(i)] for all i ∈ N. An assignment p satisfies
SD proportionality if each agent SD prefers his allocation to the allocation under
the uniform assignment: p(i) %SD

i (1/n, . . . , 1/n) for all i ∈ N.
SD proportionality and weak SD proportionality are not only desirable fairness

concepts but they are also computationally more tractable than ordinal notions of
envy-freeness.

Theorem 1 [Aziz et al., 2014]. We can check in polynomial time whether a
discrete SD proportional assignment exists even if agents are allowed to express
indifference between objects. For a constant number of agents, we can check in
polynomial time whether a weak SD proportional discrete assignment exists.

A possible criticism of weak SD proportionality and SD proportionality concepts
is that even the weaker of the two is not achievable in general. Consider the following
example. The weak SD proportionality constraint is violated for the agent who gets
at most one object.

Example 2. Assume that the preferences of the agents are as follows.

1 : o1 ∼1 o2 ∼1 o3 2 : o1 ∼2 o2 ∼2 o3

3. OPTIMAL PROPORTIONALITY AND OPTIMAL WEAK PROPORTIONALITY

When a weak SD proportional assignment does not exist, we would still like to
allocate the objects in a principled manner. We relax weak SD proportionality and
SD proportionality to propose optimal proportionality and optimal weak propor-
tionality.

Definition 1 Optimal proportionality [Aziz et al., 2015]. We say that an assign-
ment satisfies 1/α proportionality if p(i) %SD

i (1/α, . . . , 1/α) for all i ∈ N. We note
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that 1/n- proportionality is equivalent to SD proportionality. An assignment satis-
fies optimal proportionality if p(i) %SD

i (1/α, . . . , 1/α) for all i ∈ N for the smallest
possible α. We will refer to the smallest such α as α∗ and call 1/α∗ as the optimal
proportionality value.

Definition 2 Optimal weak proportionality [Aziz et al., 2015]. Just like the con-
cept of SD proportionality can be used to define optimal proportionality, weak SD
proportionality can be used to define optimal weak proportionality. We say that an
assignment satisfies 1/β weak proportionality if (1/β, . . . , 1/β) �SD

i p(i) for all i ∈
N. We note that 1/n weak proportionality is equivalent to weak SD proportion-
ality. An assignment satisfies optimal weak proportionality if (1/β, . . . , 1/β) �SD

i

p(i) for all i ∈ N for the infimum of the set {β | ∃ a 1/β weak proportional assignment}.
We will refer to the infimum as β∗ and call 1/β∗ as the optimal weak proportionality
value.

Theorem 1 can be generalized from 1/n proportionality to 1/α proportionality
for any value of α. The algorithm can be used to check the existence of a 1/α
proportional assignment for different values of α. However, among other cases, if
m < n, we then know that a 1/α proportional assignment does not exist for any
finite value of α. We show that α∗ is finite if and only if there exists an assignment
in which each agent gets one of his most preferred objects. Since α is a positive
real in the interval (0,∞], it may appear that even binary search cannot be used to
find the optimal proportional assignment in polynomial time. Interestingly, we only
need to check a polynomial number of values of α to find the optimal proportional
assignment.

Theorem 2 [Aziz et al., 2015]. An optimal proportional assignment can be
computed in polynomial time.

We point out that an SD proportional assignment (if it exists) is an optimal
proportional assignment. Moreover, even if an SD proportional assignment does not
exist, an optimal proportional assignment suggests a desirable allocation of objects.
For example, for the preference profile in Example 2, we observed that there exists
no weak SD proportional assignment. On the other hand, the assignment that gives
two objects to one agent and one object to the other is an optimal proportional
assignment where the optimal proportionality value is 1/3.

In a similar approach as for optimal proportionality, for a constant number of
agents, it can be checked in polynomial time whether a 1/β weak proportional
discrete assignment exists. We also show that for any assignment setting, β∗ ≥ 1
and is finite if and only if m ≥ n.

Theorem 3 [Aziz et al., 2015]. If the number of agents is constant, an opti-
mal weak proportional assignment can be computed in polynomial time.

We note that whereas an SD proportional assignment is an optimal proportional
assignment, a weak SD proportional assignment may not be an optimal weak pro-
portional assignment.
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Example 3. Assume that the preferences of the agents are as follows.

1 : o1 �1 o2 �1 o3 �1 o4 �1 o5

2 : o2 ∼2 o3 �2 o1 ∼2 o4 ∼2 o5

Note that the assignment p that gives {o2, o3} to agent 1 and the other objects to
agent 2 is weak SD proportional. In fact it is not only 1/2 weak proportional but
(3/5 − ε)) weak proportional where ε > 0 is arbitrarily small. It is not 1/β weak
proportional for 1/β < 3/5. We now consider an assignment q, that gives {o1}
to agent 1 and the other objects to agent 2. But q is (1 − ε) weak proportional
where ε > 0 is arbitrarily small. This shows that a weak SD proportional discrete
assignment may not be an optimal weak proportional assignment.

4. CONCLUSIONS AND OPEN PROBLEMS

In this note, we highlighted two desirable fairness concepts that have recently been
proposed [Aziz et al., 2015]. The most interesting remaining problem is checking
whether there exists a polynomial-time algorithm for computing an optimal weak
proportional assignment when the number of agents is not constant.
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