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Abstract
The probabilistic serial (PS) rule is a prominent
randomized rule for assigning indivisible goods to
agents. Although it is well known for its good fair-
ness and welfare properties, it is not strategyproof.
In view of this, we address several fundamental
questions regarding equilibria under PS. Firstly, we
show that Nash deviations under the PS rule can
cycle. Despite the possibilities of cycles, we prove
that a pure Nash equilibrium is guaranteed to ex-
ist under the PS rule. We then show that verify-
ing whether a given profile is a pure Nash equi-
librium is coNP-complete, and computing a pure
Nash equilibrium is NP-hard. For two agents, we
present a linear-time algorithm to compute a pure
Nash equilibrium which yields the same assign-
ment as the truthful profile. Finally, we conduct ex-
periments to evaluate the quality of the equilibria
that exist under the PS rule, finding that the vast
majority of pure Nash equilibria yield social wel-
fare that is at least that of the truthful profile.

1 Introduction
Resource allocation is a fundamental and widely applicable
area within AI and computer science. When resource alloca-
tion rules are not strategyproof and agents do not have in-
centive to report their preferences truthfully, it is important to
understand the possible manipulations; Nash dynamics; and
the existence and computation of equilibria.

In this paper we consider the probabilistic serial (PS) rule
for the assignment problem. In the assignment problem we
have a possibly unequal number of agents and objects where
the agents express preferences over objects and, based on
these preferences, the objects are allocated to the agents [Aziz
et al., 2014; Bogomolnaia and Moulin, 2001; Gärdenfors,
1973; Hylland and Zeckhauser, 1979]. The model is appli-
cable to many resource allocation and fair division settings
where the objects may be public houses, school seats, course
enrollments, kidneys for transplant, car park spaces, chores,
joint assets, or time slots in schedules. The probabilistic se-
rial (PS) rule is a randomized (or fractional) assignment rule.
A randomized or fractional assignment rule takes the pref-
erences of the agents into account in order to allocate each

agent a fraction of the object. If the objects are indivisible but
allocated in a randomized way, the fraction can also be inter-
preted as the probability of receiving the object. Randomiza-
tion is widespread in resource allocation as it is a natural way
to ensure procedural fairness [Budish et al., 2013].

A prominent randomized assignment rule is the PS
rule [Bogomolnaia and Heo, 2012; Bogomolnaia and Moulin,
2001; Budish et al., 2013; Katta and Sethuraman, 2006;
Kojima, 2009; Yilmaz, 2010; Saban and Sethuraman, 2014].
PS works as follows: each agent expresses a linear order
over the set of houses.1 Each house is considered to have a
divisible probability weight of one. Agents simultaneously
and at the same speed eat the probability weight of their
most preferred house that has not yet been completely eaten.
Once a house has been completely eaten by a subset of the
agents, each of these agents starts eating his next most pre-
ferred house that has not been completely eaten (i.e., they
may “join” other agents already eating a different house or be-
gin eating new houses). The procedure terminates after all the
houses have been completely eaten. The random allocation of
an agent by PS is the amount of each house he has eaten. Al-
though PS was originally defined for the setting where the
number of houses is equal to the number of agents, it can be
used without any modification for any number of houses rel-
ative to the number agents [Bogomolnaia and Moulin, 2001;
Kojima, 2009].

In order to compare random allocations, an agent needs
to consider relations between them. We consider two well-
known relations between random allocation [Schulman and
Vazirani, 2012; Saban and Sethuraman, 2014; Cho, 2012]: (i)
expected utility (EU), and (ii) downward lexicographic (DL).
For EU, an agent prefers an allocation that yields more ex-
pected utility. For DL, an agent prefers an allocation that gives
a higher probability to the most preferred alternative that has
different probabilities in the two allocations. Throughout the
paper, we assume that agents express strict preferences over
houses, i.e., they are not indifferent between any two houses.

The PS rule fares well in terms of fairness and welfare [Bo-
gomolnaia and Heo, 2012; Bogomolnaia and Moulin, 2001;
Budish et al., 2013; Kojima, 2009; Yilmaz, 2010]. It sat-
isfies strong envy-freeness and efficiency with respect to

1We use the term house throughout the paper though we stress
any object could be allocated with these mechanisms.



the DL relation [Bogomolnaia and Moulin, 2001; Schulman
and Vazirani, 2012; Kojima, 2009]. Generalizations of the
PS rule have been recommended and applied in many set-
tings [Aziz and Stursberg, 2014; Budish et al., 2013]. The
PS rule also satisfies some desirable incentive properties: if
the number of houses is at most the number of agents, then
PS is DL-strategyproof [Bogomolnaia and Moulin, 2001;
Schulman and Vazirani, 2012]. Another well-established rule,
random serial dictator (RSD), is not envy-free, not as efficient
as PS [Bogomolnaia and Moulin, 2001], and the fractional al-
locations under RSD are #P-complete to compute [Aziz et al.,
2013].

Although PS performs well in terms of fairness and wel-
fare, unlike RSD, it is not strategyproof. Aziz et al. [2015]
showed that, in the scenario where one agent is strategic,
computing his best response (manipulation) under complete
information of the other agents’ strategies is NP-hard for the
EU relation, but polynomial-time computable for the DL re-
lation. In related work, Ekici and Kesten [2012] showed that
when agents are not truthful, the outcome of PS may not
satisfy desirable properties related to efficiency and envy-
freeness. Heo and Manjunath [2012] provided a necessary
and sufficient condition for implementability of Nash equi-
librium for the random assignment problem. In contrast to the
work of Aziz et al. [2015], we consider the situation where all
agents are strategic. We especially focus on pure Nash equi-
libria (PNE) — reported preferences profiles for which no
agent has an incentive to report a different preference. We ex-
amine the following natural questions for the first time: (i)
What is the nature of best response dynamics under the PS
rule? (ii) Is a (pure) Nash equilibrium always guaranteed to
exist? (iii) How efficiently can a (pure) Nash equilibrium be
computed? (iv) What is the difference in quality of the various
equilibria that are possible under the PS rule?

Contributions. For the PS rule we show that expected utility
best responses can cycle for any cardinal utilities consistent
with the ordinal preferences. This is significant as Nash dy-
namics in matching theory has been an active area of research,
especially for the stable matching problem [Ackermann et al.,
2011], and the presence of a cycle means that following a se-
quence of best responses is not guaranteed to result in an equi-
librium profile. We then prove that a pure Nash equilibrium
(PNE) is guaranteed to exist for any number of agents and
houses and any utilities. To the best of our knowledge, this is
the first proof of the existence of a Nash equilibrium for the
PS rule. For the case of two agents we present a linear-time
algorithm to compute a preference profile that is in PNE with
respect to the original preferences. We show that the general
problem for computing a PNE is NP-hard. Finally, we run a
set of experiments on real and synthetic preference data to
evaluate the welfare achieved by PNE profiles compared to
the welfare achieved under the truthful profile.

2 Preliminaries
An assignment problem (N,H,�) consists of a set of agents
N = {1, . . . , n}, a set of houses H = {h1, . . . , hm} and a
preference profile �= (�1, . . . ,�n) in which �i denotes a

complete, transitive and strict ordering on H representing the
preferences of agent i over the houses in H . A fractional as-
signment is an (n ×m) matrix [p(i)(hj)]1≤i≤n,1≤j≤m such
that for all i ∈ N , and hj ∈ H , 0 ≤ p(i)(hj) ≤ 1; and
for all j ∈ {1, . . . ,m},

∑
i∈N p(i)(hj) = 1. The value

p(i)(hj) is the fraction of house hj that agent i gets. Each row
p(i) = (p(i)(h1), . . . , p(i)(hm)) represents the allocation of
agent i. A fractional assignment can also be interpreted as a
random assignment where p(i)(hj) is the probability of agent
i getting house hj .

Given two random assignments p and q, p(i) �DL
i q(i) i.e.,

a player i DL (downward lexicographic) prefers allocation
p(i) to q(i) if p(i) 6= q(i) and for the most preferred house h
such that p(i)(h) 6= q(i)(h), we have that p(i)(h) > q(i)(h).
When agents are considered to have cardinal utilities for the
houses, we denote by ui(h) the utility that agent i gets from
house h. We will assume that the total utility of an agent
equals the sum of the utilities that he gets from each of the
houses. Given two random assignments p and q, p(i) �EU

i
q(i), i.e., a player i EU (expected utility) prefers allocation
p(i) to q(i) if

∑
h∈H ui(h)·p(i)(h) >

∑
h∈H ui(h)·q(i)(h).

Since for all i ∈ N , agent i compares assignment p with as-
signment q only with respect to his allocations p(i) and q(i),
we will sometimes abuse the notation and use p �EU

i q for
p(i) �EU

i q(i).
A random assignment rule takes as input an assignment

problem (N,H,�) and returns a random assignment which
specifies what fraction or probability of each house is allo-
cated to each agent. We will primarily focus on the expected
utility setting but will comment on and use DL wherever
needed.

The Probabilistic Serial Rule and Equilibria. The Proba-
bilistic Serial (PS) rule is a random assignment algorithm in
which we consider each house as infinitely divisible [Bogo-
molnaia and Moulin, 2001; Kojima, 2009]. At each point in
time, each agent is eating (consuming the probability mass of)
his most preferred house that has not been completely eaten.
Each agent eats at the same unit speed. Hence all the houses
are eaten at time m/n and each agent receives a total of m/n
units of houses. The probability of house hj being allocated to
i is the fraction of house hj that i has eaten. The PS fractional
assignment can be computed in time O(mn). The following
example from Bogomolnaia and Moulin; Aziz et al. [2001;
2015] shows how PS works.

Example 1 (PS rule). Consider an assignment problem with
the following preference profile.

�1: h1, h2, h3

�2: h2, h1, h3

�3: h2, h3, h1

Agents 2 and 3 start eating h2 simultaneously while agent 1
eats h1. When 2 and 3 finish h2 at time 1/2, each having con-
sumed 1/2 of h1, agent 3 has only eaten half of h1. Since agent
2 prefers h1 to h3 and h1 has not been completely consumed,
agent 2 joints agent 1 in consuming the remaining part of h1

while agent 3 begins to eat h3. Agent 1 and 2 finish consuming



the remaining 1/2 of h1 at time 3/4; having consumed an addi-
tional quarter of h1 each. Since all the houses are completely
eaten except h3, agents 1 and 2 join agent 3 in finishing h3.
The timing of the eating can be seen below.
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The final allocation computed by PS is

PS(�1,�2,�3) =

(
3/4 0 1/4
1/4 1/2 1/4
0 1/2 1/2

)
.

Consider the assignment problem in Example 1. If agent 1
misreports his preferences as follows: �′1: h2, h1, h3, then

PS(�′1,�2,�3) =

(
1/2 1/3 1/6
1/2 1/3 1/6
0 1/3 2/3

)
.

If we suppose that u1(h1) = 7, u1(h2) = 6, and u1(h3) = 0,
then agent 1 gets more expected utility when he reports �′1.
In the example, the truthful profile is in PNE with respect to
DL preferences but not expected utility.

We study the existence and computation of Nash equilibria.
For a preference profile �, we denote by (�−i,�′i) the pref-
erence profile obtained from � by replacing agent i’s prefer-
ence by �′i.

3 Nash Dynamics
When considering Nash equilibria of any setting, one of the
most natural ways of proving that a PNE always exists is to
show that better or best responses do not cycle which implies
that eventually, Nash dynamics terminate at a Nash equilib-
rium profile. Our first result is that DL and EU best responses
can cycle. For EU best responses, this is even the case when
agents have Borda utilities.
Theorem 1. With 2 agents and 5 houses where agents have
Borda utilities, EU best responses can lead to a cycle in the
profile.

Proof. The following 5 step sequence of best responses leads
to a cycle. We use U to denote the matrix of utilities of the
agents over the houses such that U [1, 1] is the utility of agent
1 for house h1. Note that P starts as the truthful reporting in
our example. The initial state of the agents is:

�1: h2, h3, h5, h4, h1

�2: h5, h3, h4, h1, h2

U0 =

(
0 4 3 1 2
1 0 3 2 4

)
.

This yields the following allocation and utilities at the start:

PS(�1,�2) =

(
1/2 1 1/2 1/2 0
1/2 0 1/2 1/2 1

)
, EU0 =

(
6
7

)
.

(1.) Agent 1 deviates to increase his utility. He reports the
preference �′1: h3, h4, h2, h1, h5; which results in

PS(�′1,�2) =

(
0 1 1 1/2 0
1 0 0 1/2 1

)
, EU1 =

(
7.5
6

)
.

(2.) Agent 2 changes his report to �′2: h3, h4, h5, h1, h2.
This increases the utility of agent 2 to 7 and decreases the
utility of agent 1 to 6.

(3.) Agent 1 changes his report to �′′1 : h3, h5, h2, h1, h4.
This increases the utility of agent 1 to 7.5 and decreases the
utility of agent 2 to 4.5.

(4.) Agent 2 changes his report to �′′2 : h5, h3, h4, h1, h2.
which increases his expected utility to 6.5 while decreasing
the expected utility of agent 1 to 7.

(5.) Agent 1 changes his report to �′′′1 : h3, h4, h2, h1, h5.
Notice that �′′′1 =�′1 and �′′2=�2. This is the same profile as
the one of Step 1, so we have cycled.

It can be verified that every response in the example in the
proof above is also a DL best response. Since for the case
of two agents and PS, a DL best response is equivalent to an
EU best response for any cardinal utilities consistent with the
ordinal preferences [Aziz et al., 2015], it follows that DL best
responses and EU best responses (with respect to any cardinal
utilities consistent with the ordinal preferences) can cycle.

The fact that best responses can cycle means that simply
following best responses need not result in a PNE. Hence the
normal form game induced by the PS rule is not a potential
game [Monderer and Shapley, 1996]. Checking whether an
instance has a Nash equilibrium appears to be a challenging
problem. The naive method requires going through O(m!n)
profiles, which is super-polynomial even when n = O(1) or
m = O(1).

4 Existence of Pure Nash Equilibria
Although it seems that computing a Nash equilibrium is a
challenging problem (we give hardness results in the next
section), we show that at least one (pure) Nash equilibrium
is guaranteed to exist for any number of houses, any number
of agents, and any preference relation over fractional alloca-
tions.2 The proof relies on showing that the PS rule can be
modelled as a perfect information extensive form game.

Theorem 2. A PNE is guaranteed to exist under the PS rule
for any number of agents and houses, and for any relation
between allocations.

Proof. Consider running PS on all possible m!n preference
profiles for n agents and m houses. In each profile i, let
t1i , . . . , t

ki
i be the ki different time points in the PS algorithm

run for the i-th profile when at least one house is finished.
Note that all such time points are rationals: t1i is rational and
if t1i , . . . , t

j
i are rational, then tj+1

i is rational as well. For non-
zero rationals r1, . . . , rn, the value GCD(r1, . . . , rn) denotes
the greatest rational number r for which all the ri/r are in-
tegers. Let g = GCD({tj+1

i − tji : j ∈ {1, . . . , ki − 1}, i ∈
{1, . . . ,m!n}). Since in each profile i, tj+1

i − tji > 0 and
rational for all j ∈ {0, . . . , ki − 1}, g is well-defined.

The time interval length g is small enough such that each
run of the PS rule can be considered to be a ‘discrete’ rule
with m/g stages of duration g. Each stage can be viewed as

2We already know from Nash’s original result that a mixed Nash
equilibrium exists for any game.



having n sub-stages so that in each stage, agent i eats g/n
units of a house in sub-stage i of a stage. In each sub-stage
only one agent eats g/n units of the most favoured house that
is available. Hence we now view PS as consisting of a to-
tal of mn/g sub-stages and the agents keep coming in order
1, 2, . . . , n to eat g units of the most preferred house that is
still available. If an agent eats g units of a house in a stage
then it will eat g units of the same house in his sub-stage of
the next stage as long as the house has not been fully eaten.
Therefore, the discretized version of PS is equivalent to the
original PS because g is small enough. Hence if there is pref-
erence profile that is a PNE in the discretized version of the
PS, it is also a PNE for the original PS rule.

Consider a perfect information extensive form game tree.
For a fixed reported preference profile, the PS rule unrav-
els accordingly along a unique path starting at the root and
ending at a leaf. Each level of the tree represents a sub-stage
in which a certain agent has his turn to eat g/n units of his
most preferred available house. Note that there is a one-to-one
correspondence between the paths in the tree and the ways
the PS algorithm unravels, depending on the reported prefer-
ences. For each path in the tree, we know the house eaten by
each agent at each time point. For the other direction, for each
unique way the agents eat the houses during the PS algorithm,
there is a unique path in the extensive game tree.

A subgame perfect Nash equilibrium (SPNE) is guaran-
teed to exist for the discretized version of PS via backward
induction: starting from the leaves and moving towards the
root of the tree, the agent at the specific node chooses an ac-
tion that maximizes his utility given the actions determined
for the children of the node. The SNPE identifies at least one
such path from a leaf to the root of the game. The path can
be used to read out the most preferred house of each agent
at each point. The preference of each agent i consistent with
the path is then constructed by listing houses in the order in
which i eats them, starting from the root of the tree to the leaf.
Those houses that an agent did not eat at all can be placed ar-
bitrarily at the end of the preference list. Such a preference
profile is in pure Nash equilibrium under discretized version
of because it is an SPNE. Hence, such a preference profile is
also a PNE for the actual PS rule.

In Figure 1, we illustrate the perfect information extensive
form game corresponding to PS.
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Figure 1: A perfect information extensive form game based
on breaking down the PS algorithm into a series of stages.
For two agents, each agent eats half a house in his turn.

5 Complexity of Pure Nash Equilibrium
Our argument for the existence of a Nash equilibrium is con-
structive. However, naively constructing the extensive form
game and then computing a subgame perfect Nash equi-
librium requires exponential space and time. It is unclear
whether a sub-game perfect Nash equilibrium or any Nash
equilibrium preference profile can be computed in polyno-
mial time.

5.1 General Complexity Results
In this section, we show that computing a PNE is NP-hard
and verifying whether a profile is a PNE is coNP-complete.
Recently it was shown that computing an expected utility best
response is NP-hard [Aziz et al., 2015]. Since equilibria and
best responses are somewhat similar, one would expect that
problems related to equilibria under PS are also hard. How-
ever, there is no simple reduction from best response to equi-
libria computation or verification. In view of this, we prove
results regarding PNE by closely analyzing the reduction in
[Aziz et al., 2015]. First, we show that checking whether a
given preference profile is in PNE under the PS rule is coNP-
complete.
Theorem 3. Given agents’ utilities, checking whether a given
preference profile is in PNE under the PS rule is coNP-
complete.

Proof. The problem is in coNP, since a Nash deviation is a
polynomial time checkable No-certificate.

We leverage the reduction given by [Aziz et al., 2015]
which shows that computing an expected utility best response
for a single agent is NP-hard for the PS rule. The original re-
duction considers one manipulator (agent 1) while the other
agents N \ {1} are ‘non-manipulators’. We show that check-
ing whether the truthful preference profile is in PNE is coNP-
complete.

The reduction provided by [Aziz et al., 2015] is from a
variant of 3SAT where each literal appears twice. They show
that given an assignment setting and a utility function for
agent 1 it is NP-hard to determine if agent 1 can report pref-
erences that reach a target utility T . The reduction creates an
instance of PS that is best conceptualized as having one main
part, where the manipulator (agent 1) is present, and 17 dupli-
cate parts, where the dummy manipulators are present. Each
of these duplicate parts can be further broken down into a set
of choice rounds, corresponding to the number of variables in
the 3SAT instance, and a final clause round. Houses associ-
ated to a round will be eaten before progressing to the next
round. At first all agents are synchronised, that is no agent
starts eating a house from the next round whilst others are still
eating from houses from this round. As the algorithm pro-
gresses, some agents end up being slightly desynchronised,
which means they will start eating houses from the next round
some small amount of time before all houses from the previ-
ous rounds have been eaten. The set of agents is comprised of
the manipulator, the set of dummy manipulators, and a pair
of agents for each literal in the 3SAT formula for each dupli-
cate part. The set of houses is comprised of a set of slowdown
houses, shared between all the duplicate parts and used to
synchronize all the agents; a prize house that the manipulator



wants to eat as early as possible after consuming the choice
houses, a set of consolation prize houses for each one of the
dummy manipulators, a house for each literal in the 3SAT in-
stance for each round for each of the parts; and three houses
for each clause in the 3SAT formula.

Intuitively, during each choice round the manipulator must
choose between the positive and negative literal by eating the
corresponding house. To ensure that all the different parts
of the reduction stay synchronized the slowdown houses are
used between rounds. The utility of the prize house is set in a
way such that the manipulator can reach a target utility T or
more if and only if he selects a satisfying assignment for the
all the clauses of the 3SAT formula. Any selection of literals
by agent 1 that does not satisfy the formula will leave a set
of agents free to consume a large portion of the prize house
before agent 1 can reach it. Hence, finding an expected utility
best response for PS is NP-hard.

In the original reduction, the utility functions of agents in
N ′ = N \ {1} are not specified. To prove that checking if
the truthful preference profile is in PNE under the PS rule
we specify the utility function of agents in N ′ as follows: the
utility of an agent in N ′ for his j-th most preferred house
is (4cn)

m−j+1, where n = |N |, m is the number of houses
and c is an integer constant greater than 1000. These utility
functions can be represented in space that is polynomial in
O(n+m). We rely on two main observations about the orig-
inal reduction.

Observation 1. In the truthful profile, whenever an agent fin-
ishes eating a house, all houses have either been fully allo-
cated or they are only at most c−1

c eaten, where c > 1000 is
an integer constant.

This observation relies on the fact that the constructed PS
instance consists of several rounds. No matter how big the
instance is the desynchronisation between the agents in those
rounds is given by a constant number of values. This allows
us to bound the smallest fraction of a house that is left at any
point in a round where an agent finishes eating a house by at
least 1/c.

Observation 2. In the truthful profile every house except the
prize house (the last house that is eaten) is eaten by at least 2
agents.

Again this can be seen simply by noting that during the
choice rounds each agent is paired with at least one other
agent. During the final round, all literals corresponding to
a clause will eat the house associated with that clause. The
agents cannot be desynchronised to a point where one literal
agent eats a whole clause house.

We now show that due to the utility function constructed,
each agent from N ′ is compelled to report truthfully. Assume
for contradiction that this is not the case, and let us consider
the earliest house (when running the PS rule) that some agent
i ∈ N ′ starts to eat although he prefers another available
house h. Let k denote the number of agents who eat a frac-
tion of h under the truthful profile. By reporting truthfully, we
show that agent i can get 1/n−1/2n

c = 1/2cn more of h than
by delaying eating h. Let us consider how much additional

fraction of h agent i can consume by reporting truthfully. If
he reports truthfully, he can start eating h earlier and, in the
worst case, he can only start 1/cn time units earlier by Ob-
servation 1. This means that h is consumed earlier by a time
of 1/cn if i reports truthfully. Consider the time interval of
length 1/cn between the time when h is finished when i is
truthful about h and the time h is finished when i delays eat-
ing h. In this last stretch of time interval 1/cn, i gets 1

k ·
1
cn of

h extra when he does not report truthfully. Hence by reporting
truthfully, i gets at least 1/n−1/kn

c more of h which is at least
1/2cn since k ≥ 2 by Observation 2. Due to the utilities con-
structed, even if i gets all the less preferred houses, he cannot
make up for the loss in utility for getting only 1/2cn of h.

We have established above that the agents in N ′ report
truthfully in each PNE. This implies that the truthful prefer-
ence profile is in PNE iff agents in N ′ = N \{1} report truth-
fully and agent 1’s truthful report is his best EU response. As-
suming that the agents in N \ {1} report truthfully, checking
whether the truthful preference is agent 1’s best response was
shown to be NP-hard. We have already shown that the agents
N ′ report truthfully in a PNE. Hence checking whether the
truthful profile is in PNE is coNP-hard.

Next, we show that computing a PNE with respect to the
underlying utilities of the agents is NP-hard.

Theorem 4. Given agent’s utilities, computing a preference
profile that is in PNE under the PS rule is NP-hard.

Proof. The same argument as above shows that the agents in
N ′ report truthfully in a PNE. Hence, a preference profile is
in PNE iff agent 1 reports his EU best response and the other
agents report truthfully. It has already been shown that com-
puting this EU best response is NP-hard [Aziz et al., 2015]
when the other agents are N \ {1} and report truthfully. Thus
computing a PNE is NP-hard.

5.2 Case of Two Agents
In this section, we consider the case of two agents since many
disputes involve two parties. Since an EU best response can
be computed in linear time for the case of two agents [Aziz et
al., 2015], it follows that it can be verified whether a profile
is a PNE in polynomial time as well.

We can prove the following theorem for the “threat profile”
whose construction is shown in Algorithm 1. The idea is that
by placing houses in the appropriate place in the other agent’s
preference list, we ensure that the agent feels threatened that
his most preferred house will be eaten by the other agent so
that he eats his most preferred available house first.

Theorem 5. Under PS and for two agents, there exists a pref-
erence profile that is in DL-Nash equilibrium and results in
the same assignment as the assignment based on the truthful
preferences. Moreover, it can be computed in linear time.

Proof. The proof is by induction over the length of the con-
structed preference lists. The main idea of the proof is that if
both agents compete for the same house then they do not have
an incentive to delay eating it. If the most preferred houses do
not coincide, then both agents get them with probability one



Input: ({1, 2}, H, (�1,�2))
Output: The “threat profile” (Q1, Q2) where Qi is the preference
list of agent i for i ∈ {1, 2}.

1 Let Pi be the preference list of agent i ∈ {1, 2} with first(Pi)
being the most preferred house in Pi for agent i.

2 Initialise Q1 and Q2 to empty lists.
3 while P1 and P2 are not empty do
4 Let h = first(P1) and h′ = first(P2)
5 Append h to the end of Q1; Append h′ to the end of Q2

6 Delete h and h′ from P1 and P2

7 if h 6= h′ then
8 Append h′ to the end of Q1; Append h to the end of

Q2;
9 return (Q1, Q2).

Algorithm 1: Threat profile DL-Nash equilibrium for 2 agents
(which also is an EU-Nash equilibrium) which provides the
same allocation as the truthful profile.

but will not get them completely if they delay eating them.
The algorithm is described as Algorithm 1.

We now prove that Q1 is a DL best response against Q2

and Q2 is a DL best response against Q1. The proof is by
induction over the length of the preference lists. For the first
elements in the preference lists Q1 and Q2, if the elements co-
incide, then no agent has an incentive to put the element later
in the list since the element is both agents’ most preferred
house. If the maximal elements do not coincide i.e. h 6= h′,
then 1 and 2 get h and h′ respectively with probability one.
However they still need to express these houses as their most
preferred houses because if they don’t, they will not get the
house with probability one. The reason is that h is the next
most preferred house after h′ for agent 2 and h′ is the next
most preferred house after h for agent 1. Agent 1 has no in-
centive to change the position of h′ since h′ is taken by agent
2 completely before agent 1 can eat it. Similarly, agent 2 has
no incentive to change the position of h since h is taken by
agent 1 completely before agent 2 can eat it. Now that the
positions of h and h′ have been completely fixed, we do not
need to consider them and can use induction over Q1 and Q2

where h and h′ are deleted.

The desirable aspect of the threat profile is that since it
results in the same assignment as the assignment based on
the truthful preferences, the resulting assignment satisfies all
the desirable properties of the PS outcome with respect to
the original preferences. Since a DL best response algorithm
is also an EU best response algorithm for the case of two
agents [Aziz et al., 2015], we get the following corollary.

Corollary 1. Under PS and for 2 agents, there exists a pref-
erence profile that is in Nash equilibrium for any utilities con-
sistent with the ordinal preferences. Moreover it can be com-
puted in linear time.

6 Experiments
We conducted a series of experiments to understand the num-
ber and quality of equilibria that are possible under the PS
rule. For quality, we use the utilitarian social welfare (SW)
function, i.e., the sum of agent utilities. We are limited by

the large search space needed to examine equilibria. For in-
stance, for each set of cardinal preferences we generate, we
consider all misreports (m!) for all agents (n) leaving us with
a search space of size m!n for each of the samples for each
combination of parameters. Thus, we only report results for
small numbers of agents and houses in this section. We gener-
ated 1000 samples for each combination of preference model,
number of agents, and number of items; reporting the aggre-
gate statistics for these experiments for only the 4 agent case
in Figures 2 and 3; the results for n = 2 and m ∈ {2, . . . , 5}
as well as n = 3 and m ∈ {2, 3, 4} are similar. Each indi-
vidual sample with 4 agents and 4 houses took about 15 min-
utes to complete using one core on an Intel Xeon E5405 CPU
running at 2.0 GHz with 4 GB of RAM running Debian 6.0
(build 2.6.32-5-amd64 Squeeze10). The total compute time
for 1000 samples for each of 6 models was >40 days.

We used a variety of common statistical models to gen-
erate data (see, e.g., [Mattei, 2011; Mallows, 1957; Lu and
Boutilier, 2011; Berg, 1985]): the Impartial Culture (IC)
model generates all preferences uniformly at random; the Sin-
gle Peaked Impartial Culture (SP-IC) generates all preference
profiles that are single peaked uniformly at random; Mallows
Models (Mallows) is a correlated preference model where the
population is distributed around a reference ranking propor-
tional to the Kendall-Tau distance; Polya-Eggenberger Urn
Models (Urn) creates correlations between the agents, once
a preference order has been randomly selected, it is subse-
quently selected with higher probability. In our experiments
we set the probability that the second order is equivalent to the
first to 0.5. We also used real world data from PREFLIB [Mat-
tei and Walsh, 2013]: AGH Course Selection (ED-00009).
This data consists of students bidding on courses to attend in
the next semester. We sampled students from this data (with
replacement) as the agents after we restricted the preference
profiles to a random set of houses of a specified size.

To compare the different allocations achieved under PS we
need to give each agent not only a preference order but also a
utility for each house. Formally we have, for all i ∈ N and all
hj ∈ H , a value ui(hj) ∈ R. To generate these utilities we
use what we call the Random model: we uniformly at random
generate a real number between 0 and 1 for each house. We
sort this list in strictly decreasing order, if we cannot, we gen-
erate a new list (we discarded 0 lists in our experiments). We
normalize these utilities such that each agent’s utility sums to
a constant value (here, the number of houses) that is the same
for all agents. We found the Random utility model to be the
most manipulable and admit the worst equilibria. Therefore,
we only focus on this utility model here (over Borda or Ex-
ponential utilities) as it represents, empirically, a worst case.
We separate equilibria into three categories: those where the
SW is the same as in the truthful profile, those where we have
a decrease in SW, and those where we have an increase in
SW. Given the social welfare of two different profiles, SW1

and SW2, we use percentage change ( |SW1−SW2|
SW1

· 100) to
understand the magnitude of this difference.

For all models, for all combinations of n ∈ {2, 3, 4} agents
and m ∈ {2, 3, 4} houses there are, generally, slightly more
equilibria that increase social welfare compared to the truth-
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Figure 2: Classification of equilibria for all 1000 samples per setting with four agents (n = 4), 2 to 4 houses (m ∈ {2, 3, 4}),
and preferences drawn from the six models. We can see that the vast majority of the equilibria found across all samples have
the same social welfare as the truthful profile. In general, there are roughly the same number of equilibria that increase as those
that decrease it.
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Figure 3: (A) The maximum and minimum percentage increase or decrease in social welfare over all 1000 samples in settings
with four agents (n = 4), 2 to 4 houses (m ∈ {2, 3, 4}), and preferences drawn from the six models. We see that for three houses
the gain of the best profile is, in general, slightly more than the loss in the worst profile with respect to the truthful profile; this
trend appears to reverse for settings with four houses. (B) The average number of the m!4 profiles that are in equilibria per
sample with four agents (n = 4), 2 to 4 houses (m ∈ {2, 3, 4}). The more uncorrelated models (i.e., IC and SP-IC) admit the
highest number of equilibria.

ful profile than those that decrease it, as illustrated in Figure 2
(four agents only). However, the vast majority of equilibria
have the same social welfare as the truthful profile, and the
best and worst equilibria change the SW up or down roughly
the same magnitude, as illustrated in Figure 3. Hence, if any
or all of the agents manipulate, there may be a loss of SW
at equilibria, but there is also the potential for gains; and the
most common outcome of all these agents being strategic is
that, dynamically, we will wind up in an equilibria which pro-
vides the same SW as the truthful one. Our main observations
are: (i) The vast majority of equilibria have social welfare
equal to the social welfare in the truthful profile. (ii) In gen-
eral, the number of PNE that have increased social welfare
(with respect to the truthful profile) is slightly more than the
number of PNE that have decreased social welfare. (iii) The
maximum increase and decrease in SW in equilibria com-
pared to the truthful profile was observed to be less than 23%
either way. (iv) There are very few profiles that are in equi-
libria, overall. Profiles with relatively high degrees of correla-
tion between the preferences (Urn and AGH 2004) have fewer
equilibrium profiles than the less correlated models (IC and

SP-IC). (v) These trends appear stable with small numbers of
agents and houses. We observed similar results for all combi-
nations of n ∈ {2, 3, 4} agents and m ∈ {2, 3, 4} houses.

7 Conclusions
We conducted a detailed analysis of strategic aspects of the
PS rule including the complexity of computing and verifying
PNE. The fact that PNE are computationally hard to compute
in general may act as a disincentive or barrier to strategic be-
havior. Our experimental results show PS is relatively robust,
in terms of social welfare, even in the presence of strategic
behaviour. Our study leads to a number of new research direc-
tions. It will be interesting to extend our algorithmic results to
the extension of PS for indifferences [Katta and Sethuraman,
2006]. Studying strong Nash equilibria and a deeper analysis
of Nash dynamics are other interesting directions.
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