
Combining Symmetry Breaking with Other Constraints:

lexicographic ordering with sums ?

Brahim Hnich1, Zeynep Kiziltan2, and Toby Walsh1

1 Cork Constraint Computation Center, University College Cork, Ireland.
{brahim, tw}@4c.ucc.ie

2 Department of Information Science, Uppsala University, Sweden.
Zeynep.Kiziltan@dis.uu.se

Abstract. We introduce a new global constraint which combines to-
gether the lexicographic ordering constraint with some sum constraints.
Lexicographic ordering constraints are frequently used to break symme-
try, whilst sum constraints occur in many problems involving capacity
or partitioning. Our results show that this global constraint is useful
when there is a very large space to explore, such as when the problem
is unsatisfiable, or when the search strategy is poor or conflicts with the
symmetry breaking constraints. By studying in detail when combining
lexicographical ordering with other constraints is useful, we propose a
new heuristic for deciding when to combine constraints together.

1 Introduction

Global constraints specify patterns that reoccur in many problems. For example,
we often have row and column symmetry on a 2-d matrix of decision variables
and can post lexicographic ordering constraints on the rows and columns to
break much of this symmetry [5, 3]. There are, however, only a limited number of
common constraints like the lexicographic ordering constraint which repeatedly
occur in problems. New global constraints are therefore likely to be increasingly
more specialized. An alternative strategy for developing global constraints that
might be useful in a wide range of problems is to identify constraints that often
occur together, and develop efficient constraint propagation algorithms for their
combination. In this paper, we explore this strategy.
We introduce a new global constraint on 0/1 variables that combines together

the lexicographic ordering constraint with two sum constraints. Sum and lexi-
cographic ordering constraints frequently occur together in problems involving
capacity or partitioning that are modelled with symmetric matrices of decision
variables. Examples are the ternary Steiner problem, the balanced incomplete
block design problem, the rack configuration problem, social golfers, etc. Our
results show that this new constraint is most useful when there is a very large
space to explore, such as when the problem is unsatisfiable, or when the branch-
ing heuristics are poor or conflict with the symmetry breaking constraints. The

? This research is supported by Science Foundation Ireland. We thank the other mem-
bers of the 4C lab, the APES research group, Alan Frisch and Chris Jefferson.

combined constraint gives additional pruning and this can, for example, help
compensate in part for the branching heuristic trying to push the search in a
different direction to the symmetry breaking constraints. Combining constraints
is a significant step towards tackling one of the most common criticisms of using
symmetry breaking constraints. By increasing the amount of propagation, we
can, partly, tackle conflict between the branching heuristic and the symmetry
breaking constraints. Finally, by studying in detail when combining lexicograph-
ical ordering with other constraints is useful, we propose a new heuristic for
deciding when to combine heuristics together. The heuristic suggests that the
combination should be likely to prune a significant number of shared variables.

2 Preliminaries

A constraint satisfaction problem (CSP) is a set of variables, each with a finite
domain of values, and a set of constraints that specify allowed values for subsets
of variables. A solution to a CSP is an assignment of values to the variables
satisfying the constraints. To find such solutions, constraint solvers often explore
the space of partial assignments enforcing a local consistency like generalized arc-
consistency (GAC). A constraint is GAC iff, when a variable in the constraint
is assigned any of its values, compatible values exist for all the other variables
in the constraint. For totally ordered domains, like integers, another level of
consistent is bounds-consistency (BC). A constraint is bounds consistent (BC)
iff, when a variable in the constraint is assigned its maximum or minimum value,
there exist compatible values for all the other variables in the constraint. If a
constraint c is BC or GAC then we write BC(c) or GAC(c) respectively.

In this paper, we are interested in lexicographic ordering of vectors of vari-
ables in the presence of sum constraints on the vectors. We denote a vector x
of n finite integer variables as X = 〈X0, . . . , Xn−1〉, while we denote a vector x
of n ground values as x = 〈x0, . . . , xn−1〉. The sub-vector of x with start index
a and last index b inclusive is denoted by xa→b. The domain of a finite integer
variable V is denoted by D(V), and the minimum and the maximum elements
in this domain by min(D(V)) and max(D(V)).

Given two vectors,X and Y of variables, we write a lexicographical ordering
constraint as X ≤lex Y and a strict lexicographic ordering constraint as X <lex

Y . X ≤lex Y ensures that: X0 ≤ Y0; X1 ≤ Y1 when X0 = Y0; X2 ≤ Y2 when
X0 = Y0 and X1 = Y1; . . . ; Xn−1 ≤ Yn−1 when X0 = Y0, X1 = Y1, . . . , and
Xn−2 = Yn−2.X <lex Y ensures that:X ≤lex Y ; and Xn−1 < Yn−1 when X0 =
Y0, X1 = Y1, . . . , and Xn−2 = Yn−2. We write LexLeqAndSum(X,Y , Sx, Sy) for
the constraint which ensure that X ≤lex Y , and that

∑

iXi = Sx and that
∑

i Yi = Sy. Similarly, we write LexLessAndSum(X,Y , Sx, Sy) for X <lex Y ,
∑

iXi = Sx, and
∑

i Yi = Sy. We denote the dual cases as LexGeqAndSum(X,Y ,
Sx, Sy) and as LexGreaterAndSum (X,Y , Sx, Sy). We assume that the variables
being ordered are disjoint and not repeated. We also assume that Sx and Sy are
ground and discuss the case when they are bounded variables in Section 5.

3 A worked example

We consider the special (but nevertheless useful) case of vectors of 0/1 variables.
Generalizing the algorithm to non Boolean variables remains a significant chal-
lenge as it will involve solving subset sum problems. Fortunately, many of the
applications of our algorithm merely require 0/1 variables. To maintain GAC on
LexLeqAndSum(X,Y , Sx, Sy), we minimize X lexicographically with respect to
the sum and identify which positions in Y support 0 or 1. We then maximize Y

lexicographically with respect to the sum and identify which positions inX sup-
port 0 or 1. Since there are two values and two vectors to consider, the algorithm
has 4 steps.
In each step, we maintain a pair of lexicographically minimal and maximal

ground vectors sx = 〈sx0, . . . , sxn−1〉 and sy = 〈sy0, . . . , syn−1〉, and a flag α
where for all i < α we have sxi = syi and sxα 6= syα. That is, α is the most signif-
icant index where sx and sy differ. Additionally, we may need to know whether
sxα+1→n−1 and syα+1→n−1 are lexicographically ordered. Therefore, we intro-
duce a boolean flag γ whose value is true iff sxα+1→n−1 ≤lex syα+1→n−1.
Consider the vectors

X = 〈{0, 1}, {0, 1}, {0}, {0}, {0, 1}, {0, 1}, {0}, {0}〉
Y = 〈{0, 1}, {0, 1}, {0, 1}, {1}, {0, 1}, {0, 1}, {0}, {0, 1}〉

and the constraints X ≤lex Y ,
∑

iXi = 3, and
∑

i Yi = 2. Each of these con-
straints are GAC and thus no pruning is possible. Our algorithm that maintains
GAC on LexLeqAndSum(X,Y , 3, 2) starts with step 1 in which we have

sx = 〈0, 0, 0, 0, 1, 1, 0, 0〉
sy = 〈1, 0, 0, 1, 0, 0, 0, 0〉

↑ α

where sx = min{x|
∑

i xi = 2 ∧ x ∈X}, and sy = max{Y |
∑

i yi = 2 ∧ y ∈
Y }. We check where we can place one more 1 in sx to make the sum 3 as
required without disturbing sx ≤lex sy. We have α = 0 and γ = true. We can
safely place 1 to the right of α as this does not affect sx ≤lex sy. Since γ is
true, placing 1 at α also does not affect the order of the vectors. Therefore, all
the 1s in X have support.
In step 2 we have

sx = 〈1, 1, 0, 0, 1, 1, 0, 0〉
sy = 〈1, 0, 0, 1, 0, 0, 0, 0〉

↑ α

where sx = min{x|
∑

i xi = 4 ∧ x ∈X}, and sy is as before. We check where
we can place one more 0 in sx to make the sum 3 as required to obtain sx ≤lex

sy. We have α = 1 and γ = true. Placing 0 to the left of α makes sx smaller
than sy. Since γ is true, placing 0 at α also makes sx smaller than sy. However,
placing 0 to the right of α orders the vectors lexicographically the wrong way
around. Hence, we remove 0 from the domains of the variables of X on the right
hand side of α. The vector X is now 〈{0, 1}, {0, 1}, {0}, {0}, {1}, {1}, {0}, {0}〉.
In step 3 we have

sx = 〈0, 1, 0, 0, 1, 1, 0, 0〉
sy = 〈1, 1, 0, 1, 0, 0, 0, 0〉

↑ α

where sx = min{x|
∑

i xi = 3 ∧ x ∈X}, and sy = max{Y |
∑

i yi = 3 ∧ y ∈
Y }. We check where we can place one more 0 in sy to make the sum 2 as
required without disturbing sx ≤lex sy. We have α = 0 and γ = true. We can
safely place 0 to the right of α as this does not affect sx ≤lex sy. Since γ is
true, placing 0 at α also does not affect the order of the vectors. Therefore, all
the 0s in Y have support.

Finally, in step 4 we have

sx = 〈0, 1, 0, 0, 1, 1, 0, 0〉
sy = 〈0, 0, 0, 1, 0, 0, 0, 0〉

↑ α

where sx is as before, and sy = max{Y |
∑

i yi = 1 ∧ y ∈ Y }. We check
where we can place one more 1 in sy to make the sum 2 as required to obtain
sx ≤lex sy. We have α = 1 and γ = true. Placing 1 to the left of α makes
sx ≤lex sy and so is safe. Since γ is true, we can also safely place 1 at α.
However, placing 1 to the right of α makes sx >lex sy. Hence, we remove 1 from
the domains of the variables of Y on the right hand side of α. The algorithm
now terminates with:

X = 〈{0, 1}, {0, 1}, {0}, {0}, {1}, {1}, {0}, {0}〉
Y = 〈{0, 1}, {0, 1}, {0}, {1}, {0}, {0}, {0}, {0}〉

4 Algorithm

The algorithm first establishes BC on the sum constraints via the call BC, which
is based on proposition 1 in [10]. Note that for 0/1 variables, BC is equivalent to
GAC. If no failure is encountered we continue with 4 pruning steps. In step 1, we
are concerned with support for 1s in X. We first construct sx as the minimum
X with

∑

iXi = Sx− 1, and sy as the maximum Y with
∑

i Yi = Sy. We then
determine where we can place one more 1 on sx and have sx ≤lex sy.

If sx ≥lex sy then placing another 1 on any location of sx makes sx >lex

sy. Since the constraint is not disentailed, we already have min{x|
∑

i xi =
Sx ∧ x ∈ X} ≤lex sy which implies that sx <lex sy. Now, placing 1 on
sx to the left of α makes sx >lex sy. This is true also for α provided that
the subvectors after α are not lexicographically ordered. Anywhere after α has
support since sx <lex sy remains valid. We therefore prune all 1s in X to the
left of α and at α if sxα+1→n−1 >lex syα+1→n−1, maintain BC(

∑

iXi = Sx)
(via the call BC), and continue with step 2.

In step 2, we are concerned with support for 0s in X. We first construct sx

as the minimum X with
∑

iXi = Sx + 1, and sy as the maximum Y with
∑

i Yi = Sy. We then determine where we can place one more 0 on sx and
have sx ≤lex sy. If sx ≤lex sy then placing another 0 on any location of sx

makes sx < sy, so we do no pruning. If however sx >lex sy, placing 0 on sx

to the right of α does not change that sx > sy. This is true also for α provided
that the subvectors after α are not lexicographically ordered. Anywhere before
α has support as in this case we have sx <lex sy. We therefore prune all 0s

Algorithm 1: LexLeqAndSum

Data : 〈X0, X1, . . . , Xn−1〉 with D(Xi) ⊆ {0, 1}, Integer Sx,
〈Y0, Y1, . . . , Yn−1〉 with D(Yi) ⊆ {0, 1}, Integer Sy

Result : GAC(X ≤lex Y ∧
∑

i
Xi = Sx ∧

∑

i
Yi = Sy)

BC(X, Sx);
BC(Y , Sy);
sx := min{x|

∑

i
xi = Sx ∧ x ∈ X};

sy := min{y|
∑

i
yi = Sy ∧ y ∈ Y };

if sx >lex sy then fail;
if ∃i ∈ {0, . . . , n− 1} . |D(Xi)| > 1 then

sx := min{x|
∑

i
xi = Sx− 1 ∧ x ∈ X};

PruneLeft(sx, sy,X);
BC(X, Sx);
if ∃i ∈ {0, . . . , n− 1} . |D(Xi)| > 1 then

sx := min{x|
∑

i
xi = Sx+ 1 ∧ x ∈ X};

PruneRight(sx, sy,X);
BC(X, Sx);

end

end

if ∃i ∈ {0, . . . , n− 1} . |D(Yi)| > 1 then

sx := min{x|
∑

i
xi = Sx ∧ x ∈ X};

sy := max{y|
∑

i
yi = Sy + 1 ∧ y ∈ Y };

PruneLeft(sx, sy,Y);
BC(Y , Sy);
if ∃i ∈ {0, . . . , n− 1} . |D(Yi)| > 1 then

sy := max{y|
∑

i
yi = Sy − 1 ∧ y ∈ Y };

PruneRight(sx, sy,Y);
BC(Y , Sy);

end

end

in X to the right of α and at α if sxα+1→n−1 >lex syα+1→n−1, and maintain
BC(

∑

i xi = Sx) (via the call BC).

Step 3 is very similar to step 1, except we identify support for the 0s in Y .
We first construct sx as the minimum X with

∑

iXi = Sx, and sy as the
maximum Y with

∑

i Yi = Sy + 1. We then determine where we can place one
more 0 on sy and have sx ≤lex sy. Instead of pruning 1s, we now prune from Y

those 0s which lack support. Due to this similarity, we can perform the first and
the third steps of the algorithm with the same procedure, PruneLeft. The input
to the procedure is the vectors sx and sy and either of X and Y . PruneLeft
prunes either 1s fromX (via the call setMax) or 0s from Y (via the call setMin)
between the beginning of the vector and index α.

Step 4 is very similar to step 2, except we identify support for the 1s in Y .
We first construct sx as the minimum X with

∑

iXi = Sx, and sy as the
maximum Y with

∑

i Yi = Sy − 1. We then determine where we can place one
more 1 on sy and have sx ≤lex sy. Instead of pruning 0s, we now prune from Y

Procedure BC(X, Sx)

min =
∑

i∈[0,n)
min(D(Xi));

max =
∑

i∈[0,n)
max(D(Xi));

setMin(Sx,min);
setMax(Sx,max);
foreach i ∈ [0, n) do

setMin(Xi,min(D(Sx))−max+max(D(Xi)));
setMax(Xi,max(D(Sx))−min+min(D(Xi)));

end

Procedure PruneLeft(sx, sy,V)

α := 0;
while sxα = syα do α := α+ 1;
γ := false;
if sxα→n−1 ≤lex syα→n−1 then γ := true;
i := 0;
while i < α do

if |D(Vi)| > 1 then

if V = X then setMax(Vi, 0);
else if V = Y then setMin(Vi, 1);

end

i := i+ 1;

end

if ¬γ ∧ |D(Vα)| > 1 then

if V = X then setMax(Vα, 0);
else if V = Y then setMin(Vα, 1);

end

those 1s which lack support. Due to this similarity, we can perform the second
and the fourth steps of the algorithm with the same procedure, PruneRight.
The input to the procedure is the vectors sx and sy and either of X and Y .
PruneRight prunes either 0s from X (via the call setMin) or 1s from Y (via
the call setMax) between the end of the vector and index α.

In PruneLeft and PruneRight, we consider only the variables the domains
of which are not singleton. Also, we skip a step of the algorithm if the variables
of the corresponding vector have all singleton domains. The reason is as follows.
At the beginning of the algorithm, we check whether min{x|

∑

i xi = Sx ∧ x ∈
X} >lex max{y|

∑

i yi = Sy ∧ y ∈ Y }. If yes then we fail, otherwise we have
min{x|

∑

i xi = Sx ∧ x ∈X} ≤lex max{y|
∑

i yi = Sy ∧ y ∈ Y }. This means
that there is at least one value in the domain of each variable which is consistent.
The algorithm therefore seeks support for a variable only if its domain is not a
singleton.

Note that the normal execution flow of the algorithm is steps 1 and 2, and
then steps 3 and 4. There are a number of reasons for this choice. First, in step
2, we can re-use the vector sy constructed in step 1. Similarly, in step 4 we can

Procedure PruneRight(sx, sy,V)

while α < n ∧ sxα = syα do α := α+ 1;
if α = n ∨ sxα < syα then return;
γ := false;
if sxα→n−1 ≤lex syα→n−1 then γ := true;
i := n− 1;
while i > α do

if |D(Vi)| > 1 then

if V = X then setMin(Vi, 1);
else if V = Y then setMax(Vi, 0);

end

i := i− 1;

end

if ¬γ ∧ |D(Vα)| > 1 then

if V = X then setMin(Vα, 1);
else if V = Y then setMax(Vα, 0);

end

work on sx constructed in step 3. Second, from step 1 to step 2, we increase the
number of 1s in sx by two and do not change sy. Note that in step 1, all 1s in
X before Xα and may be 1 at Xα are pruned. In step 2, α is either unchanged
(i.e., 1 in Xα is pruned in step 1) or it moves only to the right. Therefore, in
step 2 we can reuse the previous value of α as the lower bound while looking for
its new value. Similar argument holds between steps 3 and 4. As step 3 prunes
all 0s before Yα, the new value of α in step 4 is at least its previous value. Third,
from step 2 to step 3, we decrease the number of 1s in sx and increase in sy by
one. So α may move to the left and thus we must recompute α in step 3. Note
that similar argument holds from step 4 to step 1, therefore it does not matter
which of steps 1-2 and steps 3-4 we perform first.

None of the prunings require any recursive calls back to the algorithm. We
tighten only min{y|

∑

i yi = Sy ∧ y ∈ Y } and max{x|
∑

i xi = Sx ∧ x ∈ X}
without touchingmax{y|

∑

i yi = Sy ∧ y ∈ Y } andmin{x|
∑

i xi = Sx ∧ x ∈
X} which provide support for the values in the vectors. The exception is when
a domain wipe-out occurs. As we have min{x|

∑

i xi = Sx ∧ x ∈ X} ≤lex
max{y|

∑

i yi = Sy ∧ y ∈ Y }, min(D(Xi)) and max(D(Yi)) for all 0 ≤ i < n
are consistent. This means that the prunings of the algorithm cannot cause any
domain wipe-out.

5 Theoretical Properties and Extensions

The algorithm LexLeqAndSum runs in linear time in the length of the vectors and
is correct.

Theorem 5.1. LexLeqAndSum runs in time O(n).

Proof. BC runs in O(n) [10]. Each of PruneLeft and PruneRight runs in 0(n) as
in the worst the case the whole vectors need to be traversed. Checking whether a
vector is ground can be done in constant time by comparing

∑

imin(D(Xi)) and
∑

imax(D(Xi)) that are recomputed at every call to BC. Hence the algorithm
runs in 0(n). ut

Theorem 5.2. LexLeqAndSum either establishes failure if LexLeqAndSum(X,Y ,
Sx, Sy) is not satisfiable, or prunes all inconsistent values from X and Y to
ensure GAC(LexLeqAndSum(X,Y , Sx, Sy)).

Proof. For reasons of space, the proof is given in [6]. ut

Strict Ordering The algorithm can easily be modified for the strict ordering
constraint LexLessAndSum (X,Y , Sx, Sy). To do so, we need to disallow equality
between the vectors. This requires just two modifications to the algorithm. First,
we change the definition of γ. The flag γ is true iff sxα+1→n−1 <lex syα+1→n−1.
Second, we fail if we have min{x|

∑

i xi = Sx ∧ x ∈ X} ≥lex max{y|
∑

i yi =
Sy ∧ y ∈ Y }.

Bounded Sums We can also deal with sums that are not ground but bounded.
Assume we have lx ≤ Sx ≤ ux and ly ≤ Sy ≤ uy. We now need to find
support first for the values in the domains of the vectors and second for the
values in the range of lx..ux and ly..uy. In the first part, we can run our algo-
rithm LexLeqAndSum with

∑

iXi = lx and
∑

i Yi = uy. In the second part, we
tighten the upper bound of Sx with respect to the upper bound of Sy so that
max{x|

∑

i xi = ux ∧ x ∈ X} ≤lex max{y|
∑

i yi = uy ∧ y ∈ Y }. The sup-
port for the upper bound of Sx is also the support for all the other values in the
domain of Sx. Similarly, we tighten the lower bound of Sy with respect to the
lower bound of Sx so that min{x|

∑

i xi = lx ∧ x ∈ X} ≤lex min{y|
∑

i yi =
ly ∧ y ∈ Y }. The support for the lower bound of Sy is also the support for all
the other values in the domain of Sy. The values in the vectors are supported
by lx and uy. The prunings of the second part tighten only ux and ly. Hence
the prunings performed in the second part do not require any calls back to the
first part. It is easy to show that the modified algorithm is correct and runs in
linear time.

Entailment A constraint is entailed when any assignment of values to its vari-
ables satisfy the constraint. Detecting entailment does not change the worst-
case complexity but is very useful for avoiding unnecessary work. For this pur-
pose, we can maintain a flag entailed, which is set to true whenever the con-
straint LexLeqAndSum is entailed, and the algorithm directly returns on fu-
ture calls if entailed is set to True. The constraint is entailed when we have
max{x|

∑

i xi = Sx ∧ x ∈ X} ≤lex min{y|
∑

i yi = Sy ∧ y ∈ Y }.

6 Multiple Vectors

If we have multiple rows of a matrix that are lexicographically ordered and
are constrained by sum constraints, we can decompose this into lexicographic

ordering with sum constraints on all pairs of rows, or (further still) onto order-
ing constraints just on neighbouring pairs of rows. Such decompositions hinder
constraint propagation. However, we identify a special case which occurs in a
number of applications where it does not hinder propagation. This case is when
the sums are just 1, which occurs in many assignment problems. Nevertheless, it
is usually more cost effective to post just the O(n) ordering constraints between
neighbouring pairs rather than the O(n2) constraints between all pairs.

Theorem 6.3. GAC(LexLeqAndSum(X i,Xj , Si, Sj)) for all i < j is strictly
stronger than GAC(LexLeqAndSum(X i,Xi+1, Si, Si+1)) for all i.

Proof. Consider the following 3 vectors:

X0 = 〈{0, 1}, {1}, {0, 1}, {0, 1}〉
X1 = 〈{0, 1}, {0, 1} {0, 1} {0, 1}〉
X2 = 〈{0, 1}, {0} {0, 1} {0, 1}〉

with SX0
= SX1

= SX2
= 2. We have GAC(LexLeqAndSum(X i,Xi+1, Si, Si+1))

for all i. The assignment X0,0 = {1} forcesX0 to be 〈1, 1, 0, 0〉, which is not sup-
ported by X2 whose largest value is 〈1, 0, 1, 0〉. Therefore, GAC(LexLeqAndSum
(X0,X2, S0, S2)) does not hold. ut

Theorem 6.4. GAC(LexLessAndSum(X i,Xj , Si, Sj)) for all i < j is strictly
stronger than GAC(LexLessAndSum(X i,Xi+1, Si, Si+1)) for all i.

Proof. Consider the following 3 vectors:

X0 = 〈{0, 1}, {0, 1}, {1}, {0, 1}, {0, 1}〉
X1 = 〈{0, 1}, {0, 1}, {0, 1}, {0, 1}, {0, 1}, 〉
X2 = 〈{1}, {0}, {0}, {0, 1}, {0, 1}〉

with SX0
= SX1

= SX2
= 2. We haveGAC(LexLessAndSum(X i,Xi+1, Si, Si+1))

for all i. The assignment X0,0 = {1} forces X0 to be 〈1, 0, 1, 0, 0〉, which is not
supported byX2 whose largest value is 〈1, 0, 0, 1, 0〉. Therefore,GAC(LexLessAndSum
(X0,X2, S0, S2)) does not hold. ut

Theorem 6.5. GAC(∀i < j .LexLeqAndSum(X i,Xj , Si, Sj)) is strictly stronger
than GAC(LexLeqAndSum(X i,Xj , Si, Sj)) for all i < j.

Proof. Consider the following 3 vectors:

X0 = 〈{0, 1}, {0, 1}, {1}, {0, 1}, {0, 1}, {0, 1}〉
X1 = 〈{0, 1}, {0, 1}, {0}, {1}, {0, 1}, {0, 1}〉
X2 = 〈{0, 1}, {0, 1}, {0}, {0}, {0, 1}, {0, 1}〉

with SX0
= 2, SX1

= 3, and SX2
= 3. We haveGAC(LexLeqAndSum(X i,Xj , Si, Sj))

for all i < j. The assignment X0,0 = {1} forcesX0 to be 〈1, 0, 1, 0, 0, 0〉, which is
supported byX1 only with the assignment 〈1, 1, 0, 1, 0, 0〉. The latter assignment
is however not supported byX2 whose largest value is 〈1, 1, 0, 0, 1, 0〉. Therefore,
GAC(∀i < j .LexLeqAndSum(X i,Xj , Si, Sj)) does not hold. ut

Theorem 6.6. GAC(∀i < j .LexLessAndSum(X i,Xj , Si, Sj)) is strictly stronger
than GAC(LexLessAndSum(X i,Xj , Si, Sj)) for all i < j.

Proof. Consider 7 vectorsX0 toX6 withXi = 〈{0, 1}, {0, 1}, {0, 1}, {0, 1}〉 and
SXi

= 2 for all i ∈ [0, 6]. Although GAC(LexLessAndSum(X i,Xj , Si, Sj)) for all
i < j there is no globally consistent solution as there are only

(

4
2

)

= 6 possible
distinct vectors. ut

Theorem 6.7. GAC(∀i < j .LexLessAndSum(X i,Xj , 1, 1)) is equivalent to
GAC(LexLessAndSum(X i,Xj , 1, 1)) for all i < j.

Proof. If m > n then no solution is allowed. If m ≤ n then 1s in each row are
only supported in a diagonal band of width n−m+1 that moves from top-right
to bottom-left. The decomposition is able to prune all other values. ut

7 Experimental Results

We performed a wide range of experiments to test when this combination of
constraints is useful in practice. In the following tables, the results for finding
the first solution or that none exists are shown, where “-” means no result is
obtained in 1 hour (3600 secs) using ILOG Solver 5.3 on a 1GHz pentium III
processor with 256 Mb RAM under Windows XP.

Ternary Steiner Problem (tSp). tSp originates from the computation of hyper-
graphs in combinatorial mathematics. The tSp of order n is to find n(n − 1)/6
subsets of {1, . . . , n} such that each subset is of cardinality 3 and any two subsets
have at most one element in common [8]. One way of modelling this problem is
to represent each subset using its characteristic function. We thus have a 0/1
matrix of n columns and n(n − 1)/6 rows, with constraints enforcing exactly 3
ones per row, and a scalar product of at most 1 between any pair of distinct
rows. Since the subsets are indistinguishable, we can freely permute the subsets
to obtain symmetric partial assignments. Moreover, permuting the elements of
the set {1, . . . , n} does not affect the cardinality of the subsets, nor the number
of elements in common between any two subsets. Hence, the matrix has row and
column symmetry. Such row and column symmetries can effectively be elimi-
nated by imposing lexicographic ordering constraints on rows and columns [4].
Since the rows are also constrained by sum constraints, instead of posing the
lexicographic ordering constraints between the rows and the sum constraints on
the rows separately, we can impose our new global constraint between the rows.
There are two ways to pose lexicographic ordering constraints on a matrix

with row and column symmetry: double-lex (≤lexRC) where both the rows and
columns are ordered in increasing order, or double-antilex (≥lexRC) where both
the rows and columns are ordered in decreasing order [4]. Our initial experimen-
tation with tSps using lexicographic ordering constraints for symmetry breaking
showed that the best way to solve the problem is to pose double-antilex con-
straints on the matrix. Also, due to the intersection constraint between any two

Problem No symmetry breaking >lexR≥lexC LexGreaterAndSum R ≥lexC
n Failures Time (sec.) Failures Time (sec.) Failures Time (sec.)
6 6,195 0.3 14 0 11 0
7 6 0 2 0 1 0
8 - >1hr 741 0.1 390 0.1
9 4,521 0.4 336 0.1 250 0.1
10 - >1hr 723,210 128.8 433,388 105.3

Table 1. Ternary Steiner problem: row-wise labelling.

Problem No symmetry breaking >lexR≥lexC LexGreaterAndSum R ≥lexC
n Failures Time (sec.) Failures Time (sec.) Failures Time (sec.)
6 12,248 0.5 22 0 11 0
7 115 0.3 21 0 14 0
8 - >1hr 1,259 0.2 410 0.1
9 4,289,520 697.6 2,106 0.4 619 0.2
10 - >1hr 4,153,162 940.5 643,152 217.2

Table 2. Ternary Steiner problem: row-and-column-wise labelling.

Problem No symmetry breaking >lexR≥lexC LexGreaterAndSum R ≥lexC
n Failures Time (sec.) Failures Time (sec.) Failures Time (sec.)
6 26,352 1.2 47 0 27 0
7 585,469 40.4 146 0 52 0
8 - >1hr 6,826 0.7 1,962 0.4
9 - >1hr 89,760 14.1 8,971 2
10 - >1hr - >1hr 3,701,480 1323.7

Table 3. Ternary Steiner problem: column-wise labelling.

subsets, no two rows can be equal. We can therefore strengthen the model by
using strict lexicographical ordering constraints.

We tried many different search strategies, and obtained the best results by
instantiating the matrix along its rows from top to bottom, and exploring the
domain of each variable in decreasing order (i.e. 1 first and then 0). This search
strategy together with the double-antilex constraints works very well for solving
tSps. Table 1 shows the results on some tSp instances. Note that tSp has been
proven to have solutions iff n modulo 6 is equal to 1 or 3 [8]. Therefore, only
n = 7, 9 have solutions in the table.

We observe in Table 1 that the symmetry breaking double-antilex constraints
significantly reduce the size of the search tree giving significantly shorter run-
times compared to no symmetry breaking. The difference between the lexico-
graphic ordering constraints and lexicographic ordering with sum constraints
are not striking for the soluble instances (n = 7, 9). The difference becomes ap-
parent with the unsatisfiable instances when we have a larger search space to
explore.

If we change the search strategy slightly, the problem becomes much more
difficult to solve. We then observe a dramatic increase in the size of the search
tree if symmetries are not eliminated. Tables 2 and 3 show the search tree and
the run-times obtained when labelling along the rows and columns, and along

the columns of the matrix, respectively. Reasoning with lexicographic ordering
constraints in the presence of sum constraints now becomes very useful, and
the instances are solved much more quickly than the lexicographic ordering con-
straints alone, with notable differences in the size of the search tree. Note for
instance that n = 10 in Table 3 could be proved to have no solution only with
our algorithm, given the time limit 1 hour.

Balanced Incomplete Block Designs (BIBD). BIBD generation is a standard
combinatorial problem from design theory with applications in cryptography
and experimental design. A BIBD is a set V of v ≥ 2 elements and a collection
of b > 0 subsets of V , such that each subset consists of exactly k elements
(v > k > 0), each element appears in exactly r subsets (r > 0), and each pair of
elements appear simultaneously in exactly λ subsets (λ > 0).
A BIBD can be specified as a constraint program by a 0/1 matrix of b columns

and v rows, with constraints enforcing exactly r ones per row, k ones per column,
and a scalar product of λ between any pair of distinct rows. Since the objects
and the subsets are indistinguishable, given a partial assignment of the matrix,
we can exchange any pair of rows, and any pair of columns to obtain another
symmetric partial assignment. This model is very similar to that of the tSp
except that the columns are now also constrained by sum constraints. Hence, we
can impose our new global constraint on both the rows and on the columns.
Our initial experiments with solving BIBDs using lexicographic ordering con-

straints for breaking symmetry showed that the best way to solve BIBDs is again
to post double-antilex constraints on the matrix3. Also, due to the constraint
between every pair of elements, no two rows can be equal. We therefore again
strengthen the model by enforcing strict lexicographical ordering constraints.
Instantiating the matrix along its rows from top to bottom and exploring the

domain of each variable in increasing order works extremely well with the double-
antilex constraints. All the instances of [9] are solved within a few seconds. Bigger
instances such as 〈15, 21, 7, 5, 2〉 and 〈22, 22, 7, 7, 2〉 are solved in less than a
minute. With this search strategy, we observe no difference between the inference
of our algorithm and its decomposition. Examples can be found in Table 4.
If there are no lexicographic ordering constraints posted on the matrix, which

row to instantiate next is irrelevant. The same search tree is generated whether
the rows are instantiated from top to bottom, or bottom to up, or in any order
of choice. However, if the matrix is constrained by the lexicographic ordering
constraints, then the order of the rows being instantiated affects the size of the
search tree: many solutions are now considered as dead-ends as they do not
match the ordering imposed by the lexicographic ordering constraints. Instead
of exploring the rows from top to bottom, if we explore them from bottom to top
then the problem becomes very difficult to solve in the presence of double-antilex
constraints, i.e. even small instances become hard to solve within an hour. We
can make the problem more difficult to solve by choosing one row from the top

3 This was also pointed out by Jean-François Puget at his CP’02 talk on symmetry
breaking.

Problem No symmetry breaking >lexR ≥lexC LexGreaterAndSum R
LexGeqAndSum C

〈v, b, r, k, λ〉 Failures Failures Failures
6,20,10,3,4 8,944 76 76
7,21,9,3,3 7,438 42 42
6,30,15,3,6 1,893,458 68 68
7,28,12,3,4 229,241 64 64
9,24,8,3,2 6,841 48 48
6,40,20,3,8 - 108 108
7,35,15,3,5 7,814,878 88 88
7,42,18,3,6 - 115 115

Table 4. BIBDs: row-wise labelling (1).

Problem No symmetry breaking >lexR ≥lexC LexGreaterAndSum R
LexGeqAndSum C

〈v, b, r, k, λ〉 Failures Time (sec.) Failures Time (sec.) Failures Time (sec.)
1 6,20,10,3,4 8,944 0.7 916 0.2 327 0.1
2 7,21,9,3,3 7,438 0.7 20,182 5.3 5,289 2.1
3 6,30,15,3,6 1,893,458 192.3 10,618 3.7 1,493 1
4 7,28,12,3,4 229,241 26.1 801,290 330.7 52,927 27
5 9,24,8,3,2 6,841 1.1 2,338,067 1115.9 617,707 524.3
6 6,40,20,3,8 - >1hr 117,126 67.5 4,734 4.4
7 7,35,15,3,5 7,814,878 1444.4 - > 1hr 382,173 311.2
8 7,42,18,3,6 - >1hr - >1hr 2,176,006 2,603.7

Table 5. BIBDs: row-wise labelling (2).

and then one row from the bottom, and so on. Comparing Table 4 and Table
5 shows how the search tree is affected with double-antilex constraints, though
there is no difference if there are no ordering constraints imposed.
We make a number of observations about these result. First, imposing double-

antilex constraints significantly reduces the size of the search tree and time to
solve the problem compared to no symmetry breaking. Moreover, the additional
inference performed by our algorithm gives much smaller search trees in much
shorter run-times. See entries 1, 3, and 6. Second, lexicographic ordering con-
straints and the search strategy clash, resulting in bigger search trees. However,
the extra inference of our algorithm is able to compensate for this. This suggests
that even if the ordering imposed by symmetry breaking constraints conflicts
with the search strategy, more inference incorporated into the symmetry break-
ing constraints can significantly reduce the size of the search tree. See entries 2,
4, and 7. Third, increased inference scales up better, and recovers from mistakes
much quicker. See entry 5. Finally, the problem can sometimes only be solved,
when using a poor search strategy, by imposing our new global constraint. See
entry 8.

8 Lexicographic Ordering with Other Constraints

We obtained similar results with other problems like rack configuration, steel
mill slab design and the social golfers problem. In each case, the combined con-

straint was only useful when the symmetry breaking conflicted with the branch-
ing heuristic, the branching heuristic was poor, or there was a very large search
space to explore. Why is this so?
Katsirelos and Bacchus have proposed a simple heuristic for combining con-

straints together [7]. The heuristic suggests grouping constraints together if they
share many variables in common. This heuristic would suggest that combining
lexicographical ordering and sum constraints would be very useful as they in-
tersect on many variables. However, this ignores how the constraints are propa-
gated. The lexicographical ordering constraint only prunes at one position, α4.
If the vectors are already ordered at this position then any future assignments
are irrelevant. Of course, α can move to the right but on average it moves only
one position for each assignment. Hence, the lexicographic ordering constraint
interacts on average with one variable from each of the sum constraints. Such
interaction is of limited value because the constraints are already communicating
with each other via the domain of that variable. This explains why combining
lexicographical ordering and sum constraints is only of value on problems where
there is a lot of search and even a small amount of extra inference may save
exploring large failed subtrees.
A similar argument will hold for combining lexicographic ordering constraints

with other constraints. For example, Carlsson and Beldiceanu have introduced
a new global constraint, called lex chain, which combines together a chain of
lexicographic ordering constraints [2]. When we have a matrix say with row
symmetry, we can now post a single lexicographic ordering constraint on all
the m vectors corresponding to the rows as opposed to posting m − 1 of them.
In theory, such a constraint can give more propagation. However, our exper-
iments on BIBDs indicate no gain over posting lexicographic ordering con-
straints between the adjacent vectors. In Table 6, we report the results of solving
BIBDs using SICStus Prolog 3.10.1. We either post lexicographic ordering or
anti-lexicographic ordering constraints on the rows and columns, and instanti-
ate the matrix from top to bottom exploring the domains in ascending order.
The lexicographic ordering constraints are posted using lex chain of Carlsson
and Beldiceanu, which is available in SICStus Prolog 3.10.1. This constraint
is either posted once for all the symmetric rows/columns, or between adjacent
rows/columns. In all the cases, we observe no benefits in combining a chain
of lexicographic ordering constraints. The interaction between the constraints is
again very restricted. Each of them is concerned only with a pair of variables and
it interacts with its neighbour either at this position or at a position above its α
where the variable is already ground. This argument suggests a new heuristic for
combining constraints: the combination should be likely to prune a significant
number of shared variables.

9 Conclusion

We have introduced a new global constraint on 0/1 variables which combines a
lexicographical ordering constraint with sum constraints. Lexicographic ordering

4 α points to the most significant index of X and Y where Xi and Yi are not ground
and equal.

v, b, r, k, λ No symmetry <lex R ≤lex C >lex R ≥lex C
breaking lex chain lex chain

〈X0, . . . , Xm−1〉 〈Xi, Xi+1〉 〈X0, . . . , Xm−1〉 〈Xi, Xi+1〉
Backtracks Backtracks Backtracks Backtracks Bactracks

6,20,10,3,4 5,201 84 84 706 706
7,21,9,3,3 1,488 130 130 72 72

6,30,15,3,6 540,039 217 217 9216 9216
7,28,12,3,4 23,160 216 216 183 183

9,24,8,3,2 - 1,473 1,473 79 79

6,40,20,3,8 - 449 449 51,576 51,576
7,35,15,3,5 9,429,447 326 326 395 395
7,42,18,3,6 5,975,823 460 460 756 756

Table 6. BIBD: lex chain(〈X0, . . . , Xm−1〉) vs lex chain(〈Xi, Xi+1〉) for all 0 ≤ i <

m− 1 with row-wise labelling.

constraints are frequently used to break symmetry, whilst sum constraints occur
in many problems involving capacity or partitioning. Our results showed that
this global constraint is useful when there is a very large space to explore, such
as when the problem is unsatisfiable, or when the branching heuristic is poor
or conflicts with the symmetry breaking constraints. However, our combined
constraint did not compensate in full for a poor branching heuristic. Overly, it
was better to use a good branching heuristic. Finally, by studying in detail when
combining lexicographical ordering with other constraints is useful, we proposed
a new heuristic for deciding when to combine constraints together.

References

1. C. Bessière and J-C. Régin. Local consistency on conjunctions of constraints. Pre-
sented at ECAI-98 Workshop on Non-binary Constraints, 1998.

2. M. Carlsson and N. Beldiceanu. Arc-consistency for a chain of lexicographic ordering
constraints. Technical Report T2002-18, SICS, 2002.

3. M. Carlsson and N. Beldiceanu. Revisiting the lexicographic ordering constraint.
Technical Report T2002-17, SICS, 2002.

4. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh.
Breaking row and column symmetry in matrix models. In P. van Hentenryck, editor,
Proceedings of 8th CP (CP-2002), pages 462–476. Springer, 2002.

5. A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, and T. Walsh. Global constraints for
lexicographic orderings. In P. van Hentenryck, editor, Proceedings of 8th CP (CP-
2002), pages 93–108. Springer, 2002.

6. B. Hnich, Z. Kiziltan, and T. Walsh. Global constraints by composition: lexico-
graphic ordering with sums. Technical Report APES-59-2003, 2003.

7. G. Katsirelos and F. Bacchus. GAC on conjunctions of constraints. In T. Walsh,
editor, Proceedings of 7th CP (CP-2001), pages 610–614. Springer, 2001.

8. C.C. Lindner and A. Rosa. Topics on steiner systems. Annals of Discrete Mathe-
matics, 7, 1980.

9. P. Meseguer and C. Torras. Exploiting symmetries within constraint satisfaction
search. Artificial Intelligence, 129(1-2):133–163, 2001.

10. J.C. Régin and M. Rueher. A global constraint combining a sum constraint and
difference constraints. In R. Dechter, editor, Proceedings of the 6th CP (CP-2000),
pages 384–395. Springer, 2000.

