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Abstract. We describe a detailed experimental investigation of the
phase transition for several different classes of randomly generated
satisfiability problems. We observe a remarkable consistency of fea-
tures in the phase transition despite the presence in some of the
problem classes of clauses of mixed lengths. For instance, each of the
problem classes considered has a sharp transition from satisfiable to
unsatisfiable problems at a critical value. In addition, there is a com-
mon easy-hard-easy pattern in the median difficulty of the problems,
with the hardest problems being associated with the phase transition.
However, the difficulty of problems of mixed clause lengths is much
more variable than that of fixed clause length. Indeed, whilst the me-
dian difficulty of random problems of mixed clause lengths can be
orders of magnitude easier than that of equivalently sized problems
of fixed clause length, the hardest problems of mixed clause lengths
can be orders of magnitude harder than the hardest equivalently sized
problems of fixed clause length. Such very hard random problems
may be of considerable practical and theoretical use in analysing
algorithm performance.

1 Introduction

Propositional satisfiability (SAT) is the problem of deciding if there is
an assignment for the variables in a propositional formula that makes
the formula true. SAT is of considerable practical interest as many AI
tasks can be encoded quite naturally in SAT. Unfortunately, unless
P=NP, SAT is intractable in the worst case as it is a NP-hard problem.
There are, however, many theoretical and experimental results which
show good average-caseperformance for certain classes of SAT prob-
lems [7]. In considering such average-case results, it is important to
know whether the problems considered are hard and representative
of those met in practice. Cheeseman et al [1] observed that the hard
instances of NP-hard problems are often associated with a phase
transition. With SAT, there is a phase transition as the ratio of the
number of clauses to variables in a problem is varied. Experiments
have shown that an easy-hard-easy pattern for SAT occurs as this
ratio is increased and that the hard instances occur in the phase trans-
ition [15]. The phase transition for SAT is therefore of considerable
practical and theoretical importance.
In this paper, we present a detailed experimental investigation of
the SAT phase transition. We consider several different classes of
SAT problems, some of which (like real problems) contain clauses of
mixed lengths. We observe a remarkable consistency of features in
the different phase transitions. For example, all the problem classes
show an easy-hard-easypattern in median problem difficulty, a region
of highly variable difficulty, and a sharp transition from satisfiable to
unsatisfiable at a fixed ratio of clauses to variables. Random problems1 Department of Artificial Intelligence, University of Edinburgh 80 South
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of mixed clause lengths appear, however, to give much more variable
behaviour. The median difficulty of random problems of mixed clause
is typically orders of magnitude less than that of equivalently sized
problems of fixed clause length, yet the hardest problems of mixed
clause lengths can be orders of magnitude harder than the hardest
problems of fixed clause length. With random problems of mixed
clause lengths, certain key properties like the position of the phase
transition also appear to be governed merely by a simple parameter,
the (limiting) distribution of clause lengths in the problem class. The
phase transition observed for random 3-SAT [15] thus appears to be
a special case of a more general type of SAT phase transition.

2 Random k-SAT

We consider SAT problems in conjunctive normal form (CNF); a
formula is in CNF iff it is a conjunction of clauses, where a clause is a
disjunction of literals, and a literal is a negated or un-negated variable.
A problem in random k-SAT consists of L clauses, each of which
has k literals chosen uniformly from theN possible variables and theN possible negated variables. We use Rk(N;L) to denote problems
drawn from this class and Prob(sat;X) to denote the probability
that a problem drawn at random from the class X is satisfiable.
Most recent experimental work has used the random k-SAT model
as it has several features which makes it useful for benchmarks. In
particular, there appears to be a phase transition between satisfiability
and unsatisfiability asL=N is varied. That is, there exists ck, a critical
value of L=N , such that:limN!1Prob(sat;Rk(N; c:N)) = � 0 for c > ck1 for c < ck:
It is easy to show that c0 = c1 = 0. It has been shown theoretically
that c2 = 1 [2, 9] and 3:003 < c3 < 4:81. Experiments have
suggested that c3 � 4:24 [4]. The phase transition appears to be
of practical value as, for a given N , problems with ck:N clauses
seem to be the hardest problems generated for a wide variety of SAT
algorithms [15]. This result needs to be treated with slight caution
since it has not been shown theoretically, and since problems away
from the phase transition can also be hard to solve. For example, all
resolution algorithms need exponential time with probability tending
to 1 for random 3-SAT problems generated with c > 5:6 [3].
To determine satisfiability and problem difficulty, we use two variants
of the Davis-Putnam procedure [5]. The major difference between
these variants is their choice of variable upon which to branch. For
small problems, we use a simple variant used in previous studies [15]
which branches on the first variable in the first clause. We shall refer
to this variant as “DP”. For larger problems, we use ASAT [6] which
branches on the variable having the greatest number of occurrences
in the shortest clauses. ASAT is one of the fastest implementations of
the Davis-Putnam procedure currently distributed.
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Figure 1. Random 4-SAT problems, tested using ASAT,
mean (solid), median (dashed) branches,N = 75

Figure 1 shows a typical random k-SAT phase transition, like that
for 3-SAT in [15], the dotted line giving probability of satisfiability
at each point. For N = 75, we tested 1000 random 4-SAT problems
at each point from L=N = 0 to 16 in steps of 0:4. The graph
of observed probability of satisfiability is similar with varying N ,
except that the transition from near100% to near0% becomessharper
with increasing N . There appears to be a “crossover" point at which
approximately the same percentage of problems is satisfiable for all
values of N , as previously observed in 3-SAT [13]. To examine this
for 4-SAT we tested problems from L=N = 9 to 12 in steps of 0:04,
for N = 25, 50, 75. The most consistent point appeared to be at9:76N clauses at a probability of 65% satisfiable.
Figure 1 shows a typical “easy-hard-easy" pattern in problem dif-
ficulty for 4-SAT using the ASAT procedure. The y-axis gives the
mean and median (to the same scale) number of branches reported by
ASAT. When L=N is large, problems are usually over-constrained,
and thus easily shown to be unsatisfiable. WhenL=N is small, prob-
lems are usually under-constrained, and a satisfying assignment can
be “guessed” quickly. The really hard instances tend to occur at the
phase transition where the problems are finely balanced between be-
ing satisfiable and unsatisfiable. Note that mean and median behaviour
are very similar.

3 Random mixed SAT

We now introduce a generalisation of the random k-SAT model,
which we call “random mixed SAT". In this model, a set of clauses is
generated with respect to a probability distribution � on the integers.
Each clause is generated as in random k-SAT. However, k, the length
of the clause, is chosen randomly according to �. For example, if�(2) = �(3) = 12 , then clauses of length 2 and 3 appear with
probability 12 , whilst if �(2) = 13 and �(4) = 23 , clauses of length 2
appear with probability 13 and of length 4 with probability 23 . In this
paper, we will call these problem classes“2-3-SAT" and “2-4-4-SAT"
respectively. The frequency of occurrence of an integer in the name
reflects the frequency of occurrence of clauses of this length in the
problem. Thus, for “3-4-SAT", �(3) = �(4) = 12 . Random k-SAT is
a special case of random mixed SAT, where each clause is chosen of
length k with probability 1.
The random mixed SAT model may generate problems more similar
to real-world problems than randomk-SAT. For example, many struc-
tured problem classes use clauses of mixed lengths (eg. scheduling
problems have large numbers of binary clauses). It would be inter-
esting to compare such problems with random mixed SAT problems
with similar proportions of clauses lengths.
We write c� for the critical value of L=N for a given random mixed
SAT (if such a value exists). If �(0) > 0 or �(1) > 0, then we know

that c� = 0, as empty and unit clauseswill occur, and as c0 = c1 = 0.
Henceforth we assume that �(0) = �(1) = 0. Although we do not
know the value of c� in other cases, it is at least simple to give an
upper bound on its value if it exists. For a given �, we define the
density of �, d� as:d� =def 1Xk=1 �(k)(1� (12 )k)
The density gives the mean fraction of all truth assignments that are
consistent with any given clause generated by�. The expected number
of models of a clause set with N variables andL clauses is 2N (d�)L.
A satisfiable formula has at least one model, so for fixed L/N , prob-
ability of satisfiability vanishes as N ! 1 if 2(d�)L=N < 1. Re-
arranging, we see that c� � �1log2(d�) : (1)

For k = 2, the bound gives c2 � 2:41, but it is known that c2 = 1.
For k = 3, (1) gives c3 � 5:20 while it is believed c3 � 4:24, and
our experiments suggest c4 � 9:76 while (1) gives c4 � 10:75.
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Figure 2. Random 2-3-SAT, N = 50, 100, 150
For random 2-3-SAT, we get d� = 1316 , giving a bound c� < 3:34.
In our exploration of the phase transition, this gives a useful upper
bound on how far experiments need be performed. Figure 2 shows
how the probability of satisfiability varies with the ratio of clauses to
variables. For N= 50, 100, 150, experiments were performed with L
varying in steps of 0:2N from 0 to 3:4N . The higher values ofN are
characterised by a sharper transition, the dotted line being N = 150.
It can be seen that, as for random k-SAT, the probability graphs seem
to be converging on some limit. There is again a crossover, but at a high
percentage satisfiability. To investigate this further, we performed a
more detailed investigation of the crossover region. For values of N
from 50 to 150 in steps of 10, and from 150 to 350 in steps of 50,
we tested 500 problems at values of L from 1:3N to 2N in steps
of at most N=50. Analysis of the data suggests that the crossover
appears close to 94% satisfiable and L = 1:75N , where we take
the crossover to be where we observe the smallest difference in the
probability of satisfiability with changing problem size. By contrast,
the ratio L=N where 50% of problems were satisfiable declined from2:32 for N = 50 to 2:08 for N = 200.
For random 2-4-4-SAT, we get d� = 78 , the same as 3-SAT, givingc� < 5:20. Once again, a similar pattern is observed when graphs
of probability are plotted. However, the crossover appears at quite a
different point compared to 3-SAT. For values of N from 50 to 130
in steps of 10, we tested 500 problems at values of L from 2:3N to3:3N in steps of at most N=25. The crossover point appears to be
aboutL = 2:74N where 96% of problems are satisfiable.By contrast
the 50% satisfiable point ranged from 3:78N atN = 50 to 3:48N atN = 150. This suggests an estimate for c� of 2:74.
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4 Problem Hardness

The identification of phase transitions is of considerable importance
in the study of heuristics for NP-hard problems since the hardest in-
stances of randomly generated problems tend to occur in the phase
transition. As observed in [15] for random 3-SAT, the hardest randomk-SAT problems appear to occur in the transition between satisfiab-
ility and unsatisfiability. This is seen very clearly for random 4-SAT
in Figure 1.
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Figure 3. Random 2-4-4-SAT problems, DP, N = 75

Random mixed 2-4-4-SAT gives very different behaviour to 3-SAT
or 4-SAT. Figure 3(a) shows the median and mean problem difficulty
for 2-4-4-SAT, using DP without branching heuristics. There is very
little relation between mean and median problem difficulty. Median
problem difficulty shows a slight easy-hard-easy pattern, though the
peak median difficulty is only 4 branches. Mean behaviour is excep-
tionally noisy, even though each data point represents the mean of10; 000 experiments, and we have plotted the the mean on a log scale.
This behaviour is clarified by Figure 3(b) which shows contours of the
difficulty of problems representing percentiles from 90% to 99:9%.
Again a log plot has been used. Hard problems are still associated
with the transition but the hardest problems no longer occur around
the 50% satisfiable point. The most difficult problems can be either
satisfiable or unsatisfiable, and occur at high percentage satisfiabil-
ity. Similar behaviour has been observed by Hogg and Williams for
randomly generated 3-colourability problems [10].
The difference between hardness of 4-SAT and 2-4-4-SAT does not
seem to be caused merely by the use of two different procedures in
Figures 1 and 3. Although ASAT finds all 2-4-4-SAT problems atN = 75 easy, at N = 300 it needed more than 3 million branches
for one satisfiable problem in a region of high percentage satisfiability
while needing less than 100 branches for almost all other problems.
Experiments with other random mixed SAT problems and other pro-
cedures also show that the hardest problems with mixed clause lengths

can be orders of magnitude harder than the hardest problems with a
fixed clause length, and that these hard problems tend to occur in
regions of high percentage satisfiability.

5 Constant Probability Model

Another common problem class which gives clauses of mixed lengths
is the constant probability model. This class has also been the sub-
ject of much theoretical attention. In the constant probability model,
clauses with N variables and L clauses are generated according to
a parameter p, 0 < p � 1. For each clause, each literal (that is, a
variable or the negation of a variable) is included with probabilityp, independently of the inclusion of other literals. In particular, the
empty clause is allowed. Our experiments use a variant of the constant
probability model proposed in [11] in which if a clause is generated
containing either no literals or only one literal, it is discarded and
another clause generated in its place. This is because the inclusion of
empty or unit clauses typically makes problems easier. We shall call
this the “CP” model.
This model cannot strictly be seen as an example of a random mixed
SAT, because the probability of a given clause length being chosen
varies with N . However, we observe very similar effects to those
seen with random mixed SAT, provided that we omit empty and unit
clauses, and provided that we fix the value2Np and so vary p as 1=N .
This keeps the expected clause length nearly constant. Indeed, for any
given value of 2Np, this gives a limiting distribution of clause lengths
determined by the Poisson distribution with parameter2Np (adjusted
for the omission of clausesof length 0 and1). For comparatively small
values such as 2Np = 3, we get quite fast convergence to the true
distribution of clause lengths. For example, for N = 25, the true
probability of length 3 clauses is 0:285, while the Poisson model
gives a probability of 0:280.
For the Poisson approximation to the constant probability model
with parameters N and p, we have �(k) = e�2Np(2Np)k=k! by
definition. We can derive an expression for the density d� . If empty
and unit clauses are allowed, then we can derive 1� d� = e�Np.
Allowing for the omission of empty and unit clauses, if we choose2Np = 3, we get d� � 0:877, a value close to the density of 3-SAT,0:875.
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Figure 4. CP, 2Np = 3, N = 25; 50; 75; 100
Our observations in x3 and x4 seem to apply to CP. In particular, if2Np is kept constant as in Figure 4, graphs of probability of sat-
isfiability show the same features, with a crossover at about 2:80.
Very interestingly, the distribution of problem difficulty in Figure 5
is similar to the very variable distribution seen in Figure 3(b). Again,
we plot different percentile branches on a log scale, with each data
point representing the result over 5000 problems. The hardest prob-
lems in the CP model can be three orders of magnitude harder than
the hardest equivalently sized problems of fixed clause length [8].
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These hard problems again tend to occur in regions of high per-
centage satisfiability. By comparison, the median displays a simple
easy-hard-easy pattern. In [8], we give further experimental analysis
to show that this highly variable and hard behaviour in CP cannot
be eliminated by the use of better heuristics. We conjecture that this
hardness arises from hard unsatisfiable problems in a region of oth-
erwise satisfiable problems, or satisfiable problems which give hard
unsatisfiable subproblems.
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Figure 5. CP, percentile branches, 2Np = 3, N = 75, DP

6 Conjectures about the Crossover

We have presented experimental evidence to show that many features
of the phase transition for random k-SAT are also present in random
mixed SAT and in the CP model. Our experiments suggest that for
any distribution � of clause lengths, there is a critical value c�. Inx3, we gave an upper bound on c� in terms of d�, the density. In this
section, we derive further bounds and conjecture an estimate for c�
in terms of ck.
For any k, if we have c:�(k) > ck , then certainly c > c�. This imme-
diately gives us that, c� � max1k=1 ck�(k) For example, for 2-3-SAT,

this gives us c� � c2= 12 = 2 and for 2-4-4-SAT, c� � c2= 13 = 3.
These are tighter bounds than those obtained earlier by consideration
of the density. Furthermore, they show that the value of c� cannot
be determined by d� alone, as 3-SAT and 2-4-4-SAT have the same
density, but it is known theoretically that c3 > 3, whilst c� � 3
for 2-4-4-SAT. We can also observe that c� � min�(k)>0 ck . This
bound takes no account of �(k) except in being non-zero. Thus for
both 2-3-SAT and 2-4-4-SAT we derive only c� � c2 = 1.
Neither of the above bounds, or the bound obtained earlier, give
good predictions for c� in the cases we have tested. We would like
to have a formula for c� in terms of � and its constituent ck . An
intuitively appealing possibility is that c� is given by the weighted
parallel sum of the constituent ck . The intuition behind this conjec-
ture is that ck:N clauses of length k are “equivalent” in terms of
preventing a truth assignment being a model as c2:N binary clauses.
Thus, as c2 = 1, a clause of length k is ck times less effective at fil-
tering out models as a binary clause. At the crossover, there are c�:N
clauses of which �(k):c�:N are of length k. These clauses contrib-
ute to defeating possible models the same as �(k):c�:N=ck binary
clauses. In total, we need an effective contribution from all clauses
which is the same as the combined effect of N binary clauses. Thus,�(2):c� :Nc2 + �(3):c� :Nc3 + �(4):c� :Nc4 + : : : = N or1c� = �(2) + �(3)c3 + �(4)c4 + : : : (2)

A physical analogy is that of electrical resistance. A set of clauses of
length k offer some “resistance” to whether a truth assignment is a

model. The total resistance of a mixed SAT problem is the “sum” of
the resistances of the sets of clauses of different lengths. We take the
parallel sum since a truth assignment can be defeated by any of the
sets independently.
This conjecture obeys all the firm bounds derived in this paper, very
easily the two bounds derived in this section. Some tedious manipu-
lation shows that the parallel sum also obeys the bound given by (1).
Furthermore, the values it predicts seem to be close to those derived
earlier in this paper from our experimental analysis. Using the val-
ues, c2 = 1; c3 � 4:24, c4 � 9:76, we get the following results. For
calculating c� for CP, we approximate ck for k � 5 using (1). The
slight error between observed and predicted c� might be explained
by interactions between clauses of different lengths.

Predicted c� Observed c�
2-3-SAT 1:62 1:76
3-4-SAT 5:91 5:88
2-4-4-SAT 2:49 2:74
CP 2:67 2:80

7 Conjectures about Scaling
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Figure 6. Scaling of 4-SAT, �c = 9:76, v = 1:25
Phase transitions occur frequently in natural systems. One of the
most unusual and theoretically interesting systems is that of spin
glasses. Each of the N atoms in a spin glass has a magnetic spin
which can have only one of two values, ‘up’ or ‘down’. The system
therefore has 2N possible configurations. Macroscopic properties of
a configuration (eg. the energy, entropy) depend only on interactions
between the spins of nearest neighbours. Due to the differences in
separation of the atoms, some of these interactions are ferromagnetic
(promoting alignment of spins) whilst others are anti-ferromagnetic
(promoting opposite spins). The net effect is a random force leading
to a large number of equilibrium configurations. An analogy can be
made between such spin glasses and random k-SAT. Each of theN variables in a truth assignment has one of two values, ‘True’ or
‘False’. The system therefore has 2N possible configurations. Mac-
roscopic properties (eg. satisfiability) depend only on the interaction
between variables in each clause. Due to the random polarities of
these variables, the net effect on a variable is a random “preference”
towards ‘True’ or ‘False’. [14] have used this analogy to suggest a
fascinating scaling result for random k-SAT. They propose that for
random k-SAT, there is a fundamental function f , and values�c andv, such thatProb(sat;Rk(N;L)) = f((L=N � �c)N1=v) (3)f can be estimated experimentally and used to give accurate pre-
dictions of the value Prob(sat;Rk(N;L)). For 3-SAT, [14] report�c = 4:15, v = 1:5. Their value for �c is slightly lower than recent
experimental values of c3 [4].
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A restatement of (3) is that all graphs of Prob(sat;Rk(N;L)) will
be identical if the x-ordinate used is (L=N � �c)N1=v . Figure 6
shows our experimental data for 4-SAT for N = 25; 50; 75, scaled
in this way. For convenience, we have multiplied the x-ordinate by100�1=v , and added �c so that the values on the x-axis give the
equivalent value of L at N = 100. The dashed line gives the point�c. By trial and error, we found a good fit using �c = 9:76, our
experimentally observed value of c4, and v = 1:25. Indeed, the
curves are never more than 0:08N apart. We have also looked at
problems generated from the random mixed SAT model. Figure 7
shows data for 2-3-SAT for N = 50, 100, 150, 200 using �c = 1:76
and v = 2:5. We tested 500 problems in steps of N=50 clauses. The
curves are never more than 0:06N apart. For 2-4-4-SAT, for N up
to 150, we observed a good fit using � = 2:74, v = 3:5. These
graphs suggest that Kirkpatrick et al’s conjecture can be extended
from random k-SAT to random mixed SAT.
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Figure 7. Scaling of 2-3-SAT, �c = 1:76, v = 2:5
8 Related Work

Phase transitions are attracting increasing attention in AI. Huberman
and Hogg [12] predict that many large scale systems will undergo
sudden phase transitions that affect computational performance.They
show, for example, that a simple model of heuristic search changes
from linear to exponential behaviour at a phase boundary.Cheeseman
el al. [1] observed that many NP-hard problems have an order para-
meter, that hard problems occur at a critical value of this parameter,
and that this value separates a region of underconstrained, typically
soluble, problems from a region of overconstrained, typically insol-
uble, problems. Mitchell et al. [15] demonstrated that for random
3-SAT the order parameter is L=N , the ratio of clauses to variables,
and that median performance of DP has an easy-hard-easy pattern
with the hardest median instance occurring at the phase transition.
Crawford and Auton [4] accurately identified the position of the phase
transition for random 3-SAT as L=N = 4:24. [15] also report that
the CP model has an easy-hard-easy pattern for median performance,
but prematurely dismiss CP as being too easy compared with randomk-SAT. Although median performance is easy, worst case perform-
ance is not [8]. The hardest CP problems can be orders of magnitude
harder than the hardest comparably sized random k-SAT problems.

9 Conclusions

We have performed a detailed experimental investigation of the phase
transition for randomly generated SAT problems. The sharp change
from satisfiable to unsatisfiable problems previously observed at a
critical value in random k-SAT problems is also present in the more
general class of random mixed SAT problems, as well as in random
problems generated by the constant probability model. We have used
our experimental results to conjecture the critical value for these

problem classes in terms of the critical values of the constituent k-
SAT classes. Furthermore, we have been able to extend Kirkpatrick
et al’s conjecture on the scaling of transition behaviour to random
mixed SAT.
As with random k-SAT, we have observed an easy-hard-easy pattern
in the median difficulty for random mixed SAT problems, with the
hardest problems being associated with the phase transition. However,
the difficulty of problems of mixed clause lengths is much more
variable than that of random k-SAT problems. Indeed, the hardest
problems of mixed clause lengths can be orders of magnitude harder
than comparably sized problems of fixed clause length. Such very
hard problems tend to occur in otherwise easy regions where most
problems are satisfiable. These results are of considerable value both
to experimental and theoretical AI since the empirical comparison of
algorithms for NP-hard problems and average-case analyses requires
the identification of hard instances of randomly generated problems.
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