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Abstract. The constraint satisfaction community has developed a number
of heuristics for variable ordering during backtracking search. For example,
in conjunction with algorithms which check forwards, the Fail-First (FF)
and Brelaz (Bz) heuristics are cheap to evaluate and are generally consid-
ered to be very effective. Recent work to understand phase transitions in
NP-complete problem classes enables us to compare such heuristics over a
large range of different kinds of problems. Furthermore, we are now able
to start to understand the reasons for the success, and therefore also the
failure, of heuristics, and to introduce new heuristics which achieve the suc-
cesses and avoid the failures. In this paper, we present a comparison of the
Bz and FF heuristics in forward checking algorithms applied to randomly-
generated binary CSP’s. We also introduce new and very general heuristics
and present an extensive study of these. These new heuristics are usually
as good as or better than Bz and FF, and we identify problem classes
where our new heuristics can be orders of magnitude better. The result is
a deeper understanding of what helps heuristics to succeed or fail on hard
random problems in the context of forward checking, and the identification
of promising new heuristics worthy of further investigation.

1 Introduction

In the constraint satisfaction problem (CSP) we are to assign values to variables
such that a set of constraints is satisfied, or show that no satisfying assignment
exists. This may be done via a systematic search process, such as depth first
search with backtracking, and this amounts to a sequence of decisions, where a
decision is a choice of variable and value to assign to that variable. The order
in which decisions are made can have a profound effect on search effort. Dechter
and Meiri’s study of preprocessing techniques [3] shows that dynamic search re-
arrangement (DSR), i.e. a variable ordering heuristic that selects as next variable
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the one that has minimal number of values in its domain, dominated all other
static orderings. Here, we present three new dynamic variable ordering (dvo)
heuristics, derived as a result of our studies of phase transition phenomena of
combinatorial problems, and compare these against two existing heuristics.

Tsang, Borrett, and Kwan’s study of CSP algorithms [22] shows that there
does not appear to be a universally best algorithm, and that certain algorithms
may be preferred under certain circumstances. We carry out a similar investi-
gation with respect to dvo heuristics in an attempt to determine under what
conditions one heuristic dominates another.

In the next section we give a background to the study. We then go on to
describe four measures of the constrainedness of CSP’s, and in Section 4 describe
five heuristics, based on these measures. The empirical study is reported in
Section b, the heuristics are then discussed with respect to previous work in
Section 6, and conclusions are drawn in Section 7.

2 Background

A constraint satisfaction problem consists of a set of n variables V', each variable
v € V having a domain of values M, of size m,,, and a set of constraints C'. Each
constraint ¢ € C of arity a restricts a tuple of variables {(v1, ..., v,), and specifies
a subset of M1 x Ms x...x M,, each element of which is a combination of values
the variables are forbidden to take simultaneously by this constraint. In a binary
CSP, which the experiments reported here are exclusively concerned with, the
constraints are all of arity 2. A solution to a CSP is an assignment of a value to
every variable satisfying all the constraints. The problem that we address here
is the decision problem, i.e. finding one solution or showing that none exists.

There are two classes of complete search algorithm for the CSP, namely
those that check backwards and those that check forwards. In algorithms that
checks backwards, the current variable v; is instantiated and checking takes place
against the (past) instantiated variables. If this is inconsistent then a new value
is tried, and if no values remain then a past variable is reinstantiated. In al-
gorithms that check forwards, the current variable is instantiated with a value
and the (future) uninstantiated variables are made consistent, to some degree,
with respect to that instantiation. Chronological backtracking (BT), backmark-
ing (BM), backjumping (BJ), conflict-directed backjumping (CBJ), and dynamic
backtracking (DB) are algorithms that check backwards [11, 5, 6, 10], whereas
forward checking (FC) and maintaining arc-consistency (MAC) are algorithms
that check forwards [13, 18]. This study investigates only forward checking al-
gorithms, and in particular forward checking combined with conflict-directed
backjumping (FC-CBJ) [15].

Algorithm FC instantiates variable v; with a value z; and removes from the
domains of future variables any values that are inconsistent with respect to that
instantiation. If the instantiation results in no values remaining in the domain
of a future variable, then a new value is tried for v; and if no values remain for
v; (i.e. a dead end is reached) then the previous variable is reinstantiated (i.e.
chronological backtracking takes place). FC-CBJ differs from FC; on reaching a



dead end the algorithm jumps back to a variable that is involved in a conflict
with the current variable [15].

In selecting an algorithm we will prefer one that takes less search effort
than another, where search effort is measured as the number of times pairs of
values are compared for compatibility, i.e. consistency checks. Generally, checking
forwards reduces search effort, as does jumping back.

The order in which variables are chosen for instantiation profoundly influ-
ences search effort. Algorithms that check backwards tend to use variable order-
ing heuristics that exploit topological parameters, such as width, induced width
or bandwidth, and correspond to static instantiation orders (i.e. they do not
change during search) [21]. Algorithms that check forwards have additional in-
formation at their disposal, such as the current size of the domains of variables.
Furthermore, since domain sizes may vary during the search process, forward
checking algorithms may use dynamic variable ordering (dvo) heuristics [17],
and 1t 1s this class of heuristics that is investigated here.

3 Constrainedness

Many NP-complete problems display a transition in solubility as we increase the
constrainedness of problem instances. This phase transition is associated with
problems which are typically hard to solve [2]. Under-constrained problems tend
to have many solutions and it is usually easy to guess one. Over-constrained
problems tend not to have solutions, and it usually easy to rule out all possible
solutions. A phase transition occurs in between when problems are “critically
constrained”. Such problems are usually difficult to solve as they are neither
obviously soluble or insoluble. Problems from the phase transition are often
used to benchmark CSP and satisfiability procedures [22, 9]. Constrainedness
can be used both to predict the position of a phase transition in solubility [23,
20, 16, 7, 19] and, as we show later, to motivate the construction of heuristics.

In this section, we identify four measures of some aspect of constrainedness.
These measures all apply to an ensemble of random problems. Such measures
may suggest whether an individual problem from the ensemble is likely to be
soluble. For example, a problem with larger domain sizes or looser constraints
is more likely to be soluble than a problem with smaller domains or tighter con-
straints, all else being equal. To make computing such measures tractable, we will
ignore specific features of problems (like the topology of the constraint graph)
and consider just simple properties like domain sizes and constraint tightness.

One simple measure of constrainedness can be derived from the size of prob-
lems in the ensemble. Size is determined by both the number of variables and
their domain sizes. Following [7, 8], we measure problem size via the size of the
state space being explored. This consists of all possible assignments of values to
variables, its size 1s simply the product of the domain sizes, HUEV m, . We define
the size (A) of the problem as the number of bits needed the number of bits
needed to describe a point in the state space, so we have:

N =qer Z log., m, (1)

veEV



A large problem is likely to be less constrained and has a greater chance of being
soluble than a small problem with the same number of variables and constraints
of the same tightnesses.

A second measure of constrainedness is the solution density of the ensemble.
If the constraint ¢ on average rules out a fraction p. of possible assignments,
then a fraction 1 — p, of assignments are allowed. The average solution density,
p 18 the mean fraction of assignments allowed by all the constraints. The mean
solution density over the ensemble is,

p= H(l_pc) (2)

ceC

Problems with loose constraints have high solution density. As noted above, all
else being equal, a problem with a high solution density is more likely to be
soluble than a problem with a low solution density.

A third measure of constrainedness is derived from the size and solution den-
sity. F(N), the expected number of solutions for a problem within an ensemble
is simply the size of the state space times the probability that a given element
in the state space is a solution. That is,

E(Ny=p2V = T mo x [J(1=p0) (3)

veV ceC

If problems in an ensemble are expected to have a large number of solutions, then
an individual problem within the ensemble is likely to be loosely constrained and
to have many solutions.

The fourth and final measure of constrainedness, & is again derived from
the size and solution density. This has been suggested as a general measure
of the “constrainedness” of combinatorial problems [8]. Tt is motivated by the
randomness with which we can set a bit in a solution to a combinatorial problem.
If k 1s small, then problems typically have many solutions and a given bit can
be set more or less at random. For large &, problems typically have few or no
solutions and a given bit is very constrained in how it can be set. & is defined

by,

K =der 1 _ logZ(f/(N)) (4)
__logs(p)
N
= cec log(l —p.)
> ey log(m,) ®

If K < 1 then problems have a large expected number of solutions for their
size. They are therefore likely to be under-constrained and soluble. If £ > 1
then problems have a small expected number of solutions for their size. They
are therefore likely to be over-constrained and insoluble. A phase transition in
solubility occurs inbetween where x & 1 [8]. This is equivalent for CSPs to the
prediction made in [19] that a phase transition occurs when E(N) = 1.



4 Heuristics for Constrainedness

Many heuristics in CSPs branch on what can often be seen as an estimate of
the most constrained variable [8]. Here, we describe two well known heuristics
for CSPs and three new heuristics. We use the four measures of constrained-
ness described above. These measures were defined for an ensemble of problems.
Each measure can be computed for an individual problem, but will give only
an estimate for the constrainedness of an individual problem. For example, an
insoluble problem has zero solution density and this may be very different from
the measured value of p. Even so, such measures can provide both a good indi-
cation of the probability of a solution existing and, as we show here, a heuristic
estimate of the most constrained variable.

Below, we adopt the following conventions. When a variable v; is selected as
the current variable and instantiated with a value, v; 1s removed from the set of
variables V| constraint propagation takes place, and all constraints incident on
vy, namely Cy, are removed from the set of constraints C'. Therefore V is the set
of future variables, C' is the set of future constraints, m; is the actual size of the
domain of v; € V after constraint propagation, p. is the actual value of constraint
tightness for constraint ¢ € C' after constraint propagation, and Cj is the set of
future constraints incident on wv;. All characteristics of the future subproblem
are recomputed and made available to the heuristics as local information.

4.1 Heuristic FF

Haralick and Elliott [13] proposed the fail-first principle for CSPs as follows: “To
succeed, try first where you are most likely to fail.” The reason for attempting
next the task which is most likely to fail is to encounter dead-ends early on and
prune the search space. Applied as a constraint ordering heuristic this suggests
that we check first the constraints that are most likely to fail and when applied
as a variable ordering heuristic, that we choose the most constrained variable.
An estimate for the most constrained variable is the variable with the smallest
domain. That is we choose v; € V' such that m; is a minimum.

An alternative interpretation of this heuristic is to branch on v; such that we
maximize the size of the resulting subproblem, without considering the constraint
information on that variable. That is, choose the variable v; € V' that maximizes

> log(my) (6)
VEV —vy
where V' — v; is the set of future variables with v; removed, and is the same as
selecting the variable v; which maximizes the denominator of equation (5).

4.2 Heuristic Bz

The Brelaz heuristic (Bz) comes from graph colouring [1]; we wish to find a
colouring of the vertices of a graph such that adjacent vertices have different
colours. Given a partial colouring of a graph, the saturation of a vertex is the
number of differently coloured vertices adjacent to it. A vertex with high satura-
tion will have few colours available to it. The Bz heuristic first colours a vertex of



maximum degree. Thereafter Bz selects an uncoloured vertex of maximum sat-
uration, tie-breaking on the degree in the uncoloured subgraph. Bz thus chooses
to colour next what is estimated to be the most constrained vertices.

When applying Bz to a CSP we choose the variable with smallest domain size
and tie-break on degree in the future subproblem. That is, choose the variable
with smallest m; and tie-break on the variable with greatest future degree |C;|. In
a fully connected constraint graph, Bz will behave like FF| because all variables
have the same degree.

4.3 Heuristic Rho

The Rho (p) heuristic branches into the subproblem that maximizes the solution
density, p. The intuition is to branch into the subproblem where the greatest
fraction of states are expected to be solutions. To maximize p, we select the
variable v; € V that maximizes

1 a-») 7
ceC—-C;

where C' — C; is the set of future constraints that do not involve variable v;, and
(1 —pc) is the looseness of a constraint. If we express (7) as a sum of logarithms,
> cec—c, log(1—p.), then this corresponds to selecting a variable that minimizes
the numerator of (5). Expression (7) gives an estimate of the solution density
of the subproblem after selecting v;. More concisely (and more computationally
efficient), we choose the future variable v; that minimizes

[Ta-» )
ceC;
This is the variable with the most and/or tightest constraints. Again, we branch
on an estimate of the most constrained variable.

4.4 Heuristic E(N)

The E(N) heuristic branches into the subproblem that maximizes the expected
number of solutions, E(N). This will tend to maximize both the subproblem
size (the FF heuristic) and its solution density (the Rho heuristic). Therefore,
we select a variable v; € V that maximizes

H My X H (1 - pc) (9)
vEV —vu; ceC-C4
where V — v; is the set of future variables with v; removed, and C'— Cj is the set

of future constraints that do not involve variable v;. This can be more succinctly
(and efficiently) expressed as choose the variable v; € V' that minimizes

mi T (1= p2) (10)
ceC;

The E(N) heuristic has an alternative, intuitively appealing, justification.
Let N be the number of solutions to the current subproblem. At the root of
the tree, N is the total number of solutions to the problem. If N=0, the current
subproblems has no solutions, and the algorithm will at some point backtrack.



If N=1, the current subproblem has exactly one solution, and N will remain
constant on the path leading to this solution, but be zero everywhere else. As we
move down the search tree, N cannot increase as we instantiate variables. The
obvious heuristic is to maximize N in the future subproblem. We use E(N) as
an estimate for N, so we branch into the subproblem that maximizes E(N). And
this is again an estimate for the most constrained variable, as loosely constrained
variables will tend to reduce N most. Consider a loosely constrained variable v;
that can take any value in its domain. Branching on this variable will reduce N
to N/m;. Tightly constrained variables will not reduce N as much.

4.5 Heuristic Kappa

The Kappa heuristic branches into the subproblem that minimizes . Therefore,
select a variable v; € V that minimizes

- ZCEC—C, log(1 - p.)
Z’UEV—’U, log(mv)

Let « be the numerator and § be the denominator of equation (5), the defi-
nition of k. That is, o = =3 _log(1 —p.) and g =}~ _y log(m,). Then we
select a variable v; € V such that we maximize the following

a+ ZCEC, log(1 - p.)
3 — log(mi)
This heuristic was first suggested in [8] but has not yet been tested extensively

on a range of CSPs, and depends on the proposal in [8] that x captures a notion
of the constrainedness of an ensemble of problems. We assume that & provides

(11)

(12)

an estimate for the constrainedness of an individual in that ensemble. We again
want to branch on a variable that is estimated to be the most constrained,
giving the least constrained subproblem. We estimate this by the subproblem
with smallest x. This suggests the heuristic of minimizing .

4.6 Implementing the heuristics

We use all the above heuristics with the forward checking algorithm FC-CBJ.
After the current variable has successfully been assigned a value (i.e. after domain
filtering all future variables have non-empty domains), the constraint tightness
is recomputed for any constraint acting between a pair of variables, v; and vz,
such that values have just been removed from the domain of v; or vz, or both. To
compute constraint tightness p. for constraint ¢ acting between variables v; and
v we count the number of conflicting pairs across that constraint and divide by
the product of the new domain sizes. This counting may be done via consistency
checking and will take m; x my, checks. Constraint tightness will then be in the
range 0 (all pairs compatible) to 1 (all pairs are conflicts). When computing the
sum of the log looseness of constraints (i.e. the numerator of equation (5)), if
pe = 1 a value of —oo is returned. Consequently, the Kappa heuristic will select
variable v; or v; next, and the instantiation will result in a dead end.



In the FF heuristic the first variable selected is the variable with smallest
domain size, and when all variables have the same domain size we select first the
lowest indexed variable v;. For the Bz heuristic safuration is measured as the
inverse of the domain size; i.e. the variable with smallest domain size will have
largest saturation. Consequently, when the constraint graph is a clique FF and
Bz will have identical behaviours.

Search costs reported in this paper do not include the cost in terms of con-
sistency checks of recomputing the constraint tightness. This overhead makes
some of the heuristics less competitive than our results might suggest. However,
our main concern here is to establish sound and general principles for selecting
variable ordering heuristics. In the future, we hope to develop book-keeping tech-
niques and approximations to the heuristics that reduce the cost of re-computing
or estimating the constraint tightness but which still give good performance.

5 The Experiments

The experiments attempt to identify under what conditions one heuristic is bet-
ter than another. Initially, experiments are performed over uniform randomly
generated CSP. In a problem {n,m, p1,p2) there will be n variables, with a uni-
form domain of size m, ’u”'zn—_l) constraints, and exactly pam?® conflicts over
each constraint [16, 19]. This class of problem is then modified such that we
investigate problems with non-uniform domains and constraint tightness.

When plotting the results, problems will be measured in terms of their con-
strainedness, x. This is because in some experiments we vary the number of
variables and keep the degree of variables v constant, vary the tightness of con-
straints ps, and so on. By using constrainedness we hope to get a clear picture of
what happens. Furthermore, in non-uniform problems constrainedness appears
to be one of the few measures that we can use. It should be noted that in the
experiments the complexity peak does not always occur exactly at k = 1, and
that in sparse constraints graphs the peak tends to occur at lower values of &,
typically in the range 0.6 to 0.9. This has been observed empirically in [16], and
an explanation is given by Smith and Dyer [19].

In all of the graphs we have kept the same line style for each of the heuristics.
The labels in the graphs have then been ordered, from top to bottom, to corre-
spond to the ranking of the heuristics in the phase transition. The best heuristic
will thus appear first.

5.1 Uniform Problems, Varying Constraint Graph Density p,

The aim of this experiment is to determine how the heuristics are affected as
we vary the number of constraints within the constraint graph. The experiments
were performed over problems with 20 variables, each with a domain size of 10.
In Figure 1, we plot the mean performance for sparse constraint graphs? with
p1 = 0.2, maximally dense constraint graphs with p; = 1.0 and constraint graphs
of intermediate density p; = 0.5. At each density 1,000 problems were generated
at each possible value of py from 0.01 to 0.99 in steps of 0.01.

* Disconnected graphs were not filtered out since they had little effect on performance.
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Fig.1. Mean performance of heuristics for (20, 10)

For sparse constraint graphs (see Figure 1(a)), Bz performs best, whilst E(N)
and Kappa are not far behind. Rho is significantly worse and FF even more so.
Analysing the distribution in performance (graphs are not shown) e.g. the me-
dian, 95% and higher percentiles, we observed a similar ranking of the heuristics
with the differences between the heuristics opening up in the higher percentiles in
the middle of the phase transition. As problems become more dense at p; = 0.5
(see Figure 1(b)) Kappa dominates E(N). Rho and FF continue to perform
poorly, although FF does manage to overtake Rho.

For complete graphs with p; = 1.0 (see Figure 1(c)), Bz and FF are identical,
as expected. (The contour for FF overwrites the Bz contour.) For uniform and
sparse problems, Bz seemed to be best, whilst for uniform and dense problems,
Kappa or E(N) would seem to be best.

For comparison with the dynamic variable ordering heuristics, in Figure 1(d)
we also plot the mean performance of FC-CBJ with a static variable ordering:
variables were considered in lexicographic order. Performance is much worse
with a static ordering than with any of the dynamic ordering heuristics, even on
the relatively easy sparse constraint graphs. The secondary peaks for the static
variable ordering at low k occur as a result of ehps [20], occasional “exceptionally
hard” problems that arise following poor branching decisions early in search [9].
The worst case outside the phase transition was more than 14 million checks at
k = 0.46, in a region where 100% of problems were soluble. This was 5 orders of



magnitude worse than the median of 288 checks at this point.

5.2 Uniform Problems, Varying Number of Variables n
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Fig. 2. Mean performance for FC-CBJ + heuristics for (n, 10) with ¥ =5

The aim of this experiment is to determine how the heuristics scale with
problem size. At first sight, this can be simply done by increasing the number
of variables n, while keeping all else constant. However, if n increases while p; is
kept constant the degree v of a variable (i.e. the number of constraints incident
on a variable) also increases. To avoid this, we vary p; with n such that average
degree ¥ remains constant at 5, similar to [12]. To observe a phase transition,
1,000 problems were then generated at each possible value of py from 0.01 to
0.99 in steps of 0.01.

In Figure 2, we plot the performance of each heuristic as we increase n. In
Figures 2(a) and (b), we show the mean performance for n = 30 and n = 50
respectively. The ranking of the heuristics remains the same as in the previous
experiment for constraint graphs of intermediate density. Though not shown, we
observed similar behaviour in the distribution of performance (e.g. median, 95%
and higher percentiles). As before, the differences between the heuristics tend to
open up in the higher percentiles in the middle of the phase transition.



In Figure 2(c) we plot the peak in average search effort in the phase transition
region for each value of n. This then gives a contour showing how search cost
increases with n, for this class of problem. The Figure suggests that Bz, Kappa
and E(N) scale in a similar manner. Using a least square linear fit on the limited
data available, we conjecture that E(N) would become better than Bz when
n > 90, and Kappa would do likewise when n > 164. Further empirical studies
on larger problems would be needed to confirm this. However, Rho and FF
appear to scale less well. The gradients of Figure 2(c) suggests that FF and Rho
scale with larger exponents than Bz, Kappa and E(N).

5.3 Problems with Non-Uniform Constraint Tightness

All experiments considered above have constraints generated uniformly. That is,
a single value of ps describes the tightness of every constraint. At the start of
search, every constraint is equally tight, so a good measure of the constrained-
ness of a variable is simply the number of constraints involving this variable
(i.e. the variable’s degree), together with its domain size. Even as we progress
through search and tightnesses vary, this measure should still be reasonably ac-
curate. This might explain why Bz has never been significantly worse in earlier
experiments than Kappa or E(N) which undertake the computationally heavy
overhead of measuring exact constraint tightnesses.

If we are given a problem with significantly varying constraint tightnesses we
must take account of this to measure constrainedness accurately. We therefore
expect that Bz and FF may perform poorly on problems with varying constraint
tightnesses, while the other heuristics should perform well, because they do take
account of constraint tightness. To test this hypothesis, we generated problems
with mainly loose constraints, but a small number of very tight constraints. We
did this by generating problems with a multiple of 5 constraints, and choosing
exactly 20% of these constraints to have tightness p, = 0.8 (i.e. tight constraints)
and the remainder tightness p; = 0.2 (i.e. loose constraints). We expect Bz to
perform poorly on these problems as it will tie-break on the number of constraints
and not the tightness of those constraints (the more significant factor in this
problem class).

We set n = 30 and m = 10, and to observe a phase transition we varied the
constraint graph density, p; from é to 1 in steps of 8—17. Results are plotted in
Figure 3. The 50% solubility point is at x a2 0.64 when p; = %.

Median performance, Figure 3(a), shows that as predicted Kappa and E(N)
do well. Most significantly, Bz is dominated by all except FF. This is the first of
our experiments so far where Bz has been shown to perform relatively poorly.

Figure 3(b) shows the 75th percentiles for the five heuristics (i.e. 75% of
problems took less than the plotted amount of search effort) and Figure 3(d)
shows worst case. We see that at the 75th percentile there is a greater difference
between the heuristics, suggesting a more erratic behaviour from FF and Bz.
Mean performance (Figure 3(c)) and worst case performance (Figure 3(d)) shows
the existence of exceptionally hard problems for FF and Bz. The worst case for
FF was 26,545 million consistency checks at x & 0.39, in a region where 100% of
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Fig. 3. Performance of heuristics on n = 30 and m = 10, with p> = 0.2 for 80% of the
constraints, and p2 = 0.8 for the remainder. Note the different y-scales.

problems were soluble. This was 8 orders of magnitude worse than the median
of 659 checks at this point, and took 87 hours on a DEC Alpha 200%/166.

5.4 Problems with Non-Uniform Domain Size

Unlike the other four heuristics, Rho completely ignores the domain sizes and
its contribution to problem constrainedness. We therefore expect that the Rho
heuristic will do poorly on problems with mixed domain sizes. To test this hy-
pothesis, we generated 20 variable problems, giving each variable a domain of
size 10 with probability 0.5 and a domain of size 20 otherwise. We denote this as
m = {10,20}. To observe a phase transition, we fixed the constraint density p;
at 0.5 and varied py from 0.01 to 0.99 in steps of 0.01, generating 1,000 problems
at each point. We plot the results for mean checks for each of the heuristics in
Figure 4. As predicted, the Rho heuristic performs worse than in the previous
problem classes. This seems to reaffirm the worth of exploiting information on
domain sizes.

6 Discussion

Theory-based heuristics for the binary CSP are presented by Nudel [14], based
on the minimization of a complexity estimate, namely the number of compound
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labels at a given depth in the search tree. Two classes of heuristic are presented,
global and local. Global heuristics fix the instantiation order at the start of
search, whereas local heuristics take account of information made available dur-
ing search, such as actual domain sizes and constraint tightness. Nudel’s local
heuristics are thus dynamic variable ordering (dvo) heuristics. Three dvo heuris-
tics are presented, 102, IOz, and 104. 102 chooses “next below a node, that
variable with minimum number m; of surviving labels after forward checking at
the node”, and is equivalent to FF. Heuristic /O3 tie-breaks 105 by choosing
the variable (with smallest domain) that most constrains future variables, and
has much in common with Bz. 104 stops when any future constraint disallows
all tuples across that constraint. As Nudel says, this is not so much a heuristic
but an algorithmic step. IOy is implicit in heuristics Rho, E(N), and Kappa.

It is interesting to contrast our approach with Nudel’s as both give theory-
based variable ordering heuristics. Nudel gives measures that estimate the size
of the remaining search tree, and then constructs heuristics which seek to min-
imize these estimates. We have not related our measures directly to the search
tree. Instead we have sought to move into areas of the search tree likely to be
unconstrained and therefore have solutions. When one makes certain simplifica-
tions, both approaches can result in the same heuristic such as FF. However, the
detailed relationship between the approaches has not yet been fully analysed.

Feldman and Golumbic [4] applied Nudel’s heuristics to real-world constraint
satisfaction problems. Three heuristics are presented, one for a backward check-
ing algorithm (BT), and two for a forward checking algorithm (FC1 and FC2).
All three heuristics were applied as global /static orderings. Heuristic FC1 selects
v; with minimum m; Hiq(l_pi,j)a where p; ; is tightness of the constraint acting
between v; and future variable v;. This corresponds to a global E(N) ordering.
Heuristic FC2 takes into consideration all constraints, and selects variable v;
with minimum m; H]»#Z»yk#(l — pj k). As far as we can see, there is no corre-
spondence between FC2 and the heuristics presented here. In their experiments
heuristic FC1 dominated FC2 on hard problems.

The new dvo heuristics presented here may be used as global/static vari-



able ordering heuristics. When we have uniform constraint tightness, Rho will
correspond to a reverse maximum cardinality ordering [3], suitable for forward
checking algorithms. If all variables have the same constraint tightness then E(N)
maximizes N (the FF heuristic), and if all variables have the same domain size
E(N) simplifies to maximizing p (the Rho heuristic). Like the E(N) heuristic, the
Kappa heuristic simplifies to maximizing A (the FF heuristic) if all variables
have the same constraint tightness and to maximizing p (the Rho heuristic) if all
variable have the same domain size. Clearly, FF and Bz can be considered as low
cost surrogates of the minimize Kappa heuristic; both attempt to minimize (11)
by maximizing the denominator, and Bz tie-breaks by estimating the numerator
of (11) by assuming all constraints are of the same tightness.

7 Conclusions

Three new variable ordering heuristics for the CSP have been presented, namely
E(N), Rho, and Kappa. These new heuristics are a product of our investigations
into phase transition phenomena in combinatorial problems. The new heuristics
have two properties in common. Firstly, they all attempt to measure the con-
strainedness of a subproblem, and secondly, they attempt to branch on the most
constrained variable giving the least constrained subproblem. The heuristics dif-
fer in how they measure constrainedness, and what information they exploit.

The new heuristics have been tested alongside two existing heuristics, namely
Fail-First (FF) and Brelaz (Bz), and on a variety of uniform and non-uniform
problems, using a forward checking algorithm FC-CBJ. On uniform problems,
the new heuristics perform similarly to each other and dominate FF. Bz was
consistently better on sparse and moderately dense constraint graphs, and was
easier to calculate. As constraint graph density increased to the point of becom-
ing a clique, Bz performance degraded to be the same as FF. With respect to
problem size, the new heuristics appear to scale better than FF and Bz.

Problems with non-uniform constraint tightnesses exposed poor behaviour
from Bz. This was expected, because Bz exploits information from the domain
sizes and topology of the constraint graph, but ignores the tightness of con-
straints. Experiments on problems with non-uniform domains demonstrated that
ignoring information of domain sizes results in poor performance.

In some respects the work reported here might be considered as a first foray
into a better understanding of what makes heuristics work. Further work could
include determining the importance of tie-breaking in the heuristic Bz, compared
to simply choosing the first variable sensibly. Faster substitutes for the heuristics
would allow us to investigate the hypothesis that the new heuristics scale better
than the old. Little has been done to compare the ranking of the new heuristics on
an individual problem basis. We would also like to investigate the performance
of the new heuristics in problems where there is a very large set of different
domain sizes at the start of search.
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