
Local Search and the Number of SolutionsDavid A. Clark1, Jeremy Frank2, Ian P. Gent1,Ewan MacIntyre1, Neven Tomov3, Toby Walsh41 Department of Computer Science, University of Strathclyde,Glasgow G1 1XH, Scotland.Tel: +44 141 552-4400. Fax: +44 141 553 4101.E-mail: fdac,ipg,emg@cs.strath.ac.uk2 Department of Computer Science, University of California at Davis,Davis, CA. 95616, USA.Tel: +1 916 758-5925. E-mail: frank@cs.ucdavis.edu3 Department of Computing & Electrical Engineering, Heriot-Watt University,Edinburgh EH14 4AS Scotland.Tel: +44 131 449 5111. Fax: +44 131 451 3431. E-mail: neven@cee.hw.ac.uk4 IRST, I38100 Trento & DIST, I16145 Genova, Italy.Tel: +39 461 314438. Fax: +39 461 810851. E-mail: toby@itc.itAbstract. There has been considerable research interest into the sol-ubility phase transition, and its e�ect on search cost for backtrackingalgorithms. In this paper we show that a similar easy-hard-easy patternoccurs for local search, with search cost peaking at the phase transition.This is despite problems beyond the phase transition having fewer solu-tions, which intuitively should make the problems harder to solve. Weexamine the relationship between search cost and number of solutionsat di�erent points across the phase transition, for three di�erent localsearch procedures, across two problem classes (CSP and SAT). Our �nd-ings show that there is a signi�cant correlation, which changes as wemove through the phase transition.Keywords: computational complexity, constraint satisfaction,propositional satis�ability, search1 IntroductionLocal search has been proposed as a good candidate for solving the \hard" butsoluble problems that turn up at the phase transition in solubility for satis�a-bility and constraint satisfaction problems. The position of such a phase tran-sition appears to be strongly determined by the expected number of solutions[21, 19, 7, 8]. Recent theoretical analysis has shown that large variances in thenumber of solutions can occur at the phase transition [11]. In addition, empiricalanalysis has shown phase transitions can occur when the expected number ofsolutions is signi�cantly larger than 1 [19]. These results may be important forunderstanding performance of local search procedures as they might be expectedto be strongly in
uenced by the number of solutions. If there are many solutions,



local search may stumble on one easily. On the other hand, local search may alsobe led in con
icting directions by di�erent solutions.In this paper we show that, across a range of problem classes and local searchprocedures, the hardest problems occur (as for complete systematic algorithms)at the phase transition in solubility. This is despite the fact that problems be-yond the phase transition can have fewer solutions. Problem di�culty across thephase transition is, however, a�ected by the number of solutions. We identify acorrelation between number of solutions and problem hardness for local search.We show this correlation is robust across problem class and types of local searchprocedure, and across the phase transition. The number of solutions is not theonly factor, since we identify signi�cant variation in problem hardness whenthis is held constant. These results are likely to be of considerable importancefor understanding phase transition behaviour in local search procedures and forbenchmarking such procedures.2 Background2.1 SATPropositional satis�ability (or SAT) is the problem of deciding if there is anassignment of truth values for the variables in a propositional formula that makesthe formula true using the standard interpretation for logical connectives. Wewill consider SAT problems in conjunctive normal form (CNF); a formula, �in CNF is a conjunction of clauses, where a clause is a disjunction of literals,and a literal is a negated or un-negated variable. In k-SAT problems, all clausescontain exactly k literals. Both SAT and k-SAT (for k � 3) are NP-complete[6]. As is usual [14], we will generate random k-SAT problems with n variablesand l clauses, by picking k variables out of the n possible for each clause, andthen negating each variable with probability 12 .2.2 CSPA constraint satisfaction problem (CSP) consists of a set of n variables and aset of constraints. Each variable v has a domain, Mv of size mv. Each k-aryconstraint restricts a k-tuple of variables, (v1; :::vk) and speci�es a subset ofM1 � ::: � Mk, each element of which are values that these variables cannotsimultaneously take. We consider here binary CSPs in which constraints areonly between pairs of variables. As in previous studies [19, 7], we will generatebinary CSPs with n variables each with domain m, constraint density p1, andconstraint tightness p2, by picking exactly p1n(n � 1)=2 out of the n(n � 1)=2possible binary constraints between variables. For each selected constraint, wedisallow exactly p2m2 of the m2 possible pairs of values of the two variables.2.3 Phase TransitionsMany NP-complete problems like satis�ability and constraint satisfaction, dis-play a rapid transition in solubility as we increase the constrainedness of random



problem instances. This phase transition is associated with problems which aretypically hard to solve for backtracking procedures [2]. Problems that are under-constrained tend to have many solutions. It is usually therefore very easy toguess one of the solutions. Problems that are over-constrained tend not to haveany solutions. As there are many constraints, any possible solution is usuallyquickly ruled out. At an intermediate point, problems are critically constrained:out of a random sample some will be soluble and some not, and it is usuallyhard to either �nd a solution or to prove that none exists. Many investigationshave studied phase transition behaviour in backtracking algorithms, in problemssuch as SAT (e.g. [14, 3]), CSP [7, 16, 19], Hamiltonian circuits [2, 5], and thetraveling salesman problem (e.g. [8]).A uniform treatment of phase transitions in combinatorial problems has re-cently been presented in [8], formalising the notion of `constrainedness'. Givenan ensemble of problems, the constrainedness is de�ned by,� =def 1� log2(< Sol >)N (1)where < Sol > is the expected number of solutions for a problem in the ensemble,and N is the number of bits needed to write down a solution, i.e. the base 2logarithm of the size of the state space. � lies in the range [0;1). If � � 1problems are under-constrained and likely to soluble, if � � 1 problems areover-constrained and likely to be insoluble, and if � � 1 problems are criticallyconstrained and may be soluble or insoluble.As in [8] we plot most of our results against the constrainedness, � of probleminstances. This allows phase transitions in di�erent classes such as SAT and CSPto be directly compared. Furthermore, such comparisons are directly related tothe number of solutions since,log2(< Sol >) = N (1� �) (2)For random k-SAT problems, N = n and � = � log2 (1� 2�k)l=n [8]. Thisis a constant multiplied by the familiar parameter l=n [14]. For the familiarcase of k = 3, i.e. 3-SAT, the multiplier is log2(8=7) = 0:192 : : : Note that theprediction of a phase transition at � = 1 is equivalent to l=n = 5:19 : : : Thefact that the actual phase transition is observed at l=n � 4:3, i.e. � � 0:83, isindicative of the fact that in 3-SAT the expected number of solutions at the phasetransition grows as approximately 20:17n. For randomCSPs, N = n log2(m) and� = n�12 p1 logm( 11�p2 ) [7].Despite the extensive literature of phase transitions in backtracking search,there has been little analysis of phase transitions in local search. This is perhapsbecause phase transition behaviour is usually associated with the transition fromsoluble to insoluble problems, and local search procedures can only solve solubleproblems. It might therefore appear that phase transitions will not be observedwith local search procedures. We can, however, conduct experiments on thesoluble phase of the ensemble. By `soluble phase', we mean those problems in anensemble which are soluble, no matter what the generation parameters are. To



study the soluble phase, we generated problems at random as described above,and then used a complete backtracking algorithm to eliminate insoluble problemsfrom the ensemble.2.4 Local Search ProceduresLocal search procedures start with an initial assignment of values to the vari-ables. They then explore their \local neighbourhood" for \better" assignments.The local neighbourhood usually consists of those assignments where the value ofone variable is changed. A \score" function is applied to determine which neigh-bour to move towards. In SAT, we use the number of satis�ed clauses. In CSP,we use the number of satis�ed constraints. Hill-climbing is used in the GSATand min-con
icts procedures to maximize the score. Other procedures use morecomplex procedures for selecting neighbours. For example, the MC-log proce-dure chooses a neighbour probabilistically according to the relative ranking ofthe scores. Local procedures can, of course, be trapped in local maxima. Varioustechniques have been developed to overcome this. For example, GSAT simplyrestarts from a new point in the state space. By comparison, procedures likeMC-log and simulated annealing allow score-decreasing moves with a certainprobability. The experiments in this paper use three local search procedures:GSAT, a CSP analogue of GSAT called GCSP, and a min-con
icts algorithmfor CSPs called MC-log.GSAT [18] is a local search procedure for SAT which begins with a randomgenerated initial truth assignment, then hill-climbs by reversing or \
ipping" theassignment of the variable which increases the number of satis�ed clauses themost. After a �xed number, MaxFlips, of moves, search is restarted from a newrandom truth assignment. Search continues until we �nd a model or we haveperformed a �xed number, MaxTries, of restarts.GCSP [20] is an analogous procedure to GSAT for CSPs. It begins with arandom generated assignment of values to variables, then hill-climbs by �ndinga new variable-value assignment which increases the number of satis�ed con-straints the most. After a �xed number, MaxChanges, of moves (exactly analo-gous to MaxFlips in GSAT), search is restarted from a new random assignment.Search continues until we �nd a solution or we have performed a �xed number,MaxTries, of restarts.MC-log is based on min-con
icts hill-climbing [13] but with an ability toescape local maxima.UnlikeGCSP,MC-log does not consider all variables, butinstead selects randomly a variable in con
ict with some constraint. The localneighbourhood for this variable consists of alternative values for it. Unlike min-con
icts hill-climbing,MC-log does not select the neighbour which minimizesthe number of con
icts, but ranks all neighbours according to their min-con
icts`score', and selects one probabilistically. Changing the value of this variable iscalled a `repair'. The selection function is logarithmic, so the `best' value ischosen most often, but not exclusively as with min-con
icts5. The number of5 More precisely, we pick the ith ranked value where i = int(log2(1=r)=w) and r is a



con
icts can therefore occasionally increase, enabling the procedure to escapefrom local maxima.3 Phase Transitions and Local SearchWe �rst investigate the performance of local search as we vary the number ofsolutions for a �xed size of problem. Naively, one might think that problemswill get monotonically harder as we decrease the number of solutions since wemust search for an ever smaller number of needles in a haystack. However, eventhough all the problems tested are soluble, behaviour is a�ected by the solubilityphase transition. Indeed, the hardest problems for local search seem to occur atthe same point as the hardest problems for complete search, namely at the phasetransition in solubility. In this paper, we take this to be the point in the phasespace where 50% of problems are soluble and 50% insoluble. This point is oftenassociated with the hardest mean search cost for backtracking algorithms [3].3.1 MC-LOGIn Fig 1 (left), we present results forMC-log on 1000 solubleCSPs with n = 20,m = 10, and p1 = 0:5, and p2 varying from 0.32 to 0.42, corresponding toa range of � from 0.80 to 1.12. We plot search cost (the number of repairs)against the constrainedness, �. The phase transition in solubility starts at � =0:89 where 99.1% of problems generated are soluble6, the nearest point to 50%solubility is at � = 0:95 where 57.0% are soluble, and our graphs extend toregions where very few problems are soluble. At � = 1:12, only 1.2% of problemshad solutions. The peak in median search cost is at � = 0:99 while the peak inmean search cost is slightly earlier at � = 0:95. Surprisingly, at larger values of �,the search cost decreases even though the average number of solution is declining.As with complete procedures, the peak average search cost is associated withthe solubility phase transition.Similar results are obtained if we study CSPs with di�erent constraint den-sities. In Fig 1 (right), we vary p2 and plot median search cost for p1 = 0:30 top1 = 1:00, i.e. complete constraint graphs. As p1 increases the phase transitionoccurs at smaller values of p2. In all cases the peak median search cost is within0.01 of the value of p2 where 50% of problems are soluble. For comparison ofdi�erent problem classes, we also plot our data against � instead of p2, as in Fig1. As the constraint density, p1 increases the peak search cost (and solubilitytransition) occurs nearer to the expected value of � = 1. As p1 increases, themean search cost at the phase transition increases, and by (2), the expectednumber of solutions decreases. This suggests a correlation between the averagenumber of solutions and search cost at the phase transition. However the pictureis not clear, since at a �xed � there is a �xed expected number of solutions, yetthe search cost varies by a large factor for di�erent p1.random number in [0;1] and w is some �xed weighting.6 Recall, that we simply discard insoluble problems.



We draw two conclusions from this data. First, we observe an `easy-hard-easy'pattern of problem di�culty. The hard region is associated with the solubilityphase transition, despite the fact that as we make problems more constrained,they have fewer solutions. This is consistent with the results of [14, 19] forbacktracking algorithms applied to soluble problems. Second, there is some cor-relation between peak search cost and expected number of solutions at the phasetransition.
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Fig. 1. (left) Search cost for MC-log on (20,10,0.5) problems as p2 varies, plottedagainst kappa. (right) Median search cost for MC-log on (20,10,p1) problems.3.2 GCSPTo determine if the results of Section 3.1 are speci�c to the MC-log procedure,we re-ran the experiment reported in Fig 1 (left) using the local search procedureGCSP. To minimise variation, we tested GCSPwith the identical problems usedwithMC-log. We set MaxChanges to 500 and ran until problems where solved,i.e. we e�ectively set Max-Tries to in�nity.7 We plot total changes used byGCSPagainst � in Fig 2 (left). Total changes is calculated as MaxChanges times thenumber of failed tries, plus the number of Changes on the �nal try, and gives ameasure of search cost for GCSP.Behaviour is broadly similar to that seen with MC-log even though theseprocedures have signi�cant di�erences. GCSP uses restarts instead of proba-bilistic acceptance to avoid local maxima. In addition, GCSP makes a globalchoice of the best variable-value assignment rather than a local choice of valuefor a selected variable.7 Two of the authors implemented GCSP independently and observed very similarresults.
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4 Search Cost and Number of SolutionsIn the last section, we suggested that naively one expects problems to get mono-tonically harder for local search as the number of solutions decreases. To deter-mine how true this is, in Fig 3 we give scatter plots of search e�ort for MC-log(log10(repairs) to �nd a solution) against log10(number of solutions). Inevitablywe must investigate comparatively small problem sizes such as n = 20 as other-wise the exhaustive search to �nd all solutions becomes prohibitive. Each datapoint reported is the mean of 10 runs ofMC-log to solve an individual problem.In Fig 3 (left), we give a scatter plot for all problems in the soluble phase.At large numbers of solutions, this is a close correlation between the number ofsolutions and the search cost, and the spread in search costs is relatively small.The overall shape of Fig 3 (left) suggests a linear correlation between the lognumber of solutions and log search cost. We performed linear regression on thisdata, �nding a best �t gradient of �0:31 with a correlation coe�cient r of �0:79.At small number of solutions, however, the spread is huge, up to nearly 3 ordersof magnitude. This suggests that search cost is not simply a function of thenumber of solutions.We obtain a better picture of behaviour if we look at �xed points in the phasespace. In Fig 3 (right), we give a scatter plot for problems with a low constrainttightness (p2 = 0:32), in Fig 4 (left), problems from the middle of the phasetransition (p2 = 0:37), and in Fig 4 (right), problems with a large constrainttightness (p2 = 0:42). At each point, there is less overall spread in the searchcost for a given number of solutions than seen in Fig 3 (left). We performedregression analysis at each point separately, and the resulting lines are shown.At p2 = 0:32 we estimated a gradient of �0:36 with r = �0:56, at p2 = 0:37, weestimated a gradient of �0:61 with r = �0:70, and at p2 = 0:42, we estimateda gradient of �0:29 with r = �0:28. Notice that the gradient is steepest atthe solubility phase transition. Problems with a low constraint tightness havea large number of solutions and search cost is relatively uniform and small. Atthe phase transition, there is a large variation in the number of solutions. Forproblems with few solutions at the phase transition, search cost tends to be large.Although problems with a larger constraint tightness have a smaller number ofsolutions, search cost for problems with the same number of solutions tends tobe less than at the phase transition. As seen earlier, the overall cost is greatest atthe phase transition. Although there is still considerable variability, the hardestproblems are those from the phase transition with a few solutions.4.1 GCSPTo determine if these results are speci�c to theMC-log procedure, we also madescatter plots for the logarithm of search cost of GCSP against the logarithm ofthe number of solutions. Each data point is the cost of solving an individualproblem once. Fig 5 (left) gives the plot for the middle of the phase transition.The regression line has gradient �0:56 and r = �0:40. Results are very similar toMC-log. Again there is considerable variability, problems with more solutions
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This is shown more clearly in Fig 7 (left), which shows the values of the gradientagainst �. This makes clear that the steepest gradient is at the solubility phasetransition. We interpret this as suggesting that the number of solutions has mostin
uence on search cost at the solubility phase transition.Fig 7 (right) shows how the regression �t gradient changes against �, forp1 = 0:30 to p1 = 1:00. In each case, the minimum gradient (maximum absolutegradient) occurs at or very close to the 50% solubility point on the phase transi-tion. Once again, this suggests that the number of solutions has most in
uenceon search cost at the phase transition.
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behaviour of local search algorithms as the position in the phase space changes.Experimental results for GENET and GSAT applied to random 3-colouring in-stances are reported by [4]. These results are consistent with those reported inSection 3 above, in that search cost reduces beyond the phase transition, andfurther suggest that the results reported here are unlikely to be dependent onthe particular algorithms or classes studied.Gent and Walsh showed that a range of variants of GSAT applied to non-random problems gave good performance on problems with many solutions suchas the n-queens problem, and poor performance on problems with few solutions,for example quasigroup construction problems [10]. They speculated that thenumber of solutions in relation to problem size would be critical in understandinglocal search cost. In this paper we have shown that this speculation is con�rmedwhen random problems are studied, although there are other features whichmust be taken into account such as position in the phase space. This still doesnot yield a full explanation of behaviour, so we wish to research the topology oflocal search in more depth, following studies such as [9, 12].In this paper we have studied three local search algorithms for two di�erentproblem classes. The fact that we see similar results in each case suggests thatour results may well apply to a large number of similar algorithms. However, itremains an interesting question if these results will apply to algorithms such asWSAT [17] which may explore the search space in di�erent ways.8 ConclusionsWe have investigated in depth the relationship between the number of solutionsand search cost for local search procedure. Although there is no single simplestory (for example, search cost is inversely proportional to the solution density),we have identi�ed some important connections. In particular, the hardest prob-lems tend to have few solutions and usually occur (as with complete, systematicalgorithms) at the solubility phase transition. We have shown that there is a sig-ni�cant correlation between the number of solutions and problem hardness forlocal search. This correlation is robust across problem class and types of localsearch procedure, and across the phase transition. The number of solutions is,however, not the only factor determining problem hardness since there is signif-icant variation in problem hardness when the solution density is held constant.These results improve our understanding of phase transition behaviour and ofthe factors a�ecting the performance of local search methods.References1. D. Brelaz. New methods to color the vertices of a graph. Comms. ACM, 22:251{256, 1979.2. P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problemsare. In Proceedings, IJCAI-91, pages 331{337, 1991.
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