Local Search and the Number of Solutions

David A. Clark!, Jeremy Frank?, Ian P. Gent',
Ewan Maclntyre!, Neven Tomov®, Toby Walsh*

! Department of Computer Science, University of Strathclyde,
Glasgow G1 1XH, Scotland.
Tel: +44 141 552-4400. Fax: +44 141 553 4101.
E-mail: {dac,ipg,em }@cs.strath.ac.uk
2 Department of Computer Science, University of California at Davis,
Davis, CA. 95616, USA.
Tel: +1 916 758-5925. E-mail: frank@cs.ucdavis.edu
® Department of Computing & Electrical Engineering, Heriot-Watt University,
Edinburgh EH14 4AS Scotland.
Tel: +44 131 449 5111. Fax: +44 131 451 3431. E-mail: neven@cee.hw.ac.uk
* TRST, 138100 Trento & DIST, 116145 Genova, Italy.
Tel: +39 461 314438. Fax: +39 461 810851. E-mail: toby@itc.it

Abstract. There has been considerable research interest into the sol-
ubility phase transition, and its effect on search cost for backtracking
algorithms. In this paper we show that a similar easy-hard-easy pattern
occurs for local search, with search cost peaking at the phase transition.
This is despite problems beyond the phase transition having fewer solu-
tions, which intuitively should make the problems harder to solve. We
examine the relationship between search cost and number of solutions
at different points across the phase transition, for three different local
search procedures, across two problem classes (CSP and SAT). Our find-
ings show that there is a significant correlation, which changes as we
move through the phase transition.

Keywords: computational complexity, constraint satisfaction,
propositional satisfiability, search

1 Introduction

Local search has been proposed as a good candidate for solving the “hard” but
soluble problems that turn up at the phase transition in solubility for satisfia-
bility and constraint satisfaction problems. The position of such a phase tran-
sition appears to be strongly determined by the expected number of solutions
[21, 19, 7, 8]. Recent theoretical analysis has shown that large variances in the
number of solutions can occur at the phase transition [11]. In addition, empirical
analysis has shown phase transitions can occur when the expected number of
solutions is significantly larger than 1 [19]. These results may be important for
understanding performance of local search procedures as they might be expected
to be strongly influenced by the number of solutions. If there are many solutions,

local search may stumble on one easily. On the other hand, local search may also
be led in conflicting directions by different solutions.

In this paper we show that, across a range of problem classes and local search
procedures, the hardest problems occur (as for complete systematic algorithms)
at the phase transition in solubility. This is despite the fact that problems be-
yond the phase transition can have fewer solutions. Problem difficulty across the
phase transition is, however, affected by the number of solutions. We identify a
correlation between number of solutions and problem hardness for local search.
We show this correlation is robust across problem class and types of local search
procedure, and across the phase transition. The number of solutions is not the
only factor, since we identify significant variation in problem hardness when
this is held constant. These results are likely to be of considerable importance
for understanding phase transition behaviour in local search procedures and for
benchmarking such procedures.

2 Background

2.1 SAT

Propositional satisfiability (or SAT) is the problem of deciding if there is an
assignment of truth values for the variables in a propositional formula that makes
the formula true using the standard interpretation for logical connectives. We
will consider SAT problems in conjunctive normal form (CNF); a formula, ¥
in CNF is a conjunction of clauses, where a clause is a digjunction of literals,
and a literal is a negated or un-negated variable. In k-SAT problems, all clauses
contain exactly k literals. Both SAT and k-SAT (for £ > 3) are NP-complete
[6]. As is usual [14], we will generate random k-SAT problems with n variables
and [clauses, by picking k variables out of the n possible for each clause, and
then negating each variable with probability %

2.2 CSP

A constraint satisfaction problem (CSP) consists of a set of n variables and a
set of constraints. Each variable v has a domain, M, of size m,. Each k-ary
constraint restricts a k-tuple of variables, (v1,...v;) and specifies a subset of
My x ... x My, each element of which are values that these variables cannot
simultaneously take. We consider here binary CSPs in which constraints are
only between pairs of variables. As in previous studies [19, 7], we will generate
binary CSPs with n variables each with domain m, constraint density p;, and
constraint tightness pa, by picking exactly pin(n — 1)/2 out of the n(n — 1)/2
possible binary constraints between variables. For each selected constraint, we
disallow exactly pam? of the m? possible pairs of values of the two variables.

2.3 Phase Transitions

Many NP-complete problems like satisfiability and constraint satisfaction, dis-
play a rapid transition in solubility as we increase the constrainedness of random

problem instances. This phase transition is associated with problems which are
typically hard to solve for backtracking procedures [2]. Problems that are under-
constrained tend to have many solutions. It is usually therefore very easy to
guess one of the solutions. Problems that are over-constrained tend not to have
any solutions. As there are many constraints, any possible solution is usually
quickly ruled out. At an intermediate point, problems are critically constrained:
out of a random sample some will be soluble and some not, and it is usually
hard to either find a solution or to prove that none exists. Many investigations
have studied phase transition behaviour in backtracking algorithms; in problems
such as SAT (e.g. [14, 3]), CSP [7, 16, 19], Hamiltonian circuits [2, 5], and the
traveling salesman problem (e.g. [8]).

A uniform treatment of phase transitions in combinatorial problems has re-
cently been presented in [8], formalising the notion of ‘constrainedness’. Given
an ensemble of problems, the constrainedness is defined by,

log, (< Sol >)
N)

where < Sol > is the expected number of solutions for a problem in the ensemble,
and A is the number of bits needed to write down a solution, i.e. the base 2
logarithm of the size of the state space. x lies in the range [0,00). If ¥ < 1
problems are under-constrained and likely to soluble, if £ > 1 problems are
over-constrained and likely to be insoluble, and if k¥ & 1 problems are critically
constrained and may be soluble or insoluble.

As in [8] we plot most of our results against the constrainedness, x of problem
instances. This allows phase transitions in different classes such as SAT and CSP
to be directly compared. Furthermore, such comparisons are directly related to
the number of solutions since,

K =def 1 —

log,(< Sol >) = N(1 — k) (2)

For random k-SAT problems, N’ = n and &k = —log, (1 — 27%){/n [8]. This
is a constant multiplied by the familiar parameter [/n [14]. For the familiar
case of k& = 3, i.e. 3-SAT, the multiplier is log,(8/7) = 0.192... Note that the
prediction of a phase transition at k = 1 is equivalent to {/n = 5.19... The
fact that the actual phase transition is observed at {/n =~ 4.3, i.e. k & 0.83, is
indicative of the fact that in 3-SAT the expected number of solutions at the phase
transition grows as approximately 2°1™. For random CSPs, N = n log,(m) and
k= 252plog,, (7=5-) [7].

Despite the extensive literature of phase transitions in backtracking search,
there has been little analysis of phase transitions in local search. This is perhaps
because phase transition behaviour is usually associated with the transition from
soluble to insoluble problems, and local search procedures can only solve soluble
problems. It might therefore appear that phase transitions will not be observed
with local search procedures. We can, however, conduct experiments on the
soluble phase of the ensemble. By ‘soluble phase’, we mean those problems in an
ensemble which are soluble, no matter what the generation parameters are. To

study the soluble phase, we generated problems at random as described above,
and then used a complete backtracking algorithm to eliminate insoluble problems
from the ensemble.

2.4 Local Search Procedures

Local search procedures start with an initial assignment of values to the vari-
ables. They then explore their “local neighbourhood” for “better” assignments.
The local neighbourhood usually consists of those assignments where the value of
one variable is changed. A “score” function is applied to determine which neigh-
bour to move towards. In SAT, we use the number of satisfied clauses. In CSP,
we use the number of satisfied constraints. Hill-climbing is used in the GSAT
and min-conflicts procedures to maximize the score. Other procedures use more
complex procedures for selecting neighbours. For example, the MC-L0G proce-
dure chooses a neighbour probabilistically according to the relative ranking of
the scores. Local procedures can, of course, be trapped in local maxima. Various
techniques have been developed to overcome this. For example, GSAT simply
restarts from a new point in the state space. By comparison, procedures like
MC-L0G and simulated annealing allow score-decreasing moves with a certain
probability. The experiments in this paper use three local search procedures:
GSAT, a CSP analogue of GSAT called GCSP, and a min-conflicts algorithm
for CSPs called MC-LOG.

GSAT [18] is a local search procedure for SAT which begins with a random
generated initial truth assignment, then hill-climbs by reversing or “flipping” the
assignment of the variable which increases the number of satisfied clauses the
most. After a fixed number, MaxFlips, of moves, search is restarted from a new
random truth assignment. Search continues until we find a model or we have
performed a fixed number, MaxTries, of restarts.

GCSP [20] is an analogous procedure to GSAT for CSPs. It begins with a
random generated assignment of values to variables; then hill-climbs by finding
a new variable-value assignment which increases the number of satisfied con-
straints the most. After a fixed number, MaxChanges, of moves (exactly analo-
gous to MaxFlips in GSAT), search is restarted from a new random assignment.
Search continues until we find a solution or we have performed a fixed number,
MaxTries, of restarts.

MC-LoG is based on min-conflicts hill-climbing [13] but with an ability to
escape local maxima. Unlike GCSP, MC-LOG does not consider all variables, but
instead selects randomly a variable in conflict with some constraint. The local
neighbourhood for this variable consists of alternative values for it. Unlike min-
conflicts hill-climbing, MC-L0G does not select the neighbour which minimizes
the number of conflicts, but ranks all neighbours according to their min-conflicts
‘score’, and selects one probabilistically. Changing the value of this variable is
called a ‘repair’. The selection function is logarithmic, so the ‘best’ value is
chosen most often, but not exclusively as with min-conflicts®. The number of

® More precisely, we pick the ith ranked value where ¢ = int(log,(1/r)/w) and r is a

conflicts can therefore occasionally increase, enabling the procedure to escape
from local maxima.

3 Phase Transitions and Local Search

We first investigate the performance of local search as we vary the number of
solutions for a fixed size of problem. Naively, one might think that problems
will get monotonically harder as we decrease the number of solutions since we
must search for an ever smaller number of needles in a haystack. However, even
though all the problems tested are soluble, behaviour 1s affected by the solubility
phase transition. Indeed, the hardest problems for local search seem to occur at
the same point as the hardest problems for complete search, namely at the phase
transition in solubility. In this paper, we take this to be the point in the phase
space where 50% of problems are soluble and 50% insoluble. This point is often
associated with the hardest mean search cost for backtracking algorithms [3].

3.1 MC-LOG

In Fig 1 (left), we present results for MC-1.0G on 1000 soluble CSPs with n = 20,
m = 10, and p; = 0.5, and p, varying from 0.32 to 0.42, corresponding to
a range of £ from 0.80 to 1.12. We plot search cost (the number of repairs)
against the constrainedness, x. The phase transition in solubility starts at x =
0.89 where 99.1% of problems generated are soluble®, the nearest point to 50%
solubility is at x = 0.95 where 57.0% are soluble, and our graphs extend to
regions where very few problems are soluble. At k = 1.12, only 1.2% of problems
had solutions. The peak in median search cost is at k = 0.99 while the peak in
mean search cost 1s slightly earlier at kK = 0.95. Surprisingly, at larger values of &,
the search cost decreases even though the average number of solution is declining.
As with complete procedures, the peak average search cost is associated with
the solubility phase transition.

Similar results are obtained if we study CSPs with different constraint den-
sities. In Fig 1 (right), we vary ps and plot median search cost for p; = 0.30 to
p1 = 1.00, i.e. complete constraint graphs. As p; increases the phase transition
occurs at smaller values of py. In all cases the peak median search cost is within
0.01 of the value of ps where 50% of problems are soluble. For comparison of
different problem classes, we also plot our data against « instead of ps, as in Fig
1. As the constraint density, p; increases the peak search cost (and solubility
transition) occurs nearer to the expected value of & = 1. As py increases, the
mean search cost at the phase transition increases, and by (2), the expected
number of solutions decreases. This suggests a correlation between the average
number of solutions and search cost at the phase transition. However the picture
is not clear, since at a fixed k there is a fixed expected number of solutions, yet
the search cost varies by a large factor for different p;.

random number in [0,1] and w is some fixed weighting.
 Recall, that we simply discard insoluble problems.

We draw two conclusions from this data. First, we observe an ‘easy-hard-easy’
pattern of problem difficulty. The hard region is associated with the solubility
phase transition, despite the fact that as we make problems more constrained,
they have fewer solutions. This is consistent with the results of [14, 19] for
backtracking algorithms applied to soluble problems. Second, there is some cor-
relation between peak search cost and expected number of solutions at the phase
transition.

100000 3000

2500 -

10000

2000 -

1000 k| 1500 -

1000 -
100 | X 4

500 [

10 L L L L L L L
0.75 0.8 0.85 0.9 0.95 1 1.05 11 1.15 0.75 0.8 0.85 0.9 0.95 1 1.05 11 1.15

L 0 L

Fig.1. (left) Search cost for MC-LoG on (20,10,0.5) problems as po varies, plotted
against kappa. (right) Median search cost for MC-LOG on (20,10,p1) problems.

3.2 GCSP

To determine if the results of Section 3.1 are specific to the MC-LOG procedure,
we re-ran the experiment reported in Fig 1 (left) using the local search procedure
GCSP. To minimise variation, we tested GCSP with the identical problems used
with MC-LoG. We set MaxChanges to 500 and ran until problems where solved,
i.e. we effectively set Max-Tries to infinity.” We plot total changes used by GCSP
against & in Fig 2 (left). Total changes is calculated as MaxChanges times the
number of failed tries, plus the number of Changes on the final try, and gives a
measure of search cost for GCSP.

Behaviour is broadly similar to that seen with MC-LoG even though these
procedures have significant differences. GCSP uses restarts instead of proba-
bilistic acceptance to avoid local maxima. In addition, GCSP makes a global
choice of the best variable-value assignment rather than a local choice of value
for a selected variable.

" Two of the authors implemented GCSP independently and observed very similar
results.

GCSP on <20,10,0.5> problems GSAT on Random 3-SAT 100 vars
T T T

1le+06

T T
fworst —<—

1e+06 " i
99% -+~ worst —— o)
100000 £90% -&-- e 09% - W
50% el 100000 | 90% -o-- Pt]
10% - g s
F [T e *
2 10000 Fbest -x il-s y Xy, . 10000 | | =Sz]
g e - 2 . 300N
I} g X A =
£ 1000 | P S] £
- S 1000 ¢ i
g x id - Fe g AAAAAA
IS} s
= 100 p « 7 100 F o 4
A & -
& & * # Kok
% oK HKTHTTHR Kk A=
10 ¥ K-k J 10 ’/ﬁjg@géﬂ 1
BB %
X K /
1 L L L L L L L L 1 L L L L
0.7 075 0.8 085 09 095 1 105 1.1 115 0 0.2 0.4 0.6 0.8 1
kappa kappa

Fig.2. (left) GOSP phase transition behaviour (right) GSAT phase transition be-
haviour

This suggests that other local search procedures for binary CSPs will display
an easy-hard-easy pattern with the peak in search cost occurring at the solubility
phase transition.

3.3 GSAT

It is likely that these results for CSPs will apply to other NP-complete problem
classes like SAT. To test this hypothesis, we performed a similar experiment with
100 variable random 3-SAT problems. We varied the number of clauses from 20
to 420 in steps of 20, and from 420 to 460 in steps of 10. To aid comparison with
CSPs we will plot our results against «. For the 3-SAT problems studied here,
the value of {/n can be read off from the relation {/n ~ 5.19x. The end point
corresponds to a value of k & 0.89. At each point we tested GSAT on 1000
soluble problems. We set MaxFlips to 342, the optimal value for the middle of
the phase transition reported by [10]. As a measure of search cost we use the
total flips used, calculated analogously to total changes in GCSP. The phase
transition in solubility starts at 380 clauses, k ~ 0.73 where 99.3% of problems
generated are soluble. The point nearest 50% solubility is 430 clauses, x a2 0.83,
where 48.2% of problems were soluble. At the end point of our experiment, 9.9%
of problems were soluble. The fact that « is smaller at the phase transition than
in previous graphs indicates that there are more solutions at this point than for
comparably sized CSPs.

Fig 2 (right) shows different percentiles of search cost plotted against «. The
peak in median is at the next point beyond the solubility transition, and indeed
the peak in the 90th percentile of search cost is at 430 clauses, the 50% solubility
point. Even best case behaviour seems to get easier as we increase .

To conclude, for both random CSPs and SAT problems, we see an easy-
hard-easy pattern in the cost of local search procedures with the peak in search
cost occurring at the phase transition in solubility.

4 Search Cost and Number of Solutions

In the last section, we suggested that naively one expects problems to get mono-
tonically harder for local search as the number of solutions decreases. To deter-
mine how true this is, in Fig 3 we give scatter plots of search effort for MC-LoG
(logqp(repairs) to find a solution) against log; ,(number of solutions). Inevitably
we must investigate comparatively small problem sizes such as n = 20 as other-
wise the exhaustive search to find all solutions becomes prohibitive. Each data
point reported is the mean of 10 runs of MC-L0OG to solve an individual problem.

In Fig 3 (left), we give a scatter plot for all problems in the soluble phase.
At large numbers of solutions, this is a close correlation between the number of
solutions and the search cost, and the spread in search costs is relatively small.
The overall shape of Fig 3 (left) suggests a linear correlation between the log
number of solutions and log search cost. We performed linear regression on this
data, finding a best fit gradient of —0.31 with a correlation coefficient r of —0.79.
At small number of solutions, however, the spread is huge, up to nearly 3 orders
of magnitude. This suggests that search cost is not simply a function of the
number of solutions.

We obtain a better picture of behaviour if we look at fixed points in the phase
space. In Fig 3 (right), we give a scatter plot for problems with a low constraint
tightness (p2 = 0.32), in Fig 4 (left), problems from the middle of the phase
transition (pz = 0.37), and in Fig 4 (right), problems with a large constraint
tightness (p2 = 0.42). At each point, there is less overall spread in the search
cost for a given number of solutions than seen in Fig 3 (left). We performed
regression analysis at each point separately, and the resulting lines are shown.
At ps = 0.32 we estimated a gradient of —0.36 with r = —0.56, at p, = 0.37, we
estimated a gradient of —0.61 with » = —0.70, and at p» = 0.42, we estimated
a gradient of —0.29 with r = —0.28. Notice that the gradient is steepest at
the solubility phase transition. Problems with a low constraint tightness have
a large number of solutions and search cost is relatively uniform and small. At
the phase transition, there is a large variation in the number of solutions. For
problems with few solutions at the phase transition, search cost tends to be large.
Although problems with a larger constraint tightness have a smaller number of
solutions, search cost for problems with the same number of solutions tends to
be less than at the phase transition. As seen earlier, the overall cost is greatest at
the phase transition. Although there is still considerable variability, the hardest
problems are those from the phase transition with a few solutions.

4.1 GCSP

To determine if these results are specific to the MC-L0G procedure, we also made
scatter plots for the logarithm of search cost of GCSP against the logarithm of
the number of solutions. Each data point is the cost of solving an individual
problem once. Fig 5 (left) gives the plot for the middle of the phase transition.
The regression line has gradient —0.56 and » = —0.40. Results are very similar to
MC-LOG. Again there is considerable variability, problems with more solutions

T
p2=0.32 -

45 B

35 A

25

Fig. 3. log,,(repairs) for MC-LOG (y-axis) plotted against log,,(solutions) (x-axis).
(left) All po , (right) p2 = 0.32

5

: :
p2=037 - 22042 -
45 B 45 L B
4 - 4F + e
35 B 35 M B
3 B 3 B
7,
3¢
25 B 25 % B
:
N
2 B 2 B
+
15 B 15} B
1 \ \ \ \ 1 \ \ \ \
) 1 2 3 4 5) 1 2 3 4 5

Fig.4. log,,(repairs) for MC-LOG (y-axis) plotted against log,,(solutions) (x-axis).
(left) p2 = 0.37 , (right) po = —0.42

are generally much easier than problems with very few solutions. The hardest
problems are again those from the phase transition with a single or very few
solutions. The greater noise in this figure than seen with MC-L0G is probably
due to only reporting a single rather than an average of 10 runs.

4.2 GSAT

Once again, we wished to see if our results extend beyond CSPs to SAT. To test
this, we randomly generated 1000 soluble 3-SAT problems with 100 variables and
430 clauses, the point nearest the solubility phase transition as reported above.

2 i # T T

430 clauses ----

08

0.6

4 0.4

0.2 L L L L L L L
3 0 1 2 3 4 5 6 7 8

Fig. 5. log,y(cost) (y-axis) plotted against log,,(solutions) (x-axis) (left) GCSP at
p2 = 0.37 (right) GSAT at n = 100, I =430

We ran GSAT on 100 tries and used this to give an estimate of search cost as
simply 100 divided by the number of successes for each problem.® We also found
the exact number of solutions that each problem has. The relationship between
these two measures is shown in Fig 5 (right). Again, there is a strong tendency
for problems with more solutions to be easier, although again there 1s a lot of
noise. We modeled this by a regression line with gradient —0.44 and » = —0.77.
The granularity in the search cost in the figure is due to the measure we used,
and the use of this measure may make the regression less accurate. We intend
further experiments to investigate this.

To summarise, we have shown a strong if noisy correlation between search
cost and number of solutions. The correlation seems to be linear on a log-log
scale. The dependency between search cost and number of solutions changes as
we change the constrainedness of problems, with the hardest problems being
those at the solubility phase transition with very few solutions.

5 Regression Analysis Through Phase Transitions

We have shown that the correlation between search cost and the number of
solutions varies at different points in the solubility phase transition. We now
look more closely at this variation.

Fig 6 shows the regression lines for MC-LoG for all values of constraint
tightness po across the phase transition. There is a distinct pattern in these
regression lines; at low constraint tightness, the magnitude of the gradient is
low, but increases to reach a peak when p; = 0.36 (x = 0.92), which is at the
phase transition. The gradient then decreases as constraint tightness increases.

& Thus we are using a different cost measure to that used above for GSAT in Fig 2.

This is shown more clearly in Fig 7 (left), which shows the values of the gradient
against x. This makes clear that the steepest gradient is at the solubility phase
transition. We interpret this as suggesting that the number of solutions has most
influence on search cost at the solubility phase transition.

Fig 7 (right) shows how the regression fit gradient changes against «, for
p1 = 0.30 to p; = 1.00. In each case, the minimum gradient (maximum absolute
gradient) occurs at or very close to the 50% solubility point on the phase transi-
tion. Once again, this suggests that the number of solutions has most influence
on search cost at the phase transition.

15 L L L L L L L L L
0 0.5 1 15 2 25 3 35 4 4.5 5

Fig.6. Regression fits for log search effort (x-axis) vs log solutions (y-axis), as p
changes (20, 10, 0.50, p2)

5.1 GCSP

We again continued our investigations by seeing if our results would also be
seen in GCSP. Accordingly, we plotted the regression gradients obtained from
analysis of experiments on problems from the classes (20,10,0.5) with varying pa.
The results are seen in Fig 8 (left). The same pattern emerges as in Fig 7 (left).
The steepest gradient is at exactly the same point. Some noise can be seen in
this graph, perhaps due as we noted earlier to not averaging GCSP results over
many runs. Nevertheless, it seems that for a range of CSP local search methods,
the number of solutions matters most at the phase transition.

5.2 GSAT

To conclude our investigations of how regression gradients changed through the
phase transitions, we analysed our data for GSAT with 100 variables from 410
to 480 clauses. Again the gradient of the regression between number of solutions

-0.25

T T
pl=050 +—

03 R
0.35 | R
04 |
045 | g 05 F
05 R
-0.55 [E

-0.6 - B

L L L L L L
0.75 0.8 0.85 0.9 0.95 1 1.05 11 1.15 0.75 0.8 0.85 0.9 0.95 1 1.05 11 1.15

-0.65 : . 0.75 . . .

Fig. 7. Regression fit gradients (y-axis) plotted against & (x-axis) for (left) p; = 0.50,
and (right) for p; from 0.30 to 1.00.

and search cost changes as we vary the constrainedness of problems. Recalling
that the solubility phase transition i1s at 430 clauses, in this case we do not find
the steepest gradient at this point. As yet we are unclear as to the reasons for
this change from our results on CSPs. In particular, it must for the moment
remain open whether this is due to an inherent difference between 20 variable
CSP instances and 100 variable 3-SAT instances, or to some more mundane
feature such as the differing measures of search costs used. One significant dif-
ference between the CSP and 3-SAT classes we have studied here may be that
the solubility transition in 3-SAT occurs at lower values of «, i.e. where more
solutions occur in relation to problem size.

6 Comparison with Complete Algorithms

Systematic backtracking procedures will also be affected by the number of so-
lutions. If there are many solutions, then it may not to be hard to find a path
that leads to one. If there are few, it may be hard to find a path that ends in
a solution. In Fig 9, we give scatter plots for the search effort for the FC-CBJ-
BZ algorithm (measured in consistency checks) against the number of solutions.
We give plots for both the search effort to find the first solution and to find
all solutions. FC-CBJ-BZ is a forward checking algorithm with conflict-directed
backjumping [15] using the Brelaz heuristic for dynamic variable ordering [1].
This is currently one of the best algorithms for CSPs.

There 1s a tendency for search cost to find the first solution to decrease with
the number of solutions, and this can be regressed by a line with gradient —0.18
and r = —0.21. However the tendency is very weak and even noisier than the
plots seen earlier for local search. For finding all solutions, there seems to be no
tendency for increasing numbers of solutions to reduce cost. This 1s not surprising

T
p1=05

0 -—

-0.6 L

L L
0.75 0.8 0.85 0.9 0.95

1

L
1.05

11

1.15

-0.38

-0.44 |

-0.46

-0.52

-0.54

-0.56

-0.58

04

.05 |

T
100 vars <—

0.78

0.8

L L
0.82 0.84

L L
0.86 0.88

0.9

0.92

Fig.8. Regression fit gradients (y-axis) plotted against & (x-axis). (left) GCSP on

(20,10,0.5) problems. (right) GSAT on n = 100 problems

since to find all solutions, all parts of the search space must be explored in full.
It seems that new features of the solution space will have to be investigated to

predict the search cost for complete algorithms.

25 L L L

T
L
1 +

a9F o+t T e ¥ B

N .71 &:{ et ++

;i + t+ﬂr " ++++ R
B S TNV S ot i

i + §+++ f+ o
i+
7% A e R 1
il #*jf +
R S
a6k stie R S]
. + 1 e S +
f’ S
AT

45T + + g};ﬂ% ++f+ + + il

* % E +
a4t % R IR S]

T
+ +

+ * + + P +
43 B
42 B

"
a1
0 0.5 1 15 2 2.5

Fig.9. log,,(checks) (y-axis) for FC-CBJ-BZ against log,,(solutions) (x-axis). (left)
checks until first solution found (right) is checks to find all solutions

7 Related Work

Phase transitions in backtracking algorithms have been the subject of enormous
study in recent years, but comparatively little attention has been paid to the

behaviour of local search algorithms as the position in the phase space changes.
Experimental results for GENET and GSAT applied to random 3-colouring in-
stances are reported by [4]. These results are consistent with those reported in
Section 3 above, in that search cost reduces beyond the phase transition, and
further suggest that the results reported here are unlikely to be dependent on
the particular algorithms or classes studied.

Gent and Walsh showed that a range of variants of GSAT applied to non-
random problems gave good performance on problems with many solutions such
as the n-queens problem, and poor performance on problems with few solutions,
for example quasigroup construction problems [10]. They speculated that the
number of solutions in relation to problem size would be critical in understanding
local search cost. In this paper we have shown that this speculation is confirmed
when random problems are studied, although there are other features which
must be taken into account such as position in the phase space. This still does
not yield a full explanation of behaviour, so we wish to research the topology of
local search in more depth, following studies such as [9, 12].

In this paper we have studied three local search algorithms for two different
problem classes. The fact that we see similar results in each case suggests that
our results may well apply to a large number of similar algorithms. However, it
remains an interesting question if these results will apply to algorithms such as
WSAT [17] which may explore the search space in different ways.

8 Conclusions

We have investigated in depth the relationship between the number of solutions
and search cost for local search procedure. Although there is no single simple
story (for example, search cost is inversely proportional to the solution density),
we have 1dentified some important connections. In particular, the hardest prob-
lems tend to have few solutions and usually occur (as with complete, systematic
algorithms) at the solubility phase transition. We have shown that there is a sig-
nificant correlation between the number of solutions and problem hardness for
local search. This correlation is robust across problem class and types of local
search procedure, and across the phase transition. The number of solutions is,
however, not the only factor determining problem hardness since there 1s signif-
icant variation in problem hardness when the solution density is held constant.
These results improve our understanding of phase transition behaviour and of
the factors affecting the performance of local search methods.

References

1. D. Brelaz. New methods to color the vertices of a graph. Comms. ACM, 22:251—
256, 1979.

2. P. Cheeseman, B. Kanefsky, and W.M. Taylor. Where the really hard problems
are. In Proceedings, IJCAI-91, pages 331-337, 1991.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. J.M. Crawford and L.D. Auton. Experimental results on the crossover point in

satisfiability problems. In Proceedings, AAAI-93, pages 21-27, 1993.

. A. Davenport. A comparison of complete and incomplete algorithms in the easy

and hard regions. In Proceedings, Workshop on Studying and Solving Really Hard
Problems, CP-95 pages 43-51, 1995.

. J. Frank and C. Martel. Phase transitions in random graphs. In Proceedings,

Workshop on Studying and Solving Really Hard Problems, CP-95, 1995.

. M. R. Garey and D. S. Johnson. Computers and intractability : a guide to the

theory of NP-completeness. W. H. Freeman, 1979.
I.P. Gent, E. MaclIntyre, P. Prosser, and T. Walsh. Scaling effects in the CSP
phase transition. In Proceedings, CP-95, pages T0-87, 1995.

. LLP. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search.

In Proceedings, AAAI-96, 1996.

. LLP. Gent and T. Walsh. An empirical analysis of search in GSAT. Journal of

Artificial Intelligence Research, 1:47-59, September 1993.

I.P. Gent and T. Walsh. Unsatisfied variables in local search. In Hybrid Problems,
Hybrid Solutions, pages 73—-85. IOS Press, 1995. Proceedings, AISB-95.

A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bounds for occupancy
and the satisfiability threshold conjecture. Randomized Structure and Algorithms,
7:59-80, 1995.

S. A. Kauffman. The Origins of Order. Oxford University Press, 1993.

S. Minton, M. D. Johnston, A. B. Philips, and P. Laird. Solving large-scale con-
straint satisfaction and scheduling problems using a heuristic repair method. In
Proceedings, AAAI-90, pages 17-24, 1990.

D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of SAT
problems. In Proceedings, AAAI-92, pages 459465, 1992.

P. Prosser. Hybrid algorithms for the constraint satisfaction problem. Computa-
tional Intelligence, 9:268-299, 1993.

P. Prosser. Binary constraint satisfaction problems: Some are harder than others.
In Proceedings, ECAI-94, pages 95-99, 1994.

B. Selman, H. Kautz, and B. Cohen. Noise Strategies for Improving Local Search.
In Proceedings, AAAI-94, pages 337-343, 1994.

B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfi-
ability problems. In Proceedings, AAAI-92, 1992.

B.M. Smith. Phase transition and the mushy region in constraint satisfaction
problems. In Proceedings, FCAI-94, pages 100-104, 1994.

N. Tomov. Hill-climbing heuristics for solving constraint satisfaction problems. 4th
year project report, Department of Artificial Intelligence, University of Edinburgh,
1994.

C.P. Williams and T. Hogg. Exploiting the deep structure of constraint problems.
Artificial Intelligence, 70:73-117, 1994.

