
Automated Discovery in Pure MathematicsSimon Colton, Alan Bundy and Toby Walsh,Institute of Representation and ReasoningDivision of Informatics, University of Edinburgh80 South Bridge, Edinburgh. EH1 1HN. Scotland.simonco,bundy,tw@dai.ed.ac.ukThe HR project aims to automate two important discovery processes which occur inmathematics before theorem proving happens, namely the making of the conjecture to beproved and the invention of the de�nitions in the conjecture statement. Our approach is to:(1) Represent pure mathematics concepts as data-tables, eg. represent division of integers asa data-table with 3 columns, [n; a; b], where a; b; n 2N and a�b = n. De�nitions for conceptscan be generated when needed, using information about how they were constructed.(2) Use production rules (PRs) to turn old con-cepts into new ones. HR has 10 production rulesand uses parameters to detail exactly what to do.In �gure 1, thematch PR extracts rows where cer-tain columns are the same (the parameters [1,2,2]say that col.1=col.1, col.2=col.2 and col.3=col.2).The count PR counts in how many rows the en-tries in column [1] appear. The exists PR removescolumns, in this case, only keeping column [1]. Fi-nally, the split PR, with parameters [c,=,v],
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�gure 1: construction of squares & primesextracts rows where column c has value v. The PRs are general enough to work in numbertheory, and to also �nd concepts such as complete graphs in graph theory and Abelian groupsin group theory. Note that HR has been developed using group theory as the test domain.(3) Derive measures which estimate how interesting a concept is, and use the heuristic ofbasing new concepts only on the most interesting old ones. A concept's data-table can beused to describe the models HR is working with, eg. the output from the tau function in �gure1 describes integer 1 as 1, 2 as 2, 3 as 2 and integer 4 as 3. The parsimony measure of a conceptis inversely proportional to the size of its data table, ie. more parsimonious descriptions areadvantageous. These descriptions can be used to categorise HR's models by putting twomodels in the same category if described the same, eg. the tau function gives integers 1to 4 this categorisation: [1],[2,3],[4]. The user can supply a `gold standard' categorisationwhich they would like the concepts to achieve, eg. into squares and non-squares: [1,4],[2,3].HR can then use the invariance/discrimination measures, which �nd the proportion of pairsof models categorised together/apart in the gold standard, which are categorised correctlyby the concept. Given the isomorphic classi�cation of groups up to order 6, HR found thisfunction which categorises them correctly: f(G) = jf(a; b; c) 2 G3 : a � b = c ^ b � c = agj:A fourth measure is the complexity of a concept which counts the number of old concepts{9{



{10{appearing in its construction path, giving a rough idea of how long the de�nition will be, withmore concise de�nitions being advantageous.(4) Use empirical evidence to spot conjectures about concepts. The most common way HRdoes this is to notice that the data-table of a newly formed concept is exactly the same as anold concept. HR then makes the conjecture that the de�nition of the new concept is equivalentto the de�nition of the old concept, eg. 8 groups, G, predicate1(G) () predicate2(G).(5) Enable HR to use theorem prover OTTER, [McC90], to prove some conjectures it makes.OTTER performs poorly with inductively de�ned concepts, so only a subset of the conjecturescan attempted. However, some of these are non-trivial, eg. in group theory, HR spotted thatfor any group, G, and 8a; b; c 2 G; (a�b = c^a�c = b^b = id () a�b = c^c�a = b^a�a = b):Instead of passing this verbatim to OTTER, HR �rst tries to extract and prove any primeimplicates (conjectures where no subset of the premises imply the goal). For example HRextracts this: a � c = b ^ b = id ! c � a = b, which OTTER proves. HR can use the primeimplicates to prove the overall conjecture, and will use them to prove other conjectures later.If a conjecture cannot be proved, HR passes it to model generator MACE, [McC94], whichis asked to �nd a counterexample of size 1, then 2, etc. If a counterexample is found, it isadded to the theory, and all future conjectures will be based on the extra data.(6) Complete a cycle of mathematical activity by assessing the conjectures and using theaverage interestingness of the conjectures a concept appears in to estimate the interestingnessof the concept itself. A conjecture could be interesting if OTTER found it di�cult to prove- HR uses OTTER's proof length statistic to determine this. Also, a conjecture could beinteresting if it is surprising, ie. the (supposedly) equivalent concepts look quite di�erent -HR calculates the proportion of concepts appearing in one, but not both, construction paths.HR can bootstrap theory formation, ie. starting with just the axioms of a �nite algebra likegroup theory, it uses MACE to �nd initial models of the algebra, invents de�nitions, spots con-jectures and uses OTTER to prove them and MACE to disprove them, which introduces coun-terexamples. HR's biggest success so far was in number theory, [Col99], where it invented theconcept of refactorable numbers: 1; 2; 8; 9; 12; 18; 24; 36; 40; 56; 60; 72; 80; 84; 88; 96; : : : Thesehave the appealing de�nition of being those integers where the number of divisors is itself adivisor. This concept was novel because it was missing from, and subsequently added to, theonline-encyclopedia of integer sequences, [Slo]. HR also spotted some conjectures about refac-torables, eg. they are congruent to 0, 1, 2 or 4 mod 8, which we have subsequently proved,along with some results of our own, eg. all odd refactorables are squares. For further detailsabout HR, please see [CB] or the web page: http://dream.dai.ed.ac.uk/group/simonco/hr.This work is supported by EPSRC grant GR/L 11724 and EPSRC studentship GR/K/65706.References[CB] S Colton and A Bundy. HR: Automatic concept formation in pure mathematics. In IJCAI '99.[Col99] S Colton. Refactorable numbers - a machine invention. Journal of Integer Sequences, 2, 1999.[McC90] W McCune. The OTTER user's guide. Technical Report ANL/90/9, ANL, 1990.[McC94] W McCune. A Davis-Putnam program and its application to �nite �rst-order model search.Technical Report ANL/MCS-TM-194, ANL, 1994.[Slo] N Sloane. Online Encyclopedia of Integer Sequences. www.research.att.com/~njas/sequences.c
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