
Unsatis�ed Variables in Local SearchIan P. Gent� Toby WalshDepartment of AI Mechanized Reasoning GroupUniversity of Edinburgh IRST, Trento &80 South Bridge, Edinburgh DIST, University of Genoa,United Kingdom Italyipg@cs.strath.ac.uk toby@irst.itAbstractSeveral local search algorithms for propositional satis�ability have been pro-posed which can solve hard random problems beyond the range of conventionalbacktracking procedures. In this paper, we explore the impact of focusing searchin these procedures on the \unsatis�ed variables"; that is, those variables whichappear in clauses which are not yet satis�ed. For random problems, we showthat such a focus reduces the sensitivity to input parameters. We also observea simple scaling law in performance. For non-random problems, we show thatwhilst this focus can improve performance, many problems remain di�cult. Wespeculate that such problems will remain hard for local search unless constraintpropagation techniques can be combined with hill-climbing.1 IntroductionLocal search is often surprisingly e�ective as a semi-decision procedure for many NP-hard problems. For example, Gsat, a greedy random hill-climbing procedure for pro-positional satis�ability (or SAT) is very good at solving hard random problems [16].Given a formula in conjunctive normal form,1 Gsat computes a randomly generatedtruth assignment, and hill-climbs by repeatedly 
ipping the variable assignment whichmost increases the number of clauses satis�ed. If there is a choice between severalequally good 
ips, Gsat picks one at random. If there are no upward 
ips, Gsatmakes a sideways 
ip. Without sideways 
ips, the performance of Gsat degradesgreatly. In [5] it is shown that much of the search consists of the exploration of large\plateaus" where sideways 
ips predominate and only the occasional up 
ip is possible.Occasional downward 
ips appear to improve performance. A variant of Gsat,called Gsat with random walk [14] makes downward 
ips even when up 
ips are pos-sible. With probability p, Gsat with random walk 
ips a variable in an unsatis�edclause, and otherwise hill-climbs normally. Flipping a variable in an unsatis�ed clausecan actually decrease the number of satis�ed clauses. Nevertheless random walk im-proves the performance of Gsat considerably. While the fastest complete procedures�Current address: Department of Computer Science, University of Strathclyde, Glasgow G1 1XH,United Kingdom1A formula in conjunctive normal form is a conjunction of clauses, where each clause a disjunctionof literals and each literal is a negated or un-negated variable.



for SAT can solve hard random 3-SAT problems (these are de�ned in x3) up to about400 variables, Gsat with random walk has solved instances with 2000 variables [15].Gsat with random walk focuses attention on variables in unsatis�ed clauses (called,from now on, unsatis�ed variables). This appears to be a better strategy than merely
ipping a variable at random with probability p [15]. In all models, at least one of thevariables in an unsatis�ed clause must have the opposite truth value. We must therefore
ip at least one of them en route to a model. Flipping an unsatis�ed variable is alsoguaranteed to change the set of unsatis�ed clauses. Since Gsat's search is governedby the variables in this set, 
ipping an unsatis�ed variable introduces diversity into thesearch. For these two reasons, focussing on the unsatis�ed variables may move us tomore \interesting" parts of the search space from where we can hill-climb to a model.In this paper, we report extensive experimental investigations into the importance of
ipping unsatis�ed variables. We identify the ways in which the addition of random walkimprovesGsat. Surprisingly, the major contribution appears not to be better run timesbut a reduction in sensitivity to input parameters. We also add random walk to someof the variants of Gsat introduced in [4], some of which outperform Gsat with walk.Finally, we introduce a new procedure called Jumpsat in which 
ipping unsatis�edvariables is made paramount. Given recent concern about the representativeness ofrandom problem classes, we use both random and non-random problems.2 A Generalized Hill-climbing ProcedureWe present our work within the framework of a generalized hill-climbing procedurecalled Gensat introduced in [4] and given in Figure 1. This procedure embodies thecommon features found in a wide range of hill-climbing procedures for satis�ability likeGsat. Although the name Gsat has been used for both Gsat and Gsat with randomwalk, here we distinguish between the two variants by calling Gsat with random walkby the name GRsat. Both Gsat and GRsat are instances of Gensat.As in [1], the select function has been generalized from that used in [4] to allow forthe possibility of a random walk option. Gensat now has four parameters: �, Max-tries, Max-
ips and p. � is the formula to satisfy; Max-tries is the number of restartsand is usually set as large as patience allows; Max-
ips is the maximum number of
ips before a restart; and p is the probability of performing a random walk. Gsatis a particular instance of Gensat in which there is no random walk (i.e. p = 0),initial generates a random truth assignment, hclimb returns those variables whose truthassignment if 
ipped gives the greatest increase in the number of clauses satis�ed (calledthe \score" from now on) and pick chooses one of these variables at random. A detailedexperimental investigation of Gensat variants without random walk is reported in [4].3 Random ProblemsOur initial experiments use the random k-SAT problem class. This class was used inearlier experiments with Gsat [16, 4] and in many studies of complete procedures forsatis�ability like Davis-Putnam [2, 11, 7, 8]. A problem in random k-SAT consists of Lclauses, each of which has k literals chosen uniformly from the N variables, each literalbeing positive or negative with probability 12 .For random 3-SAT, there is a phase transition between satis�ability and unsatis-�ability for L/N�4.3. Problems in the phase transition are typically muchmore di�cultto solve than problems away from the transition [2]. The region L/N=4.3 is generally



procedure GenSAT(�,Max-tries,Max-
ips,p)for i := 1 to Max-triesT := initial(�) ; generate an initial truth assignmentfor j := 1 to Max-
ipsif T satis�es � then return Telse Poss-
ips := select(�,T,p) ; select set of vars to pick fromV := pick(Poss-
ips) ; pick oneT := T with V's truth assignment 
ippedendend;return \no satisfying assignment found"function select(�,T,p)if Random[0,1) < pthen all variables in unsatis�ed clauseselse hclimb(�,T) ; compute \best" local neighboursFigure 1: The Gensat Procedureconsidered to be a good source of hard SAT problems and has been the focus of muchrecent experimental e�ort, e.g. [11, 4, 15]. The hardest SAT problems for completeprocedures are, however, found at lower values of L/N [7]. This e�ect has not yet beenfound for incomplete procedures such as Gsat [6]. In this paper, we therefore test prob-lems at L/N=4.3. To help reduce the e�ect of random 
uctuations in problem di�culty,each experiment at a given number of variables uses the same set of 1000 satis�ableproblems. As Gensat variants typically do not determine unsatis�ability, unsatis�ableformulas were �ltered out by the Davis-Putnam procedure. Since results on randomproblems may not be indicative of algorithm behaviour on real and structured problems,we also consider performance on non-random problems in x7.4 Greediness and RandomnessTo explore the importance of greediness in hill-climbing and randomness in pickingbetween variables, we introduced in [4] several di�erent variants of Gsat includingCsat, Tsat, Dsat and Hsat. Csat is identical to Gsat except hclimb is more cau-tious, returning all variables giving an increase in score (not just the greatest increase),or if there are none, all variables giving no decrease, or otherwise all variables. Tsat isidentical to Gsat except hclimb is timid, returning those variables that least increasethe score, or if there are none, all variables giving no decrease, or otherwise all vari-ables. For random problems, Csat and Tsat gave very similar performance to Gsat,suggesting that greediness is not crucial to Gsat's success. Dsat is identical to Gsatexcept pick is not random but deterministic and fair. Dsat performed better thanGsat on random problems, suggesting that randomness in picking between variables isalso not crucial. Hsat is identical to Gsat except pick uses a deterministic tabu-likerestriction to pick a variable which was last 
ipped the longest time ago. Hsat gave thebest performance of all the variants introduced in [4]. To repeat this investigation forhill-climbing procedures with random walk, we introduce four new procedures: CRsat,TRsat, DRsat and HRsat. These procedures are instances of Gensat in which with



Table 1: The importance of random walkProblem Procedure Optimal Total 
ips usedMax-
ips median mean s.d. worst caseRandom 3-SAT Gsat 92 398 905 1,560 21,300N= 50, L/N= 4.3 GRsat 90 349 884 2,000 48,600Csat 75 402 895 1,590 23,200CRsat 150 378 845 1,360 16,000Tsat 111 404 971 1,700 24,000TRsat 205 381 815 1,230 13,000Dsat 60 220 482 721 5,380DRsat 125 246 542 858 8,980Hsat 64 148 301 507 7,170HRsat 195 181 413 706 9,820Random 3-SAT Gsat 165 1,270 2,960 5,060 69,300N=70, L/N= 4.3 GRsat 280 1,170 2,630 4,130 36,400Csat 190 1,230 3,040 4,830 47,800CRsat 378 1,100 2,430 3,610 31,700Tsat 213 1,370 3,390 5,790 58,500TRsat 434 973 2,350 4,110 55,300Dsat 132 607 1,420 2,140 17,100DRsat 238 636 1,570 3,020 39,100Hsat 116 332 743 1,160 15,100HRsat 217 502 1,020 1,690 20,700Random 3-SAT Gsat 342 5,000 13,200 22,800 265,000N=100, L/N= 4.3 GRsat 719 4,220 10,300 18,200 171,000Csat 544 5,330 12,600 19,700 165,000CRsat 950 3,370 8,090 13,900 164,000Tsat 494 4,830 12,500 23,100 267,000TRsat 690 3,320 8,510 17,000 329,000Dsat 238 2,130 5,620 9,780 129,000DRsat 420 1,930 5,680 13,300 174,000Hsat 217 989 2,420 4,580 52,900HRsat 814 1,160 2,880 6,320 134,000probability p we perform a random walk step, and with probability 1 � p we use theCsat, Tsat, Dsat and Hsat hill-climbing strategies.Our experiments use 1000 randomly generated satis�able 3-SAT problems at L/N=4.3, for N= 50, 70, and 100. Since di�erent values of p have been used previously[14, 15], we decided arbitrarily to set p = 0:2 for all experiments in this section. In x5.2we investigate in detail how p should be set for some variants of Gensat. The bestperformance from the best variant tested here was observed at p = 0:2, and it seemeda large enough value to have a signi�cant e�ect on every procedure we tested. For eachprocedure and problem size, we determined the value of Max-
ips which minimizesmean total number of 
ips. All our results are reported for this optimal value of Max-
ips. We investigate the e�ect of varying Max-
ips further in x5.1. The total numberof 
ips used is a measure of computational resources.It is very important to examine the distribution of expense, as well as broad stat-istical measures such as mean and median. In Table 1 we report four measures: me-



dian, mean, standard deviation,2 and worst case. Worst case performance seems tobe between 50 and 100 times the median. As problem sizes increase this factor mayincrease. If so, encouraging but incomplete results on very large problems such as [15],may be less good than they seem.Table 1 compares performance of all the above mentioned variants of Gensat, withand without random walk. As shown in [4], on these problems Csat and Tsat are asgood as Gsat, Dsat is better than all three, and Hsat is somewhat better again.We now compare Gsat with GRsat. For small N, there is little di�erence inperformance. However, by N=100, GRsat has started to outperform Gsat. Thiscon�rms suggestions that GRsat is better than Gsat on random problems [15]. Wewill see later that even better performance can be achieved with a larger value of p.Next, we consider the importance of greediness in hill-climbing, Although CRsathill-climbs if possible, it does not try to do so as fast as possible. Interestingly, whileCsat performs very similarly to Gsat, CRsat outperforms both Gsat and GRsat.Caution seems to be paying o� in this case. After a downwards 
ip caused by a ran-dom walk step, greedy hill-climbing will often immediately 
ip back the same variable.By comparison, CRsat can 
ip any of the variables now o�ered which increase thescore. CRsat may therefore reach a new part of the search space. This suggestion istentative since the improved performance of CRsat may not hold for optimal values ofp. TRsat's timid hill-climbing gives similar performance to CRsat. As with cautioushill-climbing, this may be because random walk steps are often not immediately un-done but move us instead to a new part of the search space. We can conclude that forrandom problems greediness is not crucial to the success of hill-climbing with randomwalk. Indeed, more cautious hill-climbing can be more e�ective.Finally, we consider the importance of randomness in picking between variablesto 
ip by testing the procedures DRsat and HRsat. At all problem sizes, DRsatoutperforms all variants of Gensat which use random picking. This suggests thatdeterministic picking is preferable to random picking. The tabu-like picking used byHRsat gives the best performance of all random walk procedures tested here. Theoptimal performance observed at each N for DRsat and HRsat is actually slightlyworse than that found using the same algorithms without random walk. However, inthe next section, we show that adding random walk to Hsat does reduce its sensitivityto choice of Max-
ips. We conclude that for these problems, randomness in picking isnot crucial to the success of hill-climbing with random walk, and that random walk canbe helpful if incorporated with Dsat and Hsat.5 Parameter SettingsIn x4, HRsat gave the best performance. In the rest of the paper, we focus just onvariants of Hsat and Gsat with and without random walk. By restricting attentionto these two procedures, we can run more comprehensive experiments.5.1 Max-
ipsIncreasing Max-
ips increases the probability of success on a given try, but can decreasethe probability of success in a given run time. For variants of Gensat without randomwalk, we observed a sharply de�ned optimal value of Max-
ips [4]. If too small a valueof Max-
ip is used, there is a vanishing chance of �nding a solution on any given try.If too large a value is used, the later 
ips of most tries are wasted work.2S.d. here represents sample standard deviation, not standard error of the mean.
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Figure 2: Scaling of performance Figure 3: HRsat vs Hsat, varying Max-
ipsFor Hsat and random 3-SAT problems, we found that the optimum value for Max-
ips increases more than linearly with N, and in [4] we speculated that the optimal valueof Max-
ips varies roughly in proportion to N2. Considerable further experimentationhas allowed us to re�ne this conjecture. To compare performance at di�erent problemsizes, we rescaled our data so that for each value of N, the minimumwas the same. Thisis because we do not yet have a clear idea of how exactly optimal performance scaleswith problem size [4]. Having done this, performance seems to be highly predictablewith varying problem size. For Hsat, we observe that optimal Max-
ips scales as N1:65.Figure 2 shows number of 
ips used by Hsat for each value of Max-
ips for problemsfrom 50 to 200 variables. The x-axis now represents Max-
ips scaled as N1:65. Forconvenience, we label the x-axis by the equivalent number of 
ips at N = 200. Thatis, the x-ordinate m in the N-variable plot represents m �N1:65=2001:65. Performance isremarkably similar at di�erent problem sizes under this scaling. This adds to a numberof very simple scaling laws observed in many features of search for both complete andhill-climbing methods applied to random problems [5, 8, 10].Figure 2 shows that for Hsat it is critical to set the value of Max-
ips close to itsoptimal value, and to vary Max-
ips as problem size changes. These two necessitiesrepresent a signi�cant drawback to the use of Gensat. Fortunately, adding randomwalk greatly reduces the sensitivity of these hill-climbing procedures to the value ofMax-
ips. For HRsat with p = 0:2 the minimum in the total number of 
ips usedis slightly larger than that found with Hsat. However, the setting of Max-
ips forHRsat is much less critical than for Hsat. In Figure 3, the total number of 
ips used isplotted against Max-
ips for these two procedures, for 100 variable problems. Althoughthe minima take similar values, the setting of Max-
ips has little e�ect on HRsat'sperformance above about 400 
ips. The minimum seen here is a mean number of total
ips of 2,880 at Max-
ips = 814, compared to a mean of 3,340 at Max-
ips=2500. Thiscontrasts dramatically with the signi�cant detrimental e�ect that increasing Max-
ipsabove its optimal value has on the performance of Hsat.We have seen very similar behaviour for many di�erent variants of Gensat withrandom walk, includingGRsat. It seems that near-optimal performance is obtained fora wide range of values of Max-
ips. This is one of the major computational advantagesof adding random walk to hill-climbing procedures. Unfortunately, the insensitivity tothe value of Max-
ips makes it very hard to observe a scaling law. It is di�cult to geteven an approximation to the optimal value of Max-
ips at a given problem size.
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Figure 4: HRsat, varying p Figure 5: GRsat, varying p5.2 Walk ProbabilityThe second crucial parameter for Gensat is the walk probability p. Intuitively, weexpect very small values of p to give behaviour only slightly di�erent from that ofGensat without random walk, and very large values to give very poor behaviour astoo many random walk 
ips will inhibit hill-climbing to a solution. The optimal valueof p should lie between these two extremes. Unfortunately as p varies, the optimal valueof Max-
ips also varies. Thus for each value of p considered here, the total number of
ips used is that found with the optimal value for Max-
ips.Figure 4 shows how varying p a�ects the optimal performance of HRsat on 100variable problems, for p from 0 to 0.4 in steps of 0.05. There is a increase in 
ipsused from p = 0 (which is simply Hsat) to p = 0:1. For small non-zero values ofp, random walk appears to interfere with search without having signi�cant bene�ciale�ects. For larger values of p, the total number of 
ips decreases, reaching a broadminimum between p = 0:2 and p = 0:3, the best value being at p = 0:2 (see Table 1for details at p = 0:2). In fact, this minimum is slightly worse than the performanceof Hsat (again see Table 1). Nevertheless, increasing the random walk probability canimprove performance. Furthermore, as described in x5.1 there is much greater freedomin the choice of Max-
ips in this region of p. However, p � 0:3 seems to be close to acritical value. For larger values of p performance degrades very signi�cantly. Care musttherefore be taken in choosing p to avoid poor performance while gaining the bene�tsof the random walk. Although this graph shows only approximately 30% variation inperformance from p = 0 to p = 0:3, more signi�cant variation may occur at largervalues of N. We were, however, restricted to N=100 in this experiment because of theexpense of calculating the optimal performance of HRsat at each point.We repeated this experiment forGRsat. Figure 5 shows the optimalmean total 
ipsof GRsat with p varied from 0 to 0.6 in steps of 0.1 on 100 variable problems. For p = 0(equivalent to Gsat) the optimal performance of 13,200 
ips compares unfavourablywith that of 2,400 for Hsat. We do not see an initial decline in performance as we didwith HRsat. Larger values of p seemed best for GRsat, with the best being p = 0:5giving a mean of 6,140 
ips. Remarkably, performance varied less than 10% when wevaried Max-
ips from 2,400 to 25,000, more than a factor of 10. The value of p = 0:5 islarger than the value p = 0:35 originally suggested by Selman and Kautz [14] for Gsatwith random walk, but the same as they used with Cohen in a later report [15].We conclude the random walk option improves Gsat more than Hsat for 100variable problems, although the best settings ofGRsat still result in worse performance



than Hsat or HRsat. In addition, the choice of the walk probability p must be madein a range of approximately 0.1 for near-optimal performance, and these ranges arequite di�erent for HRsat and GRsat.To investigate further our observations in x4 about cautious hill-climbing with ran-dom walk, we varied p for a cautious variant of HRsat, that is CHRsat which incor-porates both HRsat's method of picking variables with Csat's cautious hill-climbing.At 100 variables, the best value of p seemed again to be 0.2, which at Max-
ips = 2,040gave a mean total 
ips of 2,440, about 15% fewer than used by HRsat at its optimalp. As with HRsat, a very wide range of values for Max-
ips give near-optimal per-formance. As with HRsat, the optimum is slightly greater than the value of 2,310 
ipsobserved for CHsat without walk. This result supports our earlier suggestion thatwith random walk, cautious hill-climbing may be preferable to greedy hill-climbing.5.3 Random Walk vs. Hill-climbingThe algorithm presented in Figure 1 allows a random walk step on any 
ip with a certainprobability. However, if hill-climbing is possible, it may be best to 
ip an unsatis�edvariable which increases the score as opposed to an unsatis�ed variable picked at randomwhich fails to increase (or worse still, decreases) the score. To investigate whether thisis so, we implemented a variant of Gensat in which a walk 
ip is only allowed ifhill-climbing is not possible.We used the cautious variant of HRsat introduced above, CHRsat. We variedp from 0 to 1 and at each value found the optimal value of Max-
ips for 100 variable3-SAT problems. At p = 0, where CHRsat is equivalent to CHsat, Max-
ips of 200gave a mean total 
ips of 2,310. As with HRsat in x5.1, behaviour quickly declinedas we increased p from 0. At p = 0:15 the mean total 
ips was 3,610. Unlike HRsat,performance changed surprisingly little as we increased p. From p = 0:15 to p = 0:75,the best Max-
ips was in the range 260-380, with a mean total 
ips from 3,260 to 3,910.Even setting p = 1, i.e. always make a walk 
ip unless an upwards 
ip is available,gave reasonable performance with a best mean total 
ips of 4,770. This is better, forexample, than the best behaviour found for GRsat for the same number of variables.On the other hand, it is worse than the best values for CHRsat in which random walksteps can always be performed. Also, unlike earlier variants of Gensat, we observed asharp minimum in the total number of 
ips. One of the great advantages of Gensatwith random walk, the insensitivity to the setting of Max-
ips, has therefore been lost.Good behaviour at p = 1 suggests that we can discard plateau search, i.e. sidewaysmoves when no improvements are possible, and still retain good performance. Earlierreports on Gsat and variants of it suggested that plateau search was crucial to perform-ance [16, 4]. Further experiments are needed to determine if plateau search can indeedbe discarded since these variants of CHRsat may be simulating plateau search. If arandom walk 
ip is made which decreases the number of satis�ed clauses, hill-climbingmay return search back to the plateau close to where it was left. We may thereforebe merely simulating plateau search rather ine�ciently. Our results do suggest thatrandom walk should be allowed even when hill-climbing is possible.6 Jump-SATWe have shown that the optimal probability of making a walk step can be quite large,and that walk steps should be allowed even when hill-climbing is possible. The prob-ability of making two walk steps in a row (that is, p2) is therefore appreciable. This



suggests that it is important to perform a lot of random walk compared to hill-climbing,and to allow random walk to move large distances around the search space. To determ-ine if performance can be improved by making larger walk steps, we implemented a newalgorithm called \Jumpsat". This is similar to GRsat, except that instead of 
ippingjust one variable in an unsatis�ed clause with probability p, we 
ip one variable fromeach unsatis�ed clause. After one such jump, all clauses that were previously unsatis-�ed become satis�ed. Although some previously satis�ed clauses become unsatis�ed,subsequent hill-climbing and jumps may satisfy these clauses.Following the results of x5.3 we �rst allowed the Jump step to be allowed evenwhen hill-climbing was possible. Compared to GRsat a very small probability wasrequired. On 100 variable random 3-SAT problems at L/N= 4.3, we observed bestperformance of a mean 9790 total 
ips at p = 0:03. For 70 variable problems, Jumpsatonly marginally outperformed Gsat with this setting of p, and for 50 variable problemsit was slightly worse than Gsat. We also tested a version of Jumpsat in which Jumpsteps are prohibited when hill-climbing is possible. At N=100 and p = 0:1, we observedan optimal mean total 
ips of 9000 with Max-
ips = 470. At this value of p, Jumpsatalso outperformed GRsat for 50 and 70 variable problems. Furthermore, at any valueof p we tested up to 0.5, better performance was obtained than with Gsat. Thus bothvariants of Jumpsat are much better than Gsat but not so good as GRsat at p = 0:5.However, when jumps are allowed on all 
ips, the setting of p and Max-
ips are muchmore critical than GRsat.We have shown that Jumpsat outperforms Gsat, although we have not yet shownit to be better than GRsat. Further experimentation with Jumpsat and variants ofit may produce even better results.7 Non Random ProblemsIn this section, we describe the performance of Gensat on several structured problemclasses. Since some of these problems appear to be very hard for Gensat, we wereunable to perform experiments at di�erent values of p. Therefore, throughout thissection, we used the values of p = 0:5 for GRsat and 0.2 for HRsat suggested byx5.2. Similar comments apply to Max-
ips, and we chose to set Max-
ips = 1000Nunless otherwise stated. This very large value is sometimes necessary. Throughout, wecompare performance with complete procedures like Davis-Putnam. Finally, in x7.5,we examine the e�ect of model density on the two types of procedure.7.1 n-queens problemThe n-queens problem is a standard problem for constraint satisfaction algorithms. Ourencoding into SAT uses n2 variables, one for each square on a chessboard. Gensatwithout walk has been shown to perform very well on this encoding [16, 4]. To determinehow random walk a�ects performance, we tested GRsat and HRsat on the 6-, 8-, and16-queens problems averaging over 1000 runs. In every run both procedures solvedthese problems on the �rst try. For comparison, we give results for Gsat at Max-
ips= 5N. Although the random walk option resulted in worse mean performance, it wasstill good, and did avoid getting stuck in local maxima which can happen to Gsaton the n-queens problem. The Davis-Putnam procedure �nds this encoding of the n-queens problem quite hard. Between 8-queens and 16-queens, the amount of search forthe Davis-Putnam procedure increases by a factor of more than 40.



Table 2: Random walk and the n-queens problemProblem Procedure Total 
ips usedmedian mean s.d. worst case6-queens Gsat 198 271 267 1760GRsat 200 281 279 2400HRsat 198 330 379 25908-queens Gsat 71 141 170 1960GRsat 134 179 147 1040HRsat 84 161 214 194016-queens Gsat 207 288 251 1800GRsat 466 594 432 4480HRsat 238 290 165 12007.2 QuasigroupsSeveral open problems in �nite mathematics concerning the existence of quasigroupshave recently been solved by encoding into SAT [17]. A quasigroup is described bya Latin square, a multiplication table with a simple closure property. These resultsare of practical interest as certain results in design theory reduce to questions aboutthe existence of quasigroups with appropriate properties. We tested behaviour on theproblems QG1.n, QG2.n and QG3.n (the names are taken from [17], n is the size ofthe quasigroup). These problems encode into SAT using n3 variables.We did not �nd Gensat well suited to these problems, with or without randomwalk. For example, Hsat required 311 tries to solve even a simple problem like QG1.5with Max-
ips = 10N= 1250. GRsat did manage to solve it on its �rst try, but required96,764 
ips to do so. HRsat failed to solve it in 10 tries. GRsat failed to solve QG1.7or QG2.7 in 6 tries. GRsat and HRsat failed to solve QG3.8 in 10 tries. Recall thatall these failures were at Max-
ips = 1000N. Hsat also failed to solve QG3.8, in 1000tries at Max-
ips = 10N. For comparison, several open problems with between 343and 3375 variables have been solved using a variety of procedures based on constraintsatisfaction, resolution and Davis-Putnam [17].7.3 FactorizationJong and Spears have proposed a novel class of problems based upon an encoding offactorization into SAT [9]. The encoding constructs a boolean circuit which multipliestwo binary words giving as an output the binary encoding of n. If this circuit hasa model then the inputs give two factors of n. To ensure that all problems have asolution, we allow 1 as a factor of any number. We tested GRsat on 8-bit factorizationproblems, the encodings of which have 184 variables. GRsat factored all the numbersfrom 1 to 100 on the �rst try. The mean number of 
ips was 45,400, with a standarddeviation of 39,800, and worst case of 181,066 (pushing the limit of 1000N 
ips). Thisis a great improvement over Gensat without walk, because Hsat, which seems to bethe best such variant [4], failed on all of these problems, either given 5 tries at Max-
ips= 1000N or 50 tries at Max-
ips = 25N. GRsat outperformed HRsat, which solvedonly 67 problems within 5 tries. It is hard to conclude that GRsat is better on theseproblems since we may have been using non-optimal values of p. Although GRsatsolved these problems, it does not compare well with a complete procedure such asDavis-Putnam, which never required more than 100 branches to �nd a solution.



7.4 ZebraOur �nal example is a logical puzzle called the zebra problem. This has been used asa benchmark problem in the constraint satisfaction community, for example in [3, 13].The SAT encoding uses 205 variables and 2975 clauses. Results with Gensat suggestthat random walk is helpful. Hsat failed to solve the problem in 2,500 tries at Max-
ips = 25N. HRsat solved it 10 times in 100 tries, taking on average 63,800 
ips.GRsat solved it 23 times in 100 tries, in on average 56,300 
ips. By comparison, thezebra problem is not hard for Davis-Putnam, which can take advantage of the manyconstraints. Our implementation needed just 114 branches, searching to a maximumdepth of 13 splits, performing 1663 unit propagations and 183 pure deletions.7.5 Model densityGensat with walk performs well on the n-queens problem but poorly on the othernon-random problems tested here (further examples of non-random problems whereGRsat performs well are given in [15]). By comparison, Davis-Putnam behaves poorlyon the n-queens problem but comparatively well on the other non-random problems.This di�erence in behaviour seems to be related to the model density. For example,note Gensat's poor performance on the 6-queens problem in Table 2. This is thelargest queens problem with a unique solution up to symmetry. It thus has a relativelysmall model density. For larger n, the n-queens problem rapidly becomes easy as theproblem becomes more underconstrained, and the number of models increases rapidly.Although there are many models, it easy for Davis-Putnam to make an early mistakethat leads to much irrelevant search. A similar \early mistake" phenomenon has beenseen in random problems in the satis�able region [7].By comparison, there are several reasons why Gensat �nds the quasigroup prob-lems so hard. First, the number of models for the quasigroup problems is very smallcompared to the number of truth assignments. Second, the encoding only indirectlypreserves many of the natural constraints (e.g. that the quasigroup is closed under mul-tiplication). Third, the size of a 
ip may be too small since it changes just one entry inthe multiplication table. If 
ips permuted two entries, the multiplication table wouldremain closed. Because of this small 
ip size, the search space is much larger than itneed be. Much of search is spent exploring truth assignments which do not representquasigroups. Finally, hill-climbing procedures do not propagate constraints well, unlikeconventional backtracking procedures. The encoding includes many binary clauses, sounit propagation does much of the work in Davis-Putnam. Hill-climbing searches manytruth assignments which unit propagation would rule out as trivially incompatible.Similar comments apply to factorization problems. Hill-climbing procedures seemto �nd factoring almost uniformly di�cult, no matter how many factors a number has.Indeed, even even numbers are hard to factor. This is not too surprising given the smallnumber of models. If a number has m factors, then the boolean circuit has just O(m)models and this is small compared to the 2N possible truth assignments. Similarly, thezebra problem has a unique model amongst 2205 truth assignments. Using hill-climbing,it is hard to �nd the model from the many near models. However, unit propagationagain saves much search for Davis-Putnam making the problem easy.It is interesting to compare this situation with hard random k-SAT problems, whereGRsat seems to be better than Davis-Putnam [15]. Whilst the model density tends tozero as N increases, the expected number of models increases exponentially. Random 3-SAT problems at N=100 and L/N=4.3 have on average more than 146,000 models, but



they are not systematically constrained and thus can be hard for Davis-Putnam. Thequasigroup, factorization, and zebra problems have orders of magnitude fewer modelsdespite containing more variables. We speculate that the number of models in relationto problem size may be crucial to the performance of hill-climbing procedures.8 Related WorkPapadimitriou [12] proposed a simple random walk algorithm for 2-SAT which re-peatedly 
ips unsatis�ed variables chosen at random. For satis�able problems, thisalgorithm �nds a model in O(N2) 
ips with probability approaching 1 as N increases.Selman and Kautz proposed adding random walk to Gsat in [14]. With Cohen,they showed that this combination improves the performance of Gsat both on hardrandom problems and certain structured problems like boolean circuit synthesis [15].On hard random problems, we have shown here that the optimal performance of Gsatwith random walk is still worse than that of the algorithm Hsat introduced in [4].Wsat, introduced in [15], also focuses search on unsatis�ed variables. Wsat choosesan unsatis�ed clause at random, and then picks an unsatis�ed variable to 
ip from thisclause using either a greedy or a random heuristic. With a random picking heuristic,Wsat is simply Papadimitriou's random walk algorithm with restarts. On some circuitsynthesis and diagnosis problems, Wsat outperformed Gsat with random walk [15].These results are, however, too preliminary to determine if Wsat consistently outper-forms Gsat with random walk, or the better variants like HRsat introduced here.Note that Wsat is a simple variant of Gensat in which hclimb returns the variablesin an unsatis�ed clause, and pick chooses between then either randomly or greedily.As with random walk, simulated annealing modi�es conventional hill-climbing byallowing occasional downward 
ips. Comparisons between Gsat with random walkand simulated annealing are given in [1, 15]. The �rst study shows similar performancefor the two algorithms, whilst the second shows Gsat with random walk performingbetter than simulated annealing. Note that, unlike random walk, simulated annealingdoes not focus downward 
ips on unsatis�ed variables.9 ConclusionsWe have introduced several new procedures for satis�ability which use a random walkmechanism to focus search on the unsatis�ed variables. Some of these procedures areable to outperform Gsat with random walk, currently one of the best hill-climbingprocedures for satis�ability [14]. For random problems, we have shown that the greatestbene�t of adding random walk is not the improvement in optimal performance but thereduction in the sensitivity to input parameters. Indeed, on hard random problems,the optimal performance of Gsat with random walk appears to remain worse thanthat of a hill-climbing procedure like Hsat without random walk. We also observeda simple scaling law in performance on random problems. For non-random problems,although random walk can improve performance, many problems remain di�cult. Wespeculate this is because the number of models is small and local search is unable to takeadvantage of the constraints which greatly reduce the di�culty of such problems forconventional procedures like Davis-Putnam. Unless constraint propagation techniquescan be pro�tably combined with local search, such non-random problems are likely toremain hard for hill-climbing procedures.
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