
SE Degree Review 2024 - Draft 4 (Teaching Commitee)

Version 2.0 11/09/2024

Introduction
Description

Review Participants
SE Cluster

Other CSE academics / Senior students

Industry Review Panel

Review Process

Existing SE degree structure

Recommendations from 2021 Review
Recommended short-term solutions from 2021 review

Recommended long-term solutions from 2021 review

Other non-curriculum recommendations
Pending from 2016

2021 recommendations (not related to curriculum)

Recommendations from Co-Op Review 2024

Summary of 2024 feedback received and suggested actions
Theme 1: Project Management

Theme 2: Core SE fundamentals

Theme 3: Software Design & HCI

Theme 4: Interesting specialisations

Theme 5: Gaps

Review recommendations
Courses Portfolio and On-line quality monitoring

Recruitment

Curriculum-related actions

Long-term recommendations

Appendix A: Proposed COMP1531 structure

Appendix B: Co-op Sample Study Structure

Appendix C: Software Engineering Co-Op Program Review – Stakeholders Survey 2024
Overall feedback themes

Beliefs about the changes:

Support provided:

Value of the Program:

Academic requirements:

Concerns included:

Scholar suggestions for improvements:

Recommendations based on feedback:

Appendix D: Student Feedback

Appendix E: Industry Panel Review -
Minutes of Meeting 25 August

Appendix F: COMP3142 structure

Course Summary
Assumed Knowledge

Student Learning Outcomes

Appendix G: COMP613 structure

Introduction

Description

In the past, UNSW School of Computer Science and Engineering (CSE) has set up a working group on a regular basis to look at software

engineering (SE) undergraduate degree and make recommendations for reviewing SE's existing structure and offerings in the light of

developments in the field. In 2021, the last review made a number of recommendations based on evidence from difference perspectives as

well as constraints in the university/school.

This draft report describes the preliminary findings of the 2024 review.

Review Participants

SE Cluster

Yuchao Jiang <yuchao.jiang@unsw.edu.au>;Fethi Rabhi <f.rabhi@unsw.edu.au>; Armin Chitizadeh <a.chitizadeh@unsw.edu.au>; Basem

Suleiman <b.suleiman@unsw.edu.au>; Yuekang Li <yuekang.li@unsw.edu.au>; Yulei Sui <y.sui@unsw.edu.au>; Helen Paik

<h.paik@unsw.edu.au>; Rachid Hamadi r.hamadi@unsw.edu.au; Ali Darejeh ali.darejeh@unsw.edu.au

Other CSE academics / Senior students

Wayne Wobcke, Carroll Morgan, Jake Renzella, Rani Jiang (rani.jiang@unsw.edu.au)

Industry Review Panel

Daniel Wirjo (AWS), wirjo@amazon.com;

Rob Pike robpike@gmail.com;

Yacine Rabhi (ESS) yacine.softprodev@gmail.com;

Nick Patrikeos (Atlassian) npatrikeos@atlassian.com;

Chinmay Manchanda (Tyro) chinmay.manchanda08@gmail.com;

George Wright (Nine Publishing) gwright@publishing.nine.com.au;

Alan Hsiao (Cognitivo) Alan.Hsiao@cognitivo.com.au;

Lawrence Yao (ROAR Software) lawrence.yao@unswalumni.com

Andrew Gerrand andrewdg@gmail.com

Review Process

The adopted process will be similar to the process in previous reviews, get feedback from different perspectives and do a synthesis of the

recommendations:

1. Different working groups considering different knowledge areas and the connection to the software engineering body of knowledge

(SWEBOK) make some recommendations. For 2024 review, the different sub-groups are:

a. Future of SE specialised courses: Yulei (Lead)

b. Process & DevOps: Basem (Lead)

c. Project management across the courses: Yuchao (Lead)

d. Core course review (DESN2000, COMP1531): Fethi (Lead)

e. Formal methods review: Carroll (Lead)

f. COMP2511 Review: Alvin Cherk (Lead)

mailto:yuchao.jiang@unsw.edu.au
mailto:f.rabhi@unsw.edu.au
mailto:a.chitizadeh@unsw.edu.au
mailto:b.suleiman@unsw.edu.au
mailto:yuekang.li@unsw.edu.au
mailto:y.sui@unsw.edu.au
mailto:h.paik@unsw.edu.au
mailto:r.hamadi@unsw.edu.au
mailto:ali.darejeh@unsw.edu.au
mailto:rani.jiang@unsw.edu.au
mailto:wirjo@amazon.com
mailto:robpike@gmail.com
mailto:yacine.softprodev@gmail.com
mailto:npatrikeos@atlassian.com
mailto:chinmay.manchanda08@gmail.com
mailto:gwright@publishing.nine.com.au
mailto:Alan.Hsiao@cognitivo.com.au
mailto:lawrence.yao@unswalumni.com
mailto:andrewdg@gmail.com

g. Co-Op Review - Imran Razzak (Lead)

2. Student representatives representing the student body giving their feedback. A meeting has taken place on 23 August 3pm. (Minutes in

Appendix D)

3. Industry consultation committee representing the views of prospective employers comment of these recommendations. A meeting has

taken place on 27 August 12-1.30pm. (Minutes in Appendix E)

4. Other CSE academic staff and teaching committee will approached for further feedback and for approval of final recommendations

Existing SE degree structure

The degree structure is described in the handbook Handbook - Software Engineering (unsw.edu.au)

It is illustrated in the diagram below:

Recommendations from 2021 Review

Recommended short-term solutions from 2021 review

Making an existing course (COMP6721) a core course in

the second-year software engineering degree and carry

updates of courses in the formal methods specialization

accordingly. Bridging material needs to be added,

preferably in COMP1511.

(pending results from Formal Methods sub-group)

Making DESN2000 focus on User-Centred product

design, Requirements Engineering (RE) and early stages

in the software lifecycle and adjust SENG2021 workshop

accordingly.

Actioned.

Re-brand COMP2511 to “Software Design and

Architecture”

Not actioned.

Adjust SENG2021/SENG3011 workshops by introducing

more on project management, design notations, some

Actioned.

Solutions Actions

https://www.handbook.unsw.edu.au/undergraduate/specialisations/2024/SENGAH

Recommended long-term solutions from 2021 review

DevOps.

Evaluate the material in the core content to see if security

issues are properly discussed throughout the

development cycle.

Not actioned

Replace the existing core course (SENG4920) by

DESN3000.

SENG4920 is now changed into COMP4920.

Incorporate discussion of security, risk and ethics in

DESN2000 and DESN3000.

Not actioned.

Investigate students doing a project working on an

existing code base rather than building a new system

from scratch. Participation is an open-source project is a

possibility that could be supported by some of our

industry partners.

Partly done via introducing DevOps in SENG3011

Investigate opportunities with School of Information

Systems, Technology and Management in the area of

delivering course material on Security Management that

could be included in existing courses or offered as INFS

electives (e.g. INFS2701 Cyber Security Management

and Governance and INFS4907 Managing Security and

Ethics in Cyberspace).

Not actioned.

Looking at the cohesion of COMP1531, COMP2511,

SENG2021, SENG3011 and the possibility of a new

course, in the areas of software design, development

and management to balance content.

Not actioned.

Ensuring that the following topics are addressed as

part of the core SE degree:

1. Concurrency

2. Parallel and distributed computing

3. Cloud computing

4. Testing and Software Quality

5. Software performance, building software at scale,

high integrity systems, performance modelling

and analysis

6. Continuous Integration, DevOps, Effort

estimation, release management, software

product line development

7. Software systems analysis (e.g. qualitative

analysis, simulation), model checking, metrics

8. Web Front-end Programming

9. Security of software systems

COMP3142 addressed 4.

SENG workshops addressed 6.

COMP6080 addressed 8, but it is not a core

course.

COMP6131 Software Security Analysis

addressed 9

COMP6452 Blockchain systems mentions quality

attributes and performance (links to 2)

-

Solutions Actions

Other non-curriculum recommendations

Pending from 2016

2021 recommendations (not related to curriculum)

Recommendations from Co-Op Review 2024
Co-Op scholarships are available to SENG students (See Appendix . A Co-Op review has been conducted in 2024 and the report is

presented as Appendix C.

The main conclusions are:

All industry partners agree that placement is valuable to develop industry-relevant skills.

Action: keep the industry placement

All industry partners felt that the workplace experience and industry relevant skills and professional network development are the most

important benefits of the program.

Action: keep the industry placement

Most industry partners recommended having better alignment between academic requirements and IT placements.

Action: introducing more industry-related tools, practices and topics, as well as probably industry-related projects.

Resourcing the Software Engineering degree is a very

urgent issue that needs to be addressed. Many core

courses in Software Engineering don’t have a

permanent lecturer in charge. Leaving them to casuals

at a time when they have been significantly revised will

significantly affect the quality of the delivery of these

courses at a time when student enrolments are

growing.

Partly actioned by recruitment of 2 EF staff, 1 casual

and 1 academic in SENG. Still insufficient due to

increase in students numbers and introduction of

project work in other degrees serviced by SENG staff.

Issue Comment

Students do not have sufficient information about the degree.

Resources are needed to complete a Handbook that was started

in 2016 containing useful information to help them navigate

through various choices.

Not actioned.

Students require increased support for finding Industrial

Placements

Not actioned.

Mentors for many project-based courses are hired at the last

minute, would be better to recruit mentors very early to brief/train

them properly

Partly actioned by offering contracts to tutors much earlier than

before.

Students would benefit from having the same tools used across

multiple courses (e.g. Github/Jira).

Partly actioned as Jira/Confluence and GitHub are increasingly

used

Leveraging industry connections to strengthen some of the

existing courses is highly recommended.

Partly Actioned.

Issue Comment

Some industry partners reported “misalignment of academic assessment with agile environment and realties of work on placement”.

Action: teaching and aligning Agile practices and tools with industry environments.

Most believe the academic requirements of IT placements do not align

Action: introduce more industry-related and improved academic requirements for the placement program.

Heavy reporting requirements and difficulty to assess student’s learning from the placement through assessable tasks

Action: identify better assessment to assess student’s learnings throughout courses and the industry placement

Change the course requirements for IT, moving from a traditional single report to weekly reflections sharing and synthesising ideas on

application of skills in industry to better suit the variety of placement experiences and potentially share fresh insights of industry

applications of skills with their peers.

Actions: Introducing weekly reflections on student’s learning from application of skills and sharing and synthesising ideas. Agile

management and communication --> Sprint demos and retrospectives

Potentially introduce a regular drop-in time (in-person & online) that scholars can access support from the School if confused about

progression or need academic support.

Actions: Introduce weekly consultation and help sessions to support students from academic point of view

Summary of 2024 feedback received and suggested actions
This is all feedback received from different sources. This is arranged in the form of themes.

Theme 1: Project Management

There seems to be many issues related to how much and how we should cover project management.

Project management is inadequately

covered in particular 1. Teamwork

(including communication, conflict

management, collaboration, role

delegation, agenda making) 2. Manage

stakeholders 3.Documentation

Project management sub-group COMP1531 covers Agile basics and give

students some practice. SENG workshops

will reinforce agile practices. DESN2000

looks at managing requirements.

Comp9820 is a new course for MIT which

can have some content useful for SE.

COMP4920 needs to be checked to see

how much PM content is there. Is there a

recommendation we can tell SE students

who want to take electives as part of a

specialisation (Team Leadership ?).

 Core Modules sub-group (Rachid). PM content has to be added in several

core courses. An elective course is not

enough for SE students. PM content can

be based on Kathy Shwalbe textbook -

Information Technology Project

Management. 9th Edition. Cengage. 2018

 Industry review Need to reinforce planning and tooling.

Make students able to work with PMs

rather than turning them into PMs.

 Co-Op Review Introducing weekly reflections on student’s

learning from application of skills and

sharing and synthesising ideas

Issue Origin Possible Action

Theme 2: Core SE fundamentals

There are disagreements as to what constitutes core principles in software engineering: more programming or breadth of

principles in areas such as agile methods, RE, testing etc.

Theme 3: Software Design & HCI

How to address the gap in teaching students different aspects of software design and HCI

Project management principles are not

covered enough

Students feedback Adding lectures to project courses is not

effective as students prefer focus on

project work (where grades are)

 Students feedback Having stable teaching staff for this course

will help preventing deviations

 Students feedback Needs better integration between project

work and the theory principles. This

requires finding a good project that does

teaches maximum principles while avoiding

unnecessary efforts. Also the order of

activities (theory/practice) has to be

designed accordingly.

 Instead of having a single project, students

should have the flexibility to do a project in

an area that interests them (e.g. design or

testing)

 The use of co-pilot to reduce programming

burden is a possibility but raises many

concerns

 Make this course more practical helps

students get internships after 1st year

 Industry review Foundational knowledge is important.

Make students work on an existing

codebase. Reinforce testing before coding.

No Copilot should be allowed.

COMP1531 has deviated from SE

fundamentals and covers more topics

especially connected to Web Design

Core Modules sub-group Refocus COMP1531 around the SE cycle.

Web project should be just a way to

illustrate the different phases. A synopsis is

listed as Appendix A.

Gaps in design fundamentals and software

architectures

Recommendations from 2021 Review COMP1531 can introduce these concepts.

They could potentially be reinforced in

COMP2511. There is a course COMP6452

Software Architecture for Blockchain

Applications but very specialised. Perhaps

could be made more general

Theme 4: Interesting specialisations

Students in SE are not finding advanced subjects or electives to allow them to specialise in certain areas.

Should COMP2511 be a design or

programming course ?

COMP2511 revision subgroup Course needs revising to have a clearer

learning outcomes. Either do more

advanced programming or focus solely on

design. The decision has to be aligned with

COMP1531 revision.

COMP2511 teaches low-level design Students feedback Teaching high-level (e.g. architectural)

design can be better done with a project

 Finding ways to do practical design

activities is desired. How can it be done

without going into full implementation which

is time consuming ?

 Need teaching staff with expertise to

implement the above requirements.

COMP2511 has some gaps in dependency

Injection/Mock testing and mock objects

and async programming (promises,

async/await etc.)

COMP2511 revision subgroup Include these topics in revised COMP2511

Teaching Design in a practical way is

difficult

Industry Review Navigating a large code base and

extracting designs is also a good way to

teach design. Using queing theory and

simulation tools is a good way to teach

students how to test designs and make a

design course more practical

Students have difficulties understanding

the separation between Business

Requirements and Design

Industry review Students need to see the different ways a

system can be designed from the same set

of requirements to understand the

difference.

 Using APIs to teach design is

recommended.

 Students feedback Teaching Axure is not a good idea. Either

stick to Figma or go more into the

programming.

DESN2000 comes after SENG2021 which

is about design. Should be the other way

round

Core Modules sub-group Swap DESN2000 (moved from T2 to T1)

and SENG2021 (moves from T1 to T2).

Otherwise, do less requirements in

SENG2021 (and remove Figma as they will

do it again in DESN2000).

DESN2000 has overlappings with HCI

course

Core Modules sub-group Reduce overlapping: use Axure instead of

Figma as it requires programming skills

 Students feedback Heavily relying on expert tutors creates a

risk when they leave. Few students do

PhDs because not interested in academic

careers. Given Faculty has launched

industry-based PhDs, could new types of

positions across industry-academic be

considered ?

Insufficient project courses Students feedback Involving student societies to create

projects in which computing students are

helping build software for other students

(e.g. business students)

We need to strengthen our elective

offerings in the area of

DevOps/AI/Security/Reliability.

Specialisations sub-group Offer a new DevOps Quality Assurance

course, focusing on AI systems in general

and large language models in particular.

There is already a proposal for ML

Engineering course (Jake) so content

needs to be aligned.

 Industry review DevOps is a complex area, but teaching it

will be hard. Learning to work in a DevOps

environment is more important.

Misalignment of academic assessment with

agile environment and realities of work on

placement

Co-Op Review Teaching and aligning Agile practices and

tools with industry environments.

Expose students to software engineering

for AI or ML (SE4ML)

Specialisations sub-groupnee A new elective course (similar to

DESN2000 in structure) could look at

developing AI applications using a range of

off-the-shelf technologies (not an AI

course). There is already a proposal for LM

Engineering course (Jake) so content

needs to be aligned.

Expose students to experience in

developing large systems

Students feedback Need more lecturers with expertise in

microservices and cloud architectures

Teaching DevOps practices in SENG3011

has been well received but creates many

technical challenges

DevOps sub-group Need to some basic devops concepts

before the workshop. Where ? (1531 does

it but too basic). Requires separate budget.

Some expert mentors and technical

assistance (possibly from industry) too.

COMP3141 as a core course is not

adapted to the needs of SE students. As

we have a new course on software quality

Specialisations sub-group Make COMP3141 specific to Functional

Programming. In this case, it needs to

If COMP1531 removes Web design

material, we need a pathway for software

engineers to learn UI/UX design course

and front-end stacks

Specialisations sub-group COMP6080 could will relieve COMP1531

and provide technical expertise in this

space in the form of an elective. Could

possibly align with DESN2000 use of

Axure.

Theme 5: Gaps

Fundamental things we should be teaching but we don’t

Review recommendations
Divided into 3 areas:

1. On-line monitoring

2. Recruitment

3. Curriculum-related recommendations

(COMP3142), this one will be core so we

may need to reduce other core courses.

become elective ? (but part of Formal

methods specialisation)

MIT students need more SE skills Specialisations sub-group Create a SE specialisation for MIT students

comprising COMP3142 (Software Testing

and Quality Assurance) and other courses

such as new COMP6131 Software Security

Analysis and COMP3141 Functional

Programming, and Algorithmic Verification

COMP3153/COMP915

Students lack experience working with

large projects

Industry review Create course allowing students to work on

large codebase.

Gaps in rigorous (though informal)

reasoning about program construction

Recommendations from 2021 Review

Gaps in requirements engineering and

business analysis

Recommendations from 2021 Review DESN2000 addresses some of the gaps.

 Industry review The most important thing for SE students is

to bridge the gap between BA teams and

Dev teams.

Gaps in dealing with security in general Recommendations from 2021 Review Partly addressed by new course

COMP6131 Software Security Analysis

Gaps in Cloud Computing/platform

engineering: although it partly covered in

SENG, CSE students struggle without

some of these core skills.

Industry review This content could go into COMP2041

(core SE, popular CS elective). COMP2041

many skills are superseded by LLMs.

Atlassian is offering to support (CI/CD,

deployment platforms, etc.)

 Industry review Distributed system design, especially with

APIs. Also connecting with business

services to designs is important.

Students lack ability to configure virtual

networks.

Industry review Creating virtual platforms should be taught,

especially network configuration in a cloud

environment.

Gaps in user experience, human factors Recommendations from 2021 Review DESN2000 has addressed this gap to

some extent.

4. Long-term actions

Courses Portfolio and On-line quality monitoring

Going forward, it is suggested that a dedicated Software Engineering Cluster within CSE will be responsible for reviewing the degree on an

on-going basis.

The existing SENG courses portfolio is shown below:

COMP1531 Software

Engineering

Fundamentals

T1,T2,T3 Still being sorted 0.3

COMP2041/9044

Software Construction

T1,T2 Permanent 0.25

COMP2511 Object-

Oriented Design and

Programming

T1,T2,T3 Casual 0.2

COMP3142 Software

Testing and Quality

Assurance

T3 Permanent 0.2

COMP3900/9900

Computer Science

Project

T1,T2,T3 Permanent 0.2

COMP4920 Professional

Issues and Ethics in

Information Technology

T1,T3 Permanent 0.2

COMP6080 Web Front-

End Programming

T1,T3 Casual 0.2

COMP6131 Static

Analysis for Software

Security

T2 Permanent 0.2

DESN1000 Introduction

to Engineering Design

and Innovation

T1,T3 Permanent/Casual 0.2

DESN2000 Engineering

Design and Professional

Practice - SENG

T2 Casual 0.2

SENG2011 Workshop

on Reasoning about

Programs

T3 Casual 0.2

SENG2021

Requirements and

Design Workshop

T1 Permanent 0.2

Course code and name Term Offerings Staff 2025 Load

Recruitment

Recruitment of SENG staff is still urgent.

A preliminary analysis of the gaps based on the SWEBOK shows 3 gaps as listed in the table below. Research areas have been added that

align with the curriculum recommendations.

Curriculum-related actions

SENG2991 Software

Workplace Practice 1

T1 (Co-Op) Permanent 0.05

SENG3011 Software

Engineering Workshop 3

T1 Permanent 0.2

SENG3993 Software

Workplace Practice 2

T1,T2 (Co-Op) Permanent 0.05

SENG3994 Software

Workplace Practice 3

T2,T3 (Co-Op) Permanent 0.05

TOTAL 2.9 (1.7 permanent, 1.2

casual)

Chapter 1: Software Requirements o Software systems analysis (e.g.

qualitative analysis, simulation), model

checking, metrics

o Semantic technologies

Requirements engineering for AI systems

Designing Ontologies and Knowledge

Graphs for Business Systems

Chapter 2: Software Design and Chapter

3: Software Construction

o Parallel and distributed system design

o Service-Oriented and Cloud computing

o Security by design of software systems

o Business Process Modelling and

Execution

o Concurrency

Entreprise and Data Architectures for

Large Scale Data Processing / AI pipelines

Designing Fintech and Regtech solutions

Chapter 8: Software Engineering Process o Software performance, building

software at scale, high integrity systems,

performance modelling and analysis

o Continuous Integration, DevOps, Effort

estimation, release management, software

product line development

MLOps and new DevOps approaches for

AI/ML systems. DevOps4AI and

AI4DevOps

SWOBOK AREA Teaching Area Research Area

1 Refocus COMP1531 around

the SE cycle.

Project must be minimum to reinforce

principles.

Make the project and principles more

explicitly connected.

Improve the content about testing.

Yuchao, Yuekang

Recommendation Description Action

Suggest outline in Appendix A.

2 Conduct COMP2511 revision rename course as software design and

architecture

focus on principles and alignment with

SWEBOK

explore new forms of experimentation that

do not involve coding (like architecture

evaluation techniques)

replace the java with REST services

add business process management

Ashesh

3 Review project management

contents

focus mainly on collaboration, planning,

tooling and practices that are relevant to SE

check learning outcomes across the multiple

courses in relation to the above

providing consistent support with tooling (for

example, Jira/Confluence resources,

accessible by all courses)

check compliance with accreditation

requirements

SE cluster

4 Make HCI teaching more

relevant to SE

make DESN2000 HCI part more technical

investigate alternatives to Figma

SE cluster

5 Improves DevOps teaching conduct SENG3011 revision in light of

recent introduction of DevOps

Investigate shared DevOps resources for

multiple courses with support from industry

SE cluster

6 Explore offering an advanced

requirements engineering and

design course

Advanced business analysis and

requirements modelling techniques

Capturing non-functional requirements such

as scalability, reliability, security

Dealing with trade-offs between these

considerations. SEs need advanced design

techniques that build on (new) COMP2511

Designing modern cloud architectures

Case studies in different application areas:

Finance, Health, IoT (with industry speakers)

SE cluster

7 Increase offerings in the area

of software engineering for AI

systems

Adapt existing SE techniques in the AI age

Possibilities include: methods (MLOps),

requirements engineering, modelling,

testing, compliance checking etc.

Individual LICs

8 Teach more on cloud

Computing and platform

engineering

Consider teaching system and network

configuration using the cloud

Could be undertaken as part of COMP2041

revision

Individual LIC

9 Conduct COMP3141 revision Considering course will become an elective Individual LIC

Long-term recommendations

For expanding our course offerings, possibilities to investigate include:

Review electives from other Schools (e.g. ISTM)

UNSW Founders have some material that could be relevant (e.g. RAPID DIGITAL PROTOTYPING workshop will take students through

the landscape of various digital prototyping tools.). Armin had experience, they were good but need advance notice.

Involving industry partners and adjuncts in teaching. Many are willing but sustaining it is hard.

Using material from companies (e.g. AWS academy)

Leverage societies (CS students being used by Business students to build s/w)

Appendix A: Proposed COMP1531 structure
The proposed COMP1531 learning outcomes are as follows:

1. Software development lifecycle

What and how - W1

development methods and tools (including teamwork and git) - W2

2. Software Requirements - W3

Use cases, User stories, Validation

UX, human factors

3. Software Design Part 1: Conceptual modelling - W4

4. Software Construction - W5

Javascript or python

Package management (npm or pip)

5. Software Design Part 2 - W7

Design fundamentals and architecture design

Examples of design (Persistence (file-based database), HTTP servers)

6. Software Testing and Quality - W8

Unit testing

Linting (eslint)

7. Software Engineering Process - W9

CI/CD, copilot

Make the course specific to Functional

Programming

Align with other changes in the Formal

Methods area

10 Improve teaching of

programming fundamentals

Non SENG Students need to be better

equipped with programming skills to

undertake the capstone project

Computer

Science Cluster

11 Improve evaluation of

project/internship work

Learn from Co-Op experience and tranfer

lessons to other courses

Investigate assessment alternatives and

introduce other techniques (self-reflections)

SE Cluster

8. SE Professional Practice - W10

SE (or general) project management

Documentation

Appendix B: Co-op Sample Study Structure

1st

MATH1081

Discrete

Mathematics

DESN1000

Engineering

Design and

Innovation

MATH1131

Maths 1A

OR

MATH1141

Higher Maths

1A

6

6

6

COMP1511

Programmin

g

Fundamental

s

COMP1521

Computer

Systems

Fundamental

s

General

Education

6

6

6

COMP1531

Software

Engineering

Fundamental

s

COMP2521

Data

Structures

and

Algorithms

MATH1231

Maths 1B

OR

MATH1241

Higher Maths

1B

6

6

6

Total UOC 18 Total UOC 18 Total UOC 18

2nd

SENG2991

Co-op

Industry
Training 1

SENG2021

Requirement

s and Design

Workshop

6

6

MATH2400

Finite

Mathematics

MATH2859

Probability

and Statistics

DESN2000

Engineering

Design and

Professional

Practice

General

Education

3

3

6

6

COMP2511

Object-

Oriented

Design &

Programmin

g

SENG2011

Software

Engineering

Workshop

2A

COMP3311

Database

Systems

6

6

6

Total UOC 12 Total UOC 18 Total UOC

(nominal)

18

Year Term 1 UOC Term 2 UOC Term 3 UOC

Appendix C: Software Engineering Co-Op Program Review – Stakeholders Survey
2024
Sponsor Feedback (4 responses, 3 companies represented)

Overall feedback themes

· Quality of students is the standout feature of the program.

· No negative effects of the integration of IT and shortening of the program.

· Continued challenge of scholars being more valuable on placement the further they are into their degree, but ideally completing all

placements in time for graduate recruitment processes in the beginning of their final year.

· Number of Co-op scholars dropping out is a concern. It seems the diverse candidates are the ones more likely to drop out of the Co-op

program.

· One sponsor would like to see more diverse candidates picked for scholarships (i.e. from underrepresented backgrounds, low/er

socioeconomic background).

· One sponsor would like more say in allocations.

Summary: Unfortunately a small number of respondents, however sponsor companies appear to be satisfied with the change in Software

Engineering Co-op program structure overall. They have observed no negative impacts of the integration of graded IT placements into the

3rd

SENG3993

Co-op

Industry
Training 2A

SENG3011

Software

Engineering

Workshop 3

6

6

SENG3993

Co-op

Industry
Training 2B

SENG3994

Co-op

Industry
Training 3A

COMP3141

Software

System

Design and

Implementati

on

6

6

6

SENG3994

Co-op

Industry
Training 3B

COMP3331

Computer

Networks

and

Applications

6

6

Total UOC 12 Total UOC 18 Total UOC 12

4th

COMP4951

Research

Thesis A

Discipline

Elective

Software

Construction

Techniques

and Tools

4

6

6

COMP4952

Research

Thesis B

Discipline

Elective

Level 4

Free Elective

4

6

6

COMP4953

Research

Thesis C

SENG4920

Management

and Ethics

Discipline

Elective

Level 4

4

6

6

Total UOC

(nominal)

16 Total UOC

(nominal)

16 Total UOC

(nominal)

16

structure. If scholars undertake their IT placements in the scheduled timing they complete their final placement prior to the recruitment

period, which is preferred by Sponsors.

Scholar feedback (10 responses, SEN20, 21 and 22 represented)

Beliefs about the changes:

· All agree with or are neutral to the integration of IT into the degree.

· Most scholars strongly agree with the condensed 4-year program change, three say the workload is too intense.

· Most scholars like the new placement timing, one scholar would have liked to have had placement in fourth year after more courses.

Support provided:

· Most were satisfied with Co-op office support, one scholar disagreed about feeling supported but did not provide any further

explanation.

· Most felt adequately prepared for their placements, one scholar was neutral.

· Very mixed feedback about satisfaction levels regarding School support, reports of confusion about course requirements, concerns

about progression checks and difficulty contacting their Academic Coordinator for advice/support.

Value of the Program:

· All scholars agree that placement is valuable to develop industry-relevant skills.

· All felt that the workplace experience and industry relevant skills and professional network development were the standout out features

of the program.

Academic requirements:

· Most believe the academic requirements of IT placements do not align, find the reporting requirements too heavy, difficult to align the

realities of their placement and/or redundant.

· Very mixed response regarding ability to demonstrate their learnings through the assessable tasks.

Concerns included:

· Progression checks needed and difficult to get

· Consistent marking

· Misalignment of academic assessment with agile environment and realties of work on placement

· Reporting requirement is too heavy

· Interstate placements are an imposition

Scholar suggestions for improvements:

· Weekly blogging to replace one major report

· Higher payments occur during placement and no payments during study to reflect the effort put in

· Increase communication in 2nd and 3rd year (placement years)

· Reduce the 24 weeks placements so that students are less prone to burn out

Recommendations based on feedback:

· Change the course requirements for IT, moving from a traditional single report to weekly reflections sharing and synthesising ideas on

application of skills in industry to better suit the variety of placement experiences and potentially share fresh insights of industry applications

of skills with their peers.

· Provide greater clarity on the course requirements and expected value of completing the academic components

· Potentially introduce a regular drop-in time (in-person & online) that scholars can access support from the School if confused about

progression or need academic support.

Appendix D: Student Feedback
Meeting with Student Representatives - 23 Aug 2024 Summary (Draft 2)

Theme 1: Project Management

Students prefer a practical approach to learning project management, focusing on industry preparation It's crucial to avoid the path

currently taken by ISTM, which places excessive focus on theoretical aspects. This approach ultimately fails to add significant value to

students' education or future careers.

One suggestion was to cover project management theory in COMP3900 after gaining practical experience on other courses.

Mentioned reasons for low lecture attendance:

Prioritizing working on their project instead.

Time constraints and shorter period to work on assignments, especially with trimesters.

Cost-benefit analysis of attending lectures vs. watching them online, considering the long commute

Redesign lecture content, particularly in COMP3900, to have a tangible effect on grades (similar to COMP1531).

Create a history of previous course changes and analyse reasons behind previous changes before implementing new ones to avoid

drifting back again in the future.

Theme2: Core SE Fundamentals

Current tutors believe COMP1531 content is well-covered but could benefit from clearer explanations and emphasis on key topics and

with an emphasis on key topics highlighted by the academic board

Students suggest an effective learning approach that combines practical experience with theory. They recommend:

Starting with hands-on project work for the first two iterations.

Gradually introducing theoretical concepts throughout.

Focusing more on theory in the final iteration.

This method allows students to gain practical skills while keeping theoretical concepts in mind, ultimately helping them understand the

connections between different components. By reflecting on theory at the end, they can solidify their understanding of how practice and

theory interrelate.

Use bonus marks to explore various software engineering areas beyond backend development.

Suggested focus areas for teams mentioned by former tutors/mentors:

Frontend design for a new feature/improvement e.g. wireframe, and quick frontend with html and css (no functionality needed)

Software Architecture (stack); as a course we've made decisions around the project stack i.e. npm, node, TypeScript, Express server

framework, Vercel deployment for students. However, if this project was to be built professionally, what would students recommend

instead? Extension could be on the architecture to deploy this worldwide i.e. require CDN, potentially a regional load manager, etc.

Project Management; reflection on current group's project management throughout term. Having the practical experience, if students

could return to the start and act as the official manager for their team, what techniques based on project management theory would they

choose? Describe the effect and justify suitability for this team, in comparison to a professional team.

More advanced testing techniques e.g. mocking timers, mocking database connections, mock deployment, hypothesis testing, testing

randomness, industry user acceptance testing

More advanced CI/CD e.g. automated deployment through pipelines, containerisation of frontend and backend, additional software

checks, exploring git pre-commit hooks

Structure COMP1531 similar to the Algorithm course in which students can decide which tasks to do to achieve a certain mark. Also we

can more specific about criteria in each iteration that is required to produce a certain grade.

Consider introducing AI tools like Copilot in later courses for which students already learnt the fundamentals of programming (e.g.,

SENG workshops or COMP3900). Introducing the use of ai when students aren't 100% with their fundamentals could also be a detriment

to their learning. as it may lead to an over reliance on ai to complete work. If introduced too early, research supports AI severely

hindering students developing their own problem solving skills.

AI is suggested as an extremely useful tool that is heavily used by engineers in industry whenever they can. Maybe it can be introduced

in a course where its more open ended and students are unlikely to have similar solutions regardless of AI generating it. COMP3900 or

SENG workshops come to mind when they are completing different types of projects from other students.

Working on a real practical project earlier to make them job ready and help students secure internships more easily. Practical projects:

Develop technical skills (an important baseline)

Develop their ability to understand project management theory

Develop their ability to understand interconnection

Develop teamwork skills, conflict management skills, leadership skills

Improve their maturity

This is because most jobs care about maturity, communication, and ability to work in a team. Technical roles care about baseline technical

skills and ability to work in a technical team. By understanding the gaps in the technical field, students can be inspired to research certain

areas.

Teamwork is extremely valuable and should be maintained.

Theme 3: Software Design & HCI

System design (where multiple codebases are used) can be better taught in courses that will have multiple codebases, like capstone

type courses.

Update COMP2511 course name to "Software Engineering Design."

Students strongly oppose replacing Figma with Axure due to the lack of popularity in the industry and the limited value of Axure

programming.

Address redundancy in Figma learning between SENG2021 and DESN2000. Students are expected to learn Figma on their own in

SENG2021, but it is then taught again in DESN2000.

Theme 4: Interesting Specialization

There is a need for more lecturers with expertise in microservices and cloud architecture.

Formalize documentation for SENG2021 and SENG3011 to manage knowledge transfer. SENG2021 and SENG3011 rely heavily on

tutors, and their departure could create significant knowledge gaps. There is a need to formalize documentation for running these

courses so the future course admins can manage the course easier. COMP2511 has a really good example of this that the admins try to

maintain.

Some courses are staffed only at the minimum level required to keep them running, which creates little to no incentive to document the

processes involved. However, this is not the case for COMP2511.

Unfortunately, this is a common issue at UNSW CSE. Many new LiCs and course admins at CSE are often thrown into the deep end,

having to ask others for help or figure things out on their own. For example, they may struggle with setting up the exam environment,

managing the SMS, or pulling enrolment data, because there is no formal documentation on this.

Students may wrongly assume that pursuing a PhD leads to only an academic career. The low pay and high competition in academia

can deter students from pursuing a PhD. While companies hire PhDs e.g. trading companies, Google, etc, this is a longer and more

uncertain path to industry. To support student interest in research:

Mentioning the current pertinent research in a field to help give them ideas

More support from supervisors e.g. guidance on how to get started

Many societies value COMP students, and collaborations with other disciplines, such as business, can be beneficial for both parties.

Additionally, most societies look to build some website/specific technology for running their work. This could also provide practical

experience opportunities for SE students. Something to note about Business societies:

Business students only have ~3 required contact hours a term, and are more free to work on Case Competitions or other

extracurriculars. These competitions usually benefit from some demo of working technology.

ISTM students also have a coding capstone course, potentially possible to combine the courses so the Business school student works

on the project management side and SE stays on the technical side

The high number of casual lecturers can cause courses to drift.

Some courses may need to be broken up. Courses with high dropout rates (42% by census) are likely candidates for updates.

A problem is that students complete COMP2511 in an earlier stage in their degree progression, and as such, won’t have skills needed to

cover much harder design topics like system/cloud design.

SENG tutorials could be reworked to address issues with students not finding lectures useful, but this raises concerns about knowledge

gaps.

Appendix E: Industry Panel Review -

Minutes of Meeting 25 August

Present: Rob Pike; Yacine Rabhi; Nick Patrikeos; Chinmay Manchanda; George Wright;Alan Hsiao; Lawrence Yao; Andrew Gerrand

Apologies: Daniel Wirjo

Agenda

1. Panel members introduce themselves

2. Fethi provided a quick summary of the review so far

3. Feedback was sought from panel members for each of the themes below

Theme 1: Project Management

Students do not need to be expert in PM but in some aspects of it. For example, students struggle with breaking work into small pieces.

Also, starting with simple tasks instead of taking on too much. There is confusion regarding project management expectations, especially

around project delivery timelines.

PM is a large area with two components: planning using micro (Agile) and macro (managing multiple projects) approaches and tooling

(planning, Microsoft and Atlasssian tools, devOps).

Project management is often learned through the experience of doing projects, rather than formal training. There is a debate about

whether to teach project management explicitly or let it be learned organically.

Accreditation bodies often require evidence that project management is covered in academic programs, pressuring institutions to include

it in the curriculum.

In conclusion, it is not realistic to make SEs become project managers, but the teaching needs to make them able to work with program

managers and understand their language. Also, they need to be able to perform some essential tasks like project planning and use

appropriate tooling. At the same time, we need to be able to satisfy accreditation requirements.

Theme 2: Core SE Fundamentals

Software Engineering (SE) fundamentals, such as problem-solving and system design, are important. The SE core course should focus

on equipping students with foundational knowledge, integrating industry practices and research.

There are discussions on how far to go into core SE skills and how to balance them with practice (doing a large scale project is time

consuming). One suggestion is to make students work on an existing code base.

Making students write test cases before coding is a good way to make them understand the whole process

There were strong feelings about allowing students to use Co-pilot (most felt it was a bad idea).

Theme 3: Software Design & HCI

Software design is highlighted as a crucial skill, requiring extensive practice and experience. But it takes a long time for someone to

reach a point to become a software architect or designer. A design course needs to be modest in its objectives as most graduates will not

be designing applications for a long time.

The importance of good design principles is acknowledged, but it is noted that these can only be mastered through repeated application

in real-world scenarios. Also one way to achieve this is giving students examples of well or poorly designed systems.

Using queing theory and simulation tools is a good way to teach students how to test designs and make a design course more practical.

Students have difficulties understanding the separation between Business Requirements and Design. Some effort has to be spent

teaching them the difference. Students also have a tendency to retrofit requirements instead of doing investigations/asking stakeholders

for information.

Students need to see the different ways a system can be designed from the same set of requirements to understand the difference.

Navigating a large code base and extracting designs from it is also a good way to teach design.

Discussions also touched on the integration of Human-Computer Interaction (HCI) concepts within software design education.

Theme 4: Interesting Specializations / Gaps

There's a challenge in balancing core SE content with electives, especially in areas that could become important specializations. There

are gaps in the curriculum related to keeping up with evolving technologies and languages identified in previous reviews. Emphasis is

placed on the need to address gaps in skills and knowledge, particularly in relation to the SE body of knowledge.

In general, the idea of working on existing projects as part of the learning process is seen as an interesting approach which should be

encouraged.

Specializations like DevOps are considered complex but valuable areas for students to explore. Testing code automation and building

deployment pipelines is important. However, learning DevOps in detail is not important, what was important was to work in a DevOps

environment.

Distributed system design is considered an important area. In particular, designing software components and APIs is important and in

particular how to use them to build a business service in a “goal-oriented” design approach. Meeting business requirements using APIs

in general is part of this.

There is also a feel that network concepts are important as practitioners increasingly need to configure virtual networks.

Given the rise of AI, data modelling in general is also important as a specialisation

On the subject of business analysis, the most important thing for SE students is to understand the process and be able to bridge the gap

between BA teams and dev teams.

On the subject of HCI, this is a discipline that is not part of SE so again, SE students need to understand the interface with HCI.

Staffing challenges are also noted as a contributing factor to existing gaps, affecting the ability to cover all necessary areas. Greater

involvement from industry can help ensure a greater coverage.

Appendix F: COMP3142 structure

Course Summary
Software plays an important role in our daily life. It is important to construct robust, operational software, especially under limited

development budgets and time constraints. To address this problem, a thorough verification and validation process is needed. In this course,

we will study classic and modern techniques for the automated testing and analysis of software systems for reliability, security, and

performance. Throughout the course, students will gain insight into a spectrum of software quality assurance techniques, including but not

limited to fuzz testing and symbolic execution. These techniques will be not only studied but also applied in real-world scenarios, providing

practical skills that are highly relevant in the ever-evolving landscape of software development.

Assumed Knowledge

You need to have successfully completed the core programming, algorithm, and software development courses.

The prerequisites of COMP3142 are COMP1531, COMP2511, and COMP2521.

Student Learning Outcomes

By the end of the course, students will be able to:

1. Understand the fundamental concepts and principles of software testing and quality assurance.

2. Identify and address common quality assurance challenges in software development.

3. Evaluate and select appropriate testing tools and frameworks.

4. Apply various software testing techniques to identify defects and ensure software reliability.

5. Analyze and interpret test results to make informed decisions.

6. Create effective automated test tools.

Appendix G: COMP613 structure
Course Details & Outcomes

Course Description

This course is designed to provide a systematic exploration of automated source code analysis and verification techniques, with the aim of

gaining hands-on experience in implementing code analysis tools to identify common yet important software vulnerabilities in software

systems. By taking this course, students can put static analysis and verification theories and advanced techniques into practice. They will be

able to build source code analysis tools (e.g., written in C++) based on modern compilers and popular open-source frameworks to scan,

comprehend and detect programming mistakes and vulnerabilities with the purpose of enhancing code quality and security.

Course Aims

The primary goal of this course is to familiarize students with a variety of source code analysis techniques and algorithms, ranging from

fundamental to state-of-the-art. Students will be encouraged to develop their own tools based on an open-source framework that uses a

compiler, and they will learn how these techniques and tools can be applied to detect real-world code vulnerabilities. Upon completing the

course, students will have a comprehensive understanding of the history of source code analysis, the current techniques used, and the

future challenges that must be addressed in this field.

Course Learning Outcomes

CLO1 : Explain source code vulnerabilities in system software and motivations for software analysis and verification

CLO2 : Explain basic compiler intermediate representation and its importance for precise software vulnerability detection

CLO3 : Implement source code analysis techniques including control- and data-flow analysis

CLO4 : Develop source code verification techniques including constraint solving and assertion-based verification using automated

theorem provers.

CLO5 : Design and implement well-considered, high performance, static analysis algorithm to solve problems

CLO6 : Create effective and minimum unit tests and documentation to validate the correctness of the code analysis tools

Course Learning Outcomes

