
06/07/2023, 22:00 Proposal-82594 Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/proposal-rationale/1f6864a6472ba950f958d28df26d438d 1/3

Dashboard Proposal-82594 Software Security Analysis and Veri�… Proposal Ratio… Print

Proposal-82594 Software Security
Analysis and Veri�cation

Proposal Creation PROPOSED

MARK AS COMPLETE

Proposal Overview

Proposal Contacts

Proposal Rationale

New / Revise New

Proposal Summary
and Rationale

* Software systems, which are deeply rooted in a wide range of industries
and businesses, are so pervasive that we are often unaware of their
presence until software bugs occur. A single bug can cause critical
software failures, resulting in huge social and economic impacts. Despite
the increasing attention and efforts in improving software reliability and
security, modern complex systems (e.g. containing millions of lines of
code) are still plagued with bugs.

This subject aims to develop automated software analysis and
veri�cation techniques based on an open-source framework to
understand and discover common yet important software vulnerabilities
in system software. Through this subject, students will be given the
opportunity to apply and practice their system programming skills and
software development experience. Particularly, the students will design
and develop automated code analysis tools to understand, discover and
detect programming errors to improve software quality. Students are
assessed on the basis of their technical capabilities, understanding of
software analysis and veri�cation via open-source software development.

The course proposal has been prepared over the past two months and
discussed with DHoS John Shepherd. The rationale behind this proposed
course is twofold: (1) an increasing number of CSE students specializing
in software engineering require a course that caters to the demands of
secure software engineering and programming languages. This elective
course aims to ful�l those needs. (2) The proposed course has also been
discussed in CSE's Future Cybersecurity Working Group to address the
requirements of the planned cybersecurity program, particularly in the
area of secure coding. The proposed course is planned to be included in
the Cybersecurity Engineering Masters program (MIT), which may start in
2024 as endorsed by the faculty.

Author Yulei Sui

https://eclips.unsw.edu.au/courseloop/dashboard#/
https://eclips.unsw.edu.au/courseloop/proposal-landing#/1f6864a6472ba950f958d28df26d438d
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=e7d73ecbdb4e1410eb6b147a3a9619fd
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=617ccdabdb20e010be4672f5f39619b9


06/07/2023, 22:00 Proposal-82594 Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/proposal-rationale/1f6864a6472ba950f958d28df26d438d 2/3

Consultation

Third Party Arrangement

Proposal Sponsor Name Role

John Shepherd Senior Lecturer

Collaborators Name Role

Gianna Foong Education Quality O�cer

Consultations Who Relationship

Salil Kanhere Internal to UNSW

Paul Hunter Internal to UNSW

Third Party Delivery
Partners/Organisatio
ns

https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=617ccdabdb20e010be4672f5f39619b9
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=617ccdabdb20e010be4672f5f39619b9
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=7cd9ac9e87146d50a98c74497bbb35d8


06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 1/9

Dashboard Proposal-82594 Software Security … COMPXXXX Software Security A… Print

COMPXXXX Software
Security Analysis and
Veri�cation

: Overview

2024.01 PROPOSED

MARK AS COMPLETE

Related Items Report

Overview

Academic Details

Course Information

Course Code * COMPXXXX

Course Name * Software Security Analysis and Veri�cation

Course Name -
SiMs

* Code Analysis and Veri�cation

Owning Faculty * Faculty of Engineering

Owning Academic Unit * School of Computer Science and Engineering

Collaborating Academic
Unit

Administrative
Campus

* Sydney

Units of Credit * 6

Grading Basis * Standard UNSW grades

Academic Calendar
Type

* 3+

Career * Postgraduate

Course Description
for Handbook

* This course is designed to provide a systematic exploration of automated
source code analysis and veri�cation techniques, with the aim of gaining
hands-on experience in implementing code analysis tools to identify

https://eclips.unsw.edu.au/courseloop/dashboard#/
https://eclips.unsw.edu.au/courseloop/proposal-landing#/1f6864a6472ba950f958d28df26d438d
https://eclips.unsw.edu.au/courseloop/related-item#/subject-information/9f6864a6472ba950f958d28df26d438c
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=9d7a77ffdbad9490e5cf3391f49619f9
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=f04ecc50db415d90595850d8f49619ec
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=015f23c4db9558102b41483705961997
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=aa8fe308db9558102b41483705961988


06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 2/9

Course Properties

common yet important software vulnerabilities in software systems. By
taking this course, students can put static analysis theories and advanced
techniques into practice. They will be able to create static code analysis
tools (e.g., written in C++) based on modern compilers and popular open-
source frameworks to scan, comprehend and detect programming
mistakes and vulnerabilities with the purpose of enhancing code quality
and security.

Field of Education
(Broad)

* 020000 Information Technology

Field of Education
(Narrow)

* 020100 Computer Science

Field of Education
(Detailed)

* 020103 Programming

Level

Teaching Strategies and
Rationale

The lectures in this course provide a theoretical foundation for static code
analysis and veri�cation techniques, which aim to detect and defend
against software vulnerabilities that can result in unexpected behaviors or
exploitation by attackers. The lectures also explain how to apply these
techniques to create practical tools for detecting and reporting common
software vulnerabilities and proving the absence of bugs in system code
(such as code written in C/C++).

The tutorials build upon the lectures to solidify students' conceptual
understanding of software vulnerabilities, static analysis algorithms, and
associated tools, including modern compilers, low-level intermediate
representation of code, and constraint-solving techniques. The tutorials
also provide practical knowledge relevant to the week's lab exercises.

The laboratory exercises give students a concrete understanding of
compiler-based source code analysis and veri�cation. They develop
automatic auditing tools, identify vulnerabilities, and develop security
analysis and testing methods to improve code quality and protect
systems against cyber-attacks, which are the core conceptual outcomes
of this course.

Programming assignments expand upon the skills and knowledge
developed in laboratory exercises by tackling substantial practical
problems. Each assignment builds upon the previous one to �nally create
a tool that is ready to be used for source code scanning and vulnerability
detection. 

Course Aims The primary goal of this course is to familiarize students with a variety of
source code analysis techniques and algorithms, ranging from
fundamental to state-of-the-art. Students will be encouraged to develop
their own tools based on an open-source framework that uses a compiler,
and they will learn how these techniques and tools can be applied to
detect real-world code vulnerabilities. Upon completing the course,
students will have a comprehensive understanding of the history of
source code analysis, the current techniques used, and the future
challenges that must be addressed in this �eld.

Delivery Attributes

https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=90b4e2addbd15410e5cf3391f49619f2
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=90b4e2addbd15410e5cf3391f49619f2
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=90b4e2addbd15410e5cf3391f49619f2
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=4b00f348db9558102b414837059619b3
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=b83e97021b94c150d5fb0fabdc4bcb35


06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 3/9

Delivery

Learning Outcomes

Course Type Award course

Course Attributes

Repeat for Credit No

Delivery Variations

HELP

Learning Outcomes Code Description

CLO1 Explain source code vulnerabilities in system
software and motivations for static analysis
and veri�cation

Code CLO1

Description * Explain source code vulnerabilities in system software and
motivations for static analysis and veri�cation

Number * 1

CLO2 Understand basic compiler intermediate
representation and its importance for precise
software vulnerability detection

Code CLO2

Description * Understand basic compiler intermediate representation
and its importance for precise software vulnerability
detection

Number * 2

CLO3 Implement static code analysis techniques
including control- and data-�ow analysis

Code CLO3

Description * Implement static code analysis techniques including
control- and data-�ow analysis

Number * 3

CLO4 Develop static code veri�cation techniques
including constraint solving and assertion-
based veri�cation using automated theorem
provers.

Code CLO4

Description * Develop static code veri�cation techniques including
constraint solving and assertion-based veri�cation using
automated theorem provers.

https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=c0323601873edd5051b24086dabb35ec
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=500f31731be19194d5fb0fabdc4bcb94
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=7eca873fdb78d990595850d8f496192f
javascript://
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=1b220c9cdbd558102b41483705961950


06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 4/9

Course Mapping

Assessments

Number * 4

CLO5 Design and implement well-considered, high
performance, static analysis algorithm to
solve problems

Code CLO5

Description * Design and implement well-considered, high performance,
static analysis algorithm to solve problems

Number * 5

CLO6 Create effective and minimum unit tests and
documentation to validate the correctness of
the code analysis tools

Code CLO6

Description * Create effective and minimum unit tests and
documentation to validate the correctness of the code
analysis tools

Number * 6

CLO Mapping Mapping

No mapping data exists

Show versions

Assessments Assessment Type Assessment Name Weighting (%)

Lab work Weekly coding
exercises and quizzes

30

Assessment
Type

* Lab work

Assessment
Name

* Weekly coding exercises and quizzes

Weighting
(%)

* 30

Group or
Individual

* Individual

Assessment
Overview

* During weekly labs, students will be given programming
exercises and quizzes to complete as part of their
assessment to enhance in-class learning and get prepared
for code assignments. These tasks will cover topics such
as understanding compiler intermediate representation,
graph representation of code, implementing basic graph
traversal algorithms, and using Z3 theorem prover for
assertion veri�cation.

These tasks will provide students with the opportunity to
revisit and solidify individual concepts from the lectures.
The small-scale coding tasks will be marked based on the

https://teaching.unsw.edu.au/curriculum-mapping


06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 5/9

correctness of the student's implementation, and in-person
feedback will be provided to help students improve their
coding skills, and understanding of the key knowledge in
lectures. 

Mapping to
Learning

Outcomes
CLO1, CLO2, CLO3, CLO4, CLO5, CLO6

Applies to All
Delivery

Variations?
Yes

Assessment
Number

* 1

Assessment
Mapping Mapping

Assignment Control-�ow
reachability analysis

20

Assessment
Type

* Assignment

Assessment
Name

* Control-�ow reachability analysis

Weighting
(%)

* 20

Group or
Individual

* Individual

Assessment
Overview

* The objective of this assignment is to create a control-�ow
reachability analysis using a code graph representation,
with the purpose of automatically analyzing a program's
properties (such as control-�ows) and its execution states.
The implementation of this assignment is a component of
a course-generated automated source code analysis tool.

The assignment requires students to enhance their coding
and debugging skills by utilizing online slides and
resources. These resources will also provide opportunities
to learn how to write e�cient and high-quality code
checkers. As part of practicing the fundamental
programming elements, the student is required to submit
their implementation, which should compile correctly and
produce the desired outputs. This assignment's
implementation enhances the student's comprehension of
source code analysis and code representation,
concurrently serving as preparation for the development of
a software analysis tool in future assessments.

Mapping to
Learning

Outcomes
CLO2, CLO3

Applies to All
Delivery

Variations?
Yes

Assessment
Number

* 2



06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 6/9

Assessment
Mapping Mapping

Assignment Data dependence and
taint tracking

25

Assessment
Type

* Assignment

Assessment
Name

* Data dependence and taint tracking

Weighting
(%)

* 25

Group or
Individual

* Individual

Assessment
Overview

* The objective of this assignment is to create a data-
dependence analysis and a tainted information �ow tracker
that integrates both the control-�ow reachability analysis
(in Assignment 1) and data-dependence information. This
enables the tracking of tainted input and the identi�cation
of tainted information �ows on the code graph. The
implementation of this assignment is a component of a
course-generated automated source code analysis tool.

In this assignment, students are expected to grasp the
concepts of data dependence and pointer analysis and
apply them practically to construct a tainted information
tracker. Alongside practicing fundamental programming
elements, students are required to submit their
implementations, which should compile without errors and
generate the intended outputs.

Mapping to
Learning

Outcomes
CLO2, CLO4

Applies to All
Delivery

Variations?
Yes

Assessment
Number

* 3

Assessment
Mapping Mapping

Assignment Assertion-based code
veri�cation

25

Assessment
Type

* Assignment

Assessment
Name

* Assertion-based code veri�cation

Weighting
(%)

* 25

Group or
Individual

* Individual

Assessment
Overview

* The objective of this assignment is to utilize static
symbolic execution to develop assertion-based veri�cation,



06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 7/9

Enrolment Requirements and Relationships

Third Party Arrangements

which automates the veri�cation of code properties
through the use of assertions. The assertion veri�cation
builds upon the weekly lab exercises as well as the control-
and data-�ow analysis implemented in Assignments 2 and
3, incorporating the control-�ow reachability and data
dependence information.

In this assignment, students are tasked with practicing the
utilization of the satis�ability modulo theories solver and
applying it to automated assertion veri�cation. By
submitting accurate implementations that yield the desired
outputs, students will successfully complete the �nal
component of the automated source code analyzer for the
course. This component enables the analysis and
veri�cation of real-world C programs.

Mapping to
Learning

Outcomes
CLO4, CLO5, CLO6

Applies to All
Delivery

Variations?
Yes

Assessment
Number

* 4

Assessment
Mapping Mapping

Assessment Total
Percentage

COMPXXXX 100

Requirements to pass
this course

Enrolment
Requirements

Type Description Career

Enrolment
Requirements

COMP6771 Postgraduate

Type * Enrolment Requirements

Description COMP6771

Career * Postgraduate

Additional
Constraints on
Enrolment
Requirements or
Relationships

Course Relationships

Third Party

https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=cc1223861b94c150d5fb0fabdc4bcb5a
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=cc1223861b94c150d5fb0fabdc4bcb5a
https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=cc1223861b94c150d5fb0fabdc4bcb5a


06/07/2023, 21:57 COMPXXXX Software Security Analysis and Verification - CourseLoop - Print

https://eclips.unsw.edu.au/courseloop/show#/subject-information/9f6864a6472ba950f958d28df26d438c 8/9

Resourcing

Other Information for Handbook

Academic Admin Only

Revenue Split

Key Search Terms

Links to Course Outline

Student System ID

Course Active Yes

Publication Flag Yes

Requisites

https://eclips.unsw.edu.au/courseloop_kb?id=kb_article&sys_id=76386b89dbedd450e5cf3391f496198b


Course content: 
 
Designed based on my past open courses in code security analysis and verification. 
https://github.com/SVF-tools/Teaching-Software-Analysis/wiki 
https://github.com/SVF-tools/Teaching-Software-Verification/wiki 
 
Analysis and comprehension of code vulnerabilities: Identifying memory safety errors, buffer 
overflows, memory leaks, use-after-frees, null dereferences, and information leakage. 
 
LLVM Compiler and Intermediate Representation: Low-level representation of code, 
compiler instructions and the translation of high-level code to low-level instructions. 
 
SVF Static Analysis Framework: Graphs representation of code, encompassing control-flow 
graphs, call graphs, data-flow graphs, and constraint programming. 
 
Control-Flow analysis: Context-insensitive and context-sensitive reachability analysis on top 
of interprocedural control-flow graphs. 
 
Data-Flow Analysis: This analysis focuses on tracking information flow and performing taint 
analysis to detect information leakage, considering sensitive sources and sinks within the 
control-flow and data-flow graphs. 
 
Code verification using Z3 Theorem prover: Abstracting code into first-order logic expressions 
and validating the satisfiability of constraints using the Z3 Theorem prover. 
 
Symbolic execution and assertion-based checking: Conducting abstract execution on the 
control-flow graph to compute and maintain program states. Verify code properties such as 
assertions for each program execution path. 
 
Relationship with other courses (Most of the following courses are 
undergraduate courses): 
 
COMP3153/9153 Algorithmic Verification emphasis on the theoretical aspects of verification, 
specifically pertaining to logics, automata, verification games, and model checking. It does 
not focus extensively on code security or tool implementation. My proposed course primarily 
focuses on the practical application side, utilizing the automated Z3 Theorem Prover. 
 
COMP2111: System Modelling & Design is a theoretical course that encompasses 
propositional, predicate, and Hoare logics, proof obligations, and proofs, without delving into 
code implementation. 
 
COMP6447 System and Software Security Assessment concentrates on industry practices 
and security assessment, covering topics such as cyber-attacks, exploitation, and defense. 
However, it does not cover code analysis and verification. 
 
COMP4161 Advanced Topics in Software Verification is closely linked to specification-driven 
verification and proof, with a particular focus on interactive theorem provers like Isabelle. This 
course does not emphasis on static analysis or compiler-based code checkers that aim to 
detect vulnerabilities in real-world programs. 

https://github.com/SVF-tools/Teaching-Software-Analysis/wiki
https://github.com/SVF-tools/Teaching-Software-Verification/wiki

