
1

SE Degree Curriculum Review
Working Group Draft Report (Draft 3 November 2021)

Introduction
UNSW School of Computer Science and Engineering (CSE) has set up a working group whose
purpose is to look at software engineering (SE) undergraduate degree and make
recommendations for reviewing SE's existing structure and offerings in the light of several
changes in the last 5 years. The working group should as much as possible make
recommendations based on evidence from difference perspectives as well as constraints in the
university/school.

The composition of the Working Group is:

• Chair: Fethi Rabhi
• CSE members: Jake Renzella, Nick Patrikeos
• External members: George Joukhadar (SISTM UNSW), Sherry Xu (Data61)

A number of sub-groups were created to look at particular teaching areas.

Process followed
The process was similar to the process in previous review, get feedback from different
perspectives (a code is associated with each perspective):

• Different working groups considering different knowledge areas and the connection to
the software engineering body of knowledge (SWEBOK)

o [1] Review of formal methods (chaired by Carroll Morgan)
o [2] Review of early software lifecycle (Chaired by Fethi Rabhi)
o [3] Review of Software Design (Chaired by Nick Patrikeos)
o [4] Review of Management and ethics Issues (Chaired by Wayne Wobke)

• [I] Industry consultation committee representing the views of prospective employers
• [S] Student representatives representing the student body
• [A] Academic staff and teaching committee

The learning objectives may be refined based on these recommendations.

2

As a reference, the structure of the degree at the last review in 2016 is illustrated below.

Specializations recommended in 2016 are listed in Appendix C.

Summary of Sub-groups recommendations
We summarise the recommendations made by these sub-groups and link them to the Software
Engineering Body of Knowledge areas (table of content listed as Appendix B at the end of
this document) and which are available for download at:

https://www.computer.org/education/bodies-of-knowledge/software-engineering

Formal Methods
A summary of the motivations and recommendations:

• Motivation: the removal of a core course (COMP2111) and changes in staff in other
courses has made content between different formal methods courses inconsistent and
their connection with the rest of the degree unclear

• Most salient proposition: making an existing course (COMP6721) a core course in the
second year, referred to as X6721 in the rest of this document, whose purpose is to
teach informal but rigorous reasoning and act as a bridge between formal methods
courses and the rest of the degree

• Advantages: keeping formal methods as a valuable part of the degree, something that
distinguishes us from other degrees

• Disadvantages: The introduction of a new core course limits the number of electives
students can take

Specific notes/recommendations as well as connections to SWEBOK are included in the
table below:

https://www.computer.org/education/bodies-of-knowledge/software-engineering

3

Course Name Recommendations SWEBOK Sub-Areas
New course (referred to
as X6721), based on
existing COMP6721

[1] First course on Formal-methods
based programming techniques that
will become core for the software
engineering degree.

[1] Not “full scale” use of
programming logic or similar, but
rather a focus on informal but
rigorous reasoning. Explicit
teaching of propositional- and
predicate calculus. Informal rigour
for imperative code; informal rigour
for data-structure abstraction;

1 Software requirements
-Requirements process
- Requirements
elicitation
- Requirements analysis
- Requirements
validation

SENG2011 [1] Focus on automated reasoning
using Dafny as well as introducing
project-oriented tools.

[1] showing how to automate some
of the informal reasoning introduced
in X6721

[1] Will have X6721 as a
prerequisite

3. Software Construction
 3.1 Software
Construction
Fundamentals
 3.1.3 Constructing for
Verification
 3.3.2 Construction
Languages
 3.3.3 Coding
4. Software Testing
 4.3 Test Techniques
 4.3.3 Code-based
Techniques
 4.3.4 Model-based
Testing Techniques
9.Software Engineering
Models and Methods
 9.1 Modelling
 9.3 Analysis of Models
 9.3.3 Analysing for
Correctness
 9.4 Software
Engineering Methods
 9.4.2 Formal Methods
14 Mathematical
Foundations
 14.1 Set, Relations,
Functions
 14.2 Basic Logic
 14.3 Proof Techniques

COMP2111 [1] Introduce the basic and general
theoretical formalisation concepts
needed as in introduction to more

9 Software Engineering
Models and Methods
-Modeling
-Types of Models
-Analysis of Models

4

specific and focused CS theory in
later years

COMP1511/COMP2521 [1] Integrate a small amount of
X6721-style content into
COMP1511 and COMP2521 in a
way that would make some students
better programmers, and the others
no worse

13. Computing
Foundations
-Programming
Fundamentals
-Programming Language
Basics
-Data Structure and
Representation

New (for 1st year) [1] As an alternative to the above,
introduction of an extra core course
to relieve some of the pressure on
COMP1511 and COMP2521 Data
structures and algorithms", which
could then allow better integration
between informal methods and first-
year students

Early Phases in Software Cycle
A summary of the motivations and recommendations:

• Motivation: the introduction of a new Faculty course (DESN2000) has created the
need to include “design material” that is specific to SE yet needs to connect with a
more generic part provided by Faculty around “user-centred” design

• Most salient proposition: making DESN2000 focus on User-Centred product design,
Requirements Engineering (RE) and early stages in the software lifecycle

• Advantages: takes pressure off teaching RE in other courses, gives all students a basic
introduction to product and UI design

• Disadvantages: teaching such a course requires good tools and resources
Specific notes/recommendations as well as connection to SWEBOK are included in the table
below:

Course Name Recommendations SWEBOK Sub-Areas
DESN2000
(new course
introduced in
2020)

[2] Keep main focus of the course on
User-Centred design, design thinking and
Requirements Engineering (RE) and early
stages of software lifecycle. DESN2000 to
become a course which teaches students to
see software as a product.

1 Software requirements
-Requirements process
- Requirements elicitation
- Requirements analysis
- Requirements validation

2 Software Design
-UI Design

7. Software Engineering
Management
-Review and Evaluation

 [2] Focus on “product management” –
which user stories are most important and
which features should be developed first –

5

planning sprints at a high level rather than
specifics of a project implementation

 [2] Include the use of a UI design tool like
Figma

 [2] Make COMP151 (Software
Engineering Fundamentals) a pre-requisite

SENG2021 [2] Play down Requirements Engineering,
User stories and UI design as these will be
part of DESN2000

2 Software Design
-Software structure and
architecture
-Software design notation

13 Computing Foundations
-Abstraction
-Basic Concept of a System
-Database Basics

 [2] Include introduction of a Project
Management tool (e.g. Jira) and
architecture design, sequence diagrams
and data models

 [4] Project management to be redistributed
amongst the SE workshops and
DESN2000

 [3] Make students continue a project
started by someone else

Software Design and Programming in the Large
A summary of the motivations and recommendations:

• Motivation: most of existing teaching still focused on programming in the small with
few courses looking at programming in the large. Changes in technologies and agile
practices gives the need to look at high-level design approaches and techniques for
developing complex software systems

• Most salient proposition: reinforce existing courses with additional material:
COMP1531 (testing), COMP2511 (design techniques and APIs),
SENG2021/SENG3011 (Project management, design notations, some DevOps)

• Advantages: better coverage of SWEBOK areas and connections between core
courses

• Disadvantages: not all material can be accommodated in existing core courses, there
are still gaps in Front-End Technologies, software quality, data persistence, DevOps,
etc.

Specific notes/recommendations as well as connection to SWEBOK are included in the table
below:

Course Name Recommendations SWEBOK Sub-Areas
COMP1531 [2] Should cover testing fundamentals 1 Software requirements

-Fundamentals
2 Software Design
-Fundamentals
3. Software Construction

6

-Fundamentals
4. Software Testing
-Fundamentals
8. Software Engineering
Process
-Software Process
Definition
-Software Lifecycles

COMP2511 [2] should cover testing at design level like
API testing

2 Software Design
-Key issues
-Structure and Architecture
-Strategies and Methods

4. Software Testing
-Design evaluation
techniques (not listed)

 [4] Project management to be redistributed
amongst the SE workshops and
DESN2000

COMP6452 [Sherry] Some material on Software
Architecture basics should be moved to
SENG2021 and COMP2511 to better
prepare students for this course

No particular
course
identified but
will affect
COMP6080

[3] Need to teach web front-end
programming earlier in the degree as core

3. Software Construction

COMP60080 +
COMP4511

[3] Make COMP6080 a prerequisite to
COMP4511 to remove duplicated content,
allow COMP4511 to teach more in-depth
web development

SENG2021/
SENG3011

Switch focuses of courses – 2nd year
workshop on implementation, 3rd year
workshop on Requirements & Design
(after students have completed DESN2000
+ COMP2511)

Implementation
Workshop +
additional
unidentified
course

[3] In area of DevOps, need to cover these
topics
-Multi-instance, lambdas
-Advanced continuous integration and
pipelines
-Cloud distribution
-Software maintenance
-Managing dependencies

6. Software Config
Management

Implementation
Workshop

[3] Data persistence, state-based
applications and simple databases

3. Software Construction

 [3] Use abstractions while understanding
implementations, allow students to

7

become more familiar with using
frameworks/abstractions

 [3] Discuss using 3rd party integrations
 [3] Discuss advanced testing techniques –

volume, regression, smoke, fuzzing
4. Software Testing &
Quality

 [3] Make students continue a project
started by someone else

Design
Workshop

[3] Discuss Software Quality as a specific
concept, including benchmarking and
software performance

10. Software Quality

Design
Workshop +
some other
unidentified
course

[3] Discuss asynchronous + concurrent
programming

2. Software Design

 [3] Discuss full-stack architecture design
considerations

 [3] Discuss non object-oriented software
architecture

 [3] Design building software to work at
scale and scale as a design consideration

Both
workshops

[2] Include more Project Management

3. Software Construction
-Managing Construction
-Construction Technologies
-Software Construction
Tools

7. Software engineering
management
-Software Project Planning

New [A] Need course/project SE for particular
application areas like AI systems

New [A] Make SE students take INFS electives
on Security. There is a new course from
2022 called INFS2701 Cyber Security
Management and Governance and another
fourth year (Honours) course called
INFS4907 Managing Security and Ethics
in Cyberspace. Normally, INFS2701
requires INFS1701 Networking and
Security as pre-requisite but we could ask
this to be waived for SE students.

Management and Ethics
A summary of the motivations and recommendations:

• Motivation: the introduction of a new Faculty course (DESN3000) has created the
need to include “strategic design innovation” material that is specific to SE yet needs
to connect with more generic part provided by Faculty.

8

• Most salient proposition: replace an existing core course (SENG4920) by DESN3000.
SENG4920 will drop project management to make room for more topics.

• Advantages: the change does not have a major impact, there is an opportunity to have
a dedicated course on how to create a business plan and ethics considerations

• Disadvantages: there is a limit on how much can be taught in this course given the
number of managements topics in the SWEBOK that are not currently covered.

Specific notes/recommendations as well as connection to SWEBOK are included in the table
below:

Course Name Recommendations SWEBOK Sub-Areas
DESN3000 (new course to
be introduced in 2022)

[2] can be about lean canvas
and creating business plans

11. Software Engineering
Professional Practice

12. SE Economics

 [4] DESN3000 to replace
SENG4920 as core to the SE
programme

 [4] Work with DesignNext
to ensure sufficient coverage
of ethics in a Software
Engineering context to meet
accreditation requirements

 [4] Include ethical design
considerations (such as data
privacy, algorithmic
decision-making bias, etc.)

SENG2021/SENG3011 +
potentially another course(s)

[4] General leadership
theory – e.g. behaviour
theory, team dynamics, risk
management, decision
making

Software-specific
management – theory of
constraints, software
processes

11. Software Engineering
Professional Practice

New degree structure
As a result of the recommendations, the structure of the degree is as shown below (new
courses shown in bold):

9

Most specializations will have only minor changes except for Formal Methods where the
changes might be more substantial:

Revisiting Learning Objectives
Changes in indicated in yellow, mostly as a result of the consultation with industry.

SLO 1: demonstrate a solid understanding of the software engineering knowledge and skills,
necessary to begin practice as a software engineer

SLO 2: ability to appropriately define and apply relevant abstractions from algorithmics, computer
science, and mathematics to complex software system development

SLO 3: ability to design and build a system, component, or process to meet desired needs within
realistic constraints such as technical, economic, security and ethical constraints

SLO 4: ability to think at multiple levels of detail and abstraction encompassing an appreciation
for the structure of computer systems and the processes involved in their construction and
analysis

10

SLO 5: ability to think and design secure software systems from the perspective of the end user
and to communicate clearly and effectively with business stakeholders

SLO 6: have the understanding that software interacts with many different domains and the
ability to be able to communicate with, and learn from, practitioners from different domains

SLO 7: be knowledgeable about current software engineering practices in the workplace,
collaborative software development and management processes and their role in the
development of quality software systems

Students Point of View
The Working Group engaged with representatives of the student body to gather the student
point of view on the working review documents. The following items were summarised from
the meeting. Throughout this section of the degree review, the term “students” refers to the
student representatives present in the Working Group.

Increased support for Industrial Placements
Students indicate increased support for industrial placements is required, citing the following
points:

• Students would like to see more assistance from CSE/UNSW in help finding technical
internships.

• Students point favourably to the program that University of Technology Sydney
implement, which secures placements for each student.

• Students and the Working Group would like to see renewed efforts to better utilise
and support the existing CSESOC Jobs Board.

Comments on Unit Design
• SENG students indicate that SENG2021 and SENG3011 are too similar in content

and has potential to deliver more impact following changes to better separate the
courses.

• Informal Methods (X6721) – Currently, SENG students are not able to enrol as
indicated in the 2022 handbook

• Students feel that 6080 should be made core

Lacking Front-End Web Development Exposure
Students feel as though there is a lack of exposure to web front-end development, and that
web knowledge is then expected (but not taught) in later courses. Some suggestions to
alleviate this include:

• Making COMP6080 core, as it is a highly rated unit
• Make available in T3 of first year and cite as a “recommended course” in the new

course handbook
• Re-aligning Fundamentals of Software Engineering (COMP1531) with its original

design of being web-based course may help expose students to web front-end
concepts earlier in the degree to better prepare for later courses.

Exposure to “Real” projects
Students would like increased exposure to authentic or real software development practices
and projects to better prepare for industry. Students indicate the following specific areas
would provide value:

• Development Operations (DevOps): Concepts such as Cloud hosting, Docker, Docker
Compose, Kubernetes, etc are lacking.

11

• A discussion regarding an open-source course was held as a viable option for
exposing students to realistic software engineering and dev/ops.

Request for updated public course handbook on the web
Students would like to see a public web version of the course handbook along recommended
course structures.

Industry Point of View
The minutes of the industry consultation meeting are provided in Appendix A.

Specialisations

Security COMP6441/6841 Security Engineering and

Cyber Security
COMP6443/6843 Web Application Security
and Testing
COMP6445/6845 Digital Forensics
COMP6447 System and Software Security
Assessment
COMP6449 Security Engineering
Professional Practice

Networks COMP3331 Computer Networks &
Applications (Core)
COMP3332 Network Routing & Switching
COMP3334 Capacity Planning of Computer
Systems and Networks
COMP4337 Securing Wireless Networks
COMP6733 Internet of Things Design
Studio

Databases COMP3311 Database Systems (Core)
COMP9313 Big Data Management
COMP9315 Database Systems
Implementation
COMP9318 Data Warehousing and Data
Mining

Algorithms COMP3121 Algorithms & Programming
Techniques
COMP4121 Advanced Algorithms
COMP4128 Programming Challenges
COMP6741 Algorithms for Intractable
Problems

Operating Systems COMP3231/3891 Operating Systems
COMP9242 Advanced Operating Systems

Artificial Intelligence & Machine
Learning

COMP3411 Artificial Intelligence
COMP4418 Knowledge Representation and
Reasoning
COMP9444 Neural Networks and Deep
Learning
COMP9417 Machine Learning & Data
Mining

12

COMP9418 Advanced Topics in Statistical
Machine Learning
COMP9517 Computer Vision
COMP9727 Recommender Systems

Formal Methods X6721 (In)-Formal Methods: The Lost Art
(Core)
COMP2111 Formal Modelling and
Specification
COMP3153 Algorithmic Verification
COMP3151 Foundations of Concurrency
COMP6752 Modelling Concurrent Systems
COMP4161 Advanced Topics in Software
Verification
COMP4141 Theory of Computation

Programming Languages COMP3131 Programming Languages and
Compilers
COMP3161 Concepts of Programming
Languages
COMP6771 Advanced C++ Programming
COMP6772 ???

13

Final recommendations

Curriculum-related recommendations
The recommendations are primarily addressing the following gaps that were identified during
this review:

• User experience, human factors
• Rigorous (though informal) reasoning about program construction
• Requirements engineering and Business Analysis.
• Design Fundamentals and Software Architectures

The recommendations are divided into short and long term solutions. The recommended
short-term solutions are:

1. Making an existing course (COMP6721) a core course in the second year software
engineering degree and carry updates of courses in the formal methods specialization
accordingly. Bridging material needs to be added, preferably in COMP1511

2. Making DESN2000 focus on User-Centred product design, Requirements
Engineering (RE) and early stages in the software lifecycle and adjust SENG2021
workshop accordingly.

3. Re-brand COMP2511 to “Software Design and Architecture”
4. Adjust SENG2021/SENG3011 workshops according to Recommendations 2 and 3 by

introducing more on project management, design notations, some DevOps
5. Evaluate the material in the core content to see if security issues are properly

discussed throughout the development cycle
6. Replace the existing core course (SENG4920) by DESN3000.
7. Incorporate discussion of security, risk and ethics in DESN2000 and DESN3000 as

part of Recommendation 6.
8. Investigate students doing a project working on an existing code base rather than

building a new system from scratch. Participation is an open source project is a
possibility that could be supported by some of our industry partners.

9. Investigate opportunities with School of Information Systems, Technology and
Management in the area of delivering course material on Security Management that
could be included in existing courses or offered as INFS electives (e.g. INFS2701
Cyber Security Management and Governance and INFS4907 Managing Security and
Ethics in Cyberspace).

Longer-term recommendations include:

• looking at the cohesion of COMP1531, COMP2511, SENG2021, SENG3011 and
the possibility of a new course, in the areas of software design, development and
management to balance content

• ensuring that the following topics are addressed as part of the core SE degree:
o Concurrency
o Parallel and distributed computing
o Cloud computing
o Testing and Software Quality
o Software performance, building software at scale, high integrity systems,

performance modelling and analysis
o Continuous Integration, DevOps, Effort estimation, release management,

software product line development

14

o Software systems analysis (e.g. qualitative analysis, simulation), model
checking, metrics

o Web Front-end Programming
o Security of software systems

Other non-curriculum recommendations

Pending from 2016
Resourcing the Software Engineering degree is a very urgent issue that needs to be addressed.
Many core courses in Software Engineering don’t have a permanent lecturer in charge.
Leaving them to casuals at a time when they have been significantly revised will significantly
affect the quality of the delivery of these courses at a time when student enrolments are
growing.

New recommendations
• Students do not have sufficient information about the degree. Resources are needed to

complete a Handbook that was started in 2016 containing useful information to help
them navigate through various choices.

• Students require increased support for finding Industrial Placements
• Mentors for many project-based courses are hired at the last minute, would be better

to recruit mentors very early to brief/train them properly
• Students would benefit from having the same tools used across multiple courses (e.g.

Github/Jira)
• Leveraging industry connections to strengthen some of the existing courses is highly

recommended

15

APPENDIX A
SE Degree Curriculum Review
Industry Feedback Meeting Minutes (22 October 2021)

Attending Members

The meeting members are:

• Chair: Fethi Rabhi (CSE)
• UNSW Representatives:

o Jake Renzella (CSE)
o Nick Patrikeos (CSE)
o George Joukhadar (SISTM)

• Industry Representatives:
o Ali Dasdan, Atlassian
o Ned Farhat, Sage Consulting
o Willis Li, New Relic, Inc.
o Dr Aarthi Natarajan, AWS
o Rob Pike
o Yacine Rabhi, Tyro
o Ben Reed, San José State University
o Ben Smillie, GitHub
o George Wright, Nine

Self Introductions and presentation of degree
Each attending member introduced themselves as described their connection to SE:

• Jake: I am lecturer in the school of CSE and my research area is in computing for
education

• Nick: I am a student and work casually in CSE teaching first and second year
software engineering courses.

• George J.: From the school of information technology management and i'm here
to manage the connection between our school and the software engineering
degree.

• Ali: I lead engineering for Confluence within Atlassian. 20+ years in software,
small and large companies. I was excited to talk to you because Ben R. and I
actually designing something similar to cover the needs of industry, as well as
Atlassian along the same topic.

• Ned: I've been in the software space for far too long and in the last decade or so
we moved more into cyber and machine learning, so I've got a big bias on how
machine learning is portrayed in the industry and what the students are learning.

• Willis: I work in the consulting team based in Sydney, with SAS and all cloud
devops. Hopefully I can learn something from this session and also contribute.

• Aarthi: I've been in the software space well over 20 years of studying and
studying out as a full stack developer working in the industry and worked as a
casual academic in CSE, rolled out one of the core courses (COMP1531) in for

16

the software engineering degree. Now with AWS primarily responsible for
delivering training to customers in the areas of architecting, machine learning and
data analytics.

• Rob Pike: I worked at Bell labs computing science, research, for many years and
then at Google where I've been responsible for a number of large software
projects, including operating systems and compilers and distributed systems,
anything that underpins Google's data centers. I've also done some teaching:
operating systems at Princeton on sabbatical and in another sabbatical I did suffer
engineering at Sydney uni. I have a fairly strong ideas about how we need to
balance the getting students up to date with the newest technology, while also
making sure they know the difference between performance of sorting algorithms.
I've seen a lot of issues with students coming out of school nowadays not having
the fundamentals but being very good at working in a language like javascript or
Python or something, but in a way that violates the principles of computing, as I
understand it, so it's an interesting topic.

• Yacine: I come from a company called Tyro which specialises in payment and
banking products for businesses, so my role there is what we call delivery lead. I
manage three or four teams of engineers across Sydney and China to deliver
software end to end like lifecycle of development and deployment management on
the cloud.

• Ben S.: I work for Github based in Melbourne.My current role is looking after the
technical aspects of our partner network globally and moonlighting, as part of our
global education team in the apac region. In terms of connecting with universities,
our education program has for probably two and a half years. A couple years at
salesforce before that, and my relationship with UNSW comes from a number of
years looking after emerging technology for the office of ANZ Bank's CTO
engaging from an industry perspective with hackathons and getting students up to
speed with the kind of industry tools that we were using at the time in banking.

• George W.: My biases are towards data, particularly data web analytics and the
use of web analytics, but I have been forced to go into the grey waters of online
advertising and marketing platforms, so I have also some skin in that game. We
take on a fair number of students, I have three in my team at the moment we love
having fresh recruits so I’m passionate about education. I have similar feelings to
Rob, students are coming out more and more professional and ready to sort of turn
code out but I questioned them on some fundamentals and they scratch their head.
The last time we did this, where I actually complained that they didn't know
enough about restful architectures, now I’m complaining that they are actually too
good at that and forgotten some fundamentals.

• Ben R: I'm a relatively new professor at San Jose State University, been there for
three, this is my fourth year. Before that I was at Yahoo and IBM and Facebook
and I work on distributed operating systems.

• Fethi: I joined UNSW in 2000 in the Business School because it used to run the
software engineering with CSE. After it pulled out, I went to CSE 11 years ago so
I've been basically at UNSW managing the software engineering degree from both
the business and technical perspectives. I always introduce myself as a bridge
builder between the university and industry and between different areas in
computing. Software engineering is great in bringing together different
technologies for a common purpose and I try to get that reflected in the teaching.

17

This was followed by Fethi making a short presentation of the SE degree and the material
circulated prior to the meeting.

Curriculum-related discussion
The discussion was centered around a number of topics, each of which is summarized in a
separate subsection.

Overarching issues

Overall vision of the degree

Rob Pike asked a question related to the strategy and the big picture behind the degree. He
said software engineering means different things to different people. There are software
engineers researchers who write papers about meta analysis and building software at large,
some people consider it as a management discipline, how do you make software work
reliably. Some consider it having a range of different programming abilities, combined with a
set of programmers to build a robust safe product that comes in, on budget on time and safe.
There are a lot of things in software engineering beyond programming, some of which are in
the curriculum but many of them are not. It's not just a matter of dealing with formal methods
and having specification languages and that kind of thing. Is the purpose of the degree to
make people with good managerial skills for managing software projects, who could then
work in industry or is the purpose trying to build an academic software engineering
curriculum to help ?

Fethi Rabhi answered that the degree is about making people understand software
engineering from different perspectives so the different courses will give them an
understanding of the issues encountered when programming in the large as well as other
management issues.It exposes students to the the diversity of opinions and then the
specialization will push them into one or the other of the views that were stated. For example,
a specialisation could be about making someone ready for research and another one ready for
industry.

Rob Pike said there are many interesting SE methods but in practice, they have very little
direct use for most of the time. As opposed to cybersecurity which he firmly believes is a
fundamental thing about making secure data systems today, which falls through the cracks
because the fundamentals aren't there. When setting up a curriculum, much more time should
be invested in a sort of systemic approach across the entire curriculum about how to write
safe robust software and what it means to have secure software than teaching formal methods
tools.

Aarthi Natarajan said that in her experience teaching about the degree, one of the major
reasons that COMP1531 was introduced was because students graduating were graduating
without even understanding the process of source control. The problem is not the technology,
it is just a means to address some customer needs. When trying to solve a domain problem,
one has put on a customer hat on and think about the design phase, requirements phase. What
are the key requirements functional and non-functional so the implementation would just
come right at the end ?

Working with large software systems
Rob Pike said that the biggest gap he's seen when hiring students in Australia is although they
are very, very smart capable programmers, they're always astonished at the gap between what

18

that means versus working in a large team on a large code base. On the first day in the job,
where they suddenly got you know 10 or 50 or 100 people that are working with that could be
100,000 1,000,010 million lines of code that they're suddenly part of. They have probably
never read more than a few thousand lines of anyone else's software they've only just seen
assignments and written their own. They've never worked in a large team they never coded to
a standard that someone else has given them they've never had to find a bug and code they
didn't write. I think it's important to at least be aware of that that's a gap that's going to be
hard for a university curriculum to fill. What it really means to program in the large can't be
done within a small computer science faculty, it needs to be done in a team of large people.

He added that one of the key pieces of being a good software engineer is understanding the
software you write is part of a process. Code has to be maintained by people other than you
down the road. Writing code that works, is understandable by a large team and can be
adopted by other teams should be part of the essence of a software engineering program.

Fethi Rabhi agreed that this was a good point. One area that came up in earlier meeting and
we were thinking of using Jake's experience in encouraging students to participate in open
source projects.

Ben Smillie mentioned that GitHub has an open source grant program they run in terms of
getting students participate in Open Source projects and in organizations leveraging Open
Source. they can help the broader Open Source kind of engagement.

Jake Renzella mentioned that such engagement could be spread out over several semesters or
trimesters.

SE curriculum scope and teaching methods
Ali Dasdan stated that it is not feasible to teach everything in a generic way, skills that allow
students to do everything. So there have to be some objectives about what a student needs to
know when they graduate. For some things, some awareness needs to be taught like the fact
that students are going to work with lots of teams and they need source control, either using
open source or otherwise. They just need to have some experience with it, within reasonable
university constraints, because some things will be covered later. There are many examples
like debugging, verification, Web design, documentation are other areas where teaching
needs to develop an awareness. Students can pick/extend the skills on a need basis depending
on their work situation.

Fethi Rabhi said that the degree has the ability to deal with different types of knowledge areas
and skills in different ways. Some have to be delivered the traditional ways and others via
workshops/projects. If we diversify in the way we deliver teaching, we may be able to
address some of these challenges. Recently, we have had industry offering teaching material
and lectures like AWS (Aarthi did it).

Aarthi Natarajan said that the students found that really valuable with many questions that
were sent me through linkedin about cloud computing. In this case, it helped students
understand the value proposition behind cloud computing and how it adds value to
organizations and the business

Rob Pike said one could imagine a course or a lab where you go to the Open Source world or
you, you have a list of maybe half a dozen large Open Source projects students can choose

19

from. and the lab is to work with that software to fix a bug or at a feature, not necessarily
push it back out, because it's fundamentally similar to working on a team, where the code
isn't yours, to start with.

Fethi Rabhi said that because we have workshops and workshops is about giving them a
project which could be anything, there is space and a way to do it. There are many challenges
and obviously one of them is assessment.

George Wright mentioned that during his studies, he learned to design his own solutions,
whereas in the real world it's designed by committee. There are many issues like how do you
even interact with the Community, how do you take, how do you stand up for your design
and how do you take constructive feedback. Perhaps this is not something that needs to be
taught but the expectation is for people to mature into the role.

Elegant vs Cheap/easy coding
George Wright said students are surprised when he mentions elegant code. They know the
idea of correct code or fast code, but elegant code is something that's a lot harder to quantify.
It is something reading other people's code and seeing that it is expressed beautifully.

Ned Farhat believes the problem is that machines have so much memory and storage
capacity, that awareness about performance/memory usage does not matter much.

George Wright stated that moving everything into the cloud and it's auto scaled etc., people
don't even need to think about index design or resource management it's just all managed
automatically. But there are implications e.g. cost/time implications. Although cloud has been
such a blessing, it's also making programmers very lazy.

Jake Renzella agrees but stated that we can't make every graduate write elegant code and for
now the focus is more on the output.

Cybersecurity

Place of security/cybersecurity in the core curriculum
Ned Farhat stressed the importance of cyber security which is much more than technical
aspects like dealing with hacking and setting firewalls. It permeates across multiple courses
that are going to overlap somehow. For example, from a programming perspective you need
start thinking of the threats upfront, then work that into a design so it's secure by design
before you even begin coding and then discover all the issues. That also can flow back into
say requirements again, getting people early on to start considering, not just the happy
scenario, but also what all the nasty scenarios. Embedding key security principles must be
done from the very beginning.

Aarthi Natarajan also stated that in the space of software engineering, security plays an
important role. Currently, it seems to be like a number of electives (mostly funded by CBA)
but many things should be components in the core degree.

Ben Smillie said that his company made a massive investment in terms of supply chain
software composition and analytics some of it in the areas of security, although not explicitly
cybersecurity, in collaboration with partners like CBA. They have been introducing security

20

into earliest stages software development and this is something should be considered in the
curriculum at some point in time.

New ways of designing/implementing systems (with security in mind)
Aarthi Natarajan said a lot of elements were covered when reviewing the curriculum in 2016,
but security was missing. It's not just about cyber security and talking about SQL injection
but also how to build secure systems, right from the start. Building agile software with test
driven modeling but with a focus on assessing security threats.

George Wright added that many new graduates want to work in cybersecurity and that's too
much of the focus at the moment. In the past, students were trying to build systems
collaboratively but now the environment is hostile so the question is how do you build robust
systems inside a hostile environment. Many new graduates expect to be basically coding all
day whereas the amount of code needed right now is getting smaller and smaller and
becoming less meaningful. He really likes the idea of formal and informal methods but he
doesn't know if they can help in this context.

Rob Pike agreed and said that a focus on security on its own encourages thinking about
security at the cost of software engineering, whereas a focus on security as a part of software
engineering makes secure system as much likely to happen. One can make very secure
systems that are unusable. So with a focus on good design with security as a fundamental
component, the result might not be quite as secure but things that are absolutely secure are
worthless. Making compromises and getting those judgments decisions into the design of
software is a critical piece of all of this and it's tricky.

Ned Farhat believes moving away from the tech side to more like threat modeling so actually
thinking upfront about how a system could be attacked and abused and being able to balance
design with security with functionality, with even budgets.

George Wright warned against overfeeding the degree otherwise the result will be a lot of
very, very talented people who are good at risk assessments with a system implemented in an
inefficient way.

Ned Farhat against stressed that he views security not just as a non-functional requirement
but affects functional requirements as well.

Jake Renzella concluded by saying security is not a matter of just creating one or two security
streams that are optional but it's about talking about it at the different levels and what it
impacts how we're doing software engineering.

Specific topics

Formal methods
Ali Dasdan asked clarifications on exactly what was going to be taught in the new core
formal methods course. Fethi Rabhi answered that it is not specifically about formal methods
but teaches formal reasoning without the distraction of learning a formal notation, a bit like
pseudo-code teaches programming concepts without being bogged down by a language's
syntax. It's an articulation course between the informal and formal world and will make
students better appreciate the role of formal methods and how they link to concepts they are
most familiar with.

21

ML/AI/Ethics
Ned Farhat's opinion is that a large part of machine learning should be about the ethics side.
George Wright goes one step further to say that a lot of the battles he is fighting in the
advertising and web analytics space is around these Grey systems that sit in the middle and
apply AI. What they apply is a bit of a mystery but cost you an extra 5% more and claim they
can do better than humans. He has two students at the moment, who are data scientists and
trying to solve everything with machine learning. Sometimes, the statistical method will run
better, faster cheaper and it's provable.

Ned Farhat agreed that people just tend to think more complex is better, which means one
important issue from the ethical side is that the explainability of these models. The
complexity is getting ridiculous to the point where people are trusting black box magic
because they've taken the human element, judgment, the emotion etc.

Ben R said one thing to note is when we talk about ethics often we talk about machine
learning but the ethics problem has always been with us from the very beginning. We need to
start thinking about ethics and everything related to security. Every time in his classes when
he talks about networking or about management or even operating systems, he mentions
ethics. Questions like what are the ethical considerations of locking down API, using
protected boot loaders.

Rob Pike mentioned the problem they had with safety and Google self-driving cars with
people driving on the highway alongside them taking their eyes off the road to take self-
pictures.

George Wright agreed that there is definitely room for something about unintended
consequences and the idea that we're all optimistic when designing. But in the real world,
we've got to think pessimistically, and he doesn’t think we're going way into the realm of
almost metaphysics and philosophy.

Ned Farhat concluded by saying maybe we need a philosophical subject because people have
trouble articulating these sorts of issues to an executive, to get them to understand that. He
estimates 50% of his job is communication to non-technical people, convincing a jury or
judge or an executive.

Design concepts
Rob Pike noticed that CSE offers a course on object-oriented design and programming. He
has nothing against object-oriented design and programming. But he thinks it's important to
understand that it's fading from the way a lot of software gets written now even the languages
like Java and c++ that have promulgated type heavy design are leading away more towards
compositional design. There are other paradigms like concurrent programming parallel
programming functional programming, aspect-oriented programming etc. He feels this is
teaching an old way of thinking about how we write large software now.

Fethi Rabhi agreed and said one of the recommendations in this review is that this course is
going to move from object-oriented design to just design. It will keep some focus on object-
oriented design but will go into other types of design and design patterns, which are more
general rules of you construct designs and what does good design means.

22

George Joukhadar said it is not clear where business analysis is covered in most of the
courses’ content as there seems to be more focus on design.

Fethi Rabhi answered that to some extent, that's what DESN2000 is going to go into more of
the business analysis and requirements elicitation.

Non-curriculum related discussion
Fethi Rabhi gave an overview of various ways for industry to engage with universities. Even
when engaging at the research project level, industry will indirectly contribute to increase the
quality of teaching by helping forming tomorrow's new academic staff.

George Wright pointed out to some difficulties when engaging with Universities in research
projects, particularly finding ways that we can get more in sync with each other, because that
is hard to do.

Fethi Rabhi’s experience is that in many cases, having direct engagements which cut the
middleman works out better/cheaper that some administration-heavy research programs.

Ben Smillie indicated that GitHub was prepared to help engaging in a collaborative research
grant potentially in the security domain.

23

APPENDIX B: SWEBOK Areas
Chapter 1: Software Requirements 1-1
1. Software Requirements Fundamentals 1-1
1.1. Definition of a Software Requirement 1-1
1.2. Product and Process Requirements 1-2
1.3. Functional and Nonfunctional Requirements 1-3
1.4. Emergent Properties 1-3
1.5. Quantifiable Requirements 1-3
1.6. System Requirements and Software Requirements 1-3
2. Requirements Process 1-3
2.1. Process Models 1-4
2.2. Process Actors 1-4
2.3. Process Support and Management 1-4
2.4. Process Quality and Improvement 1-4
3. Requirements Elicitation 1-5
3.1. Requirements Sources 1-5
3.2. Elicitation Techniques 1-6
4. Requirements Analysis 1-7
4.1. Requirements Classification 1-7
4.2. Conceptual Modeling 1-8
4.3. Architectural Design and Requirements Allocation 1-9
4.4. Requirements Negotiation 1-9
4.5. Formal Analysis 1-10
5. Requirements Specification 1-10
5.1. System Definition Document 1-10
5.2. System Requirements Specification 1-10
5.3. Software Requirements Specification 1-11
6. Requirements Validation 1-11
6.1. Requirements Reviews 1-11
6.2. Prototyping 1-12
6.3. Model Validation 1-12
6.4. Acceptance Tests 1-12
7. Practical Considerations 1-12
7.1. Iterative Nature of the Requirements Process 1-13
7.2. Change Management 1-13
7.3. Requirements Attributes 1-13
7.4. Requirements Tracing 1-14
7.5. Measuring Requirements 1-14
8. Software Requirements Tools 1-14
Chapter 2: Software Design 2-1
1. Software Design Fundamentals 2-2
1.1. General Design Concepts 2-2
1.2. Context of Software Design 2-2
1.3. Software Design Process 2-2
1.4. Software Design Principles 2-3
2. Key Issues in Software Design 2-3
2.1. Concurrency 2-4
2.2. Control and Handling of Events 2-4
2.3. Data Persistence 2-4
2.4. Distribution of Components 2-4
2.5. Error and Exception Handling and Fault Tolerance 2-4
2.6. Interaction and Presentation 2-4
2.7. Security 2-4
3. Software Structure and Architecture 2-4

24

3.1. Architectural Structures and Viewpoints 2-5
3.2. Architectural Styles 2-5
3.3. Design Patterns 2-5
3.4. Architecture Design Decisions 2-5
3.5. Families of Programs and Frameworks 2-5
4. User Interface Design 2-5
4.1. General User Interface Design Principles 2-6
4.2. User Interface Design Issues 2-6
4.3. The Design of User Interaction Modalities 2-6
4.4. The Design of Information Presentation 2-6
4.5. User Interface Design Process 2-7
4.6. Localization and Internationalization 2-7
4.7. Metaphors and Conceptual Models 2-7
5. Software Design Quality Analysis and Evaluation 2-7
5.1. Quality Attributes 2-7
5.2. Quality Analysis and Evaluation Techniques 2-8
5.3. Measures 2-8
6. Software Design Notations 2-8
6.1. Structural Descriptions (Static View) 2-8
6.2. Behavioral Descriptions (Dynamic View) 2-9
7. Software Design Strategies and Methods 2-10
7.1. General Strategies 2-10
7.2. Function-Oriented (Structured) Design 2-10
7.3. Object-Oriented Design 2-10
7.4. Data Structure-Centered Design 2-10
7.5. Component-Based Design (CBD) 2-10
7.6. Other Methods 2-10
8. Software Design Tools 2-11
Chapter 3: Software Construction 3-1
1. Software Construction Fundamentals 3-1
1.1. Minimizing Complexity 3-3
1.2. Anticipating Change 3-3
1.3. Constructing for Verification 3-3
1.4. Reuse 3-3
1.5. Standards in Construction 3-3
2. Managing Construction 3-4
2.1. Construction in Life Cycle Models 3-4
2.2. Construction Planning 3-4
2.3. Construction Measurement 3-4
3. Practical Considerations 3-5
3.1. Construction Design 3-5
3.2. Construction Languages 3-5
3.3. Coding 3-6
3.4. Construction Testing 3-6
3.5. Construction for Reuse 3-6
3.6. Construction with Reuse 3-7
3.7. Construction Quality 3-7
3.8. Integration 3-7
4. Construction Technologies 3-8
4.1. API Design and Use 3-8
4.2. Object-Oriented Runtime Issues 3-8
4.3. Parameterization and Generics 3-8
4.4. Assertions, Design by Contract, and Defensive Programming 3-8
4.5. Error Handling, Exception Handling, and Fault Tolerance 3-9
4.6. Executable Models 3-9
4.7. State-Based and Table-Driven Construction Techniques 3-9

25

4.8. Runtime Configuration and Internationalization 3-10
4.9. Grammar-Based Input Processing 3-10
4.10. Concurrency Primitives 3-10
4.11. Middleware 3-10
4.12. Construction Methods for Distributed Software 3-11
4.13. Constructing Heterogeneous Systems 3-11
4.14. Performance Analysis and Tuning 3-11
4.15. Platform Standards 3-11
4.16. Test-First Programming 3-11
5. Software Construction Tools 3-12
5.1. Development Environments 3-12
5.2. GUI Builders 3-12
5.3. Unit Testing Tools 3-12
5.4. Profiling, Performance Analysis, and Slicing Tools 3-12
Chapter 4: Software Testing 4-1
1. Software Testing Fundamentals 4-3
1.1. Testing-Related Terminology 4-3
1.2. Key Issues 4-3
1.3. Relationship of Testing to Other Activities 4-4
2. Test Levels 4-5
2.1. The Target of the Test 4-5
2.2. Objectives of Testing 4-5
3. Test Techniques 4-7
3.1. Based on the Software Engineer’s Intuition and Experience 4-8
3.2. Input Domain-Based Techniques 4-8
3.3. Code-Based Techniques 4-8
3.4. Fault-Based Techniques 4-9
3.5. Usage-Based Techniques 4-9
3.6. Model-Based Testing Techniques 4-10
3.7. Techniques Based on the Nature of the Application 4-10
3.8. Selecting and Combining Techniques 4-11
4. Test-Related Measures 4-11
4.1. Evaluation of the Program Under Test 4-11
4.2. Evaluation of the Tests Performed 4-12
5. Test Process 4-12
5.1. Practical Considerations 4-13
5.2. Test Activities 4-14
6. Software Testing Tools 4-15
6.1. Testing Tool Support 4-15
6.2. Categories of Tools 4-15
Chapter 5: Software Maintenance 5-1
1. Software Maintenance Fundamentals 5-1
1.1. Definitions and Terminology 5-1
1.2. Nature of Maintenance 5-2
1.3. Need for Maintenance 5-3
1.4. Majority of Maintenance Costs 5-3
1.5. Evolution of Software 5-3
1.6. Categories of Maintenance 5-3
2. Key Issues in Software Maintenance 5-4
2.1. Technical Issues 5-4
2.2. Management Issues 5-5
2.3. Maintenance Cost Estimation 5-6
2.4. Software Maintenance Measurement 5-7
3. Maintenance Process 5-7
3.1. Maintenance Processes 5-7
3.2. Maintenance Activities 5-8

26

4. Techniques for Maintenance 5-10
4.1. Program Comprehension 5-10
4.2. Reengineering 5-10
4.3. Reverse Engineering 5-10
4.4. Migration 5-10
4.5. Retirement 5-11
5. Software Maintenance Tools 5-11
Chapter 6: Software Configuration Management 6-1
1. Management of the SCM Process 6-2
1.1. Organizational Context for SCM 6-2
1.2. Constraints and Guidance for the SCM Process 6-3
1.3. Planning for SCM 6-3
1.4. SCM Plan 6-5
1.5. Surveillance of Software Configuration Management 6-5
2. Software Configuration Identification 6-6
2.1. Identifying Items to Be Controlled 6-6
2.2. Software Library 6-8
3. Software Configuration Control 6-8
3.1. Requesting, Evaluating, and Approving Software Changes 6-8
3.2. Implementing Software Changes 6-9
3.3. Deviations and Waivers 6-10
4. Software Configuration Status Accounting 6-10
4.1. Software Configuration Status Information 6-10
4.2. Software Configuration Status Reporting 6-10
5. Software Configuration Auditing 6-10
5.1. Software Functional Configuration Audit 6-11
5.2. Software Physical Configuration Audit 6-11
5.3. In-Process Audits of a Software Baseline 6-11
6. Software Release Management and Delivery 6-11
6.1. Software Building 6-11
6.2. Software Release Management 6-12
7. Software Configuration Management Tools 6-12
Chapter 7: Software Engineering Management 7-1
1. Initiation and Scope Definition 7-4
1.1. Determination and Negotiation of Requirements 7-4
1.2. Feasibility Analysis 7-4
1.3. Process for the Review and Revision of Requirements 7-5
2. Software Project Planning 7-5
2.1. Process Planning 7-5
2.2. Determine Deliverables 7-5
2.3. Effort, Schedule, and Cost Estimation 7-6
2.4. Resource Allocation 7-6
2.5. Risk Management 7-6
2.6. Quality Management 7-6
2.7. Plan Management 7-7
3. Software Project Enactment 7-7
3.1. Implementation of Plans 7-7
3.2. Software Acquisition and Supplier Contract Management 7-7
3.3. Implementation of Measurement Process 7-7
3.4. Monitor Process 7-7
3.5. Control Process 7-8
3.6. Reporting 7-8
4. Review and Evaluation 7-8
4.1. Determining Satisfaction of Requirements 7-8

27

4.2. Reviewing and Evaluating Performance 7-9
5. Closure 7-9
5.1. Determining Closure 7-9
5.2. Closure Activities 7-9
6. Software Engineering Measurement 7-9
6.1. Establish and Sustain Measurement Commitment 7-9
6.2. Plan the Measurement Process 7-10
6.3. Perform the Measurement Process 7-11
6.4. Evaluate Measurement 7-11
7. Software Engineering Management Tools 7-11
Chapter 8: Software Engineering Process 8-1
1. Software Process Definition 8-2
1.1. Software Process Management 8-3
1.2. Software Process Infrastructure 8-4
2. Software Life Cycles 8-4
2.1. Categories of Software Processes 8-5
2.2. Software Life Cycle Models 8-5
2.3. Software Process Adaptation 8-6
2.4. Practical Considerations 8-6
3. Software Process Assessment and Improvement 8-6
3.1. Software Process Assessment Models 8-7
3.2. Software Process Assessment Methods 8-7
3.3. Software Process Improvement Models 8-7
3.4. Continuous and Staged Software Process Ratings 8-8
4. Software Measurement 8-8
4.1. Software Process and Product Measurement 8-9
4.2. Quality of Measurement Results 8-10
4.3. Software Information Models 8-10
4.4. Software Process Measurement Techniques 8-11
5. Software Engineering Process Tools 8-12
Chapter 9: Software Engineering Models and Methods 9-1
1. Modeling 9-1
1.1. Modeling Principles 9-2
1.2. Properties and Expression of Models 9-3
1.3. Syntax, Semantics, and Pragmatics 9-3
1.4. Preconditions, Postconditions, and Invariants 9-4
2. Types of Models 9-4
2.1. Information Modeling 9-5
2.2. Behavioral Modeling 9-5
2.3. Structure Modeling 9-5
3. Analysis of Models 9-5
3.1. Analyzing for Completeness 9-5
3.2. Analyzing for Consistency 9-6
3.3. Analyzing for Correctness 9-6
3.4. Traceability 9-6
3.5. Interaction Analysis 9-6
4. Software Engineering Methods 9-7
4.1. Heuristic Methods 9-7
4.2. Formal Methods 9-7
4.3. Prototyping Methods 9-8
4.4. Agile Methods 9-9
Chapter 10: Software Quality 10-1
1. Software Quality Fundamentals 10-2
1.1. Software Engineering Culture and Ethics 10-2

28

1.2. Value and Costs of Quality 10-3
1.3. Models and Quality Characteristics 10-3
1.4. Software Quality Improvement 10-4
1.5. Software Safety 10-4
2. Software Quality Management Processes 10-5
2.1. Software Quality Assurance 10-5
2.2. Verification & Validation 10-6
2.3. Reviews and Audits 10-6
3. Practical Considerations 10-9
3.1. Software Quality Requirements 10-9
3.2. Defect Characterization 10-10
3.3. Software Quality Management Techniques 10-11
3.4. Software Quality Measurement 10-12
4. Software Quality Tools 10-12
Chapter 11: Software Engineering Professional Practice 11-1
1. Professionalism 11-2
1.1. Accreditation, Certification, and Licensing 11-3
1.2. Codes of Ethics and Professional Conduct 11-4
1.3. Nature and Role of Professional Societies 11-4
1.4. Nature and Role of Software Engineering Standards 11-4
1.5. Economic Impact of Software 11-5
1.6. Employment Contracts 11-5
1.7. Legal Issues 11-5
1.8. Documentation 11-7
1.9. Tradeoff Analysis 11-8
2. Group Dynamics and Psychology 11-9
2.1. Dynamics of Working in Teams/Groups 11-9
2.2. Individual Cognition 11-9
2.3. Dealing with Problem Complexity 11-10
2.4. Interacting with Stakeholders 11-10
2.5. Dealing with Uncertainty and Ambiguity 11-10
2.6. Dealing with Multicultural Environments 11-10
3. Communication Skills 11-11
3.1. Reading, Understanding, and Summarizing 11-11
3.2. Writing 11-11
3.3. Team and Group Communication 11-11
3.4. Presentation Skills 11-12
Chapter 12: Software Engineering Economics 12-1
1. Software Engineering Economics Fundamentals 12-3
1.1. Finance 12-3
1.2. Accounting 12-3
1.3. Controlling 12-3
1.4. Cash Flow 12-3
1.5. Decision-Making Process 12-4
1.6. Valuation 12-5
1.7. Inflation 12-6
1.8. Depreciation 12-6
1.9. Taxation 12-6
1.10. Time-Value of Money 12-6
1.11. Efficiency 12-6
1.12. Effectiveness 12-6
1.13. Productivity 12-6
2. Life Cycle Economics 12-7
2.1. Product 12-7
2.2. Project 12-7
2.3. Program 12-7
2.4. Portfolio 12-7

29

2.5. Product Life Cycle 12-7
2.6. Project Life Cycle 12-7
2.7. Proposals 12-8
2.8. Investment Decisions 12-8
2.9. Planning Horizon 12-8
2.10. Price and Pricing 12-8
2.11. Cost and Costing 12-9
2.12. Performance Measurement 12-9
2.13. Earned Value Management 12-9
2.14. Termination Decisions 12-9
2.15. Replacement and Retirement Decisions 12-10
3. Risk and Uncertainty 12-10
3.1. Goals, Estimates, and Plans 12-10
3.2. Estimation Techniques 12-11
3.3. Addressing Uncertainty 12-11
3.4. Prioritization 12-11
3.5. Decisions under Risk 12-11
3.6. Decisions under Uncertainty 12-12
4. Economic Analysis Methods 12-12
4.1. For-Profit Decision Analysis 12-12
4.2. Minimum Acceptable Rate of Return 12-13
4.3. Return on Investment 12-13
4.4. Return on Capital Employed 12-13
4.5. Cost-Benefit Analysis 12-13
4.6. Cost-Effectiveness Analysis 12-13
4.7. Break-Even Analysis 12-13
4.8. Business Case 12-13
4.9. Multiple Attribute Evaluation 12-14
4.10. Optimization Analysis 12-14
5. Practical Considerations 12-14
5.1. The “Good Enough” Principle 12-14
5.2. Friction-Free Economy 12-15
5.3. Ecosystems 12-15
5.4. Offshoring and Outsourcing 12-15
Chapter 13: Computing Foundations 13-1
1. Problem Solving Techniques 13-3
1.1. Definition of Problem Solving 13-3
1.2. Formulating the Real Problem 13-3
1.3. Analyze the Problem 13-3
1.4. Design a Solution Search Strategy 13-3
1.5. Problem Solving Using Programs 13-3
2. Abstraction 13-4
2.1. Levels of Abstraction 13-4
2.2. Encapsulation 13-4
2.3. Hierarchy 13-4
2.4. Alternate Abstractions 13-5
3. Programming Fundamentals 13-5
3.1. The Programming Process 13-5
3.2. Programming Paradigms 13-5
4. Programming Language Basics 13-6
4.1. Programming Language Overview 13-6
4.2. Syntax and Semantics of Programming Languages 13-6
4.3. Low-Level Programming Languages 13-7
4.4. High-Level Programming Languages 13-7
4.5. Declarative vs. Imperative Programming Languages 13-7
5. Debugging Tools and Techniques 13-8
5.1. Types of Errors 13-8

30

5.2. Debugging Techniques 13-8
5.3. Debugging Tools 13-8
6. Data Structure and Representation 13-9
6.1. Data Structure Overview 13-9
6.2. Types of Data Structure 13-9
6.3. Operations on Data Structures 13-9
7. Algorithms and Complexity 13-10
7.1. Overview of Algorithms 13-10
7.2. Attributes of Algorithms 13-10
7.3. Algorithmic Analysis 13-10
7.4. Algorithmic Design Strategies 13-11
7.5. Algorithmic Analysis Strategies 13-11
8. Basic Concept of a System 13-11
8.1. Emergent System Properties 13-11
8.2. Systems Engineering 13-12
8.3. Overview of a Computer System 13-12
9. Computer Organization 13-13
9.1. Computer Organization Overview 13-13
9.2. Digital Systems 13-13
9.3. Digital Logic 13-13
9.4. Computer Expression of Data 13-13
9.5. The Central Processing Unit (CPU) 13-14
9.6. Memory System Organization 13-14
9.7. Input and Output (I/O) 13-14
10. Compiler Basics 13-15
10.1. Compiler/Interpreter Overview 13-15
10.2. Interpretation and Compilation 13-15
10.3. The Compilation Process 13-15
11. Operating Systems Basics 13-16
11.1. Operating Systems Overview 13-16
11.2. Tasks of an Operating System 13-16
11.3. Operating System Abstractions 13-17
11.4. Operating Systems Classification 13-17
12. Database Basics and Data Management 13-17
12.1. Entity and Schema 13-18
12.2. Database Management Systems (DBMS) 13-18
12.3. Database Query Language 13-18
12.4. Tasks of DBMS Packages 13-18
12.5. Data Management 13-19
12.6. Data Mining 13-19
13. Network Communication Basics 13-19
13.1. Types of Network 13-19
13.2. Basic Network Components 13-19
13.3. Networking Protocols and Standards 13-20
13.4. The Internet 13-20
13.5. Internet of Things 13-20
13.6. Virtual Private Network (VPN) 13-21
14. Parallel and Distributed Computing 13-21
14.1. Parallel and Distributed Computing Overview 13-21
14.2. Difference between Parallel and Distributed Computing 13-21
14.3. Parallel and Distributed Computing Models 13-21
14.4. Main Issues in Distributed Computing 13-22
15. Basic User Human Factors 13-22
15.1. Input and Output 13-22
15.2. Error Messages 13-23
15.3. Software Robustness 13-23

31

16. Basic Developer Human Factors 13-23
16.1. Structure 13-24
16.2. Comments 13-24
17. Secure Software Development and Maintenance 13-24
17.1. Software Requirements Security 13-24
17.2. Software Design Security 13-25
17.3. Software Construction Security 13-25
17.4. Software Testing Security 13-25
17.5. Build Security into Software Engineering Process 13-25
17.6. Software Security Guidelines 13-25
Chapter 14: Mathematical Foundations 14-1
1. Set, Relations, Functions 14-1
1.1. Set Operations 14-2
1.2. Properties of Set 14-3
1.3. Relation and Function 14-4
2. Basic Logic 14-5
2.1. Propositional Logic 14-5
2.2. Predicate Logic 14-5
3. Proof Techniques 14-6
3.1. Methods of Proving Theorems 14-6
4. Basics of Counting 14-7
5. Graphs and Trees 14-8
5.1. Graphs 14-8
5.2. Trees 14-10
6. Discrete Probability 14-13
7. Finite State Machines 14-14
8. Grammars 14-15
8.1. Language Recognition 14-16
9. Numerical Precision, Accuracy, and Errors 14-17
10. Number Theory 14-18
10.1. Divisibility 14-18
10.2. Prime Number, GCD 14-19
11. Algebraic Structures 14-19
11.1. Group 14-19
11.2. Rings 14-20
Chapter 15: Engineering Foundations 15-1
1. Empirical Methods and Experimental Techniques 15-1
1.1. Designed Experiment 15-1
1.2. Observational Study 15-2
1.3. Retrospective Study 15-2
2. Statistical Analysis 15-2
2.1. Unit of Analysis (Sampling Units), Population, and Sample 15-2
2.2. Concepts of Correlation and Regression 15-5
3. Measurement 15-5
3.1. Levels (Scales) of Measurement 15-6
3.2. Direct and Derived Measures 15-7
3.3. Reliability and Validity 15-8
3.4. Assessing Reliability 15-8
4. Engineering Design 15-8
4.1. Engineering Design in Engineering Education 15-8
4.2. Design as a Problem Solving Activity 15-9
4.3. Steps Involved in Engineering Design 15-9

32

5. Modeling, Simulation, and Prototyping 15-10
5.1. Modeling 15-10
5.2. Simulation 15-11
5.3. Prototyping 15-11
6. Standards 15-12
7. Root Cause Analysis 15-12
7.1. Techniques for Conducting Root Cause Analysis 15-13

33

APPENDIX C: Specialisations in 2016 review

Security specialisation

Defined around new courses funded by CBA initiative.

Information Systems Specialisation

Defined around courses offered by SISTM (www.sistm.unsw.edu.au)

http://www.sistm.unsw.edu.au/

34

Defined around the work of Service Oriented Computing Research Group
https://sites.google.com/site/unswsoc/

https://sites.google.com/site/unswsoc/

35

Formal Methods Specialisation

Data science Specialisation (awaiting information)

Defined around the work of Databases Research Group
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-
activities/database-research-group

Networks Specialisation

Defined around the work of Networked Systems and Security Research Group
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-
activities/networked-systems-and-security-group-netsys

https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/database-research-group
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/database-research-group
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/networked-systems-and-security-group-netsys
https://www.engineering.unsw.edu.au/computer-science-engineering/research/research-activities/networked-systems-and-security-group-netsys

36

Embedded Systems Specialisation (awaiting information)

Defined around the work of Trustworthy (http://ts.data61.csiro.au/projects/TS/) and
Embedded Systems Research Groups

AI Specialisation (awaiting information)

Defined around the work of AI Research Group

http://ts.data61.csiro.au/projects/TS/

37

	Introduction
	Process followed
	Summary of Sub-groups recommendations
	Formal Methods
	Early Phases in Software Cycle
	Software Design and Programming in the Large
	Management and Ethics
	New degree structure

	Revisiting Learning Objectives
	Students Point of View
	Increased support for Industrial Placements
	Comments on Unit Design
	Lacking Front-End Web Development Exposure
	Exposure to “Real” projects
	Request for updated public course handbook on the web

	Industry Point of View
	Specialisations

	Final recommendations
	Curriculum-related recommendations
	Other non-curriculum recommendations
	Pending from 2016
	New recommendations

	Attending Members
	Self Introductions and presentation of degree
	Curriculum-related discussion
	Overarching issues
	Overall vision of the degree

	Rob Pike asked a question related to the strategy and the big picture behind the degree. He said software engineering means different things to different people. There are software engineers researchers who write papers about meta analysis and buildin...
	Fethi Rabhi answered that the degree is about making people understand software engineering from different perspectives so the different courses will give them an understanding of the issues encountered when programming in the large as well as other m...
	Rob Pike said there are many interesting SE methods but in practice, they have very little direct use for most of the time. As opposed to cybersecurity which he firmly believes is a fundamental thing about making secure data systems today, which falls...
	Aarthi Natarajan said that in her experience teaching about the degree, one of the major reasons that COMP1531 was introduced was because students graduating were graduating without even understanding the process of source control. The problem is not ...
	Working with large software systems
	SE curriculum scope and teaching methods
	Elegant vs Cheap/easy coding

	Cybersecurity
	Place of security/cybersecurity in the core curriculum
	New ways of designing/implementing systems (with security in mind)

	Specific topics
	Formal methods
	ML/AI/Ethics
	Design concepts

	Non-curriculum related discussion
	APPENDIX C: Specialisations in 2016 review
	Security specialisation
	Information Systems Specialisation
	Software as a Service Specialisation
	Formal Methods Specialisation
	Data science Specialisation (awaiting information)
	Networks Specialisation
	Embedded Systems Specialisation (awaiting information)
	AI Specialisation (awaiting information)

