
Document #: P6772R1
Date: 2021-06-04
Project: Programming Language C++
Audience: School of Computer Science and Engineering

Reply-to: Christopher Di Bella


<cjdb.ns@gmail.com>


1 Abstract

2 Revision history

2.1 R1

2.2 R0

3 Motivation

3.1 C++

3.2 Software engineering practices

3.2.1 Testing

3.2.2 Benchmarking

3.2.3 Ethics

3.3 There is a lot going on here. Are you sure this you’re going to fit this all
into ten weeks?

3.4 Overlap with other courses

4 Design

4.1 C++

4.1.1 Tooling

4.1.2 Program composition

4.1.3 Containers design

4.1.4 Generic programming

4.1.5 Relationship with COMP6771

4.2 Software engineering tools and practices

4.2.1 Community

4.2.2 Ethics

4.3 Should this be a COMP or SENG course?

COMP6772 Advanced Software
Engineering

Contents
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

mailto:cjdb.ns@gmail.com


5 Proposed course

5.1 Course abstract

5.2 Objectives

5.2.1 Knowledge and understanding

5.2.2 Skills

5.2.3 Values and attitudes

5.3 Outcomes

5.3.1 Knowledge and understanding

5.3.2 Skills

5.4 Assessment structure

5.4.1 Assignment 1

5.4.2 Assignment 2

5.4.3 Assignment 3

5.4.4 Lab work

5.4.5 Exam

5.5 Class structure

P6772 seeks to remedy this by introducing a new C++ course that follows on from
where COMP6771 stops.

Moves from Google Docs to Markdown-generated HTML.

Adds Motivation and Design sections to better communicate why content is
necessary and how it will be delivered.

Removes the open-source component to give students breathing room.

Initial revision.

C++ is a language that rapidly evolves over time and is applicable to most domains,
making it difficult for COMP6771 Advanced C++ Programming to cover all the
relevant content. While the delta between C++11, C++14, and C++17 is quite small

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

1  Abstract§

2  Revision history§

2.1  R1§

—

—

—

2.2  R0§

—

3  Motivation§

3.1  C++§



between consecutive standards, the change between C++17 and C++20 is on a
completely different scale. A lot of C++20’s new features either introduce new
programming paradigms (e.g. ranges, coroutines), change the way in which we write
C++ at a language level (e.g. concepts, consistent comparison, modules), or change the
way in which we build C++ (modules). All of these new features immensely simplify
C++ programs, but are competing for time with existing content that is almost entirely
still relevant, but in some cases no more important than the new potential material.

COMP6771 (and COMP3171/9171) has also always taken an interest in exposing
tooling to make sure that students are building correct programs. Since the author’s
involvement with the course, it has always encouraged tools to detect memory leaks
(Valgrind until 2014; AddressSanitizer since 2015). Since 2019, the course has also
encouraged the use of IDEs (CLion in 2019; Visual Studio Code with clangd since
2020), debuggers, build systems (Bazel in 2019; CMake since 2020), a code formatter,
a linter, a unit test framework, and package management. As C++ tooling has matured
over the past decade, we have increasingly been exposing students to more and more
tools to make their lives easier. It isn’t a free lunch, however, and we require time to
educate students on the purpose of these tools, and how to use them to get the best
experience (often disguised as “how to maximise your mark”). In a course that’s
already filled to the brim, this is fairly difficult: we can either only superficially expose
the tools, or hide them behind something else like an IDE, and while they reap the
benefits, they’re none the wiser about losing the tooling if they move to a different
ecosystem.

If you liked it, you should have put a CI test on it.

– Google, with apologies to Beyoncé

The author’s software engineering education, from Software Design and Development
in the HSC, through their bachelor’s degree in computer science at UNSW has always
encouraged testing (and at times, test-driven development). Unfortunately, this never
translated into how to appropriately write tests, or how much testing is enough.
Additionally, the author didn’t come across continuous integration until their first full-
time job, and has learnt about various forms of testing outside of unit and integration
testing over the years. This suggests that UNSW can expand on the tests it pushes for
(e.g. CI, fuzzing), which can improve student development.

Since having graduated, the author has seen a lot of code checked into projects that
hasn’t been adequately tested, and has marked COMP6771 assignments that would
have benefited from better testing. This is evidence that universities in general have
room to improve when it comes to ensuring that graduates meet learning outcomes 1,
3, and 4.

While COMP6772 will continue to beat the drum about unit testing and TDD, it will
also bring up the importance of CI and fuzzing.

3.2  Software engineering practices§

3.2.1  Testing§

3.2.1.1  Why this should be taught in COMP6772§

https://valgrind.org/
https://clang.llvm.org/docs/AddressSanitizer.html
https://www.jetbrains.com/clion/
https://code.visualstudio.com/
https://clangd.llvm.org/
https://bazel.build/
https://cmake.org/
https://clang.llvm.org/docs/ClangFormat.html
https://clang.llvm.org/extra/clang-tidy/
https://github.com/catchorg/Catch2
https://vcpkg.io/en/index.html


You only care about performance that you have benchmarked. If you did
not write a benchmark for your code, you do not care about its
performance.

– Chandler Carruth, 2017

The author never formally learnt about benchmarking while at university. COMP3171
(COMP6771) has emphasised the need for high performance code: its first (and
possibly second) assignment is required to run in under a certain amount of time. This
was facilitated by the POSIX tool time, which is a good start, but fails to tease out
critical analysis related to practical performance. Worse still, computer science theory
isn’t always in sync with the real world. For example, the theoretical time complexity
for traversing the contents of a contiguous array is O(n), as it is for traversing the
contents of a linked-list. However, due to cache locality, benchmarking reveals that
contiguous arrays outperform linked lists in sequenced operations (and we haven’t
even talked about harnessing parallelism or heterogeneous computing). COMP6771
touches on briefly brings this up when contrasting std::vector and std::list (and
anecdotally, there’s always a non-significant number of surprised people), but has
never had the time to prove, in large part due to the fact that educating students about
how to write benchmarking code is hardly within course scope.

C++ is a lightweight abstraction programming language, that gives you control over
performance. As noted at the top, performance is only considered to be a genuine
concern if a relevant benchmark has been built and analysed. While a good start (and
good enough for COMP6771), writing a proper benchmark in C++ that meets
Chandler’s assertion about performance isn’t as simple as the following.

The above lacks accuracy, and doesn’t can’t take into consideration the latency of
operations such as allocation, which might irrationally impact a program’s run-time.

The author is a part of various communities in the world of software engineering, and
has worked as a software engineer in three different countries (Australia, Scotland,
USA). In all cases, the author has enjoyed immense privilege, and has either witnessed
or heard from trusted primary sources: workplace sexism, racism, homophobia,
transphobia, ableism, intimidation, harassment, abuse, mental health belittlement,
disregard for others’ physical health and safety, and other antisocial behaviour. Due to
this toxic behaviour, the author is aware of several people who have either left the
community that they are a part of, or will leave very soon, if the behaviour continues.
All three of the countries that the author has lived in have laws preventing this sort of
behaviour, and yet it persists. This is unacceptable, and needs to be addressed as early

3.2.2  Benchmarking§

3.2.2.1  Why this should be taught in COMP6772§

auto const start = std::chrono::high_resolution_clock::now(); 

work_to_measure();

auto const stop = std::chrono::high_resolution_clock::now(); 

std::cout << (stop - start).count() << " ns\n";

3.2.3  Ethics§

https://youtu.be/2EWejmkKlxs


on in a person’s career, to ensure that the listed behaviour does not become normalised
for them.

Another perspective to consider on the importance of ethics in software engineering is
that software is built for people, by people, but it doesn’t necessarily treat everyone
equally. Even large corporations such as Google and Twitter with enormous resources
at their disposal have produced software that has engaged in discrimination. As with
workplace behaviour, software that produces these results is completely unacceptable,
and it is again within our ability to educate on the need for diverse and inclusive
workplaces so that software solutions do not enage in antisocial behaviour.

The author strongly believes that a single ethics course in the final year is unable to
teach values that promote a safe workplace, where software solutions cater to all. It’s
far too late in a student’s development, and it’s far too limited a time for teaching staff
to cover all the relevant material. Worse, the author understands that many students
(from universities in multiple countries) hold their compulsory ethics classes in high
contempt, because they don’t understand why education on ethics is necessary. The
author does see the value in a consolidated ethics class at the end of a computer science
or engineering program, but only if ethics subtopics are explored in every course that
CSE has access to. Then, the final ethics course can do two things: draw links between
the ethics components across courses, and explore topics that genuinely require a
certain amount of maturity to discuss.

The author is aware that this is a system-wide change to multiple programs, and while
they would like to see this happen, is also aware that this kind of change is well beyond
the scope of the proposal and would likely take years to complete. In the meantime, the
author is of the opinion that a course could pilot having an ethics week to gauge its
success, and relay this to the program committees.

In writing P6772R1, the author has internalised that there are at least two courses
competing for attention within this proposal: a course that extends C++ education
further than COMP6771 has the bandwidth to offer, and a course that teaches
contemporary software engineering practices with a real-world project. It might be
worth splitting the course in two: COMP6772 Advanced C++ Programming, and
COMPXXXX Software Engineering for Computer Scientists.

Note that in the event of a split, an ethics module would be present in both
courses.

The author is aware that some of the software engineering content in this section may
be taught in other courses. This shouldn’t be a discouraging factor from COMP6772
incorporating the material. Different lecturers will provide different perspectives on
matters, and explain material in ways that may resonate with different people.

3.2.3.1  Why this should be taught in COMP6772§

3.3  There is a lot going on here. Are you sure this
you’re going to fit this all into ten weeks?

§

3.4  Overlap with other courses§

https://www.bbc.com/news/technology-33347866
https://www.bbc.com/news/technology-57192898


Some topics⁠—like ethics and testing⁠—not only benefit from varied input, but also from
repetition. We stand a better chance of getting students to care about critically
important topics if they’re brought up at multiple junctions in their career.

Finally, some overlap will be necessary because this course would otherwise have too
many prerequisites. If we take a look at just the C++ content that COMP6772
proposes, without overlap, it would require students to take COMP6771 (C++ 101),
COMP3141 (composition), COMP3121 (algorithms), COMP3231 (allocators),
COMP3131 (lexers and parsers), and both MATH1081 and MATH3711 (group and
ring theories). That’s an awful lot of prerequisites, and would probably result in only a
handful of students ever even meeting the bar for entry. By cherry-picking relevant
content and giving a light introduction/refresher, COMP6772 can drop almost all of
these prerequisites.

The motivation section identifies many problems, and attempts to address them. The
proposed course does not attempt to tackle them single-handedly, but rather aims to
focus on exposing students to areas that the author is either adept or an expert in.
Material that is repeated in previous courses will likely be presented with a different
perspective, or serve as repetition to emphasise its importance.

The course is a sequel course to COMP6771 Advanced C++ Programming, so it will
expand students’ knowledge on current C++ programming techniuqes. More
specifically, the course will explore program composition in C++, container design,
and generic programming.

Duration: two weeks.

Introduces students to C++ tools beyond a compiler and debugger.

Advanced compiler and debugger techniques, build systems, compile-time
analysis, run-time analysis, benchmarking, fuzz testing, continuous
integration

Assessment: passive, through other assessments.

Duration: two weeks.

Gently introduces students to category theory and group theory.

Details ranges, monads, coroutines, and how to effectively debug composed
programs, as opposed to imperative programs.

Assessment: a lexer and parser that must be written using the above.

4  Design§

4.1  C++§

4.1.1  Tooling§

—

—

—

—

4.1.2  Program composition§

—

—

—

—

4.1.3  Containers design§



Duration: two weeks.

Details constant expressions, conditional noexcept, using allocators, placement
new.

Lectures will implement std::vector (COMP6771 approximates a vector
implementation to teach RAII, whereas COMP6772 will implement a genuine 
std::vector to show how it works under the hood).

Assessment: Implement a standard container (specific container TBD).

Duration: two weeks.

Gently introduces abstract algebra.

Details algorithm design, iterators, implementing an iterator, designing a range
adaptor, and designing a concept.

Readers should note that the “algorithm design” does not overlap with
COMP3121/3821. We instead look at generalising algorithms, analysing their
requirements, building an interface that broadly caters to as many users as possible
(while meeting certain requirements), and then looking for optimisation opportunities.

The author expects, that over time, the two courses will trade material. As features in
more recent C++ standards become more mainstream, they may bubble their way up to
COMP6771, and the older ways would end up in COMP6772. For example, C++20
introduced a feature known as consistent comparison, which reduces the number of
overloaded comparison operators one needs to write from two-to-six to one or two (the
compiler will generate the remainder). This is fairly new technology, and since it’s not
widely deployed, it makes sense for COMP6771 to continue teaching the way that’s
been available since the 80s. When consistent comparison is used by more of the
community, then the respective LiCs may discuss whether or not it’s appropriate to
trade this material, thereby giving casual students the easier to understand and more-
likely-to-be-correct option, and leave the manual one to folks who are hungry for more
C++.

Popular programming languages, while tools, have thriving communities made up of
people. That’s how tools come into being, and how the language evolves.

Until such a time that a first year COMP course teaches about diversity, equity, and
inclusion, COMP6772 will dedicate one week to this topic. Once this criterion is met,
COMP6772 will explore the ramifications of software that permits the proliferation of
fake news and misinformation.

—

—

—

—

4.1.4  Generic programming§

—

—

—

4.1.5  Relationship with COMP6771§

4.2  Software engineering tools and practices§

4.2.1  Community§

4.2.2  Ethics§



The author firmly believes that this should be a course available to students studying
computer science. Computer science may not be an official engineering degree, but
many computer scientists end up graduating and finding themselves employed as
software engineers. Therefore, the author is of the opinion that non-core courses that
expose software engineering practices should be available for anyone who may find
themselves employed as a software engineer, provided they meet the minimum
maturity requirements.

Units of credit: 6

Contact hours:

Lectures: 4

Tute/Lab: 2

Prerequisites: COMP6771, and at least one of COMP3121/3821, COMP3131, or
COMP3231/9201/3821/9283.

This course continues teaching C++ where COMP6771 leaves it. Deepens knowledge
learnt in COMP6771; introduces advanced topics that will reshape the way in which
one writes C++ programs.

Detailed study of complex C++ tools for better, faster, and correct programs. Program
composition in C++. Building containers that isare performance-sensitive. Generic
programming.

Students will develop knowledge and understanding of:

contemporary C++ software engineering practices

the philosophy of C++

social and ethical issues, and their effect on software engineering

Students will develop skills in:

using C++ tools

more in-depth C++ programming techniques

4.3  Should this be a COMP or SENG course?§

5  Proposed course§
—

—

—

—

—

5.1  Course abstract§

5.2  Objectives§

5.2.1  Knowledge and understanding§

—

—

—

5.2.2  Skills§

—

—

5.2.3  Values and attitudes§



Students:

appreciate the complexity of software engineering beyond the scope of university

employ software engineering best practices in their projects

value the need for considering social and ethical issues as they develop software

Objectives Outcomes
Students develop knoweldge
and understanding of:

A student:

1. contemporary C++
software engineering
practices

describes incidents in a detailed manner
when asking for help

discusses the benefits and drawbacks of
using libraries

explains the benefits of using tooling

describes the trade-offs of link-time and
profile-guided optimisation

distinguishes between standard library
implementations

2. the philosophy of C++ describes the concepts underpinning
generic programming

explains the purpose of allocators

discusses the benefits and drawbacks of
argument-dependent lookup

3. social and ethical issues,
and their effect on
software engineering

discusses and evaluates social and
ethical issues in several contexts

constructs software solutions that
address social and ethical issues

Objectives Outcomes
Students develop skills
in:

A student:

—

—

—

5.3  Outcomes§

5.3.1  Knowledge and understanding§

—

—

—

—

—

—

—

—

—

—

5.3.2  Skills§



Objectives Outcomes

4. using C++ tools synthesises a build environment

employs compile-time analysis to ensure best
practices are followed

employs run-time analysis to narrow down the
existence of bugs

constructs unit tests to ensure correctness

constructs fuzz tests to ensure correctness

constructs benchmarks to measure
performance

constructs documentation to detail how and
why interfaces should be used

applies tools to automate development
processes

synthesises documentation for their designs
and interfaces

5. more in-depth C++
programming
techniques

composes solutions using range adaptors,
monads, and coroutines

synthesises generic algorithms using concepts

constructs an allocator-aware container

constructs a range adaptor

evaluates the need for esoteric C++ features

Technical assignments: 40%

Essay: 30%

Lab work: 15%

Final exam: 15%

To ensure student participation in all assessments, students need to pass all four
components.

Students all have one “bad week” card, where they can request a two-day
extension for an assignment, no questions asked, and no evidence required.

Area of focus: Composition in C++.

Brief description: Students use range adaptors, monads, and coroutines to build a
lexer and parser.

—

—

—

—

—

—

—

—

—

—

—

—

—

—

5.4  Assessment structure§

—

—

—

—

—

—

5.4.1  Assignment 1§

—

—



Weighting: 20% of final mark.

Area of focus: Ethics.

Brief description: Students write an essay on a contemporary issue concerning
diversity, equity, and inclusivity.

Weighting: 25% of final mark. The weighting reflects the importance of the topic
rather than its difficulty.

Area of focus: Containers and allocators

Brief description: Students implement an allocator-aware container.

Weighting: 20% of final mark.

Specifics to be fleshed out, but will cover outcomes that assignments do not.

Specifics to be fleshed out, but will cover most technical outcomes.

Week Lectures Tute/Lab Assessment
1 Course outline

What is software
engineering?

The C++ community

Tools beyond the
compiler

Libraries

TBD Assignment 1
released

2-3 Category theory basics

Composition using

Range adaptors

Monads

Coroutines

Debugging techniques

TBD

4 Unit testing (revised)

Fuzz testing

Documentation

TBD Assignment 1 due
EOW

—

5.4.2  Assignment 2§

—

—

—

5.4.3  Assignment 3§

—

—

—

5.4.4  Lab work§

5.4.5  Exam§

5.5  Class structure§

—

—

—

—

—

—

—

—

—

—

—

—

—

—



Week Lectures Tute/Lab Assessment
5 Equity

Diversity and inclusivity

Ramifications of poor/no
ethics via case study

TBD Assignment 2
released

6 No classes
7-8 ‘Advanced’ templates

Constant expressions

noexcept specifiers

Allocators

Uninitialised memory
algos

TBD Assignment 2 due
EOW7

Assignment 3
released

9-10 Abstract algebra basics

What is generic
programming?

Producing a generic
algorithm

Iterators and coordinates

Synthesising an iterator

Designing a range
adaptor

Designing a concept

TBD Assignment 3 due
EOW9

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—


