
Syllabus Stability

Over two 2 hour meetings we discussed the core syllabus (1917-1927-2911) to find

areas where there were differing understandings of what was to be taught or in

what depth, and also to makes some minor adjustments to the syllabus where there

was general agreement but without revisiting the whole syllabus in any major way.

There should be a full syllabus review after 5 years of the old syllabus being

established (ie in 2011 or 2012). There should be a quick review of 1911 and 1921

immediately in accordance with the review of 1917. We had some discussions

about 1911 already at the meetings and subsequently richard and gabrielle have

made some specific plans for change in 1911 (also outlines briefly below)

Attendees: Richard Buckland, Gabrielle Dittu, Peter Ho, Alan Blair, Wayne

Wobke, Oliver Diesel, John Potter, Maurice Pagino, ..? (who have i forgotten?)

The Modified Syllabus

The revised syllabus is at https://wiki.cse.unsw.edu.au/~info/cgi-bin/moin.cgi

/CoreCourses/contents

Summary of changes: adts moved from 1917 to 1927, abstraction and

programming to apis still need to be taught in 1917. a range of material was

identified as optional. this means it is not required to be taught by the syllabus and

future courses cannot depend on it having already been taught. lics are welcome to

include this material provided that (ofcourse) the core material is covered soundly.

It is important that courses do not overload students with extra material but not

give students a sufficiently sound understanding of the core material. for example -

microcontrollers/assembly in 1917. gdb was moved into 1917 core. tables, hashing,

hash algorithms moved from 2911 to 1927. tdd and crc cards moved to 2911 core,

generics confirmed optional.

commentary - the general thrust of the changes was moving material from the

surrounding courses into 1927. this can only work if 1927 does inherit students

who can already program in c and are confident with pointers and dynamic

structures. there is no time in 1927 now to teach students how to program. tress as

a programming exercise should be introduced in 1917, perhaps as an example

when doing recursion, tree pruning algorithms and BFS of trees is still 1927

content.

The objectives of each course

1917 - at the end of the course students can confidently program small

program in c, in particular they have mastered memory, pointers, malloc. Their

CoreCourses/SyllabusStability (last edited 2009-07-03 13:31:28 by ?RichardBuckland)

code follows professional coding practise including understanding and writing

code free of security vulnerabilities, they have an understanding of testing and

debugging. our less tangible objectives are that they should have developed a sense

of the pleasure of computing and are highly motivated to work hard and learn

independently, and have started to develop a sense of community within their

yeargroup.

All students passing this course need to be confident programmers.

1927 - at the end of this course students understand space and time complexity, and

know the standard basic computer science data structures and algorithms - eg trees

and graphs and algorithms on them

2911 - at the end of this course students know how to design software solutions to

problems using standard data structures and algorithms (covered in 1927) or by

designing their own. they learn OO design, the main algorithm design

methodologies, and also cover team programming theory and practise of.

Actions

standard info pages

planned changes and testing

teaching soft skills

post mortems (pass rates, passing student competencies, student feedback)

pre-testing in 1927 in the coming semester

1911 fail rate, soft skills, involvement of other schools

prac exams

evidence

future syllabus review

exams for this coming session in advance

assignment synchronisation

