
For each course we identified two types of outcomes - the skills/graduatate

attributes we want students to develop, and the technical content we want students

to learn. The skills are developed and reinforced in each course, the content should

belong to a single course.

Skills material will usually be addressed in course design and assessment design

predominantly with only a small footprint in lecture time. As an aid to those

teaching courses where it is not clear how to include skills material we should

publishing a table with suggestions each course.

1917 1927 2911

Content

Basic C:

selection/loops

/functions

/operators

link between

problem and

algorithm

complexity:

sorting and

searching

a priori and a

posteriora analysis

NPC problems

Design (all

followed by

implementation)

by contract

TDD

CRC cards

Thorough

understanding of

how C uses

memory:

representation of

basic types ints

chars strings

arrays pointers

(2s compliment

and floating point

representation is

optional)

binary, hex

signed and

unsigned types

and overflow

memory segments

mechanisms of

pass by reference

and copy

malloc

writing secure

code, buffer

Trees + Graphs +

Hash tables

OO programming

(and design

simultaneously)

using collections

framework

(generics optional)



overflows

(stack frames

optional)

(microcontrollers

and assembly

optional)

Thorough

understanding of

pointers, linked

lists, & *

operators, sizeof

algorithms on Trees

+ Graphs + Hash

tables

Patterns: Template

Method, Factory

Method/Abstract

Factory, Iterator,

Decorator,

Composite,

Strategy (optional

Singleton,

Observer, ...)

Recursion, what is

happening in

memory

ADTS in C:

implementing,

designing

Methodologies for

designing

algorithms:

brute force, greedy,

divide and

conquer, dynamic

programming,

backtrack, branch

and bound,

heuristic search

Skills/Attributes

problem

solving

topdown, XP,

abstraction, not

giving up, going

from algorithm to

implementation

selecting/adapting

standard solutions,

systematic

approaches, going

from problem to

algorithm/data

structure for known

algorithms/data

structures

design

methodologies,

going from

problem to

algorithm/data

structure for

unknown

algorithms/data

structures

groupwork

style

professional

issues

/ ethics

/ real world

practise

familiarity with

IDE eclipse or

similar

testing
assert, writing unit

tests first

assert, writing unit

tests first
TDD



CoreCourses/contents (last edited 2009-07-03 13:21:13 by ?RichardBuckland)

debugging
printf, gdb or

similar
printf, gdb or similar

abstraction

functions / top

down design /

structs / APIs /

standards

ADTS - using

implementing

enforcing violating

advantages of

objects

text for 1927 - aho and ullman?


