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E-mail: karol.suchan@uai.cl

5 WMS, AGH - University of Science and Technology, Krakow, Poland.

Abstract. Given a vertex-weighted tree T , the split of an edge xy in
T is min{sx, sy} where sx (respectively, sy) is the sum of all weights of
vertices that are closer to x than to y (respectively, closer to y than to
x) in T . Given a set of weighted vertices V and a multiset of splits S, we
consider the problem of constructing a tree on V whose splits correspond
to S. The problem is known to be NP-complete, even when all vertices
have unit weight and the maximum vertex degree of T is required to be
no more than 4. We show that
– the problem is strongly NP-complete when T is required to be a path.

For this variant we exhibit an algorithm that runs in polynomial time
when the number of distinct vertex weights is constant. We also show
that

– the problem is NP-complete when all vertices have unit weight and
the maximum degree of T is required to be no more than 3, and

– it remains NP-complete when all vertices have unit weight and T is
required to be a caterpillar with unbounded hair length and maxi-
mum degree at most 3.

Finally, we shortly discuss the problem when the vertex weights are not
given but can be freely chosen by an algorithm.

The considered problem is related to building libraries of chemical com-
pounds used for drug design and discovery. In these inverse problems,
the goal is to generate chemical compounds having desired structural
properties, as there is a strong correlation between structural properties,
such as the Wiener index, which is closely connected to the considered
problem, and biological activity.

? The authors acknowledge the support of Conicyt Chile via projects Fondecyt
11090390 (M.L., K.S.), Fondecyt 11090141 (M.S.), Anillo ACT88 (K.S.), and Basal-
CMM (S.G., M.S., K.S.). The first author acknowledges partial support from the
European Research Council, grant reference 239962. The second and fourth authors
acknowledge the support of the French Agence Nationale de la Recherche (ANR
AGAPE ANR-09-BLAN-0159-03)



2 Serge Gaspers, Mathieu Liedloff, Maya Stein, and Karol Suchan

1 Introduction

In this paper, we consider trees T = (V,E) where integer weights are associated
to vertices by a function ω : V → N, where N denotes the set of natural numbers
excluding 0.

Definition 1. Let T be a tree and ω : V → N be a function. The split of an
edge e in T is the minimum of Ω(T1) and Ω(T2), where T1 and T2 are the two
trees obtained by deleting e from T , and Ω(Ti) =

∑
v∈Ti

ω(v). We use S(T ) to
denote the multiset of splits of T .

We consider the problem of reconstructing a tree with a given multiset of splits
and a given set of weighted vertices.

Weighted Splits Reconstruction (WSR): Given a set V of n ver-
tices, a weight function ω : V → N, and a multiset S of integers, is there
a tree T whose multiset of splits is S (i.e. S(T ) = S)?

The Weighted Splits Reconstruction for Trees of Maximum De-
gree k problem (WSRk) is defined in the same way, except that we restrict
the tree T to have maximum degree at most k. When we require T to belong to
a class of trees T , the problem is called Weighted Splits Reconstruction
for T . When ω assigns unit weights to the vertices, the problem is simply called
Splits Reconstruction (SR). The Splits Reconstruction for Trees of
Maximum Degree k problem (SRk) and the Splits Reconstruction for T
are the obvious unweighted counterparts of the weighted variants defined above.

Related Work. In the field of Chemical Graph Theory [2, 3, 18], molecules
are modeled by graphs in order to study the physical properties of chemical
compounds. A chemical graph is a graph, where vertices represent atoms of a
chemical compound and edges the chemical bonds between them. Within the
area of quantitative structure-activity relationship (QSAR), several structural
measures of chemical graphs were identified that quantitatively correlate with a
well defined process, such as biological activity or chemical reactivity. Probably
the most widely known example is the Wiener index (see [12]): the sum of the
distances in a graph between each pair of vertices, where the distance between
two vertices is the number of edges on a shortest path from one to the other.
Wiener [19] found a strong correlation between the boiling points of paraffins and
the Wiener index. From then on, many other topological (using the information
of the chemical graph) and topographical (using the information of the chemical
graph and the location of its vertices in space) indices were introduced and their
correlation with various other biological activities was investigated.

In Combinatorial Chemistry, drug design is facilitated by building libraries
of molecules that are structurally related (via the Wiener index or any of the
other numerous indices). We face inverse problems where the goal is to design
new compounds that have a prescribed structural information (see also [6]).

Goldman et al. [11] study problems related to the design of combinatorial
libraries for drug design from an algorithmic and complexity-theoretic point of
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view, following the heuristic approaches of [17] and [10]. They show that for every
positive integer W , except 2 and 5, there exists a graph with Wiener index W .
They also show that every integer, except a finite set, is the Wiener index of some
tree. For constructing a tree (of unbounded or bounded maximum degree) with
a given Wiener index, they devise pseudo-polynomial dynamic programming al-
gorithms. Goldman et al. also introduce the Splits Reconstruction problem
and recall a result due to Wiener [19]: the Wiener index of a tree T on n vertices
with unit weights is

∑
s∈S(T ) s · (n− s). They show that SR is NP-complete and

give an exponential-time algorithm without running time analysis.
As it is not reasonable to construct chemical trees with arbitrarily high vertex

degrees, Li and Zhang [15] studied SR4 and showed that it is also NP-complete.
Their algorithm to construct a tree with maximum degree at most 4 to solve
SR4 runs in exponential time (no running time analysis is provided) and creates
weighted vertices in intermediate steps.

In order to reconstruct glycans or carbohydrate sugar chains, Aoki-Kinoshita
et al. [1] study the reconstruction of a node-labeled supertree from a set of node-
labeled subtrees. They give a 6-approximation algorithm for this problem, which
generalizes the smallest superstring problem. We refer to [4] surveying results
on the Wiener index for trees.

Our Results. By the result of Li and Zhang [15], SR4 is NP-complete, while
SR2 is trivially in P. We close this gap by showing that SR3 is NP-complete by
a reduction from Numerical Matching with Target Sums (defined below).
It is even NP-complete for caterpillars with unbounded hair length. Identifying
small classes of trees for which the problem is NP-complete may be important
for future investigations in the spirit of the deconstruction of hardness proofs [14]
which aim at identifying parameters for which the problem becomes tractable if
these parameters are small.

Our main result proves that WSR2 is strongly NP-complete by a reduction
from a variant of Numerical Matching with Target Sums in which all
integers of the input are distinct. For the case where the weights of the vertices
are chosen from a small set of values, our dynamic-programming algorithm solves
WSR2 in time O(nk+3 · k), where k is the number of distinct vertex weights.

Definitions. A caterpillar is a tree consisting of a path, called its backbone, and
paths attached with one end to the backbone. Its hair length is the maximum
distance from a leaf to the closest vertex of the backbone. A star K1,k is a tree
with k leaves and one internal vertex, called the center. In our hardness proofs,
we reduce from the following problem (problem [SP17] in [9]).

Numerical Matching with Target Sums (NMTS): Given three dis-
joint multisets A,B, and S = {s1, . . . , sm}, each containing m elements
from N, can A ∪ B be partitioned into m disjoint sets C1, C2, . . . , Cm,
each containing exactly one element from each of A and B, such that,
for 1 ≤ i ≤ m,

∑
c∈Ci

c = si?

Due to space constraints, the proofs of the statements marked with (?) have
been moved to the appendix.
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2 WSR2 is strongly NP-complete

In this section, we show that WSR2 is strongly NP-complete. First we introduce
a new problem that is polynomial-time-reducible to WSR2, and then show that
this new problem is strongly NP-hard.

Scheduling with Common Deadlines (SCD): Given n jobs with
positive integer lengths j1, . . . , jn and n deadlines d1 ≤ . . . ≤ dn, can
the jobs be scheduled on two processors P1 and P2 such that at each
deadline there is a processor that finishes a job exactly at this time, and
processors are never idle between the execution of two jobs?

To reinforce the intuition on this problem one may imagine that we want to
satisfy delivery deadlines and avoid using any warehouse space to store a product
between its fabrication and the delivery date. There is no restriction as to which
product should be delivered at a given time. (Another possibility is imagining
computer scientists scheduling paper production to fit conference deadlines.)

Given an instance (j1, . . . , jn, d1, . . . , dn) for SCD, we construct an instance
for WSR2 as follows. For each job ji, 1 ≤ i ≤ n, create a vertex vi with weight
ω(vi) = ji. For each deadline di, 1 ≤ i ≤ n−1, create a split di. We may assume
that

∑n
i=1 ji = dn−1 + dn, otherwise we trivially face a No-instance.

Suppose the path P = (vπ(1), vπ(2), . . . , vπ(n)) is a solution to WSR2. Say
{vπ(`), vπ(`+1)} is the edge associated to the split dn−1. We construct a solution
for SCD by assigning the jobs jπ(1), jπ(2), . . . , jπ(`) to processor P1, and the jobs
jπ(n), jπ(n−1), . . . , jπ(`+2), jπ(`+1) to processor P2, in this order. Note that then,
one of the jobs jπ(`), jπ(`+1) ends at dn−1, and the other at −dn−1+

∑n
i=1 ji = dn,

which is as desired.
On the other hand, if SCD has a solution, then WSR2 has a solution as well,

because the previous construction is easily inverted. Visually, the list of jobs of
P2 is reversed and appended to the list of jobs of P1. Job lengths correspond to
vertex weights and deadlines correspond to splits (the last deadline where a job
from P1 finishes is merged with the last deadline where a job from P2 finishes).
Thus, SCD is polynomial-time-reducible to WSR2.

Lemma 1. SCD ≤p WSR2.

In the remainder of this section, we show that dNMTS is polynomial-time-
reducible to SCD. The dNMTS problem is equal to the NMTS problem, except
that all integers in A∪B ∪S are pairwise distinct. This variant has been shown
to be strongly NP-hard by Hulett et al. [13]. As the proof becomes somewhat
simpler, we use dNMTS instead of NMTS for our reduction.

Let us first give a high level description of the main ideas of the reduction. For
a dNMTS instance (A,B, S), the elements of A∪B will be encoded as jobs, and
the elements of S will be encoded as deadlines. A convenient way to represent an
element s ∈ S is by introducing segments which are delimited to the left and the
right by double deadlines, and whose distance is equivalent to s. The elements
of A∪B∪S are blown up by well-chosen additive factors that preserve solutions



Complexity of Splits Reconstruction for Low-Degree Trees 5

and make sure that the length of each segment can only be met by the sum of
exactly two job-lengths, one corresponding to an element of A and the other to
an element of B.

Our reduction will create an instance whose solution assigns, in each seg-
ment, one x-job (a job corresponding to an A-element) and one y-job (a job
corresponding to a B-element) to the same processor, such that these two jobs
are the only jobs executed on this processor in this segment, thus providing a so-
lution to dNMTS. W.l.o.g., the x-job is scheduled first. As we must not introduce
any restriction which x-jobs can be assigned to which segments, we introduce a
deadline for each length of an x-job; these are the real deadlines. We refer to the
x- and y-jobs as green jobs. The job lengths were blown up such that in each
segment, exactly one processor starts with a green x-job, and in each segment,
exactly one processor ends by executing a green y-job. In each segment, the green
jobs must not overlap; this is achieved by multiplying all deadlines created so
far and the corresponding job lengths by a factor 2, and introducing fake dead-
lines at odd positions one unit before the real deadlines. If an x-job and a y-job
overlapped, there would be no job ending at the fake deadline preceding the real
deadline at which the x-job ends, as all green jobs have even length and all real
deadlines and double deadlines are even. Blue, red, and black jobs are created
to meet all deadlines on the processor that is not currently executing green jobs.
The blow-up of the elements of A∪B ∪S ensures that these jobs cannot equate
the green jobs (except the black jobs whose lengths might equal the lengths of
green y-jobs, but, w.l.o.g., one can assign them to the last part of each segment
of the processor not executing a green job). That none of these jobs is executed
between two green jobs within a segment is ensured as the sum of all green job
lengths equals the sum of the lengths of the segments. This summarizes the re-
duction and gives the reasons for the different elements of the construction. Let
us now turn to the formal reduction.

Let (A,B, S) be an instance for dNMTS. We suppose, w.l.o.g., that
∑m
i=1 si =∑

x∈A∪B x, otherwise (A,B, S) is trivially a No-instance for dNMTS. Let A =
{a1, . . . , am} and B = {b1, . . . , bm}. We also assume, w.l.o.g., that ai < ai+1,
bi < bi+1, si < si+1, for all i ∈ {1, . . . ,m − 1}, that am < bm, and that sm ≤
am + bm.

First, we construct an equivalent instance (X,Y, Z) for dNMTS. Each of
X := {x1, . . . , xn}, Y := {y1, . . . , yn}, and Z := {z1, . . . , zn} has n := m + 1
elements:

for i ∈ {1, . . . , n− 1},
xi := 2 · (ai + (bm + 2)), xn := 2 · (am + 1 + (bm + 2)),

yi := 2 · (bi + 3 · (bm + 2)), yn := 2 · (bm + 1 + 3 · (bm + 2)),

zi := 2 · (si + 4 · (bm + 2)), and zn := 2 · (am + bm + 2 + 4 · (bm + 2)).

The elements of X, Y , and Z have the following properties.

Proposition 1 Each element of X ∪ Y ∪ Z is an even positive integer.
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Proposition 2 For every i ∈ {1, . . . , n − 1}, we have that xi < xi+1, that
yi < yi+1, and that zi < zi+1.

Proposition 3 For every i ∈ {1, . . . , n}, we have

2 · bm + 4 ≤ xi ≤ 4 · bm + 4,

6 · bm + 12 ≤ yi ≤ 8 · bm + 14, and

8 · bm + 16 ≤ zi ≤ 12 · bm + 18.

In particular, Property 3 implies that y1 > xn, that z1 > yn, and that 2 ·y1 > zn.
Properties 1–3 easily follow by construction of X,Y , and Z.

Proposition 4 If k and ` are integers such that xk + y` = zn, then k = ` = n.

Property 4 holds because xn and yn are the only elements of X and Y , resp.,
that are large enough to sum to zn.

Proposition 5 Let p, q ∈ X ∪ Y , p ≤ q, and z ∈ Z. If p + q = z, then p ∈ X
and q ∈ Y .

By Property 3, the sum of any two X-elements is smaller and the sum of any
two Y -elements is larger than any element of Z.
For our SCD instance, we create the following deadlines:

– real deadlines: ri,j := xi +
∑j
k=1 zk, for each j ∈ {0, . . . , n − 1} and each

i ∈ {1, . . . , n},
– fake deadlines: fi,j := ri,j − 1, for each j ∈ {0, . . . , n − 1} and each i ∈
{1, . . . , n}, and

– sum deadlines: two deadlines ds1,j := ds2,j :=
∑j
k=1 zk, for each j ∈

{1, . . . , n}.

The sum deadlines we just defined partition the interval [0, ds1,n] into n segments
Ij := [ds1,j−1, ds1,j ], j = 1, . . . n, where for convenience, we let ds1,0 = 0. We
create jobs with the following lengths, where x0 = 0 :

– green x-jobs: xi, for each i ∈ {1, . . . , n},
– green y-jobs: yi, for each i ∈ {1, . . . , n},
– blue jobs: n · (n− 1) times a job of length 1,
– red fill jobs: n−1 times a job of length xi−1−xi−1, for each i ∈ {1, . . . , n},
– red overlap jobs: xi − xi−1, for each i ∈ {1, . . . , n},
– black fill jobs: zi − xn for i ∈ {1, . . . , n− 1}, and
– a black overlap job: zn − xn + 1.

To illustrate these definitions, we start by showing that if we have a Yes-
instance (X,Y, Z) for dNMTS, then we have an SCD Yes-instance as well. Let
C1, C2, . . . , Cn be n couples such that Cj = {xπ1(j), yπ2(j)} and xπ1(j) + yπ2(j) =
zj , j ∈ {1, . . . , n}, for two permutations π1 and π2 of the set {1, . . . , n}. We
construct a solution for SCD. Let us construct the schedules for P1 and P2. For
each j ∈ {1, . . . , n− 1},
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r1,j−1r2,j−1rπ1(j)−1,j−1rπ1(j),j−1 rπ1(j)+1,j−1rn,j−1

f1,j−1f2,j−1 fπ1(j),j−1 fπ1(j)+1,j−1

ds1,j−1

ds2,j−1

ds1,j

ds2,j

xπ1(j) yπ2(j)

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

P1

P2

Fig. 1. How jobs are assigned to processors in the SCD instance in segment j < n.

– assign the green x-job xπ1(j) to the interval [ds1,j−1, rπ1(j),j−1] of P1,
– assign the green y-job yπ2(j) to the interval [rπ1(j),j−1, ds1,j ] of P1,
– assign a red fill job of length x1 − 1 to the interval [ds1,j−1, f1,j−1] of P2,
– for every i ∈ {1, . . . , n−1}\π1(j), assign a red fill job of length xi+1−1−xi

to the interval [ri,j−1, fi+1,j−1] of P2,
– for every i ∈ {1, . . . , n}\π1(j), assign a blue job to the interval [fi,j−1, ri,j−1]

of P2,
– assign a red overlap job of length xπ1(j)+1−xπ1(j) to the interval [fπ1(j),j−1,
fπ1(j)+1,j−1] of P2, and

– assign a black fill job of length zj − xn to the interval [rn,j−1, ds1,j ] of P2.

It only remains to assign jobs to the last segment. The last segment of P1 contains
the green x-job xn and the green y-job yn, in this order. The last segment of
P2 contains a red fill job of length x1 − 1, a blue job, a red fill job of length
x2 − 1− x1, a blue job, . . ., a red fill job of length xn − 1− xn−1, and the black
overlap job, in this order. See Fig. 1 for an illustration.

Now suppose the SCD instance is a Yes-instance. We will show some struc-
tural properties of any valid assignment of jobs to the processors, which will help
to extract a solution for our original dNMTS instance. We will show that in each
segment Ij , any valid solution for the SCD instance has exactly one green x-job
xk and exactly one green y-job y`, and xk and y` sum to zj .

Consider a valid assignment of the jobs to the processors P1 and P2. As two
jobs with the same length are interchangeable, when we encounter a job whose
length belongs to more than one category (for example “black fill” and “green
y”) we may choose in this case, w.l.o.g., to which category the job belongs.

Claim 1 A black fill job is assigned to each interval [rn,j , ds1,j+1], j ∈ {0, . . . , n−
2}.

Proof. Let j ∈ {0, . . . , n − 2}. Two jobs must finish at the double deadline
ds1,j+1, ds2,j+1. One of these must start at rn,j and thus has length ds1,j+1 −
rn,j =

∑j+1
k=1 zk − xn −

∑j
k=1 zk = zj+1 − xn. So this job is, w.l.o.g., a black fill

job. ut



8 Serge Gaspers, Mathieu Liedloff, Maya Stein, and Karol Suchan

This uses up all black fill jobs.

Claim 2 (?) The green y-job yn is assigned to the interval [rn,n−1, ds1,n].

The proofs of claims 2, 3 and 5 are provided in appendix A.

Claim 3 (?) The black overlap job is assigned to the interval [fn,n−1, ds1,n].

This uses up all black jobs. Now, the only jobs left whose length is between
6bm + 12 and 8bm + 14 are the green y-jobs y1, . . . , yn−1.

Claim 4 For each ` ∈ {1, . . . , n−1}, the green y-job y` is assigned to an interval
[ri,j−1, ds1,j ] for some i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , n− 1}.

Proof. Each job is assigned to an interval inside some segment, as the double
deadlines prevent jobs to span more than one segment. Suppose the green y-job
y` is assigned to segment p. As ds1,p + y` > ds1,p + xn, by Properties 2 and 3,
and the deadline following rn,p = ds1,p+xn is ds1,p+1, it must be that the green
y-job y` finishes at ds1,p+1. Moreover, ds1,p+1 − y` is equal to a real deadline as
ds1,p+1 − y` is even. ut

Each of the 2n jobs that have been assigned so far finish at a double deadline
ds1,j , ds2,j . Thus, no other jobs may end at a double deadline.

Claim 5 (?) A red fill job of length x1−1 is assigned to each interval [ds1,j , f1,j ],
0 ≤ j ≤ n− 1.

This uses up all red fill jobs of length x1 − 1.

Claim 6 For each ` ∈ {1, . . . , n}, the green x-job x` is assigned to an interval
[ds1,j , ri,j ] for some i ∈ {1, . . . , n} and j ∈ {0, . . . , n− 1}.

Proof. Suppose the green x-job x` is assigned to segment p. Notice that x` >
rn,p−f1,p. Indeed rn,p−f1,p = xn−x1+1 and, by construction, xn−x1+1 ≤ 2bm,
whereas x` ≥ 2bm + 4. Moreover, rn,p is the latest deadline in p. So the green
x-job x` starts at ds1,p. Notice that ds1,p + x` < ds1,p+1 and that ds1,p + x`
corresponds to a real deadline as ds1,p + x` is even, but all fake deadlines are
odd. ut

By Claims 2, 4, and 6, and since we have the same amount of segments as green
x-jobs, resp. green y-jobs, we obtain that each segment Ij , 1 ≤ j ≤ n,, contains
exactly one green x-job and exactly one green y-job.

Claim 7 For j ∈ {1, . . . , n}, the green x-job and the green y-job in the segment
Ij do not overlap.

Proof. Suppose otherwise, that is, suppose there is a j ∈ {1, . . . , n} such that
Ij contains a green x-job, say x`, and a green y-job, say yk, that overlap (i.e.
the intervals they are assigned to overlap). Since x` ends at a real deadline by
Claim 6 and yk starts at a real deadline by Claim 4, no job ends at the fake
deadline situated at ds1,j−1 + x` − 1, which contradicts the validity of the SCD
solution. ut



Complexity of Splits Reconstruction for Low-Degree Trees 9

The last claim implies that in each segment Ij , 1 ≤ j ≤ n, there is a green x-job
x`j and a green y-job ykj which together have the same size as the interval.
Hence the couples Cj = {a`j , bkj}, 1 ≤ j ≤ n, form a solution of dNMTS. Thus,
we have the following lemma.

Lemma 2. dNMTS ≤p SCD.

Our main theorem follows from the strong NP-hardness of dNMTS, Lemmata
1 and 2, and the membership of WSR2 in NP, which is easily verified as the
certificate is a path and an assignment of the splits to its edges, all of which can
be encoded in polynomial space.

Theorem 6. WSR2 is strongly NP-complete.

Corollary 1 (?). Splits Reconstruction for Caterpillars of Unboun-
ded Hair-Length and Maximum Degree 3 is NP-complete.

3 Algorithm for WSR2 with few distinct vertex weights

Let k = |{ω(v) : v ∈ V }| denote the number of distinct vertex weights in an
instance (V, ω,S) for WSR2. We exhibit a dynamic programming algorithm for
WSR2 that works in polynomial time when k is a constant. Moreover, standard
backtracking can be used to actually construct a solution, if one exists.

Suppose |V | = n and the multiset of splits, S, contains the splits s1 ≤
s2 . . . ≤ sn−1. Let w1 < w2 . . . < wk denote the distinct vertex weights and
m1,m2, . . . ,mk denote their respective multiplicities, i.e.mi = |{v ∈ V : ω(v) =
wi}| for all i ∈ {1, 2, . . . , k}.

Our dynamic programming algorithm computes the entries of a boolean table
A. The table A has an entry A[p,WL,WR, v1, v2, . . . , vk] for each integer p with
1 ≤ p ≤ n − 1, each two integers WL,WR ∈ S, and each vi ∈ {0, 1, . . . ,mi},
where i ∈ {1, 2, . . . , k}. The entry A[p,WL,WR, v1, v2, . . . , vk] is set to true iff
there is an assignment of the splits s1, s2, . . . , sp to the ` leftmost edges and the
r rightmost edges of the path Pn on n vertices, such that

– p = `+ r;
– v1 weights w1, v2 weights w2, . . . , and vk weights wk are assigned to the `

leftmost and the r rightmost vertices of Pn such that each split assigned to
the left (respectively to the right) part of the path corresponds to the sum of
the vertex weights assigned to vertices to the left (respectively to the right)
of this split; and

– WL is equal to the value of the `th split from the left and WR is equal to the
rth split from the right.

Intuitively, our algorithm assigns splits and weights by starting from both end-
points of the path and trying to meet these two sub-solutions.
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For the base case, set A[0,WL,WR, v1, v2, . . . , vk] to true if WL = WR =
v1 = v2 = . . . = vk = 0 and to false otherwise. We compute the remaining
entries of A by increasing values of p using the following recurrence.

A[p,WL,WR, v1, v2, . . . , vk] =

k∨
i=1


A[p− 1,WL − wi,WR, v1, v2, . . . , vi−1,

vi − 1, vi+1, vi+2, . . . , vk]

∨A[p− 1,WL,WR − wi, v1, v2, . . . , vi−1,

vi − 1, vi+1, vi+2, . . . , vk]

In the previous recurrence, each table entry that does not exist has the value
false.

The final result of the algorithm is computed by evaluating the expression∨
WL,WR∈S
i∈{1,2,...,k}

(WL≤wi+WR) ∧ (WR≤wi+WL)

A[|S|,WL,WR,m1,m2, . . . ,mi−1,mi−1,mi+1,mi+2, . . . ,mk].

The correctness proof and the running-time analysis of our dynamic program-
ming algorithm (see Appendix C) establish the following theorem.

Theorem 7 (?). WSR2 can be solved in time O(nk+3 · k), where k is the
number of distinct vertex weights of any input instance (V, ω,S) and n = |V |.

4 SR3 is NP-complete

In this section we show that Splits Reconstruction with unit weights is NP-
complete for trees with maximum degree 3. Our polynomial-time reduction is
done from the strongly NP-complete NMTS problem recalled in Section 1. This
problem remains NP-complete even if each integer of the NMTS instance is at
most p(m), where p is a polynomial and m is the length of the description of
the instance. Let us just mention that the next theorem does not immediately
follow from Corollary 1.

Theorem 8. SR3 is NP-complete.

Proof. Let Ã = {ã1, ã2, . . . , ãm}, B̃ = {b̃1, b̃2, . . . , b̃m} and S̃ = {s̃1, s̃2, . . . , s̃m}
be an instance of NMTS. Let C = max{x : x ∈ Ã ∪ B̃} be the maximum over
Ã ∪ B̃. W.l.o.g., we construct the following equivalent NMTS instance:

ai := ãi + 2 + 3C, 1 ≤ i ≤ m,
bi := b̃i + 3 + 5C, 1 ≤ i ≤ m, and

si := s̃i + 5 + 8C, 1 ≤ i ≤ m.

Let A =
⋃

1≤i≤m{ai}, B =
⋃

1≤i≤m{bi}, and S =
⋃

1≤i≤m{si}. Clearly, the

instance (Ã, B̃, S̃) has a solution iff the instance (A,B, S) has a solution.
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Now we describe an instance (V,S) of SR3, which is a Yes-instance iff the
previous instance (A,B, S) of NMTS is a Yes-instance (see also Figure 2).

Let n = 2m−2+
∑m
i=1 ai+

∑m
i=1 bi be the number of vertices in V ; we recall

that they have unit weight. The multiset S of splits is defined as follows.

– For each value si, 1 ≤ i ≤ m, the value 1 + si is added to S and we refer to
these splits as red splits.

– For each value si, 2 ≤ i ≤ m− 2, the value (i− 1) +
∑i
j=1(1 + sj) is added

to S and we refer to these splits as black splits.
– For each value ai, 1 ≤ i ≤ m, the values {1, 2, . . . , ai} are added to S and

we refer to these splits as green splits.
– For each value bi, 1 ≤ i ≤ m, the values {1, 2, . . . , bi} are added to S and we

refer to these splits as blue splits.

Finally each value x of S is replaced by min(x, n− x).

1+s1

1+
s 2

3+s1+s2 5+s1+s2+s3 7+s1+s2+s3+s4

1+
s 3

1+
s 4

path of length aj

path of length bk

aj + bk = s1

1+sm

1+
sm-1

aj

b j

Fig. 2. A tree with maximum degree 3 representing a solution to a SR3 instance
constructed as described in the proof of Theorem 8.

Lemma 3 (?). (A,B, S) is a Yes-instance for NMTS if and only if (V, ω :
V → {1},S) is a Yes-instance for SR3.

As the certificate is a tree on n vertices, the membership in NP is obvious. ut

5 Freely choosable weights

We remark that the following modification of WSR makes any set of splits
realizable in some tree. Suppose the weight function ω is not given, but freely
choosable, that is, we ask whether, given a multiset S of integers, there exists a
tree T = (V,E) and a weight function ω : V → N, such that S is the multiset of
splits of T . We call this problem ChWSR.

Theorem 9 (?). ChWSR always admits a solution.
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6 Conclusion

In Section 3, we have shown that, in the framework of parameterized complexity
[5, 8, 16], WSR2 is in XP when parameterized by the number of distinct vertex
weights. A generalization of this problem is W[1]-hard [7], but it remains open
whether this problem is fixed parameter tractable. For practical purposes, it
would further be important to identify other quantities that are small in prac-
tice (e.g. the number of leaves, the diameter of the tree, or topological indices),
and investigate the multivariate complexity of the considered problems param-
eterized by combinations of these quantities.

There is a large contrast between the complexities of WSR, where we are
given n vertex weights, and ChWSR, where we can freely choose the vertex
weights, or, alternatively, we can choose the vertex weights from an infinite mul-
tiset containing n times each element of N. It would be interesting to know some
restrictions on the multiset of vertex weights such that the problem becomes
tractable with respect to interesting parameterizations. Ideally, these restrictions
should be consistent with the applications in drug design and discovery.

Acknowledgment. We thank Ming-Yang Kao for communicating this problem.
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A Proof of Claims 2, 3 and 5

Claim 2 (?) The green y-job yn is assigned to the interval [rn,n−1, ds1,n].

Proof. As in the previous proof, one job must be assigned to this interval, whose
length is

∑n
k=1 zk − xn −

∑n−1
k=1 zk = zn − xn, which is yn by Property 4. Thus,

the green y-job yn is assigned to the interval [rn,n−1, ds1,n]. ut

Claim 3 (?) The black overlap job is assigned to the interval [fn,n−1, ds1,n].

Proof. As rn,n−1 is the only deadline between fn,n−1 and ds1,n, the processor
that does not use this deadline needs to process a job finishing at ds1,n and
starting before rn,n−1. This is the black overlap job, since no other job is long
enough. It is assigned to the interval [fn,n−1, ds1,n] of length ds1,n − fn,n−1 =
zn − xn + 1. ut

Claim 5 (?) A red fill job of length x1−1 is assigned to each interval [ds1,j , f1,j ],
0 ≤ j ≤ n− 1.

Proof. Since both processors finish a job at deadline ds1,j (resp., are initialized
at time ds1,0 = 0) and one of them finishes a job at the following deadline, which
is f1,j , we need to assign a job of length f1,j − ds1,j = x1 − 1 to the interval
[ds1,j , f1,j ]. W.l.o.g., this is one of the red fill jobs of length x1 − 1. ut

B Proof of Corollary 1

Corollary 1 (?). Splits Reconstruction for Caterpillars of Unboun-
ded Hair-Length and Maximum Degree 3 is NP-complete.

Proof. It is clear that this problem, abbreviated SRC, is in NP. To show that it
is hard for NP, we reduce from WSR2. Let I ′P = (ω′1, . . . , ω

′
n−2, s

′
1, . . . , s

′
n−3) be

an instance of WSR2, where ω′i, 1 ≤ i ≤ n − 2, are the vertex weights and s′j ,
1 ≤ j ≤ n − 3, are the splits. We assume that all vertex weights and splits are
upper bounded by a polynomial in n; as WSR2 is strongly NP-hard, it is still NP-
hard with this restriction. Define Ω := 1+2·max{ω′i : 1 ≤ i ≤ n−2}. To simplify
the argument, consider an auxiliary instance IP = (ω1, . . . , ωn, s1, . . . , sn−1) of
WSR2 obtained from I ′P by:

– augmenting the values of s′j , 1 ≤ j ≤ n− 3, by Ω,
– adding ωn−1 = ωn = Ω to the multiset of weights,
– adding sn−2 = sn−1 = Ω to the multiset of splits,
– and finally, multiplying each value in IP by nΩ (so ωi = ω′inΩ, and sj =
s′jnΩ).

It is not difficult to see that IP and I ′P are equivalent.
Now let us create an instance IC of SRC in the following way.

– replace each weight ωi, 1 ≤ i ≤ n, by ωi copies of weight 1,
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– for each ωi, 1 ≤ i ≤ n, add auxiliary splits sf,i = f , 1 ≤ f ≤ ωi − 1,
– keep the original splits (s1, . . . , sn−1).

Notice that there are
∑n
i=1 ωi vertices and (

∑n
i=1 ωi) − 1 splits (i.e. edges) in

total.
As one easily checks, if IP has a solution then IC has a solution. Now suppose

IC has a solution C. Then, as C is an instance for SRC, it follows that C is
a caterpillar of maximum degree 3 (with unbounded hair-length). Call B the
backbone of C. Let B′ ⊆ B be maximal such that its endvertices have degree 3.

By construction si > 1, 1 ≤ i ≤ n − 1, and only the splits s1,i, 1 ≤ i ≤ n,
have value 1. There are exactly n such splits, and so, C must have exactly n
leaves.

Since there is no split of value nΩ2 + 1, each hair of C has length at most
nΩ2. So, as si > nΩ2 for i = 1, . . . n − 3, we obtain that the splits s1, ..., sn−3

are assigned to edges b1, . . . , bn−3 in E(B′). Observe that the edges b1, . . . , bn−3

induce a connected graph (i.e. a path), as all other splits are smaller than the
minimum of the si, i = 1, . . . n− 3.

Let P be the path formed by the edges b1, . . . , bn−3 and let u and v be the two
endpoints of P . There is at most one vertex y such that if we look at the values
of the splits of the edges from u to y (resp. from v to y), then they are strictly
increasing. In addition, if two edges of P share a vertex x 6= y, then there must
be hair attached to x, because the splits associated to these two edges differ by
more than 1. Furthermore, there are hairs H1 and H2 of length nΩ2 attached
to the first and to the last vertex on the backbone, as no two auxiliary splits
are large enough to add up to one of the original splits si, i = 1, . . . n− 3. From
the fact that C has exactly n leaves, it follows that the remaining hair has to be
attached to y. As a consequence, E(B′) = {b1, . . . , bn−3}.

Hence, all edges outside B′′ (that is, edges from hairs) belong to auxiliary
splits, where B′′ is equal to B′ augmented with the two edges to which the splits
of value nΩ2 are assigned. This means that the edges adjacent to B′′ correspond
to auxiliary splits sωi−1,i.

In order to find a solution for IP , it thus suffices to take B′′ and replace all
hairs with the corresponding weight on their starting vertex on B′′. ut

C Proof of Theorem 7

Theorem 7 (?). WSR2 can be solved in time O(nk+3 ·k), where k is the number
of distinct vertex weights of any input instance (V, ω,S) and n = |V |.

Proof. The correctness of the base case is clear. For the correctness of the recur-
rence, let vpivot be the vertex on Pn where the two sub-solutions corresponding
to the left and to the right part of Pn meet. First note that the values of the
splits increase from left to right until we encounter vertex vpivot, from which
point they decrease. Filling up the path from both ends, this means that read-
ing the splits from s1 to sn−1, we can assign them to the path, each time only
deciding whether we assign it to the left part or to the right part of the path
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(in the SCD model, this would be equivalent to deciding whether to meet the
next deadline on the processor P1 or on the processor P2). The first (respec-
tively second) case of the recurrence corresponds to assigning the next split to
the left (respectively right) part of the path by inserting a vertex of weight wi,
i ∈ {1, 2, . . . , k}. The correctness of the final evaluation follows because it inserts
the one missing vertex weight that has not been used between the left and the
right part of the path.

The table has |S|3 ·Πk
i=1(mi+1) ≤ nk+3 entries, each entry can be computed

in time O(k), and the final evaluation takes time O(n · k). ut

D Proof of Lemma 3

Lemma 3 (?). (A,B, S) is a Yes-instance for NMTS if and only if (V, ω :
V → {1},S) is a Yes-instance for SR3.

Proof. Throughout the proof, when we refer to a split of value x, we mean a
split of value min(x, n− x).

“⇒” Assume that (A,B, S) is a Yes-instance for NMTS. We will show that
there is a solution to SR3. A tree T = (V,E) and a bijective function b : E → S
can be constructed as follows (see also Figure 2). Construct a path P with m−3
edges with the black splits such that the (i− 1)th edge is associated to the black

split (i − 1) +
∑i
j=1(1 + sj), i ∈ {2, 3, . . . ,m − 2}. Add two edges incident to

the first vertex of P , that are associated to the red splits 1 + s1 and 1 + s2.
Add two edges incident to the last vertex of P that are associated to the red
splits 1 + sm−1 and 1 + sm. To the ith vertex of P , 2 ≤ i ≤ m − 3, add one
incident edge associated to the red split 1 + si+1. Finally, for each ai ∈ A and
each bi ∈ B, construct the paths with ai and bi vertices respectively. To each
edge of these 2m paths, we can associate a green or a blue split. It remains to
attach one green path and one blue path to each endpoint of an edge associated
to a red split (one endpoint is already involved in the path P and of degree 3).
The way to attach these path is given by the solution to the (A,B, S) instance.

“⇐” Assume that there exists a solution (T, b) to SR3, where T = (V,E) is
a tree of maximum degree 3 and b is a bijection from E to S. We show how a
solution of the NMTS instance (A,B, S) can be derived from (T, b). Let us note
that for any i, j, k ∈ {1, 2, . . . ,m}, we have that ai + sj > sk, that ai + aj < sk,
that bi + bj > sk, and that ai + aj > bk.

Claim 8 For every i ∈ {1, 2, . . . ,m}, there is a path on ai edges, called the ai-
path, using the splits 1, 2, . . . , ai (w.l.o.g., they are green) and there is a path on
bi edges, called the bi-path, using the splits 1, 2, . . . , bi (w.l.o.g., they are blue).
All these a-paths and b-paths are edge-disjoint.

Proof. As the instance has 2m splits of value 1, T has 2m leaves. Each of these
leaves is incident to a green or blue split of value 1. As the instance also has
2m splits of each of the values 2, 3, . . . , 2 + 3C, the leaves of T are the starting
points of 2m edge-disjoint paths P1, P2, . . . , P2m, each having 2 + 3C edges in T .
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Consider an x ∈ A∪B and the splits 2+3C+1, 2+3C+2, . . . , x. As x < 4+6C,
and as there is no split smaller than 2 + 3C other than those we have already
used to form the paths Pi, 1 ≤ i ≤ 2m, the splits 2 + 3C + 1, 2 + 3C + 2, . . . , x
are assigned to an extension of a path Pi, which, together with Pi, forms a path
P ′i with x edges using the splits 1, 2, . . . , x. All these paths P ′i , 1 ≤ i ≤ 2m, are
edge disjoint and w.l.o.g., green splits are assigned to their edges if they have at
most 2 + 4C edges and blue splits otherwise. ut

Claim 9 For every i ∈ {1, 2, . . . ,m}, the red split of value 1 + si is assigned
to an edge ei of T whose vertex ui is the common extremity of an a-path and a
b-path, where ui is in the subtree of T − ei that has si + 1 vertices.

Proof. As no split has value si, vertex ui is incident to another two edges besides
ei. We note that all splits, besides those of the a- and b-paths, have value at least
6 + 8C. One such split plus the smallest aj , 1 ≤ j ≤ m, would exceed si. So, ui
is the end point of two a/b-paths. These cannot be two a-paths as aj + ak < si,
for any j, k ∈ {1, 2, . . . ,m} and they cannot be two b-paths as bj + bk > si, for
any j, k ∈ {1, 2, . . . ,m}. Thus, ui is the common extremity of an a-path and a
b-path. ut

Finally, a solution to the instance (A,B, S) of NMTS is formed by the couples
C1, C2, . . . , Cm, where each Ci contains aia and bib , where ia and ib are such
that the edge ei of T , with b(ei) = 1 + si, is incident to the aia-path and the
bib -path. This proves the NP-hardness of SR3. ut

E Proof of Theorem 9

Theorem 9 (?). ChWSR always admits a solution.

Proof. We show that the answer to ChWSR is always yes: Decompose S into κ
chains sj1 < sj2 < . . . sjm(j), j = 1, . . . , κ, where κ is the maximal multiplicity in

S. Let T be obtained from the star K1,κ by subdividing ej , the jth edge of T ,

m(j)−1 times (for j = 1, . . . , κ), and root T at the center r of K1,κ. Map the sji
to edges of the subdivided ej , keeping their order, so that the edge corresponding

to sj0 is incident to a leaf of T . Finally, choose the weight ω(r) for the root to be
equal to the maximum value in S. For each leaf v of T , set the weight ω(v) equal
to the split assigned to the edge {v, u}, where u is the parent of v. Any other
vertex v is given a weight equal to the difference of splits assigned to the edges
incident to v. This choice of T and ω clearly satisfies the requirements. ut

Remark. Due to the construction provided by the proof of Theorem 9, we note
that we are not only always able to construct a tree T as required, but the
structure of this tree is also rather simple. In particular, the realization of the
split sequence is a path if each split in S repeats at most twice.


