
On Independent Sets and Bicliques in Graphs?

Serge Gaspers1, Dieter Kratsch2, and Mathieu Liedloff2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway.
Email: serge@ii.uib.no

2 Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine -
Metz, 57045 Metz Cedex 01, France. E-mail: (kratsch|liedloff)@univ-metz.fr

Abstract. Bicliques of graphs have been studied extensively, partially
motivated by the large number of applications. One of the main algo-
rithmic interests is in designing algorithms to enumerate all maximal
bicliques of a (bipartite) graph. Polynomial-time reductions have been
used explicitly or implicitly to design polynomial delay algorithms to
enumerate all maximal bicliques.

Based on polynomial-time Turing reductions, various algorithmic prob-
lems on (maximal) bicliques can be studied by considering the related
problem for (maximal) independent sets. In this line of research, we im-
prove Prisner’s upper bound on the number of maximal bicliques [Combi-
natorica, 2000] and show that the maximum number of maximal bicliques
in a graph on n vertices is exactly 3n/3 (up to a polynomial factor). The
main results of this paper are O(1.3642n) time algorithms to compute the
number of maximal independent sets and maximal bicliques in a graph.

1 Introduction

Bicliques. Let the vertex sets X and Y be independent sets of a graph G =
(V,E) such that xy ∈ E for all x ∈ X and all y ∈ Y . The subgraph of G induced
by X ∪ Y is called a biclique of G. Furthermore depending on the context and
the application area, one also calls the pair (X, Y) or the vertex set X ∪ Y a
biclique. From a graph-theoretic point of view it is natural to consider a biclique
of a graph G as a complete bipartite induced subgraph of G. For technical
reasons, we prefer to consider a biclique B ⊆ V of a graph G = (V,E) as a
vertex set inducing a complete bipartite subgraph of G.

Maximal bicliques. A biclique B ⊆ V of G is a maximal biclique of G if B is
not properly contained in another biclique of G. A lot of the research on maxi-
mal bicliques and in particular on algorithms to enumerate all maximal bicliques
of (bipartite) graphs with polynomial delay is motivated by the various appli-
cations of bicliques in (bipartite) graphs. Applications of bicliques in automata
and language theory, graph compression, artificial intelligence and biology are
discussed in [2]. An important application in data mining is based on the formal

? A large part of the research was done while Serge Gaspers was visiting the University
of Metz.

concept analysis [10] where each concept is a maximal biclique of a bipartite
graph.

Previous work. The complexity of algorithmic problems on bicliques has been
studied extensively. First results were mentioned by Garey and Johnson [9],
among them the NP-completeness of the balanced complete bipartite subgraph
problem. The maximum biclique problem is polynomial for bipartite graphs [3],
and NP-hard for general graphs [25]. The maximum edge biclique problem was
shown to be NP-hard by Peeters [20].

Approximation algorithms for node and edge deletion biclique problems are
given by Hochbaum [12]. Enumerating maximal bicliques has attracted a lot of
attention in the last decade. The algorithms in [17, 18] enumerate all maximal
bicliques of a bipartite graph as concepts during the construction of the concept
lattice. Nowadays there are polynomial delay enumeration algorithms for maxi-
mal bicliques in bipartite graphs [5, 15] and general graphs [4, 15]. There are also
polynomial delay algorithms to enumerate all maximal non-induced bicliques of
a graph [1, 5].3

Prisner studied various aspects of bicliques in graphs. Among others, he
showed that the maximum number of maximal bicliques in a bipartite graph
on n vertices is 2n/2. He established a lower bound of 3n/3 and an upper bound
of 1.6181n (up to a polynomial factor) on the maximum number of maximal
bicliques in a graph on n vertices [21].

Our Results. We use a simple polynomial-time Turing reduction to transform
results on maximal independent sets into results on maximal bicliques. We also
improve upon Prisner’s upper bound and give a simple proof that the maximum
number of maximal bicliques in a graph on n vertices is at most n · 3n/3. Our
main result is a O(1.3642n) time algorithm to count all maximal independent
sets in a graph, which is established by using the Measure & Conquer technique
(see e.g. [7]). No such algorithm was known prior to our work. We show how to
use it to count all maximal bicliques of a graph within the same time bound and
also provide a lower bound for the running time of this algorithm.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G = (V,E), we
let n = |V | and m = |E|. An edge between vertices u and v is denoted by uv.
The set of neighbors of a vertex v ∈ V is the set of all vertices adjacent to v,
denoted by N(v). The closed neighborhood of a vertex v is N [v] = {v} ∪ N(v).
The distance between two vertices u, v is the length of the shortest path from
u to v. We denote by Nk(v) the set of all vertices at distance k from v, and by
Nk[v] the set of all vertices at distance at most k from v. The degree of a vertex
v is d(v) = |N(v)|. A clique is a set of vertices that are all pairwise adjacent,

3 When the condition that X and Y are independent sets in the definition of a biclique
is dropped, then (X, Y) is called a non-induced biclique of G. In this case a different
maximality notion is used. See e.g. [1].

and an independent set is a set of vertices that are all pairwise non-adjacent. An
independent set is maximal if it is not properly contained in another independent
set. The subgraph of G induced by a vertex set A ⊆ V is denoted by G[A]. A
graph is called bipartite if its vertex set can be partitioned into two independent
sets V and W . The bipartite complement of a bipartite graph G = (V,W,E) is
a bipartite graph having the vertices of G as its vertex set and the non-edges of
G with an endpoint in V and another in W as its edge set.

3 Polynomial-Time Reductions

There is a natural relation between independent sets (and cliques) on one hand
and bicliques on the other hand. Thus it is not surprising that polynomial-time
Turing reductions (in fact mainly Karp reductions) have been used in various
hardness proofs for problems on bicliques [9]. The famous polynomial delay al-
gorithm of Johnson and Papadimitriou to enumerate all maximal independent
sets [14] is used explicitly or implicitly in polynomial delay algorithms to enu-
merate maximal (non-induced) bicliques in (bipartite) graphs [1, 4, 5].

The first reduction simply recalls an often used argument.

Lemma 1 (Property A). Let G = (V,E) be a bipartite graph. Let H be the
bipartite complement of G. Then B is a (maximal) biclique of G if and only if
B is a (maximal) independent set of H.

The above lemma implies, among others, that any algorithm enumerating all
maximal independent sets within delay f(n) can be transformed into an algo-
rithm enumerating all maximal bicliques of a bipartite graph within delay f(n).
The known tight bound of 2n/2 for the maximum number of maximal bicliques
in a bipartite graph given in [21] follows easily from Property A and the corre-
sponding bound for maximal independent sets in [13]. Based on this property,
Yannakakis observed that the problem of finding a maximum biclique in a bi-
partite graph is solvable in polynomial time [25].

The following property is central for our paper.

Lemma 2 (Property B). Let G = (V,E) be a graph. For every v ∈ V , the
graph Hv is the graph with vertex set V (Hv) = N(v)∪N2(v). Its edge set E(Hv)
consists of the following edges:

– xy ∈ E(Hv) if xy ∈ E and x, y ∈ N(v),
– xy ∈ E(Hv) if xy ∈ E and x, y ∈ N2(v),
– xy ∈ E(Hv) if xy /∈ E, x ∈ N(v) and y ∈ N2(v).

Then B ⊆ V is a (maximal) biclique of G if and only if B − v is a (maximal)
independent set of a graph Hv for some v ∈ B.

Proof. Let B be a (maximal) biclique of G. Take some v ∈ B. Then B ⊆
{v} ∪ N(v) ∪ N2(v) in G, where the independent sets X and Y of the biclique
B satisfy X ⊆ N(v) and Y ⊆ {v} ∪ N2(v). Since B is a biclique and by the

construction of Hv, we obtain that B − v is an independent set of Hv. On the
other hand, if B′ is a (maximal) independent set of Hv, for some v ∈ V , then
B′ ∩ N(v) is an independent set of G[N(v)] and B′ ∩ N2(v) is an independent
set of G[N2(v)]. Hence B′ is a biclique of G− v and B′ ∪ {v} is a biclique of G.

Finally, due to the correspondence between bicliques and independent sets,
this also holds for maximality by inclusion of vertices. ut

The corresponding Turing reduction does not increase the number of vertices,
since |V (Hv)| ≤ |V | − 1. Thus this reduction is useful for exponential-time algo-
rithms.

Corollary 1. Given an algorithm to find a maximum independent set (respec-
tively to count all independent sets of size k) of a graph in time cnnO(1), there
exists an algorithm to find a maximum biclique (respectively to count all bicliques
of size k) of a graph in time cnnO(1).

Proof. To find a maximum biclique of a graph G = (V,E), compute a maximum
independent set for each Hv, v ∈ V , constructed according to Property B and
return the largest set of vertices found. To count all bicliques of size k of a graph
G = (V,E) on n vertices, order the vertices of G: V = {v1, v2, . . . , vn}. For
i = 1, . . . , n, compute the number of independent sets of size k− 1 of Hi

vi
where

Hi
vi

is obtained from Gi = G[V \ {v1, v2, . . . , vi−1}] using Property B. Adding
up the results gives the number of bicliques of size k of G. ut

By this corollary and the algorithms in [22, 24], a maximum biclique of a graph
can be found in time O(1.2109n) and all maximum bicliques of a graph can be
counted in time O(1.2377n).

Note that Corollary 1 is not directly applicable to use an algorithm for count-
ing maximal independent sets to count the maximal bicliques of a graph. The
issues are that double-counting has to be avoided at the same time as the max-
imality of each counted biclique has to be ensured.

4 Improving Prisner’s Bound

The maximum number of maximal bicliques in a graph on n vertices has been
studied by Prisner [21]. He settled the question for bipartite graphs. The maxi-
mum number of maximal bicliques in a bipartite graph on n vertices is precisely
2n/2. For general graphs the question remained open. He established a lower
bound of 3n/3 and an upper bound of (1.618034n + o(1)) ·n5/2 for the maximum
number of maximal bicliques in a graph on n vertices. We settle the question
via an elegant proof based on Property B.

Theorem 1. The maximum number of maximal bicliques in a graph is at most
n · 3n/3.

Proof. Let n be a positive integer and let G be any graph on n vertices. Applying
Property B, for every vertex v ∈ V , there is a one-to-one correspondence between

the maximal bicliques B of G satisfying v ∈ B and the maximal independent
sets B − v of the graph Hv. By a well-known theorem of Moon and Moser [16],
the maximum number of maximal independent sets in a graph on n vertices is
3n/3. Thus the number of maximal bicliques containing vertex v is at most 3n/3

for each v ∈ V . Consequently G has at most n · 3n/3 maximal bicliques. ut

Corollary 2. The maximum number of maximal bicliques in a graph is 3n/3

(up to a polynomial factor).

5 Counting Algorithms

A problem related to enumerating all maximal bicliques of a graph is to compute
the number of maximal bicliques of a graph; faster than by simply enumerating
all of them. By property B, an algorithm to count all maximal independent sets
of a graph could be a cornerstone to design such an algorithm. However no non-
trivial algorithm for counting maximal independent sets is known. It is known
that the counting problem for maximal independent sets is #P-complete even
when restricted to chordal graphs [19]. Hence our goal is to construct a fast
exponential-time algorithm solving this problem.

5.1 Algorithm to Count All Maximal Independent Sets

Let G = (F,M,E) be a marked graph which are the graphs dealt with by our
algorithm. Vertices of F are called free and vertices of M are called marked. Let
u be a vertex of F ∪ M . The degree of u is the number of neighbors in F ∪ M
and is denoted by d(u). Given a set D ⊆ (F ∪M), the set N(u) ∩D is denoted
by ND(u) and its cardinality is denoted by dD(u).

The following notions are crucial for our algorithm. A set S ⊆ F is a maximal
independent set (or shortly, MIS) of a marked graph G = (F,M,E) if S is a
MIS of G[F]. We say that the MIS S of G = (F,M,E) satisfies property Π if
each vertex of M has a neighbor in S.

Given a marked graph G, our algorithm computes the number of MISs of
G = (F,M,E) satisfying Π. Thus, a marked vertex u is used to force that each
MIS S of G counted by the algorithm contains at least one free neighbor of
u. This is particularly useful to guarantee that only maximal independent sets
of the input graph are counted. In the remainder of this section, we suppose
that G is a connected graph, otherwise the algorithm is called for each of its
connected components, and the product of the results gives the number of MISs
of G satisfying Π.

Given a simple graph G′ = (V,E), #MaximalIS
(
G = (V, ∅, E)

)
returns the

number of maximal independent sets of G′. (See the next page for the description
of the algorithm.)

We emphasize that all the halting ((H1)–(H2)) and reduction ((R1)–(R7))
rules are necessary for our running time analysis (see Subsection 5.3). The
branching rule (B) selects a vertex u, orders its free neighbors in a list [v1, v2, . . . ,

Algorithm #MaximalIS
`
G = (F, M, E)

´
Input: A marked graph G = (F, M, E).
Output: The number of MISs of G satisfying Π.
// Reduction rules

if G is empty then
return 1 (H1)

if there exists u ∈M s.t. dF (u) = 0 then
return 0 (H2)

if there exists u ∈M s.t. NF (u) = {v} then
return #MaximalIS

`
G = (F \N [v], M \N(v), E)

´
(R1)

if there exists u ∈ F s.t. dF (u) = 0 then
return #MaximalIS

`
G = (F \N [u], M \N(u), E)

´
(R2)

if there exists u, v ∈M s.t. {u, v} ∈ E then
return #MaximalIS

`
G = (F, M, E \ {u, v})

´
(R3)

if there exists u, v ∈ F s.t. N [u] = N [v] then
count← #MaximalIS

`
G = (F \ {v}, M, E)

´
Let MISu be the number of MISs computed by
#MaximalIS

`
G = (F \ {v}, M, E)

´
containing u

return MISu + count (R4)

if there exists u ∈M and v ∈ N(u) s.t. N [v] ⊆ N [u] then
return #MaximalIS

`
G = (F, M \ {u}, E)

´
(R5)

if there exists u, v ∈M s.t. N(u) = N(v) then
return #MaximalIS

`
G = (F, M \ {v}, E)

´
(R6)

if there exists u ∈ F ∪M and v ∈ F s.t. N(u) = N(v) then
return #MaximalIS

`
G = (F \ {v}, M, E)

´
(R7)

// Branching rule (B)
if there exists a marked vertex u with d(u) = 2 then

Choose u

else
Choose a vertex u ∈ (F ∪M) such that

(i) u has minimum degree among all vertices in F ∪M
(ii) among all vertices fulfilling (i), u has a neighbor of maximum degree
(iii) among all vertices fulfilling (ii), u has maximum dual degree (i.e. the
sum of the degrees of its neighbors)

Let BL(u)← [v1, . . . , vdF (u)] be an ordered list of NF (u) such that:
(i) v1 is a vertex of NF (u) having a minimum number of neighbors in V \N(u)
(ii) append (in any order) the vertices of N(v1) ∩NF (u) to the ordered list
(iii) append the vertices of NF (u) \N [v1] ordered by increasing number of
neighbors in V \N(u)

count← 0
if u is free then // select u (to be in the current MIS)

count← #MaximalIS
`
G = (F \N [u], M \N(u), E)

´
foreach vi ∈ BL(u) do // mark each vertex of M ′ and select vi

M ′ ← {vj ∈ BL(u) : 1 ≤ j < i and {vj , vi} 6∈ E}
count← count+ #MaximalIS

`
G = (F \ (M ′ ∪N [vi]), (M ∪M ′) \N(vi), E)

´
return count

vdF (u)] and makes a recursive call (i.e. a branching) counting all MISs contain-
ing u, and a recursive call for each i = 1, 2, . . . , dF (u) where it counts all MISs
containing vi but none of v1, v2, . . . , vi−1.

The selected vertex u is chosen according to three criteria (i)–(iii). By (i), u
has minimum degree, which ensures either that the algorithm makes few recur-
sive calls or that many vertices are removed in each branching. By (ii), u has a
neighbor of maximum degree among all vertices satisfying (i). If the degree of
this neighbor is high, then many vertices are removed in at least one recursive
call. If the degree of this vertex is low, every vertex of minimum degree has
no high-degree neighbor. This property is exploited in the analysis of our algo-
rithm, which considers a decrease in the degree of a vertex of small degree more
advantageous than a decrease in the degree of a high-degree vertex. Similarly,
(iii) ensures either many recursive calls where many vertices are removed or a
knowledge on the degrees of the neighbors of a vertex of minimum degree. The
ordered list BL(u) is defined in this way to ensure that for certain configurations
of N2[u], reduction rule (R1) or a (fast) subsequent branching on a marked
vertex of degree 2 is applied in many recursive calls.

5.2 Correctness of #MaximalIS

We show the correctness of the branching and reduction rules of #MaximalIS.
(H1) If the input graph is empty then the only MIS is the empty set. (H2)
If there is a marked vertex u without any free neighbor then there is no MIS
satisfying Π. (R1) If a marked vertex u has only one free neighbor v, the vertex
v has to be in the MIS to satisfy Π. (R2) By maximality, each free vertex
without any free neighbor has to belong to all MISs. (R3) Since marked vertices
cannot belong to any MIS, edges between two marked vertices are irrelevant and
can be removed. (R4) Suppose u, v ∈ F are two free vertices and N [u] = N [v].
Every MIS containing a neighbor of u does not contain v. Moreover, every MIS
containing u can be replaced by one containing v instead of u. Thus, it is sufficient
to remove v and to return the number of MISs containing a neighbor of u plus
twice the number of MISs containing u. (Note that the algorithm can easily be
implemented such that the number of MISs containing u is obtained from the
recursive call. E.g., keep a counter to associate to each free vertex the number
of MISs containing this vertex.) (R5) If u ∈ M has a neighbor v such that all
neighbors of v are also neighbors of u, then every MIS of G− u must contain a
vertex of N [v] \ {u} and thus a neighbor of u in G. (R6) If two marked vertices
have the same neighborhood then one of them is irrelevant. (R7) Let v be a
free vertex and u a vertex such that N(u) = N(v), and thus u and v are non
adjacent. Hence every MIS containing a neighbor of u does not contain v and
every MIS containing u (if u is free) also contains v. Thus the number of MISs
is the same as for G− v.

(B) The algorithm considers the two possibilities that either u or at least
one neighbor of u is in the current MIS. By induction and the fact that N [u]
is removed if the algorithm decides to add u to the current MIS, every MIS
containing u is counted and it is counted only once. Consider the possibility

that at least one neighbor of u is in the current MIS and let vi be the first such
neighbor in the ordered list BL(u), containing all the free neighbors of u. That no
MIS containing a vertex appearing before vi in BL(u) is counted, is ensured by
either its deletion (because it is a neighbor of vi) or the marking of this vertex.
So, every MIS containing vi but neither u (removed as it is a neighbor of vi) nor
a vertex appearing before vi in BL(u) is counted exactly once.

5.3 Running Time Analysis of #MaximalIS

We analyze the running time of our algorithm using the Measure & Conquer
technique which has recently been used to establish several of today’s best known
exact exponential-time algorithms for NP-hard problems. For some important
results and more details on the technique, we refer to [6–8, 23]. To analyze the
running time of our algorithm, we use the following measure µ(G) of a marked
graph G.

µ = µ
(
G = (F,M,E)

)
=

n−1∑
i=1

wi|Vi|

The weights wi, 1 ≤ i ≤ n − 1 are real numbers taken from [0, 1] that will be
fixed later. For 1 ≤ i ≤ n− 1, Vi denotes the set of vertices of degree i in G. The
following values will be useful in the analysis.

∆wi =
{

wi − wi−1 if 2 ≤ i ≤ n− 1
w1 if i = 1

To further simplify the forthcoming analysis, we assume that wi = 1 (for 4 ≤
i ≤ n− 1), wi−1 ≤ wi (for 2 ≤ i ≤ n− 1), and ∆wi ≥ ∆wi+1 (for 1 ≤ i ≤ n− 1).
It is not hard to see that an application of a reduction rule will not increase
the measure of the marked graph. Furthermore no reduction rule can be applied
more than n times, respectively m times for (R3). Finally, each reduction rule
can be implemented to run in polynomial time, and thus for each subproblem
the running time of our algorithm, excluding the recursive calls by branching
rule (B), is polynomial. Consequently we need to analyze the maximum number
of such recursive calls, i.e. the maximum number of subproblems generated by a
recursive call by (B), during the execution of our algorithm on a marked graph
of measure µ, which we denote by T (µ).

We only have to analyze the changes in measure when applying branching
rule (B).
Case 1: (B) is applied to a marked vertex u with d(u) = 2.
Let v1 and v2 be its two neighbors. By (R3), i.e. since (R3) could not be applied,
v1, v2 ∈ F , and by (R2), d(v1), d(v2) ≥ 2.

(a) Suppose d(v1) = d(v2) = 2. For i ∈ {1, 2}, let xi be the other neighbor
of vi. If d(x1) = d(x2) = 1 then the algorithm deals with a component of
constant size, and the number of MISs of such a component can be com-
puted in constant time. Suppose now that d(x1) ≥ 2. In the first branch

(or subproblem) u, v1 and x1 are removed. In the second branch u, v2

and x2 are removed. Thus, the corresponding recurrence is majorized by
T (µ) ≤ T (µ− 3w2) + T (µ− w1 − 2w2).

(b) Suppose d(v1) ≥ 3 and d(v2) ≥ 2. In the first branch u, v1 and at least
two other neighbors of v1 are removed. In the second branch u, v2 and the
other neighbors of v2, at least one, are removed. Thus, the corresponding
recurrence is majorized by T (µ) ≤ T (µ− 2w1−w2−w3)+T (µ−w1− 2w2).
Since w2 ≤ w3 and w2 ≤ 2w1 (recall that ∆w1 ≥ ∆w2), it follows that
3w2 ≤ 2w1 + w2 + w3 and thus the solution of the recurrence in case (b) is
not worse than the one of case (a).

Case 2: Vertex u is chosen by the else statement of (B).
Thus u satisfies the conditions (i), (ii) and (iii). Let [v1, . . . , vdF (u)] be the Branch-
ing List, short BL(u), built by the algorithm. Given a vertex vi, 1 ≤ i ≤ dF (u),
of BL(u), we denote by Op(vi) the operation of adding vi to the current MIS, re-
moving N [vi] and marking the vertices v1, . . . , vi−1 that are not adjacent to vi.

Let ∆u denote the gain on the measure obtained by adding u to the current
MIS. Removing u and its neighbors from the graph decreases µ(G) by wd(u) +∑

v∈N(u) wd(v). Moreover, the decrease of the degrees of vertices in N2(u) implies
a gain of

∑
x∈N2(u)(wd(x)−wd(x)−dN(u)(x)). Thus, ∆u = wd(u) +

∑
v∈N(u) wd(v) +∑

x∈N2(u)(wd(x) − wd(x)−dN(u)(x)).
Let ∆Op(vi) denote the gain on the measure when vi ∈ BL(u), 1 ≤ i ≤

dF (u), is selected and added to the maximal independent set. Again, by se-
lecting vertex vi the vertices of N [vi] are removed and thus a gain of wd(vi) +∑

x∈N(vi)
wd(x) is obtained. Since neighbors of vertices of N2(vi) have been

removed, we gain
∑

y∈N2(vi)
(wd(y) − wd(y)−dN(vi)(y)). The measure further de-

creases whenever among the marked vertices of {v1, . . . , vi−1}, some of them have
only one remaining free neighbor after the deletion of N [vi]. By direct applica-
tion of reduction rule (R1), these vertices and their neighbors are also removed
from the graph. We denote this extra gain by marked1(Op(vi)) Thus, ∆Op(vi) =
wd(vi) +

∑
x∈N(vi)

wd(x) +
∑

y∈N2(vi)
(wd(y) −wd(y)−dN(vi)(y)) + marked1(Op(vi)).

Putting all together, we obtain the following general recurrence for case 2:

T (µ) ≤ T (µ−∆u) +
∑

vi∈BL(u)

T (µ−∆Op(vi))

Finally, we conclude the time analysis by Measure & Conquer. We solve the
corresponding system of linear recurrences and establish an upper bound on the
worst case running time of our algorithm. Moreover, for some cases where a
marked vertex of degree 2 appears, we combine the analysis of the case with
the subsequent branching on this vertex. The key step is to choose the weights
w1, w2 and w3 such that the worst-case solution taken over all recurrences is
minimized (see e.g. [7, 8]). Using the weights w1 = 0.8512, w2 = 0.9194 and
w3 = 0.9877, we obtain:

Theorem 2. Algorithm #MaximalIS counts all MISs of a given graph G in time
O(1.3642n), where n is the number of vertices of G.

Typically using a computer program, first the collection of recurrences that are
obtained for all possible cases of vertices, degrees, etc. in the general recurrence
are computed and then the optimal values of the weights are computed. Although
for our problem the number of recurrences is still rather moderate, due to space
limitations the detailed analysis is not given in this extended abstract.

Remark 1. Given a marked graph of maximum degree 2, #MaximalIS takes ex-
ponential time. A dynamic programming approach can also be used to count
in polynomial time all MISs of a such marked graph. Adding this polynomial
time procedure to #MaximalIS is likely to be of help in implementations of the
algorithm, however it does not improve its worst case running time.

For most non-trivial Branch-and-Reduce algorithms, it is not known whether the
upper bound of the running time provided by the currently available analysis is
tight or not. A lower bound for the worst case running time of such algorithms
is therefore desirable (see e.g. [7, 8]).

Theorem 3. There exists an infinite family of graphs for which #MaximalIS
takes time Ω(1.3247n), and thus its worst case running time is Ω(1.3247n).

Proof. The lower bound for the running time of Algorithm #MaximalIS estab-
lished here uses the same family of graphs as the lower bound for an algorithm
computing a minimum independent dominating set [11].

Fig. 1. The graph Gl.

Consider the graph Gl of Figure 1. It has n = 2l vertices. Note that none
of the reduction or halting rules are applicable to Gl. The first branching of
#MaximalIS is on vertex u1 or vertex vl. Without loss of generality, suppose the
algorithm always chooses the vertex with smallest index when it has more than
one choice (i.e. it chooses u1 for the first recursive call).

The branching rule (B) then makes recursive calls on graphs with n−3, n−4
and n−5 vertices, not marking any vertex. The structure of all resulting graphs is
similar to Gl: either isomorphic to Gl−2 or equal to Gl \N [u1] or Gl \N [u2]. The
subsequent recursive calls again remove 3, 4 and 5 vertices in each case and do
not mark any vertices. Unless the graph has at most 4 vertices, each application
of branching rule (B) satisfies the recurrence T (n) = T (n−3)+T (n−4)+T (n−5)
for this graph and therefore the running time for this class of graphs is Ω(αn)
where α is the positive root of x−3+x−4+x−5−1 (i.e. 1.3247 < α < 1.3248). ut

5.4 Algorithm to Count All Maximal Bicliques

Finally, we consider the problem of counting all maximal bicliques of a graph
G = (V,E). Let G′ = (V ′, E′) be a copy of G. Let G′′ = (V ′′, E′′) where
V ′′ = V ∪ V ′ and E′′ = E ∪ E′ ∪ {xy′ : x = y or xy 6∈ E}.

Lemma 3. The number of MISs of G′′ equals twice the number of maximal
bicliques of G.

Proof. We show that there is a one-to-one correspondence between the bicliques
of G and the symmetric pairs of independent sets of G′′.

Let X ∪ Y be a biclique of G. Clearly, X, Y are independent sets in G and
their copies X ′, Y ′ are independent sets in G′. Let x ∈ X and y ∈ Y . Then
xy, x′y′ ∈ E′′ and xy′, x′y 6∈ E′′. So, X ∪ Y ′ and X ′ ∪ Y are independent sets in
G′′.

Let X, Y ⊆ V be such that X ∪ Y ′ is an independent set in G′′ where X ′, Y ′

are the copies of X, Y . Hence X, Y are independent sets in G. Let x ∈ X and
y′ ∈ Y ′. Then xy ∈ E. So, X ∪ Y is a biclique in G. By the symmetry of G′′,
the independent set X ′ ∪ Y in G′′ also corresponds to the biclique X ∪ Y in G.

Clearly, this correspondence also holds for maximality by inclusion of vertices.
This implies that X ∪ Y is a maximal biclique of G iff X ∪ Y ′, and thus also
Y ∪X ′, are MISs of G′′. ut

With this construction and the algorithm for counting all MISs of a graph, we
are now able to give an algorithm for counting all maximal bicliques of a graph.

Theorem 4. There is an algorithm that counts all maximal bicliques of a graph
in time O(1.3642n).

Proof. The algorithm simply calls #MaximalIS
(
(V ′′, ∅, E′′)

)
and divides the re-

sult by 2. Notice that G′′ has 2n vertices and that every vertex of G′′ has degree
n. The first application of branching rule (B) makes n + 1 recursive calls and in
each one, n + 1 vertices are removed from the marked graph. Thus the running
time is (n + 1)(cn−1)nO(1) where cnnO(1) is the running time of #MaximalIS on
a graph with n vertices. The constant c = 1.3642 was rounded to derive the
running time for #MaximalIS, and thus the running time of the algorithm to
count maximal bicliques is O(1.3642n). ut

References

1. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus
algorithms for the generation of all maximal bicliques. Discrete Appl. Math. 145,
11–21 (2004)

2. Amilhastre, J., Vilarem, M.C., Janssen, P.: Complexity of minimum biclique cover
and minimum biclique decomposition for bipartite dominofree graphs. Discrete
Appl. Math. 86, 125–144 (1998)

3. Dawande, M., Swaminathan, J., Keskinocak, P., Tayur, S.: On bipartite and mul-
tipartite clique problems. J. Algorithms 41, 388–403 (2001)

4. Dias, V.M.F., Herrera de Figueiredo, C.M., Szwarcfiter, J.L.: Generating bicliques
of a graph in lexicographic order. Theoret. Comput. Sci. 337, 240–248 (2005)

5. Dias, V.M.F., Herrera de Figueiredo, C.M., Szwarcfiter, J.L.: On the generation
of bicliques of a graph. Discrete Appl. Math. 155, 1826–1832 (2007)

6. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica, Special Issue
on Parameterized and Exact Algorithms, to appear.

7. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: Domination – A
case study. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M.
(eds.) ICALP 2005. LNCS, vol. 3580, pp. 192–203. Springer, Heidelberg (2005)

8. Fomin, F.V., Grandoni, F., Kratsch, D.: Measure and conquer: A simple O(20.288n)
independent set algorithm. In: SODA 2006, pp. 18–25. ACM Press (2006)

9. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the Theory
of NP-completeness. Freeman, New York (1979)

10. Ganter, B., Wille, R.: Formal Concept Analysis, Mathematical Foundations.
Springer, Berlin (1996)

11. Gaspers, S., Liedloff, M.: A branch-and-reduce algorithm for finding a minimum
independent dominating set in graphs. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol.
4271, pp. 78–89. Springer, Heidelberg (2006)

12. Hochbaum, D.S.: Approximating clique and biclique problems. J. Algorithms 29,
174–200 (1998)

13. Hujter, M., Tuza, Z.: The number of maximal independent sets in triangle-free
graphs. SIAM J. Discrete Math. 6, 284–288 (1993)

14. Johnson, D.S., Papadimitriou, C.H.: On generating all maximal independent sets.
Inf. Process. Lett. 27, 119–123 (1988)

15. Makino, K., Uno, T.: New algorithms for enumerating all maximal cliques. In:
Hagerup, T., Katajainen, J. (eds.) SWAT 2004. LNCS, vol. 3111, pp. 260–272.
Springer, Heidelberg (2004)

16. Moon, J.W., Moser, L.: On cliques in graphs. Israel J. Math. 3, 23–28 (1965)
17. Nourine, L., Raynaud, O.: A Fast Algorithm for Building Lattices. Inf. Process.

Lett. 71, 199–204 (1999)
18. Nourine, L., Raynaud, O.: A fast incremental algorithm for building lattices. J.

Exp. Theor. Artif. Intell. 14, 217–227 (2002)
19. Okamoto, Y., Uno, T., Uehara, R.: Linear-Time Counting Algorithms for Inde-

pendent Sets in Chordal Graphs. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787,
pp. 433–444. Springer, Heidelberg (2005)

20. Peeters, R.: The maximum edge biclique problem is NP-complete. Discrete Appl.
Math. 131, 651–654 (2003)

21. Prisner, E.: Bicliques in Graphs I: Bounds on Their Number. Combinatorica 20,
109–117 (2000)

22. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–
440 (1986)

23. van Rooij, J.M.M., Bodlaender, H.L.: Design by measure and conquer: a faster
exact algorithm for dominating set. In: Albers, S., Weil, P. (eds.) STACS 2008, pp.
657–668. IBFI, Schloss Dagstuhl, Germany (2008)

24. Wahlström, M.: A tighter bound for counting max-weight solutions to 2SAT in-
stances. In: Grohe, M., Niedermeier, R. (eds.) IWPEC 2008. LNCS, vol. 5018, pp.
202–213. Springer, Heidelberg (2008)

25. Yannakakis, M.: Node and edge deletion NP-complete problems. In: STOC 1978,
pp. 253–264. ACM (1978)

