
A Branch-and-Reduce Algorithm for Finding a

Minimum Independent Dominating Set in

Graphs

Serge Gaspers1 and Mathieu Liedloff2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway,
serge.gaspers@ii.uib.no

2 Laboratoire d’Informatique Théorique et Appliquée, Université Paul Verlaine -
Metz, 57045 Metz Cedex 01, France, liedloff@univ-metz.fr

Abstract. A dominating set D of a graph G = (V, E) is a subset of
vertices such that every vertex in V \D has at least one neighbour in D.
Moreover if D is an independent set, i.e. no vertices in D are pairwise
adjacent, then D is said to be an independent dominating set. Finding a
minimum independent dominating set in a graph is an NP-hard problem.
We give an algorithm computing a minimum independent dominating
set of a graph on n vertices in time O(1.3575n). Furthermore, we show
that Ω(1.3247n) is a lower bound on the worst-case running time of this
algorithm.

1 Introduction

During the last years the interest in the design of exact exponential time algo-
rithms has been growing significantly. Nice surveys have been written on this
subject. In one due to Woeginger [18], the author emphasizes the major tech-
niques used to design exact exponential time algorithms. We also refer the reader
to the recent survey of Fomin et al. [7] discussing some new techniques in the
design of exponential time algorithms. In particular they discuss Measure &
Conquer and lower bounds.

The Minimum Independent Dominating Set problem (MIDS) is also known as
Minimum Maximal Independent Set, since every independent dominating set is
a maximal independent set. This problem asks for a set of minimum cardinality
that is both independent and dominating. Whereas Maximum Independent Set
and Minimum Dominating Set have been studied very deeply in the field of
exact algorithms, the best known exact algorithm for MIDS trivially enumerates
all maximal independent sets.

Known results. A set I ⊆ V of a graph G = (V, E) is independent if no two
vertices in I are adjacent. The problem of finding a Maximum Independent Set
(MIS) of a graph was among the first problems shown to be NP-hard.

It is known that a MIS of a graph on n vertices can be computed in O(1.4423n)
time by combining a result due to Moon and Moser, who showed in 1965 [13]
that the number of maximal independent sets of a graph is upper bounded by

3n/3, and a result due to Johnson, Yannakakis and Papadimitriou, providing
in [11] a polynomial delay algorithm to generate all maximal independent sets.
Moreover many exact algorithms for this problem have been published, starting
in 1977 by an O(1.2600n) algorithm by Tarjan and Trojanowski [17]. The best
known algorithms for MIS until now are an O(1.2108n) algorithm by Robson [15]
in 1986, a very long algorithm of running time O(1.1889n) by Robson [16] in
2001 and a very simple algorithm with running time O(1.2210n) by Fomin et al.
[5] in 2006.

A set D ⊆ V of a graph G = (V, E) is dominating if every vertex in V \ D
has at least one neighbour in D. The problem of finding a Minimum Dominating
Set (MDS) of a graph is well known to be NP-hard.

Until recently, the only known exact exponential time algorithm to solve MDS
asked for trivially enumerating the 2n subsets of vertices. The year 2004 saw a
particular interest in providing some faster algorithms for solving this problem.
Indeed, three papers with exact algorithms for MDS were published. In [8] Fomin
et al. present an O(1.9379n) time algorithm, in [14] Randerath and Schiermeyer
establish an O(1.8899n) time algorithm and Grandoni [9] obtains an O(1.8026n)
time algorithm.

By now, the fastest published algorithm is due to Fomin et al. [6]. They use
the Measure & Conquer approach to obtain an algorithm with running time
O(1.5263n) and using polynomial space. By applying a memorization technique
they show that this running time can be reduced to O(1.5137n) when allowing
exponential space usage.

A natural and well studied combination of these two problems asks for a sub-
set of vertices of minimum cardinality that is both dominating and independent.
This problem is called Minimum Independent Dominating Set (MIDS).

It has been established that a minimum independent dominating set (MIDS)
can be found in polynomial time for several graph classes like interval graphs [2],
chordal graphs [4], cocomparability graphs [12] and AT-free graphs [1], whereas
the problem remains NP-complete for bipartite graphs [3] and comparability
graphs [3]. Concerning inapproximability results, Halldórsson established in [10]
that there is no constant ε > 0 such that MIDS can be approximated within a
factor of n1−ε in polynomial time, assuming P 6= NP .

To the best of our knowledge, the only paper giving an exact exponential
time algorithm for MIDS has been written by Randerath and Schiermeyer [14].
They use the result due to Moon and Moser [13] as explained previously and an
algorithm enumerating all the maximal independent sets to obtain an O(1.4423n)
time algorithm for MIDS.

Our results. In this paper we present an O(1.3575n) time algorithm for solving
MIDS using the Measure & Conquer approach to analyze its running time. As
the bottleneck of the algorithm in [14] are the vertices of degree two, we use
some nice tricks to handle them more efficiently such as marking some vertices
and a sophisticated reduction rule described in section 3.1. Combined with some
elaborated branching rules, this enables us to lower bound shrewdly the progress
made by the algorithm at each branching step, and thus to obtain an algorithm

which improves the best known result from O(1.4423n) to O(1.3575n). Further-
more, we obtain a very close lower bound of Ω(1.3247n) on the running time of
our algorithm, which is very rare for non trivial exponential time algorithms.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph. For a vertex v ∈ V we
denote by N(v) the neighbourhood of v and by N [v] = N(v) ∪ {v} the closed
neighbourhood of v. The degree d(v) of v is the cardinality of N(v). For a given
subset of vertices S ⊆ V , G[S] denotes the subgraph of G induced by S, N(S)
denotes the set of neighbours in V \ S of vertices in S and N [S] = N(S) ∪ S.
We also define NS(v) as N(v) ∩ S and dS(v) (called the S-degree of v) as the
cardinality of NS(v). In the same way, given two subsets of vertices S ⊆ V and
X ⊆ V , we define NS(X) = N(X) ∩ S.

A clique is a set S ⊆ V of pairwise adjacent vertices. A graph G = (V, E)
is called bipartite if V admits a partition into two independent sets. A bipartite
graph G = (V, E) is a complete bipartite graph if every vertex of one independent
set is adjacent to every vertex of the other independent set. A connected compo-
nent of a graph is a maximal subset of vertices inducing a connected subgraph.

In a branch-and-reduce algorithm the current problem is divided into smaller
ones such that an optimal solution, if one exists, occurs in at least one subprob-
lem. If the algorithm considers only one subproblem in a given case, we refer to
a reduction rule, otherwise to a branching rule.

Consider a vertex u ∈ V of degree two with two non adjacent neighbours v1

and v2. In such a case, a branch-and-reduce algorithm will typically branch into
three subcases when considering u: either u or v1 or v2 are in the solution set.
In the third branch, one can consider that v1 is not in the solution set as this is
already considered by the second branch. In order to memorize that v1 is not in
the solution set but still needs to be dominated, we mark v1.

Definition 1. A marked graph G = (F, M, E) is a triple where F ∪M denotes
the set of vertices of G and E denotes the set of edges of G. The vertices in F

are called free vertices and the ones in M marked vertices.

Definition 2. Given a marked graph G = (F, M, E), an independent domi-
nating set D of G is a subset of free vertices, i.e. D ⊆ F , such that D is an
independent dominating set of the graph G′ = (F ∪ M, E).

Remark 1. It is possible that such an independent dominating set does not exist
in a marked graph, namely if a marked vertex has no free neighbours.

To close this section we introduce the notion of an induced marked subgraph.

Definition 3. Given a marked graph G = (F, M, E) and two subsets S, T ⊆
(F ∪ M), an induced marked subgraph G[S, T] is the marked graph G′ = (S ∩
(F ∪M), T ∩ (F ∪M), E′) where E′ ⊆ E are the edges of G with both end points
in S ∪ T .

Note that notions like neighbourhood and degree in a marked graph G =
(F, M, E) are the same as in the corresponding simple graph G = (F ∪ M, E).

3 Computing a MIDS on Marked Graphs

In this section we present an algorithm solving MIDS on marked graphs.
¿From the previous definitions it follows that a subset D ⊆ V is a MIDS of a

graph G′ = (V, E) if and only if D is a MIDS of the marked graph G = (V, ∅, E).
Hence the algorithm of this section is able to solve the problem on simple graphs
as well.

Given a marked graph G = (F, M, E), consider the graph G[F] induced by
its free vertices. In the following subsection we introduce a reduction rule which
deletes a connected component of G[F] which is a clique.

3.1 Eliminating Cliques in G[F]

Consider the function RedClique. (See next page.)

Lemma 1. Let G = (F, M, E) be a marked graph and C a connected component
of G[F] which is a clique. The function RedClique computes in polynomial time
a marked graph G′ = (F ′, M ′, E′) such that:

(i) the size of a MIDS of G is equal to the size of a MIDS of G′ plus one,
(ii) F ′ = F \ C,
(iii) no edge of E′−E has both end points in F ′, i.e. the function adds no edge

between two free vertices.

Proof. First, note that whenever there is a clique component C in G[F], every
independent dominating set contains exactly one vertex of C. Indeed, at least
one vertex of C has to be taken in the independent dominating set to dominate
C and at most one vertex in C can be taken because the solution has to be an
independent set.

If |C| = 1, the unique vertex in C must be part of the MIDS. So, the
function just deletes C and its neighbourhood. By now we assume that |C| ≥ 2.

If there is a vertex v ∈ C with no marked neighbour, then we will not choose
this vertex in the MIDS. As a matter of fact, every vertex in C dominates C.
So, a vertex in C which also dominates some marked vertices is always a better
choice than a vertex that does not. Consequently, the function just deletes v and
calls itself recursively on the clique component C − {v}.

Assume now that |C| ≥ 2 and that every vertex in C has at least one neigh-
bour in M . Then, the function will create one new marked vertex hi,j for every
two vertices hi, hj ∈ N(C) that do not share a same neighbour in C. It replaces
N [C] by these new marked vertices. A vertex hi,j will be adjacent to a vertex
v ∈ F \ C iff hi or hj was adjacent to v. So, when all vertices hi,j will be dom-
inated by vertices in F \ C in G′, at least all the vertices in N(C) except the

Function RedClique(G = (F, M, E), C ⊆ F)
Input: A marked graph G = (F, M, E) and a clique C ⊆ F such that C is

a connected component of G[F].
Output: A marked graph G′ = (F ′, M ′, E′) s.t. G′ has the properties

defined in Lemma 1.
if |C| = 1 then

G′ ← G[F \ C, M \N(C)];
else

if ∃v ∈ C s.t. NM (v) = ∅ then
G′ ← RedClique(G[F − {v}, M], C − {v})

else
let N(C) = {h1, h2, . . . , hk}
H ← ∅
for i← 1 to k − 1 do

for j ← i + 1 to k do
if NC(hi) ∩NC(hj) = ∅ then

add to H a new marked vertex hi,j

G′ = (F ′, M ′, E′)← G[F \ C, M \N(C)]
M ′ ←M ′ ∪H

foreach hi,j ∈ H do
foreach v ∈ NF (N [C]) s.t. {v, hi} ∈ E or {v, hj} ∈ E do

E′ ← E′ ∪ {v, hi,j}

return G′

neighbours of a unique vertex u ∈ C are dominated in G. It is then clear which
vertex of C will be in the MIDS. And whenever a vertex hi,j is not dominated
in G′, no vertex of C can dominate all undominated vertices in N(C) in G.

Remark that, once all these new marked vertices are dominated, it is possible
to determine in polynomial time which vertex of the clique C must be added to
the solution in order to obtain a MIDS for the initial marked graph.

As N [C] is deleted from the original graph, we have F ′ = F−C. The function
does not create new edges between two free vertices because the only new edges
created during the computation join free and new marked vertices. It is not hard
to see that RedClique has polynomial running time. ut

3.2 The Algorithm

In this subsection, we give the algorithm ids computing the size of a MIDS of a
marked graph. The branching rules are quite complicated but it is fairly simple
to check that the algorithm computes the size of a MIDS (if one exists). It is
not difficult to transform ids into an algorithm that actually outputs a MIDS.
In the next section we prove the correctness and give a detailed analysis of ids.

Algorithm ids(G)
Input: A marked graph G = (F, M, E).
Output: The size of a MIDS of G.

if F = M = ∅ then
return 0 (0)

if ∃u ∈M s.t. dF (u) = 0 then
return ∞ (1)

else if ∃u ∈M s.t. dF (u) = 1 then
let v be the unique free neighbour of u

return 1 + ids(G[F \N [v], M \N(v)]) (2)

else if ∃C ⊆ F s.t. C is a clique ∧NF (C) = ∅ then
return 1 + ids(RedClique(G, C)) (3)

else if ∃B ⊆ F s.t. B induces a complete bipartite graph ∧NF (B) = ∅ then
let B be partitioned into two independent sets X and Y

return min{ |X|+ ids(G[F \N [X], M \N(X)]);
|Y |+ ids(G[F \N [Y], M \N(Y)])}

(4)

else if ∃C ⊆ F s.t. C is a clique ∧ |C| ≥ 3 ∧ ∃!v ∈ C s.t. dF (v) ≥ |C| then
return min{ 1 + ids(G[F \N [v], M \N(v)]);

ids(G[F \ {v}, M ∪ {v}, E])}
(5)

else
choose u ∈ F of minimum F -degree with a neighbour in F of
maximum F -degree
if dF (u) = 1 then

return 1 + min{ ids(G[F \N [u], M \N(u)]);
ids(G[F \N [NF (u)], M \N(NF (u))])}

(6)

else if dF (u) = 2 then
let NF (u) = {v1, v2}
return 1 + min{ ids(G[F \N [u], M \N(u)]);

ids(G[F \N [v1], M \N(v1)]);
ids(G[F \ (N [v2] ∪ {v1}), (M ∪ {v1}) \N(v2)]}

(7)

else
choose v ∈ F of maximum F -degree
return min{ 1 + ids(G[F \N [v], M \N(v)]);

ids(G[F \ {v}, M ∪ {v}])}
(8)

4 Correctness and Analysis of the Algorithm

Intuitively, marked vertices do not make the instance of the problem more dif-
ficult: they cannot be taken in the MIDS and the only thing they are good
for is to put restrictions on their free neighbours. Moreover, free vertices having
only marked neighbours can be handled without branching. So, it is an advan-
tage when the F -degree of a vertex decreases. We will therefore assign different
weights to the free vertices according to their F -degree.

Let ni denote the number of free vertices having F -degree i. For the running
time analysis we consider the following measure of the size of G:

k = k(G) =
∑

i≥0

wini ≤ n

where the weights wi ∈ [0, 1]. In order to simplify the running time analysis, we
make the following assumptions:

– w0 = 0,
– wi = 1 for i ≥ 3,
– w1 ≤ w2,
– ∆w1 ≥ ∆w2 ≥ ∆w3 where ∆wi = wi − wi−1, i ∈ {1, 2, 3}.

Theorem 1. Algorithm ids solves the minimum independent dominating set
problem in time O(1.3575n).

Proof. Let P [k] denote the number of subproblems recursively solved to com-
pute a solution for an instance of size k. As the time spent in each call of ids,
excluding the time spent by the corresponding recursive calls, is polynomial, it
is sufficient to show that for a valid choice of the weights, P [k] = O(1.3575n).
We will analyse the nine cases of algorithm ids one by one. Cases (0) to (3) are
reduction rules and the other cases correspond to branching rules.

case (0) If the set of vertices is empty, the algorithm returns 0 since it has
computed an independent dominating set of the marked graph.

case (1) If there is a marked vertex u having no free neighbour, u has no
possibility to be dominated and thus the algorithm returns ∞, meaning that
there is no solution for this subproblem.

case (2) If there is a marked vertex u with only one free neighbour v, the
only possibility for u to be dominated is to add v to the MIDS. So, N [v] is
deleted and the measure k decreases at least by 2w1.

case (3) If there is a clique C of free vertices which are not adjacent to
any other free vertices, we use the function of Lemma 1 to remove C. Since the
number of free vertices decreases by |C| and no new edges are added between any
two free vertices, the F -degrees of the remaining free vertices do not increase.
Thus the measure k decreases. (Note that the number of marked vertices and
their F -degree can increase by this reduction, but these parameters do not occur
in our measure.)

case (4) If there is a subset B of free vertices such that G[B] induces a
complete bipartite graph and no vertex of B is adjacent to a free vertex outside
B, then the algorithm branches into two subcases. Let X and Y be the two
maximal independent sets of G[B]. Then a MIDS contains either X or Y . In
both cases we delete B and the marked neighbours of either X or Y . The smallest
possible subset B satisfying the conditions of this case is a P3, i.e. a path of three
vertices, as any smaller complete bipartite component in F is handled by case

(3). Since we only count the number of free vertices, we obtain the following
recurrence:

P [k] ≤ 2P [k − 2w1 − w2]. (1)

It is clear that any complete bipartite component with more than three vertices
would lead to a better recurrence.

case (5) If there is a subset C of at least three free vertices which form a
clique and only one vertex v ∈ C has free neighbours outside C, the algorithm
either includes v in the solution set or it excludes this vertex by marking it. In
the first case, all the neighbours of v are deleted (including C). In the second
case, v is marked and the C − {v} clique component appears in G[F]. Then
C − {v} will be deleted by the reduction rule of case (3). In both cases, C is
deleted and in the first case, the neighbours of v outside C are also deleted (at
least one free vertex of F -degree at least one). So we have:

P [k] ≤ P [k − w1 − 2w2 − w3] + P [k − 2w2 − w3]. (2)

case (6) If there is a free vertex u such that dF (u) = 1, a MIDS either
includes u or its free neighbour v in the solution. Vertex v cannot have F -degree
one because this would have been handled by case (3). For the analysis, we
consider two cases:

1. dF (v) = 2. Let x denote the other free neighbour of v. Note that dF (x) 6= 1
as this would have been handled by case (4). We consider again two subcases:
(a) dF (x) = 2. When u is chosen in the independent dominating set, u and

v are deleted and the degree of x decreases to one. When v is chosen in
the independent dominating set, u, v and x are deleted from the marked
graph. So, we obtain the following recurrence for this case:

P [k] ≤ P [k − 2w2] + P [k − w1 − 2w2]. (3)

(b) dF (x) ≥ 3. Vertices u and v are deleted in the first branch, and u, v and
x are deleted in the second branch. The recurrence for this subcase is:

P [k] ≤ P [k − w1 − w2] + P [k − w1 − w2 − w3]. (4)

2. dF (v) ≥ 3. At least one free neighbour of v has F -degree at least 2. Otherwise
case (4) would have been applied. Therefore the recurrence for this subcase
is:

P [k] ≤ P [k − w1 − w3] + P [k − 2w1 − w2 − w3]. (5)

case (7) If there is a free vertex u such that dF (u) = 2 and none of the
above cases apply, the algorithm branches into three subcases. Let v1 and v2 be
the two free neighbours of u. Either u belongs to the MIDS, or v1 is taken in
the MIDS, or v1 is being marked and v2 is taken in the MIDS. We distinguish
two cases:

1. dF (v1) = dF (v2) = 2. In this case, due to the choice of the vertex u by
the algorithm, all free vertices of this connected component T in G[F] have
F -degree 2. T cannot be a C4, i.e. a cycle of 4 vertices, as this is a complete
bipartite graph and would have been handled by case (4).

(a) Suppose that T is a C5. Let the vertices of T be ordered (u, v1, x1,

x2, v2). When u is taken in the MIDS, u, v1, v2 are deleted and in the
next recursive call, case (3) is applied for the clique {x1, x2} and thus,
x1 and x2 will also be deleted. When v1 is taken in the MIDS, three
vertices are again deleted and case (3) will be applied for {v2, x2}. When
v2 is taken in the MIDS, N [v2] is deleted and v1 becomes marked. In
the next recursive call, x1 will be taken in the MIDS by case (2). In
every recursive call, T is entirely deleted:

P [k] ≤ 3P [k − 5w2]. (6)

(b) Suppose that T is a C6. Let the vertices of T be ordered (u, v1, x1, y,

x2, v2). When u is taken in the MIDS u, v1, v2 are deleted and in the
next recursive call, case (4) will be applied for {x1, y, x2} and thus, the
algorithm will branch into two subcases, both deleting x1, y and x2.
When v1 is taken in the MIDS, three vertices are again deleted and
case (4) will be applied for {v2, x2, y}. When v2 is taken in the MIDS,
N [v2] is deleted and v1 becomes marked. In the next recursive call, x1

will be taken in the MIDS by case (2). Finally in each of the 5 recursive
calls, T is entirely deleted, thus:

P [k] ≤ 5P [k − 6w2]. (7)

(c) Suppose that T is a C7. Let the vertices of T be labeled (u, v1, x1, y1, y2,

x2, v2) in clockwise order. When u is chosen in the MIDS u, v1, v2 are
deleted and the F -degrees of x1, x2 decrease by one. We obtain a similar
situation when branching on v1: three vertices are deleted and the F -
degrees of two vertices decrease to one. When the algorithm chooses v2

in the MIDS, v1 is marked and x1 must be added to the MIDS by case
(2) and y2 will then be added by case (3). Consequently, the algorithm
deletes the C7 entirely and we obtain the recurrence:

P [k] ≤ 2P [k + 2w1 − 5w2] + P [k − 7w2]. (8)

(d) Suppose now that T is a Cl, l ≥ 8. Using the same arguments as in
the previous cases, it is not hard to check that we obtain the following
recurrence:

P [k] ≤ 2P [k + 2w1 − 5w2] + P [k + 2w1 − 8w2]. (9)

2. Without loss of generality, suppose now that dF (v1) ≥ 3. We analyze two
subcases:
(a) dF (v2) = 2. In this subcase, v1 and v2 are not adjacent, otherwise case (5)

could have been applied. Let x3 denote the other neighbour of v2. Recall
that due to the choice of u by the algorithm ∀y ∈ F , dF (y) ≥ dF (u).
If dF (x3) = 2, as previously we branch on u, v1 and v2, and we get the
following recurrence:

P [k] ≤ P [k+w1−3w2−w3]+P [k+w1−4w2−w3]+P [k−3w2−w3]. (10)

And if dF (x3) ≥ 3, let q denote the number of vertices in NF (v1) with
F -degree at least 3. In the worst case q < 3 and branching on u, v1 and
v2, we obtain the following recurrence for q ∈ {0, 1, 2}:

P [k] ≤ P [k + (2 − q)w1 − (4 − q)w2 − w3] +

P [k + w1 − (4 − q)w2 − (1 + q)w3] + P [k − 2w2 − 2w3]. (11)

(b) dF (v2) ≥ 3. If v1 and v2 are not adjacent, branching on u, v1 and v2

leads to the following recurrence:

P [k] ≤ P [k − w2 − 2w3] + P [k − 3w2 − w3] + P [k − 3w2 − 2w3]. (12)

However if v1 and v2 are adjacent, let x1 ∈ NF (v1)\{u, v2}. We consider
two possible cases:
i. if dF (x1) = 2, we obtain:

P [k] ≤ P [k + w1 − 2w2 − 2w3] + 2P [k − 2w2 − 2w3]. (13)

ii. if dF (x1) ≥ 3. Let x2 ∈ NF (v2) \ {u, v1}. If dF (x2) = 2, then:

P [k] ≤ P [k + w1 − 2w2 − 2w3] + P [k + w1 − 2w2 − 3w3] +

P [k − 2w2 − 2w3]. (14)

However if dF (x2) ≥ 3 we get the following recurrence:

P [k] ≤ P [k − w2 − 2w3] + 2P [k − w2 − 3w3]. (15)

case (8) In this case the algorithm either takes v in the MIDS or marks it,
i.e. v does not belong to the MIDS. We consider two cases:

1. dF (v) = 3. In this case, regarding the previous rules handled by the algo-
rithm, every free vertex has degree three. NF [v] cannot be a clique, otherwise
case (3) would have been applied. So, at least two vertices in NF (v) have a
neighbour outside NF [v] (remark that this could be the same vertex). This
implies that if the algorithm takes v in the MIDS, the F -degree of at least
two free vertices decreases to two in the worst case (if |NF (NF [v])| = 1 then
the decrease of the measure would be higher since ∆w2 + ∆w3 ≥ 2∆w3 be-
cause of the conditions on the weights). If the algorithm marks v, then three
free vertices get F -degree two. The recurrence for this case is:

P [k] ≤ P [k + 2w2 − 6w3] + P [k + 3w2 − 4w3]. (16)

2. dF (v) ≥ 4. When v is taken in the MIDS, at least five free vertices are
deleted. When v is marked, the measure decreases by w3. Thus we have this
recurrence:

P [k] ≤ P [k − 5w3] + P [k − w3]. (17)

Finally the values of weights are computed by a random local search for min-
imizing the bound on the running time. Using the values w1 = 0.8372 and
w2 = 0.9644 for the weights, one can easily verify that P [k] = O(1.3575n). ut

The tight recurrences of the latter proof (i.e. the worst case recurrences) (15)
and (16) correspond to cases where there are many vertices of F -degree 3 in the
local structure the algorithm considers.

5 A Lower Bound on the Running Time of the Algorithm

In order to analyze the progress of the algorithm during the computation of
a MIDS, we used a non standard measure. In this way we have been able to
determine an upper bound on the size of the subproblems recursively solved by
the algorithm, and consequently we obtained an upper bound on the worst case
running time. However the use of another measure could provide a “better upper
bound” without changing the algorithm but only improving the analysis.

In this section, we establish a lower bound on the worst case running time of
our algorithm. This lower bound gives a really good estimation on the precision of
the analysis. For example, in [6] Fomin et al. obtain a O(1.5137n) time algorithm
for solving the dominating set problem and they exhibit a construction of a
family of graphs giving a lower bound of Ω(1.2599n) for its running time. They
say that the upper bound of many exponential time algorithms is likely to be
overestimated only due to the choice of the measure for the analysis of the
running time, and they note the gap between their upper and lower bound for
their algorithm. However, for our algorithm we have the following result:

Theorem 2. Algorithm ids solves the minimum independent dominating set
problem in Ω(1.3247n).

Proof. Due to space restriction we only give a sketch of the proof. A detailed
proof will be given in the full version of this paper.

Consider the graph Gn = (Vn, En) (see Fig. 1) defined by Vn = {ui, vi : 1 ≤
i ≤ n} and En = {u1, v1} ∪

{

{ui, vi}, {ui, ui−1}, {vi, vi−1}, {ui, vi−1} : 2 ≤ i ≤

n
}

. We denote by G′
n = (V, ∅, E) the marked graph corresponding to the graph

Gn = (V, E).

Fig. 1. graph Gn

It is possible to show that given the graph G′
n as input, as long as the

remaining graph has more than four vertices, algorithm ids applies case (7) in
each recursive call. Moreover, without loss of generality, we can suppose that
whenever ids would apply case (7), it chooses the vertex with smallest index.

Consider now the graph G′
n and the search tree which results of branchings

using case (7) until k vertices, 1 ≤ k ≤ 2n, have been removed from the given
input graph G′

n (G′
n has 2n vertices). Denote by L[k] the number of leaves

in this search tree. It is not hard to see that this would lead to the recurrence
L(k) = L(k−3)+L(k−4)+L(k−5) and therefore L(k) ≥ 1.3247k. Consequently
1.3247n is a lower bound of the maximum number of leaves that a search tree
for ids could give with an input graph on n vertices. ut

References

1. Broersma, H., T. Kloks, D. Kratsch, and H. Müller, Independent sets in Asteroidal
Triple-free graphs, SIAM J. Discrete Math., 12, (1999), pp. 276–287.

2. Chang, M.-S., Efficient algorithms for the domination problems on interval and
circular-arc graphs, SIAM J. Comput., 27, (1998), pp. 1671–1694.

3. Corneil, D.-G. and Y. Perl, Clustering and domination in perfect graphs, Discrete.

Appl. Math., 9, (1984), pp. 27–39.
4. Farber, M., Independent domination in chordal graphs, Operation Research Letters,

1, (1982), pp. 134–138.
5. Fomin, F. V., F. Grandoni, and D. Kratsch, Measure and Conquer: A Simple

O(20.288n) Independent Set Algorithm, Proceedings of SODA 2006 , (2006), pp. 18–
25.

6. Fomin, F. V., F. Grandoni, and D. Kratsch, Measure and conquer: Domination -
A case study, Proceedings of ICALP 2005 , LNCS 3380, (2005), pp. 192–203.

7. Fomin, F. V., F. Grandoni, and D. Kratsch, Some new techniques in design and
analysis of exact (exponential) algorithms, Bulletin of the EATCS , 87, (2005),
pp. 47–77.

8. Fomin, F. V., D. Kratsch, and G. J. Woeginger, Exact (exponential) algorithms
for the dominating set problem, Proceedings of WG 2004 , LNCS 3353, (2004),
pp. 245–256.

9. Grandoni, F., A note on the complexity of minimum dominating set, J. Discrete

Algorithms, 4, (2006), pp. 209–214.
10. Halldórsson, M. M., Approximating the Minimum Maximal Independence Number,

Inf. Process. Lett., 46, (1993), pp. 169–172.
11. Johnson, D. S., M. Yannakakis, and C. H. Papadimitriou, On generating all max-

imal independent sets, Inf. Process. Lett., 27, (1988), pp. 119–123.
12. Kratsch, D., and L. Stewart, Domination on Cocomparability Graphs, SIAM J.

Discrete Math., 6, (1993), pp. 400–417.
13. Moon, J. W., and L. Moser, On cliques in graphs, Israel J. Math., 3, (1965),

pp. 23–28.
14. Randerath, B., and I. Schiermeyer, Exact algorithms for Minimum Dominating Set,

Technical Report zaik-469, Zentrum fur Angewandte Informatik, Köln, Germany,
April 2004.

15. Robson, J. M., Algorithms for maximum independent sets, J. Algorithms, 7, (1986),
pp. 425–440.

16. Robson, J. M., Finding a maximum independent set in time O(2n/4), Technical
Report 1251-01, LaBRI, Université Bordeaux I, 2001.

17. Tarjan, R. E., and A. E. Trojanowski, Finding a maximum independent set, SIAM

J. Comput., 6, (1977), pp. 537–546.
18. Woeginger, G. J., Exact algorithms for NP-hard problems: A survey, Combinatorial

Optimization - Eureka, You Shrink! , LNCS 2570, (2003), pp. 185–207.

