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Abstract. We consider the well studied FULL DEGREE SPANNING TREE
problem, a NP-complete variant of the SPANNING TREE problem, in the
realm of moderately exponential time exact algorithms. In this prob-
lem, given a graph G, the objective is to find a spanning tree T of G
which maximizes the number of vertices that have the same degree in
T as in G. This problem is motivated by its application in fluid net-
works and is basically a graph-theoretic abstraction of the problem of
placing flow meters in fluid networks. We give an exact algorithm for
FUuLL DEGREE SPANNING TREE running in time O(1.9172"). This adds
FuLL DEGREE SPANNING TREE to a very small list of “non-local prob-
lems”, like FEEDBACK VERTEX SET and CONNECTED DOMINATING SET,
for which non-trivial (non brute force enumeration) exact algorithms are
known.

1 Introduction

The problem of finding a spanning tree of a connected graph arises at various
places in practice and theory, like the analysis of communication or distribution
networks, or modeling problems, and can be solved efficiently in polynomial time.
On the other hand, if we want to find a spanning tree with some additional
properties like maximizing the number of leaves or minimizing the maximum
degree of the tree, the problem becomes NP-complete. This paper deals with one
of the NP hard variants of SPANNING TREE, namely FULL DEGREE SPANNING
TREE from the view point of moderately exponential time algorithms.

FuLL DEGREE SPANNING TREE (FDST): Given an undirected connected
graph G = (V, E), find a spanning tree T of G which maximizes the number
of vertices of full degree, that is the vertices having the same degree in T as
in G.

The FDST problem is motivated by its applications in water distribution and
electrical networks [15-18]. Pothof and Schut [18] studied this problem in the
context of water distribution networks where the goal is to determine or control
the flows in the network by installing and using a small number of flow meters.
It turns out that to measure flows in all pipes, it is sufficient to find a full degree
spanning tree T of the network and install flow meters (or pressure gauges) at



each vertex of T that does not have full degree. We refer to [1,4, 11] for a more
detailed description of various applications of FDST.

The FDST problem has attracted a lot of attention recently and has been
studied extensively from different algorithmic paradigms, developed for coping
with NP-completeness. Pothof and Schut [18] studied this problem first and gave
a simple heuristic based algorithm. Bhatia et al. [1] studied it from the view
point of approximation algorithms and gave an algorithm of factor O(y/n). On
the negative side, they show that FDST is hard to approximate within a factor
of O(n%*), for any € > 0, unless coR = N P, a well known complexity-theoretic
hypothesis. Guo et al. [10] studied the problem in the realm of parameterized
complexity and observed that the problem is W[1]-complete. The problem which
is dual to FDST is also studied in the literature, that is the problem of finding
a spanning tree that minimizes the number of vertices not having full degree.
For this dual version of the problem, Khuller et al [11] gave an approximation
algorithm of factor 2+ ¢ for any fixed € > 0, and Guo et al. [10] gave a fixed para-
meter tractable algorithm running in time 4*n®® . FDST has also been studied
on special graph classes like planar graphs, bounded degree graphs and graphs
of bounded treewidth [4]. The goal of this paper is to study FULL DEGREE
SPANNING TREE in the context of moderately exponential time algorithms, an-
other coping strategy to deal with NP-completeness. We give a O(1.9172") time
algorithm breaking the trivial 2°n®®) barrier.

Exact exponential time algorithms have an old history [5, 14] but the last few
years have seen a renewed interest in the field. This has led to the advancement
of the state of the art on exact algorithms and many new techniques based on
Inclusion-Exclusion, Measure & Conquer and various other combinatorial tools
have been developed to design and analyze exact algorithms [2, 3,7, 8, 12]. Branch
& Reduce has always been one of the most important tools in the area but its
applicability was mostly limited to ‘local problems’ (where the decision on one
element of the input has direct consequences for its neighboring elements) like
MAXIMUM INDEPENDENT SET, SAT and various other problems, until recently.
In 2006, Fomin et al.[9] devised an algorithm for CONNECTED DOMINATING
SET (or MAXIMUM LEAF SPANNING TREE) and Razgon [19] for FEEDBACK
VERTEX SET combining sophisticated branching and a clever use of measure.
Our algorithm adheres to this machinery and adds an important real life problem
to this small list. We also need to use an involved measure, which is a function
of the number of vertices and the number of edges to be added to the spanning
tree, to get the desired running time.

2 Preliminaries

Let G be a graph. We use V(G) and E(G) to denote the vertices and the edges
of G respectively. We simply write V' and E if the graph is clear from the
context. For V' C V we define an induced subgraph G[V'] = (V', E’), where
E'={weFE: :uveV'}



Let v € V, we denote by N(v) the neighborhood of v, namely N(v) = {u €
V :uv € E}. The closed neighborhood Nv] of v is N(v) U {v}. In the same way
we define N[S] for S CV as N[S] = UyesN[v] and N(S) = N[S]\ S. We define
the degree of vertex v in G as the number of vertices adjacent to v in G. Namely,
de(v) = {u e V(G) : uwv € E(G)}.

Let G be a graph and T be a spanning tree of G. A vertex v € V(G) is a full
degree vertex in T, if dg(v) = dr(v). We define a full degree spanning tree to
be a spanning tree with the maximum number of full degree vertices. One can
similarly define full degree spanning forest by replacing tree with forest in the
earlier definition.

A set I C V is called an independent set for GG if no vertex v in I has a
neighbor in .

3 Algorithm for Full Degree Spanning Tree

In this Section we give an exact algorithm for the FDST problem.

Given an input graph G = (V| E), the basic idea is that if we know a subset
S of V for which there exists a spanning tree T where all the vertices in .S have
full degree then, given this set S, we can construct a spanning tree 1" where
all the vertices in S have full degree in polynomial time. Our first observation
towards this is that all the edges incident to the vertices in S, that is

Es={uw e FE suchthat ue Sorve S} (1)

induce a forest. For our polynomial time algorithm we start with the forest
(V, Es) and then complete this forest into a spanning tree by adding edges to
connect the components of the forest. The last step can be done by using a
slightly modified version of the SPANNING TREE algorithm of Kruskal [13] that
we denote by poly_fdst(G,.S).

The rest of the section is devoted to finding a largest subset of vertices S for
which we can find a spanning tree where the vertices of S have full degree.

Our algorithm follows a branching strategy and as a partial solution keeps a
set of vertices S for which there exists a spanning tree where the vertices in S
have full degree. The standard branching step chooses a vertex v that could be
included in S and then recursively tries to find a solution by including v in S
and not including v in S. But when v is not included in .S, it cannot be removed
from further consideration as cycles involving v might be created later on in
(V,Es) by adding neighbors of v to S. Hence we resort to a coloring scheme
for the vertices, which can also be thought of as a partition of the vertex set of
the input graph. At any point of the execution of the algorithm, the vertices are
partitioned as below:

1. Selected S: The set of vertices which are decided to be of full degree.

2. Discarded D: The set of vertices which are not required to be of full degree.

3. Undecided U: The set of vertices which are neither in S nor D, that is those
vertices which are yet to be decided. So, U =V \ (SU D).



Next we define a generalized form of the FDST problem based on the above
partition of the vertex set. But before that we need the following definition.

Definition 1. Given a vertex set S C V, we define the partial spanning tree of
G induced by S as T(S) = (N[S], Eg) where Eg is defined as in Equation (1).

For our generalized problem, we denote by G = (S, D, U, E) the graph (V, E)
with vertex set V=5 U D UU partitioned as above.

GENERALIZED FULL DEGREE SPANNING TREE (GFDST): Given an in-
stance G = (S, D, U, E) such that T(S) is connected and acyclic, the objec-
tive is to find a spanning forest which maximizes the number of vertices of U
of full degree under the constraint that all the vertices in S have full degree.

If we start with a graph G, an instance of FDST, with the vertex partition
S =D = and U =V then the problem we will have at every intermediate step
of the recursive algorithm is GFDST. Also, note that a full degree spanning
forest of a connected graph can easily be extended to a full degree spanning tree
and that a full degree spanning tree is a full degree spanning forest.

As suggested earlier our algorithm is based on branching and will have some
reduction rules that can be applied in polynomial time, leading to a refined
partitioning of the vertices. Before we come to the detailed description of the
algorithm, we introduce a few more important definitions. For given sets S, D
and U, we say that an edge is

(a) unexplored if one of its endpoints is in U and the other one in U U D,
(b) forced if at least one of its endpoints is in S, and
(¢) superfluous if both its endpoints are in D.

The basic step of our algorithm chooses an undecided vertex v € U and considers
two subcases that it solves recursively: either u is selected, that is u is moved
from U to S, or u is discarded, that is moved from U to D. But the main idea is
to choose a vertex in a way that the connectivity of T'(S) is maintained in both
recursive calls. To do so we choose u from U N N[N[S]]. This brings us to the
following definition.

Definition 2. The vertices in U N N[N[S]] are called candidate vertices.

On the other hand, if .S is not empty and the graph does not contain a candidate
vertex, then D can be partitioned into two sets: (a) those vertices in D that have
neighbors in S and (b) those that have neighbors in U. Superfluous edges (with
both endpoints in D) are removed by reduction rule R1 making G disconnected
in this case, and then the algorithm is executed on each connected component.

Now we are ready to describe the algorithm in details. We start with a
procedure for reduction rules in the next subsection and prove that these rules
are correct.



3.1 Reduction Rules

Given an instance G = (S, D,U, E) of GFDST, a reduced instance of G is
computed by the following procedure.

Reduce (G = (S,D,U, E))

R1 If there is a superfluous edge e, then return Reduce ((S,D,U, E \ {e}))

R2 If there is a vertex u € D UU such that d(u) = 1, then remove the unique
edge e incident on it and return Reduce ((S, D, U, E'\ {e})).

R3 If there is an undecided vertex u € U such that T'(SU{u}) contains a cycle,
then discard w, that is return Reduce ((S, D U {u}, U \ {u}, E)).

R4 If there is a candidate vertex u that is incident to at most one vertex in
U U D, then select u, and return Reduce ((S U {u}, D,U \ {u}, E)).

R5 If S = 0 and there exists a vertex u € U of degree 2, then select u and
return Reduce ((SU {u}, D,U \ {u}, E)).

R6 If there is a candidate vertex u of degree 2, then select u and return
Reduce ((SU{u},D,U\ {u}, E)).

Else return G

Now we argue about the correctness of the reduction rules, more precisely that
there exists a spanning forest of G such that a maximum number of vertices
preserve their degree and the partitionning of the vertices into the sets .S, D and
U of the graph resulting from a call to Reduce(G = (S, D, U, E)) is respected.
Note that the reduction rules are applied in the order of their appearance. The
correctness of R1 follows from the fact that discarded vertices are not required
to have full degree.

For the correctness of reduction rule R2, consider a vertex v € D U U of
degree 1 with unique neighbor w. Let G' = (S, D,U, F \ {uw}) be the graph
resulting from the application of the reduction rule. Note that the edge uw
is not part of any cycle and that a full degree spanning forest of G can be
obtained from a full degree spanning forest of G’ by adding the edge ww. As
Algorithm poly_fdst(G,S) adds edges to make the obtained spanning forest
into a spanning tree, the edge uw is added to the final solution.

For the correctness of reduction rule R3, it is enough to observe that if for a
subset S C V, there exists a spanning tree T such that all the vertices of S have
full degree then T'(S) is a forest.

We prove the correctness of R4, R5 and R6 by the following lemmata.

Lemma 1. Let G = (V, E) be a graph and T be a full degree spanning forest for
G. Ifv € V is a vertex of degree dg(v) — 1 in T, then there exists a full degree
spanning forest T' such that v has degree dg(v) in T.

Proof. Let u € V' be the neighbor of v such that uv is not an edge of T'. Note
that both u and v do not have full degree in T, are not adjacent and belong
to the same tree in 7. The last assertion follows from the fact that if v and v
belong to two different trees of T' then one can safely add wv to T" and obtain a
forest 7" that has a larger number of full degree vertices, contradicting that T



is a full degree spanning forest. Now, adding the edge uv to T creates a unique
cycle passing through w and v. We obtain the new forest 77 by removing the
other edge incident to u on the cycle, say uw, w # v. So, T" = T\ {vw} + {uv}.
The number of full degree vertices in 7" is at least as high as in T' as v becomes
a full degree vertex and at most one vertex, w, could become non full degree. O

We also need a generalized version of Lemma 1.

Lemma 2. Let G = (S,D,U,E) be a graph and T be a full degree spanning
forest for G such that the vertices in S have full degree. Let v € U a candidate
verter such that its neighbors in D U U are not incident to a forced edge. If v
has degree dg(v) —1 in T, then there exists a full degree spanning forest T such
that v has degree dg(v) in T' and the vertices in S have full degree.

Proof. The proof is similar to the one of Lemma 1. The only difference is that
we need to show that the vertices of S remain of full degree and for that we
need to show that all the edges of T'(S) remain in 7. To this observe that all
the edges incident to the neighbors of v in DUU in T do not belong to edges of
T(S), that is they are not forced edges. So if wv is the unique edge incident to
v missing in T then we can add uv to T" and remove the other non-forced edge
on u from the unique cycle in 7'+ {uv} and get the desired T". a

Now consider reduction rule R4. If u is a candidate vertex with unique neighbor
w in DUU then (a) u € N(S) and (b) all the edges incident to w are not forced,
otherwise reduction rule R2 or R3 would have applied. Now the correctness of
the reduction rule follows from Lemma 2. The correctness proof of reduction
rule R6 is similar. Here u belongs to N[N[S]] N U but all the edges incident to
its unique neighbor in V' \ N[S] are not forced and again Lemma 2 comes into
play. To prove the correctness of reduction rule R5, we need to show that there
exists a spanning forest where u has full degree. Suppose not and let 7" be any
full degree spanning forest of G. Without loss of generality, suppose that u has
degree 1 in T (if w is an isolated vertex in 7', then add one edge incident to u
to T'; this does not create any cycle in T and does not decrease the number of
vertices of full degree in T'). Let v be the unique neighbor of w in T. But since
S = (b, there are no forced edges and we can apply Lemma, 2 again and conclude.

This finishes the correctness proof of the reduction rules. Before we go into
the details of the algorithm we would like to point out that all our reduction
rules preserve the connectivity of 7'(.S).

3.2 Algorithm

In this section we describe our algorithm in details. Given an instance G =
(S,D,U, E) of GDPST, our algorithm recursively solves the problem by choosing
a vertex v € U and including u in S or in D and then returning as solution the
one which has maximum sized S. The algorithm has various cases based on the
number of unexplored edges incident to u.



Algorithm fdst(G), described below, returns a super-set S* of S correspond-
ing to the full degree vertices in a full degree spanning forest respecting the initial
choices for S and D. After this, poly_fdst(G, S*) returns a full degree spanning
tree of G as described in the beginning of the section. The description of the al-
gorithm consists of the application of the reduction rules and a sequence of cases.
A case consists of a condition (first sentence) and a procedure to be executed if
the condition holds. The first case which applies is used in the algorithm. Thus,
inside a given case, the conditions of all previous cases are assumed to be false.

£dst(G = (S,D,U,E))

Replace G by Reduce (G).

Case 1: U is a set of isolated vertices. Return SUU.

Case 2: S = (). Choose a vertex u € U of degree at least 3. Return the largest
set among fdst((SU{u}, D,U\{u}, E)) and £dst((S, DU{u},U\{u}, E)).

Case 3: G has at least 2 connected components, say G1,Gs, -+, G. Return
U, £dst((SNV(Gy), DNV (Gy),UNV(Gy), EN E(Gy))).

Case 4: There is a candidate vertex u with at least 3 unexplored incident edges.
Make two recursive calls: £dst((S U {u}, D,U \ {u}, F)) and £dst((S,D U
{u},U\ {u}, E)), and return the largest obtained set.

Case 5: There is a candidate vertex u with at least one neighbor v in U and
exactly two unexplored incident edges. Make two recursive calls: fdst((S U
{u}, D, U\ {u}, F)) and £dst((S, D U{u,v},U \ {u,v}, F)), and return the
largest obtained set.

From now on let v; and v, denote the discarded neighbors of a can-
didate vertex u (see Figure 1).

Case 6: Either v; and vo have a common neighbor x # u; or
vy (or vg) has a neighbor x # u that is a candidate vertex; or
vy (or v2) has a neighbor x of degree 2.

Make two recursive calls: £dst((S U {u}, D,U \ {u}, F)) and £dst((S,D U
{u},U\ {u}, E)), and return the largest obtained set.

Case 7: Both v; and vy have degree 2. Let wy and wo (wy # ws) be the other
(different from u) neighbors of v; and vy in U respectively. Make recursive
calls as usual, but also explore all the possibilities for w; and wsy if u € S.
When u is in S, recurse on all possible ways one can add a subset of A =
{wi, w2} to S. That is make recursive calls £fdst((S,D U {u},U \ {u}, E))
and fdst((SU{u}UX,DU(A—-X),U\ ({u}UA), E)) for each independent
set X C A, and return the largest obtained set.

Case 8: At least one of {v1, v} has degree > 3. Let {u, wy, we, w3} C N({v1,v2})
and let A = {wy, wa, ws}. Make recursive calls fdst((S, DU{u}, U\ {u}, E))
and fdst((SU{u}UX,DU(A-X), U\ ({u} UA), E)) for each independent
set X C A, and return the largest obtained set.

4 Correctness and Time Complexity of the Algorithm

We prove the correctness and the time complexity of Algorithm fdst in the
following theorem.
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Fig. 1. Illustration of Case 7. Cases 6 and 8 are similar.

Theorem 1. Given an input graph G = (S,D,U, E) on n vertices such that
T(S) is connected and acyclic, Algorithm fdst returns a mazimum size set S*,
S C 8% C SUU such that there exists a spanning forest for G where all the
vertices in S* have full degree in time O(1.91727).

Proof. The correctness of the reduction rules is described in Section 3.1. The
correctness of Case 1 follows, as any isolated vertex belonging to U has full
degree in any spanning forest. Similarly, the correctness of Case 3 follows from
the fact that any spanning forest of G is a spanning forest of each of the connected
components of G. The remaining cases, except Case 5, of Algorithm fdst are
branching steps where the algorithm chooses a vertex u € U and tries both
possibilities: v € S or w € D. Sometimes the algorithm branches further by
looking at the local neighborhood of u and trying all possible ways these vertices
can be added to either S or D. Since all possibilities are tried to add vertices of
U to D or S in Cases 3, 4 and 6 to 8, these cases are correct and do not need
any further justifications. The correctness of Case 5 requires special attention.
Here we use the fact that there exists a full degree spanning forest with all the
vertices in S having full degree, such that either u € S or v and its neighbor
v € U are in D. We prove the correctness of this assertion by contradiction.
Suppose all the full degree spanning forests such that all the vertices in S are
of full degree have u of non full degree and v of full degree. But notice that
u € N(S) (see R6) and all the neighbors of u in D UU do not have any incident
forced edges. Now we can use Lemma 2 to get a spanning forest which contains
uw and is a full degree spanning forest with all the vertices in S having full degree.

Now we move on to the time complexity of the algorithm. The measure of
subproblems is generally chosen as a function of structure, like vertices, edges
or other graph parameters, which change during the recursive steps of the al-
gorithm. In our algorithm, this change is reflected when vertices are moved to
either S or D from U. The second observation is that any spanning tree on n
vertices has at most n — 1 edges and hence when we select a vertex in S we in-
crease the number of edges in T'(S) and decrease the number of edges we can add
to T'(S). Finally we also gain when the degree of a vertex becomes two because
reduction rules apply as soon as the degree 2 vertex becomes a candidate vertex.
Our measure is precisely a function of these three parameters and is defined as
follows:



w(G) = n|Us| + |Uss| + am’, (2)

where Us is the subset of undecided vertices of degree 2, Us3 is the subset of
undecided vertices of degree at least 3, m’ = n — 1 — |E(T(S))] is the number
of edges that can be added to the spanning tree and @ = 0.372 and n = 0.5
are numerically obtained constants to optimize the running time. We write p
instead of (@) if G is clear from the context. We prove that the problem can be
solved for an instance of size y in time O(x*) where x < 1.60702. As p < 1.372n,
the final running time of the algorithm will be O(x!-372") = 0(1.9172"). Denote
by P[u] the maximum number of times the algorithm is called recursively on
a problem of size p (i. e. the number of leaves in the search tree). Then the
running time 7'(p) of the algorithm is bounded by P[u] - n®M) because in any
node of the search tree, the algorithm executes only a polynomial number of
steps. We use induction on u to prove that P[u] < 2. Then T(u) = z# - n®1),
and since the polynomial is suppressed by rounding the exponential base, we
have T'(u) = O(1.60702*). Clearly, P[0] = 1. Suppose that P[k] < z* for every
k < p and consider a problem of size y. We remark that in all the branching
steps all the candidate vertices in U have degree at least 3, otherwise reduction
rules R5 or R6 would have applied.

Case 2: In this case, the number of vertices in U3 decreases by one in both
recursive calls and the number of edges in T'(.S) increases by at least 3 in the
first recursive call. Thus,

Plp] < Plp—1=3a] + Plp - 1].

Case 3: Here we branch on different connected components of G, and hence

k
P(G)] < Y Plu(Gy)l.

Case 4: This case has the same recurrence as Case 2 as the number of vertices
in Us3 decreases by one in both recursive calls and the number of edges in
T(S) increases by at least 3 in the first recursive call.

Case 5: When the algorithm adds u to S, the number of vertices in Us3 de-
creases by one and the number of edges in T'(.S) increases by 2 while in the
other case, |Us3| decreases by two as both u and v are candidate vertices.
So we get:

Plu) < Plu—1—2a] + Plu— 2.

Case 6: When the algorithm adds u to S, reduction rule R3 or R6 applies to
x. We obtain the following recurrences, based on the degree of x:

Plp] < Plp—1-n—2a] + Plp—1],

Plu] < Plu—2—2a] + Plu— 1].



Case 7: In this case we distinguish two subcases based on the degrees of w;
and wsy. Our first subcase is when either w; or wy has degree 3 and the other
subcase is when both w; and we have degree at least 4. (Note that because
of Case 5, v; and vy do not have a common neighbor and do not have a
neighbor of degree 2). Suppose w; has degree 3. When the algorithm adds u
to D, the edges uv; and uvs are removed (R1), the degree of vy is reduced
to 1 and then reduction rule R2 is applied and makes w; of degree 2. So, in
this subcase, p decreases by 2 — 7. The analysis of the remaining branches
is standard and we get the following recurrence:

Plu] < Plu—3—2a)+2P[u—3—5a]+ Plp—3 —8a] + Plp— 2+ ).
For the other subcase we get the following recurrence:
Plu] < Pl —3 —2a] + 2P[u — 3 — 60 + Plu — 3 — 10a] + P — 1].
Case 8: This case is similar to Case 7 and we get the following recurrence:
Plu) < Plu—4—2a)+3P[u—4—5a]+3P[u—4—8a]+ Plu—4—1la]+ Plu—1].

In each of these recurrences, P[u] < z* which completes the proof of the
theorem. O

The bottleneck of the analysis is the second recurrence in Case 7. Therefore,
an improvement of this case would lead to a faster algorithm.

5 Conclusion

In this paper we have given an exact algorithm for the FULL DEGREE SPAN-
NING TREE problem. The most important feature of our algorithm is the way we
exploit connectivity arguments to reduce the size of the graph in the recursive
steps of the algorithm. We think that this idea of combining connectivity while
developing Branch & Reduce algorithms could be useful for various other non-
local problems and in particular for other NP-complete variants of the SPANNING
TREE problem. Although the theoretical bound we obtained for our algorithm
seems to be only slightly better than a brute-force enumeration algorithm, prac-
tice shows that Branch & Reduce algorithms perform usually better than the
running time proved by a worst case analysis of the algorithm. Therefore we
believe that this algorithm, combined with good heuristics, could be useful in
practical applications.

One problem which we would like to mention here is MINIMUM MAXIMUM
DEGREE SPANNING TREE, where, given an input graph G, the objective is to
find a spanning tree T of GG such that the maximum degree of 7' is minimized.
This problem is a generalization of the famous HAMILTONIAN PATH problem for
which no algorithm faster than 2"n®() is known. It remains open to find even a
27n%M) time algorithm for the MINIMUM MAXIMUM DEGREE SPANNING TREE
problem.
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