
Exponential Time Algorithms for the Minimum
Dominating Set Problem on Some Graph Classes

Serge Gaspers1, Dieter Kratsch2, and Mathieu Liedloff2

1 Department of Informatics, University of Bergen, N-5020 Bergen, Norway
serge.gaspers@ii.uib.no

2 LITA, Université de Paul Verlaine - Metz, 57045 Metz Cedex 01, France
{kratsch, liedloff}@univ-metz.fr

Abstract. The Minimum Dominating Set problem remains NP-hard
when restricted to chordal graphs, circle graphs and c-dense graphs (i.e.
|E| ≥ cn2 for a constant c, 0 < c < 1/2). For each of these three
graph classes we present an exponential time algorithm solving the Min-
imum Dominating Set problem. The running times of those algorithms
are O(1.4173n) for chordal graphs, O(1.4956n) for circle graphs, and
O(1.2303(1+

√
1−2c)n) for c-dense graphs.

1 Introduction

During the last years there has been a growing interest in the design of exact
exponential time algorithms. Woeginger has written a nice survey on the subject
[19] emphasizing the major techniques used to design exact exponential time
algorithms. We also refer the reader to the recent survey of Fomin et al. [9]
discussing some new techniques in the design of exponential time algorithms.
In particular they discuss treewidth based techniques, Measure & Conquer and
memorization.

Known Results. A set D ⊆ V of a graph G = (V, E) is dominating if every ver-
tex of V \D has a neighbor in D. The Minimum Dominating Set problem (MDS)
asks to compute a dominating set of the input graph of minimum cardinality.

Exact exponential time algorithms for the Minimum Dominating Set problem
have not been studied until recently. By now there is a large interest in this
particular problem. In 2004 three papers with exact algorithms for MDS have
been published. In [10] Fomin et al. presented an O(1.9379n) time algorithm for
general graphs and algorithms for split graphs, bipartite graphs and graphs of
maximum degree three with running time O(1.4143n), O(1.7321n), O(1.5144n),
respectively. Exact algorithms for MDS on general graphs have also been given
by Randerath and Schiermeyer [16] and by Grandoni [12]. Their running times
are O(1.8899n) and O(1.8026n), respectively.

These algorithms have been significantly improved by Fomin et al. in [8] where
the authors obtain the currently fastest exact algorithm for MDS. Their search
tree algorithm is based on the so-called Measure & Conquer approach, and the
upper bounds on the worst case running times are established by the use of non

L. Arge and R. Freivalds (Eds.): SWAT 2006, LNCS 4059, pp. 148–159, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Exponential Time Algorithms for the Minimum Dominating Set Problem 149

standard measures. The MDS algorithm has running time O(1.5263n) and needs
polynomial space. Using memorization one can speed up the running time to
O(1.5137n) needing exponential space then. Both variants are based on algo-
rithms for the minimum set cover problem where the input consists of a uni-
verse U and a collection S of subsets of U . These algorithms need running time
O(1.2354|U|+|S|) and polynomial space, or running time O(1.2303|U|+|S|) and
exponential space [8].

Finally, Fomin and Høie used a treewidth based approach to establish an
algorithm to compute a minimum dominating set for graphs of maximum degree
three [7] with running time O(1.2010n).

It is known that the problem MDS is NP-hard when restricted to chordal graphs
[5], and circle graphs [13]. Furthermore it is not hard to show that MDS is NP-hard
for c-dense graphs.

Our Results. In this paper we study the Minimum Dominating Set problem on
three graph classes and we obtain algorithms with a running time O(αn) better
than the best known running time for an algorithm solving MDS on general graphs,
i.e. O(1.5137n).

In Section 3 we present an exact algorithm solving the MDS problem on chordal
graphs in time O(1.4173n). In Section 4 an O(1.4956n) time algorithm to com-
pute a minimum dominating set for circle graphs is established. In Section 5
we give an O(1.2303n(1+

√
1−2c)) time algorithm for c-dense graphs, i.e. for all

graphs with at least cn2 edges, where c is a constant with 0 < c < 1/2.
Our algorithms rely heavily on the minimum set cover algorithms of Fomin

et al. [8]. Furthermore the algorithms for chordal graphs and for circle graphs
are treewidth based. Both of them use different algorithms for graphs of small
treewidth, i.e. at most tn, and for graphs of large treewidth, i.e. larger than tn,
where t is chosen to balance the running times of those two algorithms.

The algorithm for circle graphs relies on an upper bound of the treewidth of
circle graphs in terms of the maximum degree which is interesting in its own. A
related result for graphs of small chordality is provided in [4]. We are not aware
of any previous result of this type for circle graphs.

2 Preliminaries

Let G = (V, E) be an undirected and simple graph. For a vertex v ∈ V we
denote by N(v) the neighborhood of v and by N [v] = N(v) ∪ {v} the closed
neighborhood of v. For a given subset of vertices S ⊆ V , G[S] denotes the
subgraph of G induced by S. The maximum degree of a graph G is denoted by
Δ(G) or by Δ if it is clear from the context which graph is meant.

A clique is a set C ⊆ V of pairwise adjacent vertices. The maximum cardi-
nality of a clique in a graph G is denoted by ω(G). A dominating set D of a
graph G = (V, E) is a subset of vertices such that every vertex of V − D has at
least one neighbor in D. The minimum cardinality of a dominating set of G is
the domination number of G, and it is denoted by γ(G).

150 S. Gaspers, D. Kratsch, and M. Liedloff

Major tools of our paper are tree decompositions and treewidth of graphs.
The notions have been introduced by Robertson and Seymour in [17].

Definition 1 (Tree decomposition). Let G = (V, E) be a graph. A tree de-
composition of G is a pair ({Xi : i ∈ I}, T) where each Xi, i ∈ I, is a subset of
V and T is a tree with elements of I as nodes such that we have the following
properties :

1. ∪i∈IXi = V ;
2. ∀{u, v} ∈ E, ∃i ∈ I s.t. {u, v} ⊆ Xi;
3. ∀i, j, k ∈ I, if j is on the path from i to k in T then Xi ∩ Xk ⊆ Xj.

The width of a tree decomposition is equal to maxi∈I |Xi| − 1.

Definition 2 (Treewidth). The treewidth of a graph G is the minimum width
over all its tree decompositions and it is denoted by tw(G).

A tree decomposition is called optimal if its width is tw(G).

Definition 3 (Nice tree decomposition). A nice tree decomposition ({Xi :
i ∈ I}, T) is a tree decomposition satisfying the following properties:

1. every node of T has at most two children;
2. If a node i has two children j and k, then Xi = Xj = Xk (i is a Join Node);
3. If a node i has one child j, then either

(a) |Xi| = |Xj | + 1 and Xj ⊂ Xi (i is a Insert Node);
(b) |Xi| = |Xj | − 1 and Xi ⊂ Xj (i is a Forget Node).

Lemma 1 ([14]). For a constant k, given a tree decomposition of a graph G of
width k and O(n) nodes, where n is the number of vertices of G, one can find
a nice tree decomposition of G of width k and with at most 4n = O(n) nodes in
O(n) time.

Structural and algorithmic properties of graph classes will be mentioned in the
corresponding sections. For definitions and properties of graph classes not given
in this paper we refer to [6, 11].

3 Domination on Chordal Graphs

In this section we present an exponential time algorithm for the minimum dom-
inating set problem on chordal graphs.

A graph is chordal if it has no chordless cycle of length greater than 3. Chordal
graphs are a well-known graph class with its own chapter in Golumbic’s mono-
graph [11]. Split graphs, strongly chordal graphs and undirected path graphs are
well-studied subclasses of chordal graphs.

We shall use the clique tree representation of chordal graphs that we view as
a tree decomposition of the graph. A tree T is as clique tree of a chordal graph
G = (V, E) if there is a bijection between the maximal cliques of G and the

Exponential Time Algorithms for the Minimum Dominating Set Problem 151

nodes of T such that for each v ∈ V the cliques containing v induce a subtree
of T . It is well-known that tw(G) ≥ ω(G) − 1 for all graphs. Furthermore the
clique tree of a chordal graph G is an optimal tree decomposition of G, i.e. its
width is ω(G) − 1.

Lemma 2. There is an O∗(3tw(G)) time algorithm to compute a minimum dom-
inating set on chordal graphs.1

Proof. Alber et al. have shown in [1] that a minimum dominating set of a graph
can be computed in time O(4ln) if a tree decomposition of width l of the input
graph is known. Their algorithm uses a nice tree decomposition of the input
graph and a standard bottom up dynamic programming on the tree decompo-
sition. The crucial idea is to assign three different “colors” to the vertices of a
bag:

– “black”, meaning that the vertex belongs to the dominating set,
– “white”, meaning that the vertex is already dominated,
– “gray”, meaning that the vertex is not yet dominated.

Now let us assume that the input graph is chordal. A clique tree T of G can be
computed in linear time [3]. By Lemma 1, a nice optimal tree decomposition of G
can be computed from the optimal tree decomposition T in time O(n) and it has
at most 4n nodes. Since G is chordal every bag in the nice tree decomposition is
a clique. Therefore no bag can have both a black vertex and a gray vertex. Due
to this restriction there are at most 2|X| possible so-called vector colorings of a
bag X (instead of 3|X| for general graphs).

Consequently the running time of a modification of the algorithm of Alber
et al. to chordal graphs is O∗(3tw(G)), where the only modification is to restrict
allowed vector colorings of a bag such that black and gray vertices simultaneously
are forbidden.
�

The following theorem shows that graphs with sufficiently many vertices of high
degree allow to speed up the MDS algorithm for general graphs.

Theorem 1. Let t > 0 be a fixed integer. Then there is a O(1.23032n−t) time
algorithm to solve the MDS problem if the input graph fulfills the condition |{v ∈
V : d(v) ≥ t − 2}| ≥ t.

Proof. Let t > 0 be an integer and G = (V, E) a graph fulfilling the conditions
of the theorem. Let T = {v ∈ V : d(v) ≥ t − 2}; thus |T | ≥ t. Notice that for
each minimum dominating set D of G either at least one vertex of T belongs to
D, or T ∩ D = ∅.

This allows to find a minimum dominating set of G by the following branching
in two types of subproblems: “v ∈ D” for all v ∈ T , and “T ∩ D = ∅”. In
both cases we shall apply the minimum set cover algorithm of [8] to solve the
subproblem. Recall that the minimum set cover instance corresponding to the

1 Modified big-Oh notation suppresses polynomially bounded factors.

152 S. Gaspers, D. Kratsch, and M. Liedloff

MDS problem for G has universe U = V and S = {N [u] : u ∈ V }, and thus
|U| + |S| = 2n [8]. Consequently the running time for a subproblem will be
O(1.23032n−x), where x is the number of vertices plus the number of subsets
eliminated from the original minimum set cover problem for the graph G.

Now let us consider the two types of subproblems. For every vertex v ∈ T , we
choose v in the minimum dominating set and we execute the Minimum Set Cover
algorithm presented in [8] on an instance of size at most 2n−(d(v)+1)−1 ≤ 2n−t.
Indeed, we remove from the universe U the elements of N [v] and we remove from
S the set corresponding to v. And we branch in the case “discard T ”: In this
case we have an instance of set cover of size at most 2n − |T | = 2n − t since for
every v ∈ T we remove from S the set corresponding to each v.
�

Corollary 1. There is an algorithm taking as input a graph G and a clique C
of G and solving the MDS problem in time O(1.23032n−|C|).

Proof. Note that every vertex in C has degree at least |C| − 1.
�

Our algorithm on chordal graphs works as follow: If the graph has a large
treewidth then it necessarily has a large clique and we apply Corollary 1. Oth-
erwise the graph has a small treewidth and we use Lemma 2.

Theorem 2. There is an O(1.4173n) time algorithm to solve the MDS problem
on chordal graphs.

Proof. If tw(G) ≤ 0.3174n, by Lemma 2, MDS is solvable in time
O(30.3174n) = O(1.4173n). Otherwise, tw(G) > 0.3174n and using Corollary 1
we obtain an O(1.23032n−0.3174n) = O(1.4173n) time algorithm.
�

4 Domination on Circle Graphs

In this section, we present an exponential time algorithm for MDS on circle graphs
in a treewidth based approach. For a survey on treewidth based exponential time
algorithms we refer to [9].

Definition 4. A circle graph is an intersection graph of chords in a circle. More
precisely, G is a circle graph, if there is a circle with a collection of chords, such
that one can associate in a one-to-one manner to each vertex a chord such that
two vertices are adjacent if and only if the corresponding chords have a nonempty
intersection. The circle and all its chords are called a circle model of the graph.

Our algorithm heavily relies on a linear upper bound on the treewidth of circle
graphs in terms of the maximum degree: tw(G) ≤ 4Δ(G) − 1. This bound is
interesting in its own and it is likely that such bounds for circle graphs or other
graph classes can be used to construct exponential time algorithms for NP-hard
problems on special graph classes in a way similar to our approach for domination
on circle graphs.

The algorithm uses the treewidth to branch into two different approaches: one
for “small treewidth” and one for “high treewidth”. If there are many vertices

Exponential Time Algorithms for the Minimum Dominating Set Problem 153

of high degree in the input graph, Theorem 1 is used to continue, and if not, the
treewidth is “small” and we use an O∗(4tw(G)) algorithm to compute a minimum
dominating set.

Theorem 3 ([1]). Suppose the graph G = (V, E) and a tree decomposition of
width � of G are given. Then there is an O(4�N) time algorithm to compute
a minimum dominating set of G, where N is the number of nodes of the tree
decomposition.

We start with a brief summary of Kloks’ algorithm to compute the treewidth of
a circle graph [15]. Consider the circle model of a circle graph G. Go around the
circle and place a new point (so-called scanpoints) between every two consecu-
tive end points of chords. The treewidth of a circle graph can be computed by
considering all possible triangulations of the polygon P formed by the convex
hull of these scanpoints. The weight of a triangle in this triangulation is the
number of chords in the circle model that cross this triangle. The weight of the
triangulation T is the maximum weight of the triangles in T . The treewidth of
the graph is the minimum weight minus one over all triangulations of P .

Theorem 4 ([15]). There exists an O(n3) algorithm to compute the treewidth
of circle graphs, that also computes an optimal tree-decomposition.

We rely on the following technical definitions in our construction of a tree-
decomposition of width at most 4Δ(G) − 1 for each circle graph G. The con-
struction will be given in the proof of Theorem 5.

Definition 5. A scanline s̃ = 〈ã, b̃〉 is a line segment connecting two scanpoints
ã and b̃.

To emphasize the difference between scanlines and chords we use different no-
tations: A chord v connecting two end points c and d in the circle model of the
graph is denoted v = [c, d]. We also use the following convention: two scanlines
with empty intersection or intersecting in exactly one scanpoint are said to be
non-crossing.

Definition 6. Let s̃1 and s̃2 be two non-crossing scanlines. A scanline s̃ is be-
tween s̃1 and s̃2 if every path from a scanpoint of s̃1 to a scanpoint of s̃2 along
the circle passes through a scanpoint of s̃.

Definition 7. A set S of parallel scanlines is a set of scanlines respecting

(i) |S| ≤ 2 and the scanlines of S are non-crossing, or
(ii) |S| > 2 and for every subset of three scanlines in S, one of these scanlines

is between the other two.

The following theorem is one of the main results of this paper. It shows that the
treewidth tw(G) of circle graphs can be upper bounded by a linear function of
the maximum degree Δ(G) of the graph G. Surprisingly, no linear bound seems
to have been known prior to our work.

154 S. Gaspers, D. Kratsch, and M. Liedloff

Theorem 5. For every circle graph G holds tw(G) ≤ 4Δ(G) − 1.

Proof. We construct a triangulation of the polygon P such that every triangle
has weight at most 4Δ, i.e. it intersects at most 4Δ chords, and therefore the
corresponding tree-decomposition has width at most 4Δ − 1.

Notice that by the definition of a circle graph, every chord intersects at most Δ
other chords. The triangulation of the polygon P is obtained by constructing the
corresponding set of scanlines S which is explained by the following procedures.
Having described our algorithm, we will analyze the number of chords that cross
each triangle and show that it is less than or equal to 4Δ.

1. Description of the algorithm
• FirstCut(). Start with S = ∅. Choose a chord v in the circle model of the
graph G. Call ScanChord(S, v). Call ParaCuts(S).
• ScanChord(S, v = [a, b]). Let c̃ and c̃′ (resp. d̃ and d̃′) be the two scanpoints
closest to a (resp. b) on the circle such that the order of the points on the circle
is c̃, a, c̃′, d̃′, b and d̃. Now the algorithm adds the following three scanlines to S:
s̃1 = 〈c̃, d̃〉, s̃2 = 〈c̃′, d̃′〉 and s̃3 = 〈c̃, d̃′〉. If c̃ = d̃ (or c̃′ = d̃′) then we add only
the scanline s̃2 (or s̃1).
• ParaCuts(S). While S is not a maximal (by inclusion) parallel set of scan-
lines in P , choose a chord v such that S remains parallel when calling Scan-
Chord(S, v). Call ScanChord(S, v). If S is maximal parallel, every polygon
inside P is delimited by one or two scanlines. We call the polygons that are de-
limited by one scanline outer polygons, and those that are delimited by two scan-
lines inner polygons (see Fig. 1). There are exactly two outer polygons now, one
delimited by s̃1 and the other one by s̃2. Call TriangOuter(S, s̃1) and Triang-
Outer(S, s̃2). For every inner polygon, call TriangInner(S, t̃1, t̃2) where t̃1 and
t̃2 are the two scanlines delimiting this polygon.
• TriangOuter(S, s̃ = 〈ã, b̃〉). The scanline s̃ divides the polygon P into two
parts. Call Ps̃ the polygon delimited by s̃ and the part of P that does not contain
any scanlines. Add a scanline between ã and every scanpoint of Ps̃ except ã and
b̃ to S.

outer polygon

inner polygon

Fig. 1. ParaCuts

a1

2

b1

2
a b

s1

s2

d1

di-1

di

dk

s’i
s’’i s’’’i

Fig. 2. TriangInner

Exponential Time Algorithms for the Minimum Dominating Set Problem 155

• TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉). Let the end points of s̃1 and s̃2
be ordered ã1, b̃1, b̃2, ã2 around the circle. W.l.o.g. assume that fewer chords cross
the line ã1, ã2 than the line b̃1, b̃2. Now add a new scanline t̃ = 〈ã1, ã2〉 to S.
Call OuterParaCuts(S, t̃). Go around the circle from b̃1 to b̃2 (without passing
through ã1 and ã2). Every time one passes through an end point ei, i = 1, ..., k,
(where k is the number of chords that cross s̃1 and b̃1, b̃2) of a chord vi that
crosses s̃1, add the following scanlines to S:

– s̃′i = 〈ã1, d̃i〉 with d̃i being the scanpoint immediately following ei

– s̃′′i = 〈d̃i, d̃i−1〉 with d̃0 = b̃1
– s̃′′′i = 〈d̃i−1, d̃

′
i〉 with d̃′i being the scanpoint just before d̃i.

To triangulate the part of the polygon P delimited by s̃′′′i that does not intersect
any scanlines, execute OuterParaCuts(S, s̃′′′i). Finally, add the scanlines s̃3 =
〈d̃k, b̃2〉 and s̃4 = 〈b̃2, ã1〉 to S (see Fig. 2). Execute OuterParaCuts(S, s̃3).
• OuterParaCuts(S, s̃ = 〈ã, b̃〉). This procedure is similar to ParaCuts on
the outer polygon delimited by s̃. Call Ps̃ the polygon delimited by s̃ that does
not contain any scanlines. Create a new set of scanlines S′ = {s̃}. While S′ is
not a maximal (by inclusion) parallel set of scanlines for Ps̃, choose a chord v
in Ps̃ such that S′ remains parallel when calling ScanChord(S′, v). Call Scan-
Chord(S′, v). After that there is exactly one outer polygon in Ps̃, delimited
by a scanline t̃. Call TriangOuter(S′, t̃). For every inner polygon in Ps̃, call
TriangInner(S′, t̃1, t̃2) where t̃1 and t̃2 are the two scanlines delimiting this
polygon. Add the set of new scanlines S′ to S.

2. Analysis of the algorithm
In the main procedure, FirstCut, no scanlines are directly added to S.

Every time ScanChord is executed, one or three scanlines are added to S.
They form at most two triangles: c̃, d̃, d̃′ and c̃, d̃′, c̃′. Each of them intersects at
most Δ + 1 chords: v and the chords crossing v. Furthermore, at most Δ chords
cross s̃′ and s̃′′, precisely the chords that cross v.

In the procedure ParaCuts, no scanlines are directly added to S. Moreover,
when it calls the procedures TriangOuter and TriangInner, the set S is max-
imal parallel, which is a necessary condition for these procedures.

When TriangOuter is called, two conditions are always respected:

(i) S is maximal parallel by inclusion, and
(ii) at most 2Δ chords cross s̃.

The condition (i) implies that every chord that intersects Ps̃ crosses s̃. To-
gether with condition (ii) we obtain that at most 2Δ chords intersect Ps̃. So any
triangulation of Ps̃ produces triangles with weight at most 2Δ.

When TriangInner is called, three conditions are always respected:

(i) S is a maximal parallel set of scanlines, and
(ii) at most Δ chords cross one of the scanlines; suppose this is s̃2
(iii) at most 2Δ chords cross s̃1.

156 S. Gaspers, D. Kratsch, and M. Liedloff

There are at most 3Δ chords inside the quadrilateral ã1, b̃1, b̃2, ã2 since there is
no chord crossing both the lines ã1, ã2 and b̃1, b̃2 (because S is maximal parallel).
As fewer chords cross ã1, ã2 than b̃1, b̃2, at most 3/2Δ chords cross the new
scanline t̃ = 〈ã1, ã2〉. So, when we call OuterParaCuts(S, t̃) the condition that
t̃ intersects at most 2Δ chords is respected. For every end point ei of a chord
vi that crosses s̃1, we create two triangles: ã1, d̃i−1, d̃i and d̃i, d̃i−1, d̃

′
i. The first

triangle intersects at most 4Δ chords: at most 2Δ chords that cross s̃1 (but
neither vi nor vi−1), at most Δ chords that cross vi−1 and at most Δ chords
that cross vi. Moreover, there are at most 2Δ + 1 chords that intersect s̃′′i and
at most 2Δ chords intersect s̃′′′i . So, the weight of the triangle d̃i, d̃i−1, d̃

′
i is at

most 2Δ+1 and when we call OuterParaCuts(S, s̃′′′i) we respect the condition
that the second parameter of the procedure is a scanline that crosses at most
2Δ chords.

After adding the scanlines s̃3 and s̃4 we obtain two more triangles: ã1, d̃k, b̃2
and ã1, b̃2, ã2. The first one intersects at most 7/2Δ chords: at most 2Δ that
cross s̃1, at most Δ that cross vk and at most Δ that cross s̃2 of which we have
already counted 1/2Δ crossing s̃1. At most 5/2Δ chords intersect the triangle
ã1, b̃2, ã2: at most 2Δ that intersect s̃1 and at most Δ that intersect s̃2 of which
we have already counted 1/2Δ crossing s̃1. Moreover at most 2Δ chords cross
s̃3, so OuterParaCuts(S, s̃3) has valid parameters.

In the procedure OuterParaCuts, no scanlines are directly added to S. The
following condition is always respected:
(i) at most 2Δ chords cross s̃.
During this procedure, we consider only the polygon Ps̃. A new set of scanlines
S′ = {s̃} is created and is made maximal parallel by inclusion by calling Scan-
Chord. If {s̃} is already maximal parallel, then TriangOuter(S′, s̃) is called
and the two conditions of that procedure are respected. If other scanlines had to
be added to S′ to make it maximal parallel, the procedure TriangOuter(S′, t̃)
is called for the outer polygon where t̃ is a scanline intersecting at most Δ chords.
Moreover, the procedure TriangInner(S, t̃1, t̃2) is called for the inner polygons.
Every scanline delimiting the inner polygons intersects at most Δ chords, except
s̃ that can intersect up to 2Δ chords. So, we respect the condition for Triang-
Inner that one scanline intersects at most Δ chords and the other one at most
2Δ chords. Finally, S′ is added to S which does not create any new triangles.

We have provided a recursive algorithm to triangulate the polygon P and have
shown that the obtained triangulation does not contain triangles intersecting
more than 4Δ chords. Thus the corresponding tree-decomposition of G has width
at most 4Δ − 1.
�
Linear upper bounds for the treewidth in terms of the maximum degree seem to
have an immediate use in the design of treewidth based exact algorithms. Using
Theorem 6 we obtain an algorithm to compute a minimum dominating set for
circle graphs in time O(1.4956n). The algorithm DS-circle is simple and also
based on the algorithms of Theorem 3 and Theorem 1.

Theorem 6. Given a circle graph G = (V, E), algorithm DS-circle computes
a minimum dominating set of G in time O(1.4956n).

Exponential Time Algorithms for the Minimum Dominating Set Problem 157

Algorithm DS-circle(circle graph G = (V, E); circle model of G)
Input: A circle graph G and its circle model.
Output: The domination number γ(G) of G.

λ ← 0.2322
X ← ∅
Compute the treewidth tw(G) of G using theorem 4
while tw(G − X) ≥ λn do

X ← X ∪ {u} where u is a vertex of G − X of highest degree

if |X| ≥ λn/4 then
use the algorithm of Theorem 1 and return the result

else
use the algorithm of Theorem 3 and return the result

Proof. The algorithm constructs a vertex set X = {x1, x2, ..., xk} starting from
an empty set by adding maximum degree vertices of the remaining graph to the
set X until tw(G − X) < λn.
When the vertex xi is added to X = {x1, x2, ..., xi−1}, we have tw(G−X) ≥ λn.
The vertex xi ∈ V − X is of highest degree in G − X , i.e. d(xi) = Δ(G − X).
We have d(xi) > tw(G − X)/4 by Theorem 5. Now, d(xi) > λn/4 because
tw(G − X) ≥ λn. So, ∀xi ∈ X, d(xi) > λn/4.

In the case |X | ≥ λn/4, we have a subset X ⊆ V such that ∀v ∈ X, d(v) >
λn/4. So, according to Theorem 1, a minimum dominating set can be found in
time O(1.23032n−λn/4) = O(1.4956n).

In the other case, |X | < λn/4 and tw(G − X) < λn. As adding one vertex
to a graph increases its treewidth at most by one, tw(G) < λn + λn/4. Using
the algorithm of Theorem 3, a minimum dominating set is determined in time
O∗(4tw(G)) = O(4(5λ/4)n) = O(1.4956n).
�

5 Domination on Dense Graphs

It is known that problems like Independent Set, Hamiltonian Circuit and Hamil-
tonian Path remain NP-complete when restricted to graphs having a large num-
ber of edges [18]. An easy way to show that a graph problem remains NP-
complete for c-dense graphs, for any c with 0 < c < 1/2, is to construct the
graph G′ by adding a sufficiently large complete graph as new component to the
original graph G such that G′ is c-dense. It is not hard to show that the MDS
problem on c-dense graph is also NP-complete. A proof will be given in the full
version of this paper. In this section we present an exponential time algorithm
for MDS problem on c-dense graphs.

Definition 8. A graph G = (V, E) is said to be c-dense (or simply dense if
there is no ambiguity), if |E| ≥ cn2 where c is a constant with 0 < c < 1/2.

The main idea of our algorithm is to find a large subset of vertices of large
degree. Despite the approach of the previous sections, neither clique trees nor
tree decompositions will be used here.

158 S. Gaspers, D. Kratsch, and M. Liedloff

Lemma 3. For some fixed 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, any graph G = (V, E)

with |E| ≥ 1 +
(t − 1)(n − 1) + (n − t + 1)(t′ − 1)

2
has a subset T ⊆ V such that

(i) |T | ≥ t,
(ii) ∀v ∈ T , d(v) ≥ t′.

Proof. Let 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, and a graph G = (V, E) such that there
is no subset T with the previous properties. Then for any subset T ⊆ V of size
at least t, ∃v ∈ T such that d(v) < t′. Then a such graph can only have at most
k = k1+k2 edges where : k1 = (t−1)(n−1)/2 which corresponds to t−1 vertices
of degree n − 1 and k2 = (n − t + 1)(t′ − 1) which corresponds to n − (t − 1)
vertices of degree t′−1. Observe that if one of the n−(t−1) vertices has a degree
greater than t′ − 1 then the graph has a subset T with the required properties,
a contradiction.
�

Lemma 4. Every c-dense graph G = (V, E) has a set T ⊆ V fulfilling

(i) |T | ≥ n −
√

9 − 4n + 4n2 − 8cn2 − 3
2

,

(ii) ∀v ∈ T , d(v) ≥ n −
√

9 − 4n + 4n2 − 8cn2 + 1
2

.

Proof. We apply Lemma 3 with t′ = t−2. Since we have a dense graph, |E| ≥ cn2.
Using inequality 1 + ((t − 1)(n − 1) + (n − t + 1)(t − 3))/2 ≥ cn2 we obtain that
in a dense graph the value of t in Lemma 3 is such that n+ 3−√

9−4n+4n2−8cn2

2 ≤
t ≤ n ≤ n + 3+

√
9−4n+4n2−8cn2

2 .
�

Theorem 7. For any c with 0 < c < 1/2, there is a O(1.2303n(1+
√

1−2c)) time
algorithm to solve the MDS problem on c-dense graphs.

Proof. Combining Theorem 1 and Lemma 4 we obtain an algorithm for solving
the Minimum Dominating Set problem in time

1.23032n−(n−
√

9−4n+4n2−8cn2−3
2) = O(1.2303n(1+

√
1−2c)).
�

6 Conclusions

In this paper we presented several exponential time algorithms to solve the Min-
imum Dominating Set problem on graph classes for which this problem remains
NP-hard. All these algorithms are faster than the best known algorithm to solve
MDS on general graphs. We would like to mention that any faster algorithm for the
Minimum Set Cover problem, i.e. of running time O(α|U|+|S|) with α < 1.2303,
could immediately be used to speed up all our algorithms.

Besides classes of sparse graphs (see e.g. [7]) two more classes are of great
interest in this respect: split and bipartite graphs. For split graphs, combining
ideas of [10] and [8] one easily obtains an O(1.2303n) algorithm. Unfortunately,
despite our efforts we could not construct an exponential time algorithm to solve
MDS on bipartite graphs beating the best known algorithm for general graphs.

Exponential Time Algorithms for the Minimum Dominating Set Problem 159

References

1. Alber, J., H. L. Bodlaender, H. Fernau, T. Kloks and R. Niedermeier, Fixed pa-
rameter algorithms for dominating set and related problems on planar graphs,
Algorithmica 33, (2002), pp. 461–493.

2. Bertossi, A. A., Dominating sets for split and bipartite graphs., Inform. Process.
Lett. 19, (1984), pp. 37–40.

3. Blair, J. R. S. and B. W. Peyton, An introduction to chordal graphs and clique
trees, Graph theory and sparse matrix computation, IMA Vol. Math. Appl., vol. 56,
Springer, 1993, pp. 1–29.

4. Bodlaender, H. L. and D. M. Thilikos, Graphs with branchwidth at most three, J.
Algorithms 32, (1999), pp. 167–194.

5. Booth, K. S. and J. H. Johnson, Dominating sets in chordal graphs, SIAM J.
Comput. 11, (1982), pp. 191–199.

6. Brandstädt, A., V. Le, and J. P. Spinrad, Graph classes: A survey , SIAM Monogr.
Discrete Math. Appl., Philadelphia, 1999.

7. Fomin, F.V., and K. Høie, Pathwidth of cubic graphs and exact algorithms, Tech-
nical Report 298, Department of Informatics, University of Bergen, Norway, 2005.

8. Fomin, F.V., F. Grandoni, D. Kratsch, Measure and conquer: Domination - A case
study, Proceedings of ICALP 2005 , LNCS 3380, (2005), pp. 192–203.

9. Fomin, F.V., F. Grandoni, D. Kratsch, Some new techniques in design and analysis
of exact (exponential) algorithms, Bull. EATCS , 87, (2005), pp. 47–77.

10. Fomin, F.V., D. Kratsch, and G. J. Woeginger, Exact (exponential) algorithms
for the dominating set problem, Proceedings of WG 2004 , LNCS 3353, (2004),
pp. 245–256.

11. Golumbic, M. C., Algorithmic graph theory and perfect graphs, Academic Press,
New York, 1980.

12. Grandoni, F., A note on the complexity of minimum dominating set, J. Discrete
Algorithms, to appear.

13. Keil, J. M., The complexity of domination problems in circle graphs, Discrete Appl.
Math. 42, (1993), pp. 51–63.

14. Kloks, T., Treewidth. Computations and approximation, LNCS 842, Springer-
Verlag, Berlin, 1994.

15. Kloks, T., Treewidth of Circle Graphs, Internat. J. Found. Comput. Sci. 7, (1996)
pp. 111–120.

16. Randerath, B., and I. Schiermeyer, Exact algorithms for Minimum Dominating Set,
Technical Report zaik-469, Zentrum fur Angewandte Informatik, Köln, Germany,
2004.

17. Robertson, N. and P. D. Seymour, Graph Minors. II. Algorithmic Aspects of Tree-
Width, J. Algorithms 7, (1986), pp. 309–322.

18. Schiermeyer, I., Problems remaining NP-complete for sparse or dense graphs, Dis-
cuss. Math. Graph Theory 15, (1995), pp. 33–41.

19. Woeginger, G.J., Exact algorithms for NP-hard problems: A survey, Combinatorial
Optimization - Eureka, You Shrink! , LNCS 2570, (2003), pp. 185–207.

	Introduction
	Preliminaries
	Domination on Chordal Graphs
	Domination on Circle Graphs
	Domination on Dense Graphs
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

