Iterative Compression and Exact Algorithms

Fedor V. Fomin'*, Serge Gaspers', Dieter Kratsch?,
Mathieu Liedloff> and Saket Saurabh!

! Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.
{fomin|serge|saket}@ii.uib.no
2 Laboratoire d’Informatique Théorique et Appliquée,
Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France.
{kratsch|liedloff}Quniv-metz.fr

Abstract. Iterative Compression has recently led to a number of break-
throughs in parameterized complexity. The main purpose of this paper is
to show that iterative compression can also be used in the design of exact
exponential time algorithms. We exemplify our findings with algorithms
for the MAXIMUM INDEPENDENT SET problem, a counting version of
k-H1iTTING SET and the MAXIMUM INDUCED CLUSTER SUBGRAPH prob-
lem.

1 Introduction

Iterative Compression is a tool that has recently been used successfully in solving
a number of problems in the area of Parameterized Complexity. This technique
was first introduced by Reed et al. to solve the ODD CYCLE TRANSVERSAL
problem, where one is interested in finding a set of at most k vertices whose
deletion makes the graph bipartite [20]. Iterative compression was used in obtain-
ing faster FPT algorithms for FEEDBACK VERTEX SET, EDGE BIPARTIZATION
and CLUSTER VERTEX DELETION on undirected graphs [6, 12, 14]. Recently this
technique has led to an FPT algorithm for the DIRECTED FEEDBACK VERTEX
SET problem [4], one of the longest open problems in the area of parameterized
complexity.

The main idea behind iterative compression for parameterized algorithms is
an algorithm which, given a solution of size k41 for a problem, either compresses
it to a solution of size k or proves that there is no solution of size k. This is
known as the compression step of the algorithm. Based on this compression step,
iterative (and incremental) algorithms for minimization problems are obtained.
The most technical part of an FPT algorithm based on iterative compression is
to show that the compression step can be carried out in time f(k) -n°W) where
f is an arbitrary computable function, k is a parameter and n is the length of
the input.

The presence of a solution of size k + 1 can provide important structural
information about the problem. This is one of the reasons why the technique of

* Partially supported by the Research Council of Norway.

2 Fomin, Gaspers, Kratsch, Liedloff, and Saurabh

iterative compression has become so powerful. Structures are useful in designing
algorithms in most paradigms. By seeing so much success of iterative compression
in designing fixed parameter tractable algorithms, it is natural and tempting to
study its applicability in designing exact exponential time algorithms.

The goal of the design of moderately exponential time algorithms for NP-
complete problems is to establish algorithms for which the worst-case running
time is provably faster than the one of enumerating all prospective solutions, or
loosely speaking, algorithms better than brute-force enumeration. For example,
for NP-complete problems on graphs on n vertices and m edges whose solutions
are either subsets of vertices or edges, the brute-force or trivial algorithms basi-
cally enumerate all subsets of vertices or edges. This mostly leads to algorithms
of time complexity 2™ or 2", modulo some polynomial factors, based on whether
we are enumerating vertices or edges. Almost all the iterative compression based
FPT algorithms with parameter k have a factor of 21 in the running time, as
they all branch on all partitions (A, D) of a k+ 1 sized solution S and look for a
solution of size k with a restriction that it should contain all elements of A and
none of D. This is why, at first thought, iterative compression is a quite useless
technique for solving optimization problems because for k = §2(n), we end up
with an algorithm having a factor 2" or 2" in the worst-case running time, while
a running time of 2" or 2™ (up to a polynomial factor) often can be achieved by
(trivial) brute force enumeration. Luckily, our intuition here appears to be wrong
and with some additional arguments, iterative compression can become a useful
tool in the design of moderately exponential time algorithms as well. We find
it interesting because despite of several exceptions (like the works of Bjorklund
et al. [1,2,16]), the area of exact algorithms is heavily dominated by branching
algorithms, in particular, for subset problems. It is very often that an (incre-
mental) improvement in the running time of branching algorithm requires an
extensive case analysis, which becomes very technical and tedious. The analysis
of such algorithms can also be very complicated and even computer based.

The main advantage of iterative compression is that it provides combina-
torial algorithms based on problem structures. While the improvement in the
running time compared to (complicated) branching algorithms is not so impres-
sive, the simplicity and elegance of the arguments allow them to be used in a
basic algorithm course.

To our knowledge, this paper is the first attempt to use iterative compres-
sion outside the domain of FPT algorithms. We exemplify this approach by the
following results:

1. We show how to solve MAXIMUM INDEPENDENT SET for a graph on n ver-
tices in time O(1.3196™). While the running time of our iterative compression
algorithm is slower than the running times of modern branching algorithms
[10,21], this simple algorithm serves as an introductory example to more
complicated applications of the method.

2. We obtain algorithms counting the number of minimum hitting sets of a
family of sets of an n-element ground set in time O(1.7198"), when the
size of each set is at most 3 (#MINIMUM 3-HITTING SET). For #MINIMUM

Iterative Compression and Exact Algorithms 3

4-HITTING SET we obtain an algorithm of running time (O(1.8997™). For
MINIMUM 4-HITTING SET similar ideas lead to an algorithm of running time
O(1.8704™). These algorithms are faster than the best algorithms known for
these problems so far [9,19].

3. We provide an algorithm to solve the MAXIMUM INDUCED CLUSTER SUB-
GRAPH problem in time O(1.6181™). The only algorithm for this problem we
were aware of before is the use of a very complicated branching algorithm
of Wahlstrom [23] for solving 3-HITTING SET (let us note that MAXIMUM
INDUCED CLUSTER SUBCGRAPH is a special case of 3-HITTING SET, where
every subset is a set of vertices inducing a path of length 3), which results
in time O(1.6278™).

2 Maximum Independent Set

MAXIMUM INDEPENDENT SET (MIS) is one of the well studied problems in the
area of exact exponential time algorithms and many papers have been written on
this problem [10, 21, 22]. Tt is customary that if we develop a new method then
we first apply it to well known problems in the area. Here, as an introductory
example, we consider the NP-complete problem MIS.

MAXIMUM INDEPENDENT SET (MIS): Given a graph G = (V,E) on n
vertices, find a maximum independent set of G. An independent set of G
is a set of vertices I C V such that no two vertices of I are adjacent in G.
A mazimum independent set is an independent set of maximum size.

It is well-known that I is an independent set of a graph G iff V' \ I is a vertex
cover of G, i.e. every edge of G has at least one end point in V' \ I. Therefore
MiINIMUM VERTEX COVER (MVC) is the complement of MIS in the sense that
I is a maximum independent set of G iff V' \ I is a minimum vertex cover of
G. This fact implies that when designing exponential time algorithms we may
equivalently consider MVC. We proceed by defining a compression version of
the MVC problem.

CoMP-MVC: Given a graph G = (V, E) with a vertex cover S C V, find
a vertex cover of G of size at most |S| — 1 if one exists.

Note that if we can solve COMP-MVC efficiently then we can solve MVC ef-

ficiently by repeatedly applying an algorithm for CoMP-MVC as follows. Given a

graph G = (V, E) on n vertices with V' = {vy, va, ..., v }, let G; = G[{v1, va, ..., v; }]
and let C; be a minimum vertex cover of G;. By V; we denote the set {v1,va, ..., v; }.
We start with G; and put C; = (). Suppose that we already have computed C;

for the graph G; for some ¢ > 1. We form an instance of CoMpP-MVC with input

graph G;4+1 and S = C; U {v;11}. In this stage we either compress the solution

S which means that we find a vertex cover S’ of G;41 of size |S| — 1 and put

Ci11 =5, or (if there is no S’) we put C;41 = S.

Our algorithm is based on the following lemma.

4 Fomin, Gaspers, Kratsch, Liedloff, and Saurabh

Lemma 1. [x]3 Let Gi11 and S be given as above. If there exists a vertex cover
Cit1 of Gip1 of size |S| — 1, then it can be partitioned into two sets A and B
such that

(a) AC S, |A| <|S|—1 and A is a minimal vertex cover of G;41[S].

(b) B C (Vi41\A) is a minimum vertex cover of the bipartite graph Giy1[Vit1\A].

Lemma 1 implies that the following algorithm solves CoMP-MVC correctly.

Step 1: Enumerate all minimal vertex covers of size at most |\S| — 1 of G;41[5]
as a possible candidate for A.

Step 2: For each minimal vertex cover A find a minimum vertex cover B of the
bipartite graph G;11[Vi4+1\ 4] (via the computation of a maximum matching
in this bipartite graph [13]).

Step 3: If the algorithm finds a vertex cover AU B of size |S| — 1 in this way,
set Cip1 = AU B, else set 41 = S.

Steps 2 and 3 of the algorithm can be performed in polynomial time, and the
running time of Step 1, which is exponential, dominates the running time of
the algorithm. To enumerate all maximal independent sets or equivalently all
minimal vertex covers of a graph in Step 1, one can use the polynomial-delay
algorithm of Johnson et al. [15].

Proposition 1 ([15]). All mazimal independent sets of a graph can be enumer-
ated with polynomial delay.

For the running time analysis of the algorithm we need the following bounds on
the number of maximal independent sets or minimal vertex covers due to Moon
and Moser [17] and Byskov [3].

Proposition 2 ([17]). A graph on n vertices has at most 3"/3 mazimal inde-
pendent sets.

Proposition 3 ([3]). The mazimum number of mazimal independent sets of
size at most k in any graph on n vertices for k <n/3 is

Nin, k] = |n/k] (Ln/kJ-‘rl)k—n(Ln/kJ + 1)"—["/ka_
Moreover, all such sets can be enumerated in time O*(N[n, k]).*

Since

3(171/3 N 1— - OF 22n/5
e {0§122’§/4()’3/212%21(lom (a)n])} &),

3 Proofs of results labeled with [+] will appear in the long version of the paper.

4 Throughout this paper we use a modified big-Oh notation that suppresses all
polynomially bounded factors. For functions f and g we write f(n) = O*(g(n))
if f(n) = O(g(n)poly(n)), where poly(n) is a polynomial. Furthermore, since
c" - poly(n) = O((c + €)™) for any € > 0, we omit polynomial factors in the big-
Oh notation every time we round the base of the exponent.

Iterative Compression and Exact Algorithms 5

we have that by Propositions 1, 2, and 3, all minimal vertex covers of G;41[S5]
of size at most |S| — 1 can be listed in time O*(2%"/5) = O(1.3196™).

Thus, the overall running time of the algorithm solving ComMp-MVC is
O(1.3196™). Since the rounding of the base of the exponent dominates the poly-
nomial factor of the other steps of the iterative compression, we obtain the
following theorem.

Theorem 1. MAXIMUM INDEPENDENT SET and MINIMUM VERTEX COVER
can be solved in time O(1.3196™) on graphs of n vertices by a compression based
algorithm.

3 #k-Hitting Set

The HITTING SET problem is a generalization of VERTEX COVER. Here, given
a family of sets over a ground set of n elements, the objective is to hit every
set of the family with as few elements of the ground set as possible. We study
a version of the hitting set problem where every set in the family has at most k
elements.

MiINIMUM k-HITTING SET (MHSy): Given a universe V' of n elements
and a collection C of subsets of V' of size at most k, find a minimum hitting
set of C. A hitting set of C is a subset V/ C V such that every subset of C
contains at least one element of V',

A counting version of the problem is #MINIMUM k-HITTING SET (#MHS) that
asks for the number of different minimum hitting sets. We denote an instance of
#MHS, by (V,C). Furthermore we assume that for every v € V, there exists at
least one set in C containing it.

We show how to obtain an algorithm to solve #MHS}, using iterative com-
pression which uses an algorithm for #MHSy_; as a subroutine. First we define
the compression version of the #MHSy, problem.

CoMP-#k-HITTING SET: Given a universe V of n elements, a collection
C of subsets of V of size at most k, and a (not necessarily minimum)
hitting set H' C V of C, find a minimum hitting set H of C and compute
the number of all minimum hitting sets of C.

Lemma 2. Let O*(a}_,) be the running time of an algorithm solving #MHSy_1,
where ai_1 > 1 is some constant. Then COMP-#k-HITTING SET can be solved

n time VIl
* H' —|H'
O (2‘ |ak71) .

Moreover, if |H'| is greater than 2|V'|/3 and the minimum size of a hitting set
in C is at least |H'| — 1, then COMP-#k-HITTING SET can be solved in time

. |H'| V|~ |H'|
© <<2|H'|—|V| o)

6 Fomin, Gaspers, Kratsch, Liedloff, and Saurabh

Proof. To prove the lemma, we give an algorithm that, for each possible partition
(N,N) of H', computes a minimum hitting set Hy and the number hy of
minimum hitting sets subject to the constraint that these hitting sets contain
all the elements of N and none of the elements of N.

For every partition (N, N) of H', we either reject it as invalid or we reduce
the instance (V,C) to an instance (V’,C’) by applying the following two rules in
the given order.

(H) If there exists a set C; € C such that C; C N then we refer to such a
partition as inwvalid and reject it.

(R) For all sets C; with C; NN # @ put C = C \ C;. In other words, all sets of
C, which are already hit by N, are removed.

If the partition (N, N) of H' is not invalid based on rule (R) the instance
(V,C) can be reduced to the instance I' = (V',C’), where V' = V' \ H' and
C={XnNV'|XeCand X NN =0}

Summarizing, the instance I’ is obtained by removing all the elements of V
for which it has already been decided if they are part of Hy or not and all the
sets that are hit by the elements in N. To complete Hy, it is sufficient to find a
minimum hitting set of I’ and to count the number of minimum hitting sets of
I'. The crucial observation here is that I’ is an instance of #MHS;_;. Indeed,
H' is a hitting set of (V,C) and by removing it we decrease the size of every set
at least by one. Therefore, we can use an algorithm for #MHS;_; to complete
this step. When checking all partitions (N, N) of H' it is straightforward to keep
the accounting information necessary to compute a minimum hitting set H and
to count all minimum hitting sets.

Thus for every partition (N, N) of H’' the algorithm solving #MHS;,_; is
called for the instance I’. There are 2/’ partitions (N, N) of the vertex set H’.
For each such partition, the number of elements of the instance I’ is |[V'| = [V

H'| = |V|—|H'|. Thus, the running time of the algorithm is O* <2|H/‘a|k‘i|;‘H,|).
If |H'| > 2|V|/3 and the minimum size of a hitting set in C is at least |H'|—1,

then it is not necessary to check all partitions (N, N) of H' and in this case we
can speed up the algorithm. Indeed, since

— |H'| > |H| > |H'| - 1, and
— [H0(V\H)| < |V|-|H|,

it is sufficient to consider only those partitions (N, N) of H' such that
IN| > [H'| = 1= (V] - |H'|) =2|H'| - [V| - 1.
In this case, the running time of the algorithm is O* ((2‘H‘ﬂljlv‘)a‘,€v_lle,‘). O

Now we are ready to use iterative compression to prove the following theorem.

Iterative Compression and Exact Algorithms 7

Theorem 2. Suppose there exists an algorithm to solve #MHSy_1 in time
O*(ap_,), 1 < ar—1 < 2. Then #MHS}, can be solved in time

*] n—j
o (e (o20)4))

Proof. Let (V,C) be an instance of #MHSy, where V = {v1,vq, - ,v,}. For
i=12...,n,1let V; = {v1,v9,- ,v;} and C; = {X € C | X C V;}. Then
I; = (V;,C;) constitutes an instance for the it" stage of the iteration. We denote
by H; and h;, a minimum hitting set of an instance I; and the number of different
minimum hitting sets of I; respectively.

If {v1} € C, then H; = {v;} and hy = 1 ; otherwise H; =) and hy = 0.

Consider the i*" stage of the iteration. We have that |H; 1| < |H;| < |H;_1|+
1 because at least |H;_1| elements are needed to hit all the sets of I; except those
containing element v; and H;_1 U {v;} is a hitting set of I;. Now, use Lemma 2
with H' = H;_1U{v;} to compute a minimum hitting set of ;. If |H'| < 2i/3, its
running time is O* (maxogjgi/;g {Qja;;jl}) = O* (22i/3a;€/§1> (for ax—1 < 2).
If |H'| > 2i/3, the running time is O* (maXZi/3<]‘Si {(2j?;i)a§;:]i}). Since for
every fixed j > 2i/3, and 1 < i < n,

J i—j J n—j
<
<2j - i>ak_1 - <2j - n) -1y

the worst case running time of the algorithm is

2i/3 i/3 J —j
o (e { s 2% max { (5,7,)oict)

Finally, (2:/33) = 227/3 up to a polynomial factor, and thus the running time is

o (maX2n/3§j§n {(%{n) aZj})‘)

Based on the (0(1.2377™) algorithm for #MHS, [23], the worst-case running
time of the algorithm of Theorem 2 is obtained for 0.7049n < j < 0.7050n.

Corollary 1. #MHS3 can be solved in time O(1.7198™).

The same approach can be used design an algorithm for the optimization version
MHSy;, assuming that an algorithm for MHSj_; is available. Based on the
0(1.6278™) algorithm for MHS3 [23] this leads to an O(1.8704™) time algorithm
for solving MHS, (in that case, the maximum is obtained for 0.6824n < j <
0.6825n).

Corollary 2. MHS, can be solved in time O(1.8704™).

In the following theorem we provide an alternative approach to solve #MHSy.
This is a combination of brute force enumeration (for sufficiently large hitting
sets) with one application of the compression algorithm of Lemma 2. For large
values of aj_1, more precisely for ap_;, > 1.6553, this new approach gives faster
algorithms than the one obtained by Theorem 2.

8 Fomin, Gaspers, Kratsch, Liedloff, and Saurabh

k| #MHS, MHS;,
2|0(1.2377™) [23] |O(1.2108") [21]
3lo(1.7198™) O(1.6278") [23]
4|0(1.8997™) O(1.8704™)
5)0(1.9594™) 0(1.9489™)
6/0(1.9824™) O(1.9781™)
7|0(1.9920™) 0(1.9902")

Fig. 1. Running times of the algorithms for #MHS; and MHS.

Theorem 3. Suppose there exists an algorithm with running time O*(a}_,),
1 <ak_1 <2, solving #MHS;_1. Then #MHS} can be solved in time

. * n * an 'I’L an
0.5n§11§1§max{(’) ((an))’o (2 ay_1)}

Proof. First the algorithm tries all subsets of V' of size |an] and identifies those
that are a hitting set of I.

Now there are two cases. In the first case, there is no hitting set of this size.
Then the algorithm verifies all sets of larger size whether they are hitting sets
of I. It is straightforward to keep some accounting information to determine the
number of hitting sets of the smallest size found during this enumeration phase.

The running time of this phase is O* (Zn @)) o* ((1))-

i=|an|
In the second case, there exists a hitting set of size [an]. Then count all
minimum hitting sets using the compression algorithm of Lemma 2 with H'
being a hitting set of size |an| found by the enumeration phase. By Lemma 2,
this phase of the algorithm has running time O* (2‘1”@2 f”) a

The best running times of algorithms solving #MHS; and MHS;, are summa-
rized in Figure 1. For #MHS>4 and MHS> 5, we use the algorithm of Theorem 3.
Note that the MHSs problem is equivalent to MVC and MIS.

4 Maximum Induced Cluster Subgraph

Clustering objects according to given similarity or distance values is an impor-
tant problem in computational biology with diverse applications, e.g., in defining
families of orthologous genes, or in the analysis of microarray experiments [5,
8,11,14,18]. A graph theoretic formulation of the clustering problem is called
CLUSTER EDITING. To define this problem we need to introduce the notion of
a cluster graph . A graph is called a cluster graph if it is a disjoint union of
cliques. In the most common parameterized version of CLUSTER EDITING, given
an input graph G = (V, E) and a positive integer k, the question is whether the
input graph G can be transformed into a cluster graph by adding or deleting

Iterative Compression and Exact Algorithms 9

at most k edges in time f(k) - n®M), where f is an arbitrary computable func-
tion. This problem has been extensively studied in the realm of parameterized
complexity [5,8,11,18]. In this section, we study a vertex version of CLUSTER
EDITING. We study the following optimization version of the problem.

MAaXxIiMUM INDUCED CLUSTER SUBGRAPH (MICS): Given a graph G =
(V,E) on n vertices, find a maximum size subset C' C V such that G[C],
the subgraph of G induced by C, is a cluster graph.

Due to the following well-known observation, the MICS problem is also known
as MAXIMUM INDUCED Ps;-FREE SUBGRAPH.

Observation 1 A graph is a disjoint union of cliques if and only if it contains
no induced subgraph isomorphic to the graph Ps, the path on 3 vertices.

Clearly, C C V induces a cluster graph in G = (V, E) (that is G[C] is a disjoint
union of cliques of G) iff S = V' \ C hits all induced paths on 3 vertices of G.
Thus solving the MICS problem is equivalent to finding a minimum size set of
vertices whose removal produces a maximum induced cluster subgraph of G. By
Observation 1, this reduces to finding a minimum hitting set .S of the collection
of vertex sets of (induced) P3’s of G. Such a hitting set S is called a P3-HS.

As customary when using iterative compression, we first define a compression
version of the MICS problem.

CoMpP-MICS: Given a graph G = (V, E) on n vertices and a P3-HS
S CV, find a P3-HS of G of size at most |S| — 1 if one exists.

Lemma 3. CoMP-MICS can be solved in time O(1.6181™).

Proof. For the proof we distinguish two cases based on the size of S.

Case 1: If |S| < 2n/3 then the following algorithm which uses matching tech-
niques is applied.

Step 1: Enumerate all partitions of (N, N) of S.

Step 2: For each partition, compute a maximum set C' C V such that G[C] is
a cluster graph, subject to the constraints that N C C and NN C = 0, if
such a set C' exists.

In Step 2, we reduce the problem of finding a maximum sized C to the
problem of finding a maximum weight matching in an auxiliary bipartite graph.®
For completeness, we present the details of Step 2.

If G[N] contains an induced P3 then there is obviously no C' C V inducing a
cluster graph that respects the partition (N, V). We call such a partition invalid.

5 We recently learnt about the paper by Hiiffner et al. [14] where the authors obtain
among others an FPT algorithm for the vertex weighted version of CLUSTER VER-
TEX DELETION using iterative compression. In their compression step they use the
natural idea of reduction to weighted bipartite matching that we also established
independently.

10 Fomin, Gaspers, Kratsch, Liedloff, and Saurabh

Otherwise, G[N] is a cluster graph, and thus the goal is to find a maximum
size subset C’ of S = V' \ S such that G[C’ U N] is a cluster graph. Fortunately,
such a set C’ can be computed in polynomial time by reducing the problem to
finding a maximum weight matching in an auxiliary bipartite graph.

First we describe the construction of the bipartite graph. Consider the graph
G[N U S] and note that G[N] and G[S] are cluster graphs. Now the following
reduction rule is applied to the graph G[N U S].

(R) Remove every vertex b € S for which G[N U {b}] contains an induced Ps.

Clearly all vertices removed by (R) cannot belong to any C’ inducing a cluster
subgraph of G. Let S be the subset of vertices of S which are not removed by
(R). Hence the current graph is G[N U S]. Clearly G[S] is a cluster graph since
G[S] is one. Further, note that no vertex of S has neighbors in two different
maximal cliques of G[N] and if a vertex of $ has a neighbor in one maximal
clique of G[N] then it is adjacent to each vertex of this maximal clique. Thus,
every vertex in S has either no neighbor in N or it is adjacent to all the vertices
of exactly one maximal clique of G[N].

Now we are ready to define the auxiliary bipartite graph G’ = (A, B, E').
Let {C1,Ca,---,C.} be the maximal cliques of the cluster graph G[N]. Let
{C},Ch,--,C.} be the maximal cliques of the cluster graph G[S]. Let A =
{ai,a9,...,ar,a,d, ... a.} and B = {by,bs,...,bs}. Here, foralli € {1,... r},
each maximal clique C; of G[N] is represented by a; € A; and for all j €
{1,2,..., s}, each maximal clique C; of G|S] is represented by aj € A and by
bj € B.

Now there are two types of edges in G': a;b;, € E’ if there is a vertex u € Cj,
such that u has a neighbor in Cj, and ab; € E’ if there is a vertex u € C} such
that v has no neighbor in N. Finally we define the weights for both types of
eges in the bipartite graph G'. For an edge a;b; € E’, its weight w(a;by) is the
number of vertices in Cj, being adjacent to all vertices of the maximal clique C;.
For an edge a}b;, its weight w(a;b;) is the number of vertices in C; without any
neighbor in N.

This transformation is of interest due to the following claim that uses the

above notation.

Claim. [x] The maximum size of a subset C’ of S such that GINUC"] is a cluster
subgraph of the graph G* = G[N U 5] is equal to the maximum total weight of
a matching in the bipartite graph G' = (4, B, E').

Note that the construction of the bipartite graph G’, including the application
of (R) and the computation of a maximum weighted matching of G’ can be
performed in time O(n?®) [7]. Thus, the running time of the algorithm in Case
1 is the time needed to enumerate all subsets of S (whose size is bounded by
2n/3) and this time is O*(22"/3) = O(1.5875").

Case 2: If |S| > 2n/3 then the algorithm needs to find a P3-HS of G of size
|S| — 1, or show that none exists.

Iterative Compression and Exact Algorithms 11

The algorithm proceeds as in the first case. Note that at most n— |S| vertices
of V\S can be added to N. Therefore, the algorithm verifies only those partitions
(N, N) of S satisfying |N| > |S| —1— (n —|S|) = 2|S| —n — 1. In this second
case, the worst-case running time is obtained for 0.7236 < « < 0.7237, and it is

o* (2/221% { <(2aof‘1)n> }) = O(1.6181™). -

Now we are ready to prove the following theorem using iterative compression.
Theorem 4. MICS can be solved in time O(1.6181™) on a graph on n vertices.

Proof. Givenagraph G = (V, E) withV = {vy,...,v,}. Let G; = G[{v1,...,v;}]
and let C; be a maximum induced cluster subgraph of G;. Let S; = V; \ C;.
The algorithm starts with G, C; = {v;} and S; = (. At the i*" iteration of
the algorithm, 1 <14 < n, we maintain the invariant that we have at our disposal
C;_1 a maximum set inducing a cluster subgraph of G;_; and S;_; a minimum
P3-HS of G;_;. Note that S;_; U {v;} is a P3-HS of G; and that no P3-HS
of G; has size smaller than |S;_1|. Now use the algorithm of Lemma 3 to solve
CoMP-MICS on G; with S = S;_1 U{v;}. Then the worst-case running time is
attained at the n'" stage of the iteration and the run time is O(1.6181"). O

5 Conclusion

Iterative compression is a technique which is succesfully used in the design of
FPT algorithms. In this paper we show that this technique can also be used
to design exact exponential time algorithms. This suggests that it might be
used in other areas of algorithms as well. For example, how useful can iterative
compression be in the design of approximation algorithms?

Carrying over techniques from the design of FPT algorithms to the design
of exact exponential time algorithms and vice-versa is a natural and tempting
idea. A challenging question in this regard is whether Measure and Conquer, a
method that has been succesfully used to improve the time analysis of simple
exponential-time branching algorithms, can be adapted for the analysis of FPT
branching algorithms.

References

1. A. Bjorklund and T. Husfeldt, Inclusion—Exclusion Algorithms for Counting Set
Partitions, in the proceedings of FOCS’06, 575-582 (2006).

2. A. Bjorklund, T. Husfeldt, P. Kaski, and M. Koivisto, Fourier meets Mobius: Fast
Subset Convolution, in the proceedings of STOC’07, 67-74 (2007).

3. J. M. Byskov, Enumerating maximal independent sets with applications to graph
colouring, Oper. Res. Lett. 32(6), 547-556 (2004).

4. J. Chen, Y. Liu, S. Lu, I. Razgon, B. O’Sullivan, A Fixed-Parameter Algorithm
for the Directed Feedback Vertex Set Problem, in the proceedings of STOC’08,
177-186 (2008).

12

7.

8

10

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Fomin, Gaspers, Kratsch, Liedloff, and Saurabh

F. Dehne, M. A. Langston, X. Luo, S. Pitre, P. Shaw and Y. Zhang, The
Cluster Editing Problem: Implementations and Experiments, in the proceedings of
IWPEC’06, 13-24 (2006).

. F. Dehne, M. Fellows, M. Langston, F. Rosamond, and K. Stevens, An O(2°®)n?)

FPT algorithm for the undirected feedback vertex set problem, in the proceedings
of COCOON’05, 859-869 (2005).

J. Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency
for network flow problems, J. ACM 19(2), 248-264 (1972).

M. R. Fellows, M. A. Langston, F. A. Rosamond and P. Shaw, Efficient Parame-
terized Preprocessing for Cluster Editing, in the proceedings of FCT’07, 312-321
(2007).

H. Fernau, Parameterized Algorithms for Hitting Set: The Weighted Case, in the
proceedings of CIAC’06, 332-343 (2006).

F. V. Fomin, F. Grandoni, and D. Kratsch, Measure and conquer: A simple
0(2°2%8™) independent set algorithm, in the proceedings of SODA’06, 18-25
(2006).

J. Guo, A More Effective Linear Kernelization for Cluster Editing, in the proceed-
ings of ESCAPE’07, 36-47 (2007).

J. Guo, J. Gramm, F. Hiiffner, R. Niedermeier, and S. Wernicke. Compression-
based fixed-parameter algorithms for feedback vertex set and edge bipartization,
J. Comput. Syst. Sci. 72(8), 1386-1396 (2006).

J. E. Hopcroft and R.M. Karp, An n®? algorithm for maximum matching in
bipartite graphs, SIAM J. Computing 2(4), 225-231 (1973).

F. Hiiffner, C. Komusiewicz, H. Moser, and R. Niedermeier, Fixed-parameter algo-
rithms for cluster vertex deletion, in the proceedings of LATIN’08, 711-722 (2008).
D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis, On Generating All Max-
imal Independent Sets, Inf. Process. Lett. 27(3), 119-123 (1988).

M. Koivisto, An O(2") Algorithm for Graph Colouring and Other Partitioning
Problems via Inclusion-Exclusion, in the proceedings of FOCS’06, 583-590 (2006).
J. W. Moon and L. Moser, On Cliques in Graphs, Israel J. Mathematics 3, 23—28
(1965).

S. Rahmann , T. Wittkop , J. Baumbach , M. Martin , A. Trub and S. Bocker,
Exact and Heuristic Algorithms for Weighted Cluster Editing, in the proceedings
of Comput. Syst. Bioinformatics Conference’07, 6 (1), 391-401(2007).

V. Raman , S. Saurabh, and S. Sikdar, Efficient Exact Algorithms through Enu-
merating Maximal Independent Sets and Other Techniques, Theory Comput. Syst.
41(3), 1432-4350 (2007).

B. A. Reed, K. Smith, and A. Vetta, Finding odd cycle transversals, Oper. Res.
Lett. 32 (4), 299-301 (2004).

J. M. Robson, Algorithms for maximum independent sets, J. Algorithms 7, 425-440
(1986).

R. Tarjan and A. Trojanowski, Finding a maximum independent set, STAM J.
Computing 6(3), 537-546 (1977).

M. Wahlstrom, Algorithms, measures and upper bounds for satisfiability and re-
lated problems, PhD thesis, Linkoping University, Sweden, (2007).

