
A UNIVERSALLY FASTEST ALGORITHM FOR MAX 2-SAT,

MAX 2-CSP, AND EVERYTHING IN BETWEEN†

SERGE GASPERS AND GREGORY B. SORKIN

Abstract. In this paper we introduce “hybrid” Max 2-CSP formulas consisting of “simple clauses”,
namely conjunctions and disjunctions of pairs of variables, and general 2-variable clauses, which can
be any integer-valued functions of pairs of boolean variables. This allows an algorithm to use both
efficient reductions specific to AND and OR clauses, and other powerful reductions that require
the general CSP setting. We use new reductions introduced here, and recent reductions such as
“clause-learning” and “2-reductions” generalized to our setting’s mixture of simple and general
clauses. We parametrize a hybrid instance by the fraction p of non-simple clauses.

We give an exact, exponential-time but polynomial-space algorithm that is the fastest known
for p = 0, which includes the well-studied Max 2-Sat problem but also instances with arbitrary
mixtures of AND and OR clauses; for an m-clause instance it runs in time O?(2m/6.321). The same

algorithm is tied for fastest for general Max 2-CSP (p = 1), with running time O?(2m/5.263). The
algorithm is the only one to treat mixtures of AND, OR, and general integer-valued clauses more
efficiently than the general case, with intermediate running time bounds depending on the value
of p. Since even a pure Max 2-Sat input instance may be transformed to a hybrid instance in the
course of solving it, the algorithm’s efficiency and generality go hand in hand.

Our algorithm analysis and optimization use the familiar measure-and-conquer approach, but
in a variation resulting in mathematical programs that are convex rather than quasi-convex, and
can be solved efficiently and with a certificate of optimality. We produce a family of running-time
upper-bound formulas, each optimized for instances with a particular value of p but valid for all
instances.

Contents

1. Introduction 2
2. Definitions 5
3. Algorithm and outline of the analysis 6
4. Some initial constraints 11
5. Simplification rules and their weight constraints 12
6. Some useful tools 16
7. Splitting reductions and preference order 20
8. Cubic instances 21
9. Instances of degree 4 25
10. Instances of degree 5 28
11. Instances of degree 6 31
12. Tuning the bounds 32
13. Conclusions 32
Acknowledgment 33
References 33
Appendix: Convex Program for Computing the Optimal Weights 35

Date: January 2011.
† The research was done largely during Serge Gaspers’ visit to IBM Research in July–September 2007, and Gregory

Sorkin’s visit to the University of Bergen in April 2008, both with support from the Norwegian Research Council.
Serge Gaspers was affiliated with the University of Bergen at that time and Gregory Sorkin with IBM Research.
A preliminary version of this paper appeared in the proceedings of SODA 2009 [GS09].

1

1. Introduction

1.1. Treatment of “hybrid” Sat–CSP formulas. We show a polynomial-space algorithm that
solves general instances of integer-valued Max 2-CSP (formally defined in Section 2), but that takes
advantage of “simple” clauses, namely unit-weighted conjunctions and disjunctions, to reduce the
running time. In a sense made precise near Remark 6, exclusive-or is the only boolean function we
cannot treat efficiently.

Let us give a simple example. In the Max 2-CSP instance

(1) (x1 ∨ x2) + (x2 ∨ x4) + (x2 ∧ x3) + 3 · (x1 ∨ x3) + (2 · (x2)− 5 · x4 + (x2 ⊕ x4)),
the first two clauses are unit-weighted disjunctive clauses, the third clause is a unit-weighted con-
junction, the fourth clause is a disjunction with weight 3, and the last clause is a general integer-
valued CSP clause (any integer-valued 2-by-2 truth table). Thus this example has 3 simple clauses
(the first three) and 2 non-simple clauses (the last two), for a fraction of non-simple clauses of
p = 2/5. Both Max 2-Sat and Max 2-CSP have been extensively studied from the algorithmic
point of view. For variable-exponential running times, the only two known algorithms faster than
2n for Max 2-CSP (and Max 2-Sat) are those by Williams [Wil05] and Koivisto [Koi06], both with

running time O?
(
2n/1.262

)
. They employ beautiful ideas, but have exponential space complexity.

For clause-exponential running times, there has been a long series of improved algorithms; see
Table 1. To solve Max 2-Sat, all early algorithms treated pure 2-Sat formulas. By using more
powerful reductions closed over Max 2-CSP but not Max 2-Sat, the Max 2-CSP generalization of
Scott and Sorkin [SS04] led to a faster algorithm. Then, several new Max 2-Sat specific reductions
once again gave the edge to algorithms addressing Max 2-Sat instances particularly.

In this paper we get the best of both worlds by using reductions specific to Max 2-Sat (actually,
we allow conjunctive as well as disjunctive clauses), but also using CSP reductions. While it is
likely that Max 2-Sat algorithms will become still faster, we believe that further improvements will
continue to use this method of combination.

1.2. Results. Let p be the fraction of non-simple clauses in the initial instance, no matter how this
fraction changes during the execution of the algorithm. In example (1), p = 2/5. The algorithm
we present here is the fastest known polynomial-space algorithm for p = 0 (including Max 2-Sat

Running Time Problem Space Reference

O?
(
2m/2.879

)
Max 2-Sat polynomial Niedermeier and Rossmanith [NR00]

O?
(
2m/3.448

)
Max 2-Sat polynomial implicit by Bansal and Raman [BR99]

O?
(
2m/4

)
Max 2-Sat polynomial Hirsch [Hir00]

O?
(
2m/5

)
Max 2-Sat polynomial Gramm et al. [GHNR03]

O?
(
2m/5

)
Max 2-CSP polynomial Scott and Sorkin [SS03]

O?
(
2m/5.263

)
Max 2-CSP polynomial Scott and Sorkin [SS04]

O?
(
2m/5.217

)
Max 2-Sat polynomial Kneis and Rossmanith [KR05]

O?
(
2m/5.769

)
Max 2-Sat exponential Kneis et al. [KMRR05]

O?
(
2m/5.5

)
Max 2-Sat polynomial Kojenikov and Kulikov [KK06]

O?
(
2m/5.769

)
Max 2-CSP exponential Scott and Sorkin [SS07a]

O?
(
2m/5.88

)
Max 2-Sat polynomial Kulikov and Kutzkov [KK07]

O?
(
2m/6.215

)
Max 2-Sat polynomial Raible and Fernau [RF08]

O?
(
2m/5.263

)
Max 2-CSP polynomial this paper

O?
(
2m/6.321

)
Max 2-Sat polynomial this paper

Table 1. A historical overview of algorithms for Max 2-Sat and Max 2-CSP

2

but also instances with arbitrary mixtures of AND and OR clauses); fastest for 0 < p < 0.29
(where indeed no other algorithm is known, short of solving the instance as a case of general Max
2-CSP); and tied for fastest for 0.29 ≤ p ≤ 1, notably for Max 2-CSP itself. For the well-known
classes Max 2-Sat and Max 2-CSP, our algorithm has polynomial space complexity and running
time O?

(
2m/6.321

)
and O?

(
2m/5.263

)
, respectively.

For “cubic” instances, where each variable appears in at most three 2-variable clauses, our
analysis gives running-time bounds that match and generalize the best known when p = 0 (including
Max 2-Sat); improve on the best known when 0 < p < 1/2; and match the best known for
1/2 ≤ p ≤ 1 (including Max 2-CSP).

We derive running-time bounds that are optimized to the fraction p of non-simple clauses; see
Table 2. Every such bound is valid for every formula, but the bound derived for one value of p may
not be the best possible for a formula with a different value.

1.3. Method of analysis, and hybrid Sat–CSP formulas. Since a fair amount of machinery
will have to be introduced before we can fully explain our analysis, let us first give a simplified
overview of the method, including some new aspects of it in our application. Our algorithm reduces
an instance to one or more smaller instances, which are solved recursively to yield a solution to
the original instance. We view a Max 2-CSP instance as a constraint graph G = (V,E ∪ H)
where vertices represent variables, the set of “light” edges E represents simple clauses and the set
of “heavy” edges H represents general clauses. The reductions are usually local and change the
constraint graph’s structure, and a related measure, in a predictable way.

For example, ifG has two degree-4 vertices sharing two simple clauses, a “parallel-edge” reduction
replaces the two simple clauses with one general clause, changing the vertices’ degrees from 4 to 3,
giving a new constraint graph G′. With the measure µ including weights we and wh for each simple
and general clause (mnemonically, the subscripts refer to “edges” and “heavy” edges), and weights
w3 and w4 for each vertex of degree 3 and 4, this reduction changes an instance’s measure by
µ(G′)− µ(G) = −2we + wh − 2w4 + 2w3. An inductive proof of a running-time bound O?

(
2µ(G)

)
will follow if the measure change is non-positive. Thus, we constrain that

−2we + wh − 2w4 + 2w3 ≤ 0.

An algorithm requires a set of reductions covering all instances: there must always be some
applicable reduction. Just as above, each reduction imposes a constraint on the weights. One
reduction’s constraint can weaken those of other reductions, by limiting the cases in which they
are applied. For example, if we prioritize parallel-edge reduction, given as an example above
(generalized to all degrees), we may assume that other reductions act on graphs without parallel
edges. More usefully, “cut” reductions will allow us to assume that a graph has no small vertex
cuts. Reductions like this producing a single instance, or any number of isomorphic instances,
yield linear constraints (as in [SS03, SS04, SS07a]); reductions producing distinct instances yield
nonlinear, convex constraints.

If a set of weights giving a measure µ satisfies all the constraints, the analysis results in a proof
of a running-time bound O?

(
2µ(G)

)
for an input instance G. To get the best possible running-time

bound subject to the constraints, we wish to minimize µ(G). To avoid looking at the full degree
spectrum of G, we constrain each vertex weight wd to be non-positive, and then ignore these terms,
resulting in a (possibly pessimistic) running-time bound O?

(
2|E|we+|H|wh

)
.

If G is a Max 2-Sat instance, to minimize the running-time bound is simply to minimize we
subject to the constraints: as there are no heavy edges in the input instance, it makes no difference
if wh is large. This optimization will yield a small value of we and a large wh. Symmetrically, if
we are treating a general Max 2-CSP instance, where all edges are heavy, we need only minimize
wh. This optimization will yield weights we, wh that are larger than the Max 2-Sat value of we but
smaller than its wh. For a hybrid instance with some edges of each type, minimizing |E|we+ |H|wh

3

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

p

Figure 1. Plot of we (solid), wh (dashed), and the running-time exponent (1 −
p)we + pwh (dotted) versus the fraction p of non–simple 2-clauses. The three values
are equal (and exactly 0.19) for p > 0.29. Both we and wh appear to be piecewise
constant: the resolution of the graph is in p increments of 0.0001, and all the small
changes are meaningful.

is equivalent to minimizing (1−p)we+pwh, where p = |H|/(|E|+ |H|) is the fraction of non-simple
clauses. This will result in weights we and wh each lying between the extremes given by the pure
2-Sat and pure CSP cases; see Figure 1.

Thus, a new aspect of our approach is that it results in a family of nonlinear programs (NLPs),
not just one: the NLPs differ in their objective functions, which are tuned to the fraction p of
non-simple clauses in an input instance. The optimization done for a particular value of p, by
construction, gives a running-time bound that is the best possible (within our methods) for an
input instance with this fraction of non-simple clauses, but (because the constraints are the same
in all the NLPs) that is valid for all instances; see the caption of Table 2.

1.4. Novel aspects of the analysis. Our introduction of the notion of hybrids between Max
2-Sat and Max 2-CSP, discussed above, is the main distinguishing feature of the present work.
It yields a more general algorithm, applicable to CSP instances not just Sat instances, and gives
better performance on Max 2-Sat by allowing both efficient Sat-specific reductions and powerful
reductions that go outside that class. (The use of specific as well as general reductions distinguishes
the hybrid approach from the ancient mathematical approach of working in a larger domain, and
specifically from the work of Beigel and Eppstein for 3-coloring [BE05], and that of Scott and

4

Sorkin noted earlier.) This is surely not the final word on Max 2-Sat algorithms, but we expect
new algorithms to take advantage of the hybrid approach.

A secondary point is that CSP reductions such as combining parallel edges or reducing on small
cuts mean that in other cases it can be assumed that a graph has no parallel edges or small cuts.
This potentially decreases the running-time bound (by weakening the corresponding constraints),
and simplifies the case analysis, counter-balancing the complications of considering two types of
edges.

Our analysis uses a now-common method, but with some novel aspects. Specifically, we analyze
a reduction-based algorithm with a potential-function method akin to the measures used by [Kul97,
Kul99], the quasi-convex analysis of [Epp06], the “measure and conquer” approach of [FGK09], the
(dual to the) linear programming approach of [SS07a], and much older potential-function analyses
in mathematics and physics. The goal is to solve a NLP giving a set of weights which minimizes
a running-time bound, while respecting constraints imposed by the reductions. The hybrid view
marks one change to this approach, since, as already discussed, it means that the objective function
depends on the fraction of non-simple clauses, so there is a continuum of NLPs, not just one.

Our nonlinear programs are convex (those of [Epp06] are only quasi-convex), allowing them to
be solved quickly and with certificates of optimality.

Also, it is common to make some assumptions about the weights, but we try to avoid this,
instead only limiting the weights by the constraints necessitated by each reduction. This avoids
unnecessary assumptions compromising optimality of the result, which is especially important in
the hybrid realm where an assumption might be justified for Sat but not for CSP, or vice-versa. It
also makes the analysis more transparent.

As is often the case with exact algorithms, regularity of an instance is important, and in our
analysis we treat this with explicit weights penalizing regularity (motivated by a similar accounting
for the number of 2-edges in a hypergraph in [Wah04], and the “forced moves” in [SS07a]). This
introduces some extra bookkeeping but results in a more structured, more verifiable analysis.

We introduce several new reductions, including a 2-reduction combining ideas from [KK06] (for
the Sat case) and [SS07a] (the CSP case), a “super 2-reduction”, and a generalization of the
“clause-learning” from [KK07].

2. Definitions

We use the value 1 to indicate Boolean “true”, and 0 “false”. The canonical problem Max Sat
is, given a boolean formula in conjunctive normal form (CNF), to find a boolean assignment to the
variables of this formula satisfying a maximum number of clauses. Max 2-Sat is Max Sat restricted
to instances in which each clause contains at most 2 literals.

We will consider a class more general than Max 2-Sat, namely integer-valued Max (2,2)-CSP;
we will generally abbreviate this to Max 2-CSP. An instance (G,S) of Max 2-CSP is defined by
a constraint graph (or multigraph) G = (V,E) and a set S of score functions. There is a dyadic
score function se : {0, 1}2 → Z for each edge e ∈ E, a monadic score function sv : {0, 1} → Z for
each vertex v ∈ V , and (for bookkeeping convenience) a single niladic score “function” (really a
constant) s∅ : {0, 1}0 → Z.

A candidate solution is a function φ : V → {0, 1} assigning values to the vertices, and its score is

s(φ) :=
∑
uv∈E

suv(φ(u), φ(v)) +
∑
v∈V

sv(φ(v)) + s∅.

An optimal solution φ is one which maximizes s(φ).
The algorithm we present here solves any instance of Max 2-CSP with polynomial space usage,

but runs faster for instances having a large proportion of “simple” clauses, namely conjunctions
and disjunctions.

5

A hybrid instance F = (V,E,H, S) is defined by its variables or vertices V , normal or light edges
E representing conjunctive clauses and disjunctive clauses, heavy edges H representing arbitrary
(integer-valued) clauses, and a set S of monadic functions and dyadic functions. Its light-and-
heavy-edged constraint graph is G = (V,E,H), though generally we will just think of the graph
(V,E∪H); no confusion should arise. We will write V (F) and V (G) for the vertex set of an instance
F or equivalently that of its constraint graph G.

In a graph G, we define the (open) neighborhood of a vertex u as N(u) := {v : uv ∈ E ∪H}\{u}
(excluding u will not matter once we simplify our graphs and make them loopless), and the closed
neighborhood as N [u] := N(u) ∪ {u}. Generalizing, a set of vertices, U , has (open) neighborhood
N(U) =

(⋃
u∈U N(u)

)
\ U , and (open) second neighborhood N2(U) = N(N(U)) \ U . For a single

vertex u, define N2(u) := N2({u}). By definition, U , N(U), and N2(U) are disjoint.
We define the degree deg(u) of a vertex u to be the number of edges incident on u where loops

are counted twice, and the degree (or maximum degree) of a formula F (or its constraint graph G)
to be the maximum of its vertex degrees. Without loss of generality we will assume that there
is at most one score function for each vertex, though we will allow multiple edges. Then, up to
constant factors the space required to specify an instance F with constraint graph G = (V,E,H)
is the instance size

|F | = 1 + |V |+ |E|+ |H|.(2)

We use the symbol � to end the description of a reduction rule or the analysis of a case, and
2 to end a proof.

3. Algorithm and outline of the analysis

We will show an algorithm (sketched as Algorithm 1) which, on input of a hybrid instance F ,

returns an optimal coloring φ of F ’s vertices in time O?
(
2we|E|+wh|H|

)
, which is to say in time

T (F) ≤ poly(|F |)2we|E|+wh|H|(3)

for some polynomial poly(·).

3.1. Algorithm and general arguments. The algorithm is recursive: on input of an instance F ,
in time polynomial in the instance size |F |, F is reduced to a single instance F ′ (a simplification) or
to several instances F1, . . . , Fk (a splitting), each of smaller size; the algorithm solves the reduced
instance(s) recursively; and, again in time poly(|F |), the algorithm constructs an optimal solution
to F from the solutions of the reduced instances.

The central argument (corresponding to the analysis for line 13 of Algorithm 1) is to establish
(3) for simplified formulas of maximum degree at most 6. We do this shortly, in Lemma 1, with
the bulk of the paper devoted to verifying the lemma’s hypotheses.

Given Lemma 1, we then establish a similar running-time bound for instances F of degree at
most 6 which are not simplified, that is, instances to which we may apply one or more of the
simplifications of Procedure 2 (the analysis referred to by line 8 in Algorithm 1), and for instances
of arbitrary degree (the argument alluded to in line 5 of Algorithm 1).

3.2. Central argument. The main argument is to establish (3) for simplified formulas of maxi-
mum degree at most 6. We will prove that

T (F) = O(|F |k2µ(F)),(4)

which suffices if (as we will ensure) for some constant C and every simplified instance F of degree
at most 6, the measure µ(F) satisfies

µ(F) ≤ we|E|+ wh|H|+ C.(5)

6

Algorithm 1 Outline of algorithm and analysis

1: Input: A hybrid Max 2-Sat / 2-CSP instance F .
2: Output: An optimal coloring φ of the vertices of F .
3: if F has any vertex v of degree ≥ 7 then
4: Split on φ(v) = 0 and φ(v) = 1 to obtain F1, F2, recursively solve the instances F1 and F2

and return the best assignment for F .
5: (Analysis: Inductively establish running time, using that both F1 and F2 have at least 7

edges fewer than F .)
6: end if
7: Simplify F . (See Procedure 2.)
8: (Analysis: Establish running-time bound for general instances, using a bound for simplified

instances.)
9: if F is nonempty then

10: Apply first applicable splitting reduction, obtaining F1, . . . , Fk.
11: Simplify each of F1, . . . , Fk.
12: Recursively solve F1, . . . , Fk and return the best assignment for F .
13: (Analysis: Inductively establish running-time bound for simplified instances of maximum

degree ≤ 6, using
∑k

i=1 2µ(Fi) ≤ 2µ(F).)
14: end if

Procedure 2 Simplification procedure

1: Input: A hybrid instance F
2: while Any of the following simplification rules is applicable do
3: Apply the first applicable simplification: combine parallel edges; remove loops; 0-reduction;

delete a small component; delete a decomposable edge; half-edge reduction; 1-reduction;
1-cut; 2-reduction; 2-cut.

4: end while
5: Return the resulting simplified instance.

In the following lemma’s application, the class F will consist of simplified hybrid formulas of
degree at most 6.

Lemma 1 (Main Lemma). For a family F of formulas, suppose there exists an algorithm A and a
constant c ≥ 1, such that on input of any instance F ∈ F , A either solves F directly in time O(1),
or decomposes F into instances F1, . . . , Fk ∈ F , solves these recursively, and inverts their solutions
to solve F , using time O(|F |c) for the decomposition and inversion (but not the recursive solves).
Further suppose that for a given measure µ,

(∀F ∈ F) µ(F) ≥ 0,(6)

and, for any decomposition done by algorithm A,

(∀i) |Fi| ≤ |F | − 1, and(7)

2µ(F1) + · · ·+ 2µ(Fk) ≤ 2µ(F).(8)

Then A solves any instance F ∈ F in time O(|F |c+1)2µ(F).
7

We will often work with the equivalent to (8), that

k∑
i=1

2µ(Fi)−µ(F) ≤ 1.(8′)

Proof. The result follows easily by induction on |F |. Without loss of generality, we may replace the
hypotheses’ O statements with simple inequalities (substitute a sufficiently large leading constant,
which then appears everywhere and has no relevance), and likewise for the base case assume that
we can return the solution ∅ to an empty instance in time 1. If an instance F is solved in time 1,
then T (F) = 1 ≤ |F |c+12µ(F). Otherwise, where T (F) denotes the time taken to solve an instance,

T (F) ≤ |F |c +
∑k

j=1 T (Fi) (by hypothesis)

≤ |F |c +
∑
|Fi|c+12µ(Fi) (by the inductive hypothesis)

≤ |F |c + (|F | − 1)c+1∑ 2µ(Fi) (by hypothesis (7))

≤ |F |c + (|F | − 1)c+12µ(F) (by hypothesis (8))

≤ |F |c+12µ(F).

The final inequality uses that µ(F) ≥ 0 and holds for any c ≥ 1. �

The main work of the paper will be to find a set of decompositions and a measure µ such that the
decompositions satisfy inequality (7), µ satisfies inequality (6), and (more interestingly) µ satisfies
inequality (5) for some small values of we and wh, and finally, for every decomposition, µ satisfies
inequality (8).

3.3. Measure. For an instance F of (maximum) degree at most 6, we define a measure µ(F) as a
sum of weights associated with light edges, heavy edges, and vertices of various degrees (at most 6),
and constants associated with the maximum degree d of F and whether F is regular (for all the
degree criteria treating light and heavy edges alike):

µ(F) := ν(F) + δ(F), with(9)

ν(F) := |E|we + |H|wh +
∑
v∈V

wdeg(v),(10)

δ(F) :=
6∑
d=4

χ(maxdeg(G) ≥ d)Cd +
6∑
d=4

χ(G is d-regular)Rd.(11)

Here χ(·) is the indicator function: 1 if its argument is true, 0 otherwise.
To satisfy condition (5) it is sufficient that

(∀d) wd ≤ 0;(12)

this is also necessary for large regular instances. Since we are now only considering instances of
degree ≤ 6, we interpret “∀d” to mean for all d ∈ {0, 1, . . . , 6}.

3.4. Peripheral arguments. We first dispense with non-simplified instances.

Lemma 2. Suppose that every simplified Max 2-CSP instance F of degree at most D ≤ 6 can be
solved in time poly1(|F |)2µ(F). Suppose also that

(1) simplifying F (or determining that F is already simplified) takes time at most poly2(|F |),
(2) any instance F ′ obtained from simplifying F satisfies |F ′| ≤ |F | − 1 and µ(F ′) ≤ µ(F) +C ′

for some positive constant C ′, and
(3) the simplification can be reversed in time at most poly2(|F |) to recover an optimal solution

to F from any optimal solution of F ′.
8

Then any instance F of degree at most D can be solved in time poly(|F |)2µ(F), with poly(x) :=

poly2(x) + 2C
′
poly1(x).

Proof. Since simplifying reduces the instance size, a solution to the original instance F can be
obtained in time

T (F) ≤ poly2(|F |) + T (F ′)

≤ poly2(|F |) + poly1(|F ′|)2µ(F
′)

≤ poly2(|F |) + poly1(|F |)2µ(F)+C′

≤
(

poly2(|F |) + 2C
′
poly1(|F |)

)
2µ(F)

= poly(|F |)2µ(F).

�

The lemma’s hypotheses (1) and (3) will be satisfied by construction. Hypothesis (2) is assured
if we constrain that, for each simplification rule taking F to F ′,

ν(F ′) ≤ ν(F),(13)

since by transitivity the same inequality then holds for any sequence of simplifications starting with
F and ending with a simplified instance F ′, and the desired inequality µ(F ′) = ν(F)+δ(F)−δ(F ′) ≤
ν(F) + C ′ follows by boundedness of δ and choosing C ′ sufficiently large.

Finally, we dispense with instances of high degree, the argument alluded to in line 5 of Algo-
rithm 1.

Lemma 3. Suppose that every Max 2-CSP instance F of degree at most 6 can be solved in time
O(|F |k12we|E|+wh|H|), with we, wh ≥ 1/7. Then for some sufficiently large k, every instance F can

be solved in time O(|F |k2we|E|+wh|H|).

Proof. As in the proof of Lemma 1, without loss of generality we may replace the O statement in
the hypothesis with a simple inequality. If F has any vertex v of degree at least 7, we will set φ(v)
to 0 and 1 to generate instances F0 and F1 respectively, solve them recursively, and note that the
solution to F is that of the better of F0 and F1, extended with the corresponding value for φ(v).
We may assume that the splitting and its reversal together take time at most |F |k2 .

Ensure that k ≥ k1 is large enough that for all x ≥ 2, xk2 ≤ xk − (x − 1)k, and note that the
hypothesis remains true replacing k1 with k.

The proof is by induction on F . If F has no vertex of degree at least 7 then we are already done.
Otherwise reduce F to F1 and F2, each having at least 7 fewer (light and/or heavy) edges than F .
By induction we may assume the bound for T (F1) and T (F2), so

T (F) ≤ |F |k2 + 2(|F | − 1)k2we|E|+wh|H|−7·1/7

= |F |k2 + (|F | − 1)k2we|E|+wh|H|

≤ |F |k2we|E|+wh|H|.

The worst case for the last inequality is when we|E| + wh|H| = 0 (it is nonnegative), and in that
case the inequality follows by the construction of k. �

3.5. Optimizing the measure. The task of the rest of the paper is to produce the comprehensive
set of reductions hypothesized by Lemma 1 (to any formula there should be some reduction we can
apply) and a measure µ, satisfying the hypotheses, with we as small as possible. (More generally,
if there are m(1 − p) conjunctions and mp general integer-valued clauses, we wish to minimize

9

p 0 0.05 0.1
∆(F) we wh w we wh w we wh w

3 0.10209 0.23127 0.10209 0.10209 0.23125 0.10855 0.10209 0.23125 0.11501
4 0.14662 0.31270 0.14662 0.14662 0.31270 0.15493 0.15023 0.26951 0.16216
5 0.15518 0.30728 0.15518 0.15637 0.27997 0.16255 0.15640 0.27951 0.16871
≥ 6 0.15819 0.31029 0.15819 0.15912 0.28223 0.16527 0.15912 0.28223 0.17143

p 0.2 0.3 1
∆(F) we wh w we wh w we wh w

3 0.10209 0.23125 0.12793 0.10209 0.23125 0.14084 0.16667 0.16667 0.16667
4 0.15023 0.26951 0.17409 0.15023 0.26951 0.18601 0.18750 0.18750 0.18750
5 0.15640 0.27951 0.18102 0.19000 0.19000 0.19000 0.19000 0.19000 0.19000
≥ 6 0.16520 0.25074 0.18231 0.19000 0.19000 0.19000 0.19000 0.19000 0.19000

Table 2. Values of we, wh and w := pwh + (1− p)we according to the fraction p of
heavy edges and the maximum degree ∆(F) of a formula F . For any pair (we, wh) in

the table, a running-time bound of O?
(
2m·((1−p)we+pwh)

)
is valid for every formula,

regardless of its fraction p(F) of non-simple clauses, but the pair obtained when the
table’s p equals p(F) gives the best bound.

m(1− p)we +mpwh or equivalently (1− p)we + pwh, but for the discussion here we will just think
in terms of minimizing we.)

For each reduction, the hypothesized constraint (7) will be trivially satisfied, and it will be
straightforward to write down a constraint ensuring (8′). We then solve the nonlinear program of
minimizing we subject to all the constraints.

Minimizing we for a given set of constraints can be done with an off-the-shelf nonlinear solver
(see Section 8.6), but finding a set of reductions resulting in a small value of we remains an art.
It consists of trying some set of reductions, seeing which ones’ constraints are tight in an optimal
solution, and trying to replace these reductions with more favorable ones.

With the constraints established in the next sections, we will obtain our main result.

Theorem 4. Let F be an instance of integer-weighted Max 2-CSP in which each variable appears
in at most ∆(F) 2-clauses, and there are (1 − p(F))m conjunctive and disjunctive 2-clauses, and
p(F)m other 2-clauses. Then, for any pair of values we, wh in Table 2 (not necessarily with the

table’s p equal to p(F)), the above algorithm solves F in time O?
(
2m·((1−p(F))we+p(F)wh)

)
. When

the table’s p = p(F), we obtain our best bound, O?
(
2m·((1−p)we+pwh)

)
= O? (2mw).

Proof. Corollary of Lemma 1, solving the mathematical program given by the various constraints
given in the next sections and minimizing pwh + (1− p)we. �

Which of the constraints are tight strongly depends on p and ∆(F).

3.6. The measure’s form. Let us explain the rather strange form of the measure. Ideally, it would
be defined simply as ν, and indeed for the measure we ultimately derive, all of our simplifications
and most of our splittings satisfy the key inequality (8′) with ν alone in place of µ. Unfortunately,
for regular instances of degrees 4, 5, and 6, satisfying this constraint would require a larger value
of we. Viewing (8′) equivalently as

k∑
i=1

2µ(Fi)−µ(F) ≤ 1,

10

adding a cost Rd to the measure of a d-regular instance F means that if a d-regular instance F is
reduced to nonregular instances F1 and F2 of degree d, each difference µ(Fi)− µ(F) is smaller by
Rd than the corresponding difference ν(Fi)− ν(F). We will therefore want

(∀d ∈ {4, 5, 6}) Rd ≥ 0.(14)

Of course, if a nonregular instance F of degree d is reduced to instances Fi of degree d one or more
of which is regular, there will be a corresponding penalty: for each d-regular Fi, µ(Fi) − µ(F) is
ν(Fi)− ν(F) +Rd.

Indeed, for each splitting reduction we will have to consider several cases. Typically, the “base-
line” case will be the reduction of a nonregular instance to two nonregular instances. In this case
µ and ν are equivalent, and if we know for example that ν(Fi)− ν(F) ≤ xi, our nonlinear program
constrains that 2x1 + 2x2 ≤ 1.

If we reduce starting from a regular instance, the nature of the reductions is such that, generically,
we will get less favorable bounds ν(Fi)− ν(F) ≤ x′i (the values x′i will be larger than the xi were),
but we also get a “reward” (a further decrease of Rd) for whichever of F1 and F2 are not also regular.
If we reduce starting from a nonregular instance but producing one or more regular children, we
will consider various possibilities.

The case where a nonregular instance of degree d produced a regular instance Fi of degree < d,
can be dispensed with simply by choosing Cd sufficiently large, to reap whatever additional reward
is needed. Our splitting rules are generally local and will never increase measure by more than a
constant, so some constant Cd suffices. Also, our reductions never increase the degree of an instance
(each Fi has degree at most that of F), so Cd will never work against us, and there is no harm in
choosing it as large as we like. Thus, we never need to consider the particulars of cases where the
instance degree decreases, nor the values Cd.

The remaining cases where a nonregular instance has regular children will be considered on a
case-by-case basis for each reduction. Generally, for a child to become regular means that, beyond
the constraint-graph changes taken into account in the baseline case (with the child nonregular),
some additional vertices (those of degree less than d) must have been removed from the instance
by simplifications. Accounting for these implies a further decrease in measure that compensates
for the increase by Rd.

4. Some initial constraints

We have already derived one constraint for µ, namely (12), and we will now introduce some
notation and derive several more constraints.

Let us write w(v) for the weight of a vertex v (so w(v) = wd for a vertex of degree d), and
similarly w(e) for the weight of an edge (we or wh depending on whether e is light or heavy).
Sometimes it will be helpful to think of ν(F) as

ν(F) =
∑
v∈V

(
w(v) + 1

2

∑
e : v∈e

w(e)
)
,(15)

the sum of the weights of the vertices and their incident half-edges. For convenience, we define (and
thus constrain)

ad = wd + 1
2dwe.(16)

Thus, ad is equal to the summand in (15) for a vertex all of whose incident edges are light, and
smaller otherwise.

We require µ(F) ≥ 0 for all instances. Considering regular Max 2-Sat instances with degree d
(d = 0, . . . , 6), this implies that

(∀d) ad ≥ 0.(17)

11

(For d ≤ 3, (17) is implied by δ(F) = 0, with (15) and (16). For d ≥ 4, positivity of ν might
give positive measure to Kd even if δ(Kd) were negative, but then a graph consisting of sufficiently
many copies of Kd would still have negative measure.) If we also constrain that

(∀d ∈ {4, 5, 6}) Cd, Rd ≥ 0,(18)

then we have assured that µ(F) ≥ 0 for all instances. In the end, constraint (18) will not be tight
and so there is no loss in making the assumption.

Were it the case that wh ≤ we, then we could simply transform each light edge into a heavy
one, reducing the measure, and getting a better time bound for solving an instance of Max 2-CSP
than an instance of Max 2-Sat or a hybrid instance. Thus if we are to gain any advantage from
considering Max 2-Sat or hybrid instances, it must be that

we ≤ wh.(19)

In the end we will find that this constraint is not tight, and so there is no cost to making the
assumption.1

For intuitive purposes let us leap ahead and mention that we will find that a0 = a1 = a2 = 0,
(thus w0 = 0, w1 = −1

2we, and w2 = −we), while 0 < a3 < · · · < a6. Per (19) above, wh ≥ we.
Typically we will find that wh ≤ 2we, but not always. (Even where this fails to hold, notably for
cubic Max 2-Sat, we can still replace two conjunctions or disjunctions on the same variables with
one CSP edge: decreasing the degrees of the incident vertices decreases the measure enough to
make up for the increase of wh− 2we.) This “intuition” has changed several times as the paper has
evolved, which supports the value of making as few assumptions as possible, instead just writing
down constraints implied by the reductions.

5. Simplification rules and their weight constraints

We use a number of simplification rules (reductions of F to a single simpler instance F1 or F ′).
Some of the simplification rules are standard, the CSP 1-reductions are taken from [SS07a], the
CSP 2-reductions combine ideas from [SS07a] and [KK06], and a “super 2-reduction” is introduced
here. For vertices of degree 5 we use a splitting reduction taken from [KK07] that we generalize to
hybrid instances.

We have already ensured constraint (6) by (17) and (18), so our focus is on ensuring that
each reduction satisfies (8′). Since each splitting is followed by an (unpredictable) sequence of
simplifications, to have any hope of satisfying (8′) it is essential that each simplification from any
F to F ′ satisfies

ν(F ′) ≤ ν(F);(20)

in any case this inequality is required by Lemma 2 (it duplicates inequality (13)). Constraint (7)
of Lemma 1 will be trivially satisfied by all our simplifications and splittings.

Recapitulating, in this section we show that (20) is satisfied by all our simplifications. Ensuring
(8′) will come when we look at the splitting rules, and the measure component δ we are ignoring
here.

5.1. Combine parallel edges. Two parallel edges (light or heavy) with endpoints x and y may be
collapsed into a single heavy edge. This means that the “transformed” instance F ′ (F1 in Lemma 1,
with k = 1) is identical to F except that the two score functions sxy(φ(x), φ(y)) and s′xy(φ(x), φ(y))
in F are replaced by their sum s′′xy(φ(x), φ(y)) in F ′. If one of the endpoints, say x, of the two

1For the most part we will only write down constraints that are necessary, typically being required for some
reduction to satisfy (8′), but we make a few exceptions early on.

12

parallel edges has degree 2, collapse the parallel edges and immediately apply a 1-reduction (see
5.7) on x (of degree 1), which removes x from the constraint graph. To ensure (20) we constrain

(∀d ≥ 2) − a2 − ad + ad−2 ≤ 0 :(21)

the left-hand side is ν(F ′)− ν(F) thought of as the subtraction of a vertex of degree 2, a vertex of
degree d and the addition of a vertex of degree d− 2. For the case that x and y have degree d ≥ 3,
we constrain

(∀d ≥ 3) − 2ad + 2ad−1 − we + wh ≤ 0 :(22)

the left-hand side is ν(F ′) − ν(F) thought of as replacing two vertices of degree d by two vertices
of degree d− 1 and replacing a light edge by a heavy edge. (Remember that the degree of a vertex
is the number of incident edges rather than the number of distinct neighbors.) If deg(x) 6= deg(y),
the resulting constraint is a half–half mixture of a constraint (22) with d = deg(x) and another
with d = deg(y), and is thus redundant.

By construction, the score functions of F ′ and F are identical, so an optimal solution φ′ for F ′

is an optimal solution φ of F ′ (no transformation is needed). �
Applying this reduction whenever possible, we may assume that the instance has no parallel

edges.
Note that we cannot hope to combine simple clauses (conjunctions and disjunctions) and still take

advantage of their being simple clauses rather than general CSP clauses: (x∨y)+(x∨y) = 1+(x⊕y),
the additive 1 is irrelevant, and the XOR function is not simple.

5.2. Remove loops. If the instance includes any edge xx ∈ E ∪ H, the nominally dyadic score
function sxx(φ(x), φ(x)) may be replaced by a (or incorporated into an existing) monadic score
function sx(φ(x)). This imposes the constraints

(∀d ≥ 2) − ad + ad−2 ≤ 0.(23)

�
As this constraint is stronger than (21), we may ignore constraint (21).
With this and the edge-combining reduction, we may at all times assume the constraint graph

is simple.

5.3. Delete a vertex of degree 0 (0-reduction). If v is a vertex of degree 0, reduce the instance
F to F ′ by deleting v and its monadic score function sv, solve F ′, and obtain an optimal solution
of F by augmenting the solution of F ′ with whichever coloring φ(v) of v gives a larger value of
sv(φ(v)). Constraint (7) is satisfied, since |F ′| = |F | − 1. Constraint (20) is satisfied if and only if
−w0 ≤ 0. On the other hand, for a useful result we need each wd ≤ 0 (inequality (12)), implying
that w0 = 0, and thus

a0 = 0.(24)

We will henceforth ignore vertices of degree 0 completely. �

5.4. Delete a small component. For a constant C (whose value we will fix in the splitting
reduction (reduction 7.1)), if the constraint graph G of F has components G′ and G′′ with 1 ≤
|V (G′′)| < C (|V (G′)| is arbitrary), then F may be reduced to F ′ with constraint graph G′. The
reduction and its correctness are obvious, noting that F ′′ may be solved in constant time. Since
ν(F ′)− ν(F) ≤ −

∑
v∈V (G) adeg(v), it is immediate from (17) that (20) is satisfied. �

13

5.5. Delete a decomposable edge. If a dyadic score function sxy(φ(x), φ(y)) can be expressed
as a sum of monadic scores, s′x(φ(x)) + s′y(φ(y)), then delete the edge and add s′x to the original sx,
and s′y to sy. For example, (x1⊕x2) + (x1∧x2) + 3 · (x1∧x2) may be decomposed as 2 · (x1) + (x2).
If x and y have equal degrees, the constraint imposed is that (∀d ≥ 1) −we − 2wd + 2wd−1 ≤ 0, or
equivalently,

(∀d ≥ 1) − ad + ad−1 ≤ 0.(25)

(The d = 1 case was already implied by (24) and (17).) As in (22), inequalities for degree pairs are
a mixture of those for single degrees. Note that we may ignore constraint (23) now as it is weaker
than (25). �

Three remarks. First, together with (24), (25) means that

0 = a0 ≤ a1 ≤ · · · ≤ a6.(26)

Second, if an edge is not decomposable, the assignment of either endpoint has a (nonzero) bearing
on the optimal assignment of the other, as we make precise in Remark 5. We will exploit this in
Lemma 7, which shows how “super 2-reduction” opportunities (reduction 6.1) are created.

Remark 5. Let

biasy(i) := sxy(i, 1)− sxy(i, 0),

the “preference” of the edge function sxy for setting φ(y) = 1 over φ(y) = 0 when x is assigned
φ(x) = i. Then sxy is decomposable if and only if biasy(0) = biasy(1).

Proof. We have that sxy is decomposable if and only if its 2-by-2 table of function values has rank 1,
which is equivalent to equality of the two diagonal sums, sxy(0, 1) + sxy(1, 0) = sxy(0, 0) + sxy(1, 1),
which in turn is equivalent to sxy(0, 1)−sxy(0, 0) = sxy(1, 1)−sxy(1, 0), i.e., biasy(0) = biasy(1). �

Finally, when some vertices and their incident edges are deleted from a graph, we may think of
this as the deletion of each vertex and its incident half-edges (which typically we will account for
explicitly) followed (which we may not account for) by the deletion of any remaining half-edges and
the concomitant decrease in the degrees of their incident vertices (for edges one of whose endpoints
was deleted and one not). A “half-edge deletion” and vertex degree decrease is precisely what is
characterized by the left-hand side of (25), so it cannot increase the measure ν. Even though such
simplifications take place on an intermediate structure that is more general than a graph, and that
we will not formalize, for convenient reference we will call this a half-edge reduction.

5.6. Half-edge reduction. Delete a half-edge, and decrease the degree of its incident vertex.
By (25), this does not increase the measure.

5.7. Delete a vertex of degree 1 (1-reduction). This reduction comes from [SS07a], and
works regardless of the weight of the incident edge. Let y be a vertex of degree 1, with neighbor x.
Roughly, we use the fact that the optimal assignment of y is some easily-computable function of
the assignment of x, and thus y and its attendant score functions sy(φ(y)) and sxy(φ(x), φ(y)) can
be incorporated into sx(φ(x)).

We take a precise formulation from [SS07a]. Here V is the vertex set of F , E is the set of all
edges (light and heavy), and S is the set of score functions.

Reducing (V,E, S) on y results in a new instance (V ′, E′, S′) with V ′ = V \ y and E′ = E \ xy.
S′ is the restriction of S to V ′ and E′, except that for all “colors” C ∈ {0, 1} we set

s′x(C) = sx(C) + max
D∈{0,1}

{sxy(CD) + sy(D)}.

Note that any coloring φ′ of V ′ can be extended to a coloring φ of V in two ways, depending on
the color assigned to y. Writing (φ′, D) for the extension in which φ(y) = D, the defining property

14

of the reduction is that S′(φ′) = maxD S(φ′, D). In particular, maxφ′ S
′(φ′) = maxφ S(φ), and

an optimal coloring φ′ for the instance (V ′, E′, S′) can be extended to an optimal coloring φ for
(V,E, S). This establishes the validity of the reduction.

Since the reduction deletes the vertex of degree 1 and its incident edge (light, in the worst
case), and decreases the degree of the adjacent vertex, to ensure (20), we constrain that (∀d ≥ 1)
−w1 − we − wd + wd−1 ≤ 0, or equivalently that

(∀d ≥ 1) ad−1 − ad − a1 ≤ 0,

which is already ensured by (26). �

5.8. 1-cut. Let x be a cut vertex isolating a set of vertices A, 2 ≤ |A| ≤ 10. (The 1-cut reduction
extends the 1-reduction, thought of as the case |A| = 1.) Informally, for each of φ(x) = 0, 1 we may
determine the optimal assignments of the vertices in A and the corresponding optimal score; adding
this score function to the original monadic score sx gives an equivalent instance F ′ on variables
V \ A. With A of bounded size, construction of F ′, and extension of an optimal solution of F ′ to
one of F , can be done in polynomial time. (Formal treatment of a more general “cut reduction”
on more general “Polynomial CSPs” can be found in [SS07b].)

This simplification imposes no new constraint on the weights. Vertices in A and their incident
half-edges are deleted, and any remaining half-edges (those incident on x) are removed by half-edge
reductions (reduction 5.6); by (26), neither increases the measure ν. �

5.9. Contract a vertex of degree 2 (2-reduction). Let y be a vertex of degree 2 with neighbors
x and z. Then y may be contracted out of the instance: the old edges xy, yz, and (if any) xz are
replaced by a single new edge xz which in general is heavy, but is light if there was no existing edge
xz and at least one of xy and yz was light.

The basics are simple, but care is needed both because of the distinction between light and heavy
edges and because we insist that the constraint graph be simple, and the 2-reduction is the one
operation that has the capacity to (temporarily) create parallel edges and in the process change
the vertex degrees. We consider two cases: there is an edge xz; and there is no edge xz.

If there is an edge xz then x and z both have degree 3 or more by Simplification 5.8, we use
the general Max 2-CSP 2-reduction from [SS07a]. Arguing as in the 1-reduction above, here the
optimal assignment of y depends only on the assignments of x and z, and thus we may incorporate
all the score terms involving y, namely sy(φ(y)) + sxy(φ(x), φ(y)) + syz(φ(y), φ(z)), into a new
s′xz(φ(x), φ(z)), which is then combined with the original sxz(φ(x), φ(z)). The effect is that y is
deleted, three edges (in the worst case all light) are replaced by one heavy edge, and the degrees
of x and z decrease by one. If deg(x) = deg(y) = d, ν(F ′)− ν(F) ≤ 0 is assured by −w2 − 3we +
wh − 2wd + 2wd−1 ≤ 0, or equivalently

(∀d ≥ 3) − a2 − we + wh − 2ad + 2ad−1 ≤ 0,

which is already ensured by (17) and (22). As in (25), inequalities for pairs deg(x) 6= deg(y) are a
mixture of those for single degrees. If xy or yz is heavy, then ν(F ′) − ν(F) ≤ −wh + we, and we
will capitalize on this later.

Finally, we consider the case where there was no edge xz. If xy and yz are both heavy, then as
in the first case we apply the general Max 2-CSP reduction to replace them with a heavy edge xz,
giving ν(F ′)− ν(F) ≤ −2wh + wh − w2 = −a2 − wh + we ≤ −wh + we.

Otherwise, at least one of xy and yz is light, and we show that the resulting edge xz is light.
(For pure Sat formulas, this is the “frequently meeting variables” rule of [KK06].) Without loss of
generality we assume that xy is the conjunctive constraint x ∨ y or the disjunction x ∧ y (what is
relevant is that the clause’s score is restricted to {0, 1}, and is monotone in φ(y)). We define a bias

biasy(i) = [sy(1)− sy(0)] + [syz(1, i)− syz(0, i)],(27)

15

to be the “preference” (possibly negative) of sy + syz for setting φ(y) = 1 versus φ(y) = 0, when
z has been assigned φ(z) = i. If biasy(i) ≤ −1 then φ(y) = 0 is an optimal assignment. (That
is, for every assignment to the remaining variables, including the possibility that φ(x) = 0, setting
φ(y) = 0 yields at least as large as score as φ(y) = 1.) Also, if biasy(i) ≥ 0 then φ(y) = 1 is an
optimal assignment.

Thus, an optimal assignment φ(y) can be determined as a function of φ(z) alone, with no
dependence on φ(x). (This cannot be done in the general case where xy and yz are both heavy
edges.) With φ(y) a function of φ(z), the score syz(φ(y), φ(z)) may be incorporated into the monadic
score function sz(φ(z)). Also, there are only 4 functions from {0, 1} to {0, 1}: as a function of φ(z),
φ(y) must the constant function 0 or 1 (in which cases x ∨ y can be replaced respectively by a

monadic or niladic clause) or φ(z) or φ(z) (in which cases x∨ y can be replaced respectively by the
Sat clause x ∨ z or x ∨ z).

This shows that if there is no edge xz and either xy or yz is light, then the 2-reduction produces
a light edge xz. If both xy and yz are light, ν(F ′)− ν(F) ≤ −a2 ≤ 0, while (once again) if one of
xy and yz is heavy, ν(F ′)− ν(F) ≤ −wh + we.

To summarize, no new constraint is imposed by 2-reductions. Also, if either of xy or yz is heavy,
then we have not merely that ν(F ′) − ν(F) ≤ 0 but that ν(F ′) − ν(F) ≤ −wh + we, and we will
take advantage of this later on. �

5.10. 2-cut. Let {x, y} be a 2-cut isolating a set of vertices A, 2 ≤ |A| ≤ 10. (The 2-cut reduction
extends the 2-reduction, thought of as the case |A| = 1.) Similarly to the 1-cut above, for each of
the four cases φ : {x, y} → 0, 1 we may determine the optimal assignments of the vertices in A and
the corresponding optimal score; adding this score function to the original dyadic score sxy gives
an equivalent instance F ′ on variables V \ A. There is nothing new in the technicalities, and we
omit them.

In general, ν ′−ν may be equated with the weight change from deleting the original edge xy if any
(guaranteed by (25) not to increase the measure), deleting all vertices in A with their incident half-
edges (a change of −

∑
v∈A adeg(v)), replacing one half-edge from each of x and y into A with a single

heavy edge between x and y (not affecting their degrees, and thus a change of −we+wh), then doing
half-edge reductions to remove any half-edges remaining from other edges in {x, y}×A (guaranteed
by reduction 5.6 not to increase the measure). Thus, −

∑
v∈A adeg(v) −we +wh ≤ −2a3 −we +wh,

where the second inequality uses that |A| ≥ 2, all vertices have degree ≥ 3 (a 2-reduction is preferred
to this 2-cut reduction), and the values ai are nondecreasing (see (26)). Thus we can assure that
ν ′ − ν ≤ 0 by

−2a3 − we + wh ≤ 0,

which is already imposed by (17) and (22). �

6. Some useful tools

Before getting down to business, we remark that in treating disjunction and conjunction effi-
ciently, as well as decomposable functions (see reduction 5.5 and Remark 5), the only boolean
function our algorithm cannot treat efficiently is exclusive-or. The following remark is surely well
known.

Remark 6. The only non-decomposable two-variable boolean functions are conjunction, disjunc-
tion, and exclusive-or.

Proof. A function s : {0, 1}2 7→ {0, 1} is characterized by a 2 × 2 table of 0s and 1s. If the table
has rank 1 (or 0), we can decompose s into monadic functions writing sxy(φ(x), φ(y)) = sx(φ(x)) +
sy(φ(y)). A table with zero or four 1s is a constant function, trivially decomposable. A table with

16

one 1 is the function φ(x)∧φ(y), up to symmetries of the table and (correspondingly) negations of
one or both variables; similarly a table with three 1s is the function φ(x) ∨ φ(y). In a table with
two 1s, either the 1s share a row or column, in which case the function is decomposable, or they
lie on a diagonal, which is (up to symmetries and signs) the function φ(x)⊕ φ(y). �

The property of disjunction and conjunction on which we rely (besides having range {0, 1}) is
that they are monotone in each variable. Obviously exclusive-or is not monotone, and it seems that
it cannot be accommodated by our methods.

6.1. Super 2-reduction. Suppose that y is of degree 2 and that its optimal color C ∈ {0, 1} is
independent of the colorings of its neighbors x and z, i.e.,

(∀D,E) sy(C) + syx(C,D) + syz(C,E)(28)

= max
C′∈{0,1}

sy(C
′) + syx(C ′, D) + syz(C

′, E).

In that case, sy(φ(y)) can be replaced by sy(C) and incorporated into the niladic score, sxy(φ(x), φ(y))
can be replaced by a monadic score s′x(φ(x)) := sxy(φ(x), C) and combined with the existing sx,
and the same holds for syz, resulting in an instance with y and its incident edges deleted. �

A super 2-reduction is better than a usual one since y is deleted, not just contracted.
We will commonly split on a vertex u, setting φ(u) = 0 and φ(u) = 1 to obtain instances F0 and

F1, and solving both.

Lemma 7. After splitting a simplified instance F on a vertex u incident to a vertex y of degree 3
whose other two incident edges xy and yz are both light, in at least one of the reduced instances F0

or F1, y is subject to a super 2-reduction.

Proof. In the clauses represented by the light edges xy and yz, let b ∈ {−2, 0, 2} be the number
of occurrences of y minus the number of occurrences of y. (As in reduction 5.9, we capitalize on
the fact that conjunction and disjunction are both elementwise monotone, and that their scores are
limited to {0, 1}.) Following the fixing of u to 0 or 1 and its elimination, let biasy := sy(1)− sy(0).
Given that F was simplified, the edge uy was not decomposable, so by Remark 5 the value of biasy
in F0 is unequal to its value in F1.

First consider the case b = 0. If biasy ≥ 1, the advantage from biasy for setting φ(y) = 1 rather
than 0 is at least equal to the potential loss (at most 1) from the one negative occurrence of y in
xy and yz, so the assignment φ(y) = 1 is always optimal. Symmetrically, if biasy ≤ −1 we may set
φ(y) = 0. The only case where we cannot assign y is when biasy = 0 = −b/2.

Next consider b = 2. (The case b = −2 is symmetric.) If biasy ≥ 0 we can fix φ(y) = 1, while if
biasy ≤ −2 we can fix φ(y) = 0. The only case where we cannot assign y is when biasy = −1 = −b/2.

Thus, we may optimally assign y independent of the assignments of x and z unless biasy = −b/2.
Since biasy has different values in F0 and F1, in at least one case biasy 6= −b/2 and we may super
2-reduce on y. �

6.2. Splitting on vertices of degree 5. Kulikov and Kutzkov [KK07] introduced a clever split-
ting on vertices of degree 5. Although we will not use it until we address instances of degree 5 in
Section 10, we present it here since the basic idea is the same one that went into our 2-reductions:
that in some circumstances an optimal assignment of a variable is predetermined. In addition to
generalizing from degree 3 to degree 5 (from which the generalization to every degree is obvious),
[KK07] also applies the idea somewhat differently.

The presentation in [KK07] is specific to 2-Sat. Reading their result, it seems unbelievable that
it also applies to Max 2-CSP as long as the vertex being reduced upon has only light edges (even
if its neighbors have heavy edges), but in fact the proof carries over unchanged. For completeness
and to make the paper self-contained, we present the generalized result.

17

Lemma 8 (clause learning). In a Max 2-CSP instance F , let u be a variable of degree 5, with light
edges only, and neighbors v1, . . . , v5. Then there exist “preferred” colors Cu for u and Ci for each
neighbor vi such that a valid splitting of F is into three instances: F1 with φ(u) = Cu; F2 with
φ(u) 6= Cu, φ(v1) = C1; and F3 with φ(u) 6= Cu, φ(v1) 6= C1, and φ(vi) = Ci (∀i ∈ {2, 3, 4, 5}).

Proof. For any coloring φ : V → {0, 1}, let φ0 and φ1 assign colors 0 and 1 respectively to u, but
assign the same colors as φ to every other vertex. That is, φi(u) = i, and (∀x 6= u) φi(x) = φ(x).

What we will prove is that for any assignment φ in which at least two neighbors do not receive
their preferred colors, s(φCu) ≥ s(φ): the assignment in which u receives its preferred color has
score at least as large as that in which it receives the other color, and thus we may exclude the latter
possibility in our search. (This may exclude some optimal solutions, but it is also sure to retain an
optimal solution; thus this trick will not work for counting, but does work for optimization.) That
is, if u and one neighbor (specifically, v1) do not receive their preferred color, then we may assume
that every other neighbor receives its preferred color.

It suffices to show the existence of colors Cu and Ci, i ∈ 1, . . . , 5, such that for any φ with
φ(i) 6= Ci for two values of i ∈ {1, . . . , 5}, we have s(φCu) ≥ s(φ).

Leave the immediate context behind for a moment, and consider any Max 2-CSP instance F
in which some variable u has only light edges, and in them appears N+

2 times positively and N−2
times negatively. (As in reduction 5.9 and Lemma 7, we are using the fact that conjunction and
disjunction are elementwise monotone.) If φ(u) = 0, the total score s0 from terms involving u
satisfies

su(0) +N−2 ≤ s
0 ≤ su(0) +N−2 +N+

2 ,

and if φ(u) = 1 the corresponding score s1 satisfies

su(1) +N+
2 ≤ s

1 ≤ su(1) +N+
2 +N−2 .

From the second inequality in the first line and the first inequality in the second line, if su(1) −
su(0) ≥ N−2 then s1 ≥ s0, and for any coloring φ, s(φ1) ≥ s(φ0). Symmetrically, if su(0)− su(1) ≥
N+

2 then φ0 always dominates φ1. Defining the bias

b := su(1)− su(0),

we may thus infer an optimal color for u if b−N−2 ≥ 0 or −b−N+
2 ≥ 0.

If u has degree 5, (b − N−2) + (−b − N+
2) = −N−2 − N+

2 = −5, and thus one of these two
parenthesized quantities must be at least −2.5, and by integrality at least −2. Given the symmetry,
without loss of generality suppose that b−N−2 ≥ −2. The preferred color for u will be Cu = 1.

A small table shows that for any conjunctive or disjunctive clause involving u or u and some other
variable vi (which without loss of generality we assume appears positively), there exists a color Ci
for vi (according to the case) such that assigning vi this color increases b − N−2 by 1 (either by
increasing the bias and leaving N−2 unchanged, or leaving the bias unchanged and decreasing N−2).

original set φ(vi) = resulting change change change in
clause Ci = clause in b in N−2 b−N−2

(u ∨ vi) 0 (u) +1 0 +1
(u ∧ vi) 1 (u) +1 0 +1
(u ∨ vi) 1 (1) 0 −1 +1
(u ∧ vi) 0 (0) 0 −1 +1

18

Thus, starting from b −N−2 ≥ −2, assigning to any two neighbors of u their color Ci results in
an instance in which b−N−2 ≥ 0, and thus in which an optimal assignment for u is φ(u) = Cu = 1.
This proves the lemma. �

6.3. A lemma on 1-reductions. A half-edge reduction or 1-reduction is “good” if the target
vertex has degree at least 3, because (as the weights will come out) the measure decrease due to
ad−1 − ad is substantial for d ≥ 3, but small (in fact, 0) for d = 1 and d = 2.

If for example we start with a simplified instance (in which all vertices must have degree at least
3) and reduce on a vertex of degree d, deleting it and its incident half-edges, each of the d remaining
half-edges implies a good degree reduction on a neighboring vertex. However, if we deleted several
vertices, this might not be the case: if two deleted vertices had a common neighbor of degree 3, its
degree would be reduced from 3 to 2 by one half-edge reduction (good), but then from 2 to 1 by
the other (not good).

The following lemma allows us to argue that a certain number of good half-edge reductions occur.
The lemma played a helpful role in our thinking about the case analysis, but in the presentation
here we invoke it rarely: the cases dealt with are relatively simple, and explicit arguments are about
as easy as applying the lemma.

Note that for any half-edge incident on a vertex v, we can substitute a full edge between v and
a newly introduced vertex v′: after performing a half-edge reduction on v in the first case or a
1-reduction in the second, the same instance results. (Also, the measure increase of a1 when we
add the degree-1 vertex and half-edge is canceled by the extra decrease for performing a 1-reduction
rather than a half-edge reduction.) For clarity of expression, the lemma is thus stated in terms of
graphs and 1-reductions, avoiding the awkward half-edges.

Lemma 9. Let G be a graph with k degree-1 vertices, X = {x1, . . . , xk}. It is possible to perform a
series of 1-reductions in G where each vertex xi in X is either matched one-to-one with a good 1-
reduction (a 1-reduction on a vertex of degree 3 or more), or belongs to a component of G containing
at least one other vertex of X, where the total order of all such components is at most 2k plus the
number of degree-2 vertices.

In particular, if G is a connected graph then there are k good 1-reductions. By analogy with the
well-definedness of the 2-core of a graph, any series of 1-reductions should be equivalent, but the
weaker statement in the lemma suffices for our purposes.

Proof. The intuition is that each series of reductions originating at some xi ∈ X, after propagating
through a series of vertices of degree 2, terminates either at a vertex of degree 3 or more (reducing
its degree), establishing a matching between x and a good reduction, or at another vertex xj ∈ X,
in which case the path from xi to xj (or some more complex structure) is a component.

Starting with i = 1, let us 1-reduce from xi as long as possible before moving on to xi+1. That is,
if we 1-reduce into a vertex of degree 2 we perform a new 1-reduction from that vertex, terminating
when we reach a vertex of degree 1 or degree 3 or more. Rather than deleting an edge with a
1-reduction, imagine that the edges are originally black, and each reduced edge is replaced by a red
one (which of course is not available for further 1-reductions).

We assert that just before we start processing any xi, the red-edged graph has components
consisting of vertices all of whose edges are red (in which case this is also a component in G itself),
and components where all vertices but one component owner are all-red, and the component owner
has at least 1 red edge and at least 2 black edges. We prove this by induction on i, with i = 1
being trivial.

Given that it is true before xi, we claim that: (1) as we reduce starting with xi, the reduction
sequence is uniquely determined; (2) in the red-edged component including xi, all vertices are all-
red except for a single active one; and (3) the sequence on xi ends when we reduce a vertex that

19

had at least 3 black edges (matching xi with this good reduction), or a vertex xj ∈ X, j > i (in
which case we will show that the red component including xi and xj is also a component of G
itself).

We prove these claims by induction on the step number, the base case again being trivial (xi itself
is active). If we reduce into a vertex v with two black edges (we will say it has black degree 2), the
next reduction takes us out its other black edge, leaving both red. If v was of degree 2 it is added to
xi’s red component; if not, it must have been a component owner (these are the only mixed-color
vertices), and we unite the vertex and its component with xi’s component. If we reduce into a
vertex v with at least 3 black edges, we match xi with the good reduction on v, and vi owns xi’s
red component. The only remaining possibility is that we reduce into a vertex with 1 black edge,
which can only be a degree-1 vertex xj (with j > i), as there are no mixed-color vertices with 1
black edge. In this case we add xj to xi’s component, and terminate the sequence of reductions for
xi without a good reduction. However the red component on xi now has no black edges on any of
its vertices, and is thus a component in the original black graph G.

Starting with the k vertices xi as initial red components, as we generate the component for xi,
the union of all components is expanded as we pass through (and use up) a (true) degree-2 vertex,
left unchanged if we pass through a vertex of higher degree with black degree 2, expanded as we
enter a terminal all-black degree-3 vertex, and left unchanged if we terminate at another vertex xj .
Then, recalling that k is the number of degree-1 vertices in X and letting k2 be the number of
degree-2 vertices, the total number of vertices in the union of all components is at most the number
of seeds (k), plus the number of pass-throughs (at most k2), plus the number of good terminals (at
most k). In particular, we can partition X into the set of vertices with good terminals in G, and
the rest; the rest lie in components of G where the total size of these components is ≤ 2k+ k2. �

7. Splitting reductions and preference order

Recall from Algorithm 1 that if we have a nonempty simplified instance F , we will apply a
splitting reduction to produce smaller instances F1, . . . , Fk, simplify each of them, and argue that∑k

i=1 2µ(Fi)−µ(F) ≤ 1 (inequality (8′)).
We apply splitting reductions in a prescribed order of preference, starting with division into

components.

7.1. Split large components. If the constraint graph G of F has components G1 and G2 with
at least C vertices each (C is the same constant as in the simplification rule (5.4)), decompose
F into the corresponding instances F1 and F2. The decomposition is the obvious one: monadic
score functions sx of F are apportioned to F1 or F2 according to whether x is a vertex of G1 or
G2, similarly for dyadic score functions and edges xy, while we may apportion the niladic score
function of F to F1, setting that of F2 to 0.

It is clear that this is a valid reduction, but we must show that (8′) is satisfied. Note that
ν(F1) + ν(F2) = ν(F), and ν(Fi) ≥ Ca3 since Fi has at least C vertices, all degrees are at least 3,
and the ai are nondecreasing. Thus ν(F1) ≤ ν(F)−Ca3. Also, δ(F1)− δ(F) is constant-bounded.
Assuming that a3 > 0, then for C sufficiently large,

µ(F1)− µ(F) = ν(F1)− ν(F) + δ(F1)− δ(F)

≤ −Ca3 +

6∑
d=4

(|Rd|+ |Cd|)

≤ −1.

The same is of course true for F2, giving 2µ(F1)−µ(F) + 2µ(F2)−µ(F) ≤ 2−1 + 2−1 = 1 as required.
20

The non-strict inequality a3 ≥ 0 is established by (17), and if a3 = 0, a 3-regular (cubic) instance
would have measure 0, implying that we could solve it in polynomial time, which we do not know
how to do. Thus let us assume for a moment that

a3 > 0.(29)

This strict inequality (in fact a3 ≥ 1/7) will be implied by the constraints for splitting rules for
cubic instances, constraint (31) for example. �

If F ’s constraint graph is connected the splitting we apply depends on the degree of F , that is,
the degree of its highest-degree vertex. Although high-degree cases thus take precedence, it is easier
to discuss the low-degree cases first. Sections 8, 9, 10, and 11 detail the splittings for (respectively)
instances of degree 3, 4, 5, and 6. For a given degree, we present the reductions in order of priority.

8. Cubic instances

Many formulas are not subject to any of the simplification rules above nor to large-component
splitting. In this section we introduce further reductions so that for any formula F of maximum
degree at most 3 (which is to say, whose constraint graph has maximum degree at most 3), some
reduction can be applied.

If F has any vertex of degree strictly less than 3, we may apply the 0-, 1-, or 2-reductions above.
Henceforth, then, we assume that F is 3-regular (cubic).

The new reductions will generally be “atomic” in the sense that we will carry each through to
its stated completion, not checking at any intermediate stage whether an earlier simplification or
reduction rule can be applied.

We define

h3 := a3 − a2(30)

to be the decrease of measure resulting from a half-edge reduction (reduction 5.6) on a vertex of
degree 3.

8.1. 3-cut. There is a 3-cut X = {x1, x2, x3} isolating a set S of vertices, with 4 ≤ |S| ≤ 10. Each
cut vertex xi has at least 1 neighbor in V \ {S ∪X} (otherwise X without this vertex is a smaller
cut), and without loss of generality we may assume that either each cut vertex has 2 neighbors in
V \ {S ∪X}, or that |S| = 10. (If a cut vertex, say x1, has just one neighbor x′1 ∈ V \ {S ∪X},
then {x′1, x2, x3} is also a 3-cut, isolating the larger set S ∪{x1}. Repeat until |S| = 10 or each cut
vertex has two neighbors in V \ {S ∪X}.)

With reference to Figure 2, let y1, y2, y3 ∈ S be the respective neighbors of x1, x2, and x3, and
let v1 and v2 be the other neighbors of x1. Note that y2 6= y3, or we should instead apply a 2-cut
reduction (reduction 5.10): cutting on {x1, y2} isolates the set S \ {y2}, and 3 ≤ |S \ {y2}| ≤ 9
satisfies the conditions of the 2-cut reduction.

We treat this case by splitting on x1, resulting in new instances F1 and F2. In each we apply a
2-cut on {y2, y3} (not {x2, x3}!), creating a possibly-heavy edge y2y3. We then 2-reduce on y2 and
y3 in turn to create an edge x2x3 which is heavy only if x2y2 and x3y3 were both heavy. If |S| ≤ 10,
the resulting instances satisfy

µ(F1), µ(F2) ≤ µ(F)− 5a3 − 2h3.

(Recall that for graphs of degree 3, µ and ν are identical.) The term −5a3 accounts for the deletion
of x1 and S (at least 5 vertices) with their incident half-edges. The term −2h3 accounts for deletion
of the “other halves” of the edges from x1 to V \ {S ∪X} and the degree decrease of their incident
vertices (see definition (30)); we are using the fact that v1 6= v2, and that X is an independent set.
There is no need for a term accounting for the deletion of the “other halves” of the edges on x2
and x3 and the addition of the new edge x2x3: the new x2x3 is heavy only if both half-edges were

21

S

x1

x2

x3

y1

y2

y3

v1
v2

Figure 2. Illustration of a 3-cut, reduction 8.1.

heavy, so this change in measure is −1
2w(x2y2)− 1

2w(x3y3)+w(x2x3) ≤ 0, and we are free to ignore
it. (Since it may in fact be 0, there is also no gain to including it.) Constraint (8′) of Lemma (1)
is thus assured if

2−5a3−2h3 + 2−5a3−2h3 ≤ 20 = 1.

We will henceforth express such constraints by a shorthand, simply saying that the case has splitting
number at most

(5a3 + 2h3, 5a3 + 2h3).(31)

We formally define a splitting number to be

(α1, α2, . . . , αk) := 2−α1 + 2−α2 + · · ·+ 2−αk .

Note the change of sign: in this notation we show the cost decrease in each case.
By similar reasoning, if |S| = 10 the splitting number is at most

(11a3 + h3, 11a3 + h3).

By (29) this constraint is bound to hold “for a sufficiently large value of 10” (and since h3 ≤ a3,
for 10 itself this constraint is dominated by (31)), so we will disregard it. �

8.2. Vertex with independent neighbors. There is a vertex u such that N(u) is an independent
set.

With reference to Figure 3, we reduce on u, fixing φ(u) to 0 and 1 to generate new instances F0

u

v1

v2

v3

x3

x4

Figure 3. Illustration for reduction 8.2, on a vertex with independent neighbors.

and F1, each with constraint graph G[V \ {u}].
Let N1 = N(u) and N2 = N2(u). Let q be the number of vertices in N1 with a heavy edge

to N2, k0 the number of vertices in N1 subject to a super 2-reduction (deletion) in F0, and k1 the
number subject to super 2-reduction in F1. By Lemma 7, each v ∈ N1 falls into at least one of
these cases, so q + k0 + k1 ≥ 3.

We will argue that µ(F)− µ(Fi) ≥ a3 + 3h3 + q(wh − we) + 2kih3. Deletion of u and reduction
of the degree of each of its neighbors immediately reduces the measure by a3 + 3h3 (more if any

22

u

v1

v2

v3

x1

x2

x3

x4

y1

y2

Figure 4. Illustration of reduction on a vertex with one edge in its neighborhood,
Case 8.3.

edges incident to u were heavy). In Fi, first 2-reduce on the q vertices in N1 with heavy edges
(reducing the measure by a further q(wh−we)) and on the 3− q− ki vertices subject to only plain
2-reductions (not increasing the measure). Note that each vertex in N2 still has degree 3.

Finally, reduce out the ki vertices which are set constant by a super 2-reduction, by deleting
their incident edges one by one. No vertex v in N2 has 3 neighbors in N1: if it did there would
remain only 3 other edges from N1 to N2, whence |N2| ≤ 4, N2 \ v would be a cut of size ≤ 3
isolating N1 ∪ {u, v}, and we would have applied a cut reduction. Thus, deletion of each of the
2ki edges in N1 ×N2 either reduces the degree of a vertex in N2 from 3 to 2 (a good 1-reduction,
reducing the measure by h3), or creates a vertex of degree 1.

We wish to show that each degree-1 vertex in the graph G′ = G[V \ ({u}∪N1)] must also result
in a good 1-reduction, giving the 2kih3 claimed. Note that |N2| must be 4, 5, or 6 (if it were smaller
we would have applied a cut reduction instead). If |N2| = 6 then every vertex in N2 has degree 2
(in the graph G′) and there is nothing to prove. If |N2| = 5 then at most one vertex in N2 has
degree 1, and Lemma 9 implies that it results in a good 1-reduction. If |N2| = 4, every degree-1
vertex in N2 also results in a good 1-reduction: If not, then by Lemma 9 a set X of two or more
vertices in N2 lies in a small component of G′, in which case N2 \X is a cut of size 2 or less in the
original constraint graph G, isolating {u} ∪ N1 ∪ X, and we would have applied a cut reduction
instead.

Thus, µ(F)−µ(Fi) ≥ a3 + 3h3 + q(wh−we) + 2kih3. By convexity, if two splitting numbers have
equal total, the more unbalanced one is the more constraining; in this case that means the worst
cases come if k0 = 0 and k1 = 3− q (or vice-versa). Thus, the worst-case splitting numbers are

(∀q ∈ {0, 1, 2, 3}) (a3 + 3h3 + q(wh − we), a3 + 3h3 + q(wh − we) + 2(3− q)h3).(32)

�

8.3. One edge in G[N(u)]. Given that we are in this case rather than Case 8.2, no vertex of
N(u) has an independent set as neighborhood. Let N(u) = {v1, v2, v3} and suppose without loss
of generality that v2v3 ∈ E. Let N(v1) = {u, x1, x2}. Then, x1x2 ∈ E. To avoid a 3-cut (Case 8.1),
|N2({u, v1})| = 4 (the 4 rightmost vertices depicted in Figure 4 are truly distinct).

After splitting on u, in each of the two instances F0 and F1, first 2-reduce on v1, then on x1, then
continue with 2-reductions (the base case), or super 2-reductions (if possible), on v2 and v3. In
the base case this results in the deletion of all 5 of these vertices with their incident edges and the
decrease of the degree of x2 to 2, for a measure decrease of 5a3 + h3 (vertex x2 will be 2-reduced,
which does not increase the measure; see 5.9).

If v2v3 or v2x3 is heavy, then there is an extra measure decrease of wh − we beyond that of the
base case, for a splitting number of at most

(5a3 + h3 + wh − we, 5a3 + h3 + wh − we).(33)

23

Otherwise, v2v3 and v2x3 are both light, and we may super 2-reduce on v2 in either F0 or F1

(without loss of generality say F1). This reduces the degree of x3 from 3 to 2, and that of v3 from 2
to 1, setting up a 1-reduction on v3 that reduces the degree of x4 from 3 to 2. This gives a splitting
number of at most

(5a3 + h3, 5a3 + 3h3).(34)

�
There are no further cases for cubic graphs. If for a vertex u there are 3 edges in G[N(u)] then

N [u] is an isolated component (a complete graph K4) and we apply component-splitting. If there
are 2 edges in G[N(u)], then some v ∈ N(u) (either of the vertices having a neighbor outside
{u} ∪N(u)) has just 1 edge in G[N(v)] and we are back to Case 8.3.

8.4. Cubic results. For results on cubic and other instances, we refer to Theorem 4, Table 2, and
the discussion in Section 12.

8.5. Remark on heavy edges. If the original cubic instance is a pure 2-Sat formula, with no
heavy edges, then (as we show momentarily) any heavy edges introduced by the procedure we
have described can immediately be removed. Thus the “hybrid formula” concept gives no gain for
cubic 2-Sat formulas, but expands the scope to cubic Max 2-CSP, sacrifices nothing, and is useful
for analyzing non-cubic instances. We now show how heavy edges introduced into a cubic 2-Sat
formula immediately disappear again.

In a graph with only light edges, the only two rules that create heavy edges are 2-reductions and
2-cuts (and other reductions that apply these). A 2-reduction on v introduces a heavy edge only
if v’s neighbors x1 and x2 were already joined by an edge. In that case, though, x1 and x2 have
their degrees reduced to 2 (at most). If the remaining neighbors y1 of x1 and y2 of x2 are distinct,
then 2-reducing on x1 gives a light edge x2y1: the heavy edge x1x2 is gone. Otherwise, y1 = y2,
and 2-reduction on x1 followed by 1-reduction on x2 deletes x1 and x2 and reduces the degree of
y2 to 1, again leaving no heavy edge.

For a 2-cut on x1 and x2 isolating a set S, if there was an edge x1x2 then the cut reduction
reduces the degrees of both x1 and x2 to 2, and, just as above, we may 2-reduce on x1 to eliminate
the heavy edge. If x1 and x2 are nonadjacent and x1 has just 1 neighbor outside S, then again a
follow-up 2-reduction on x1 eliminates the heavy edge x1x2. Dismissing the symmetric case for x2,
all that remains is the case when x1 and x2 are nonadjacent and each has 2 neighbors outside S,
and thus just 1 neighbor in S; see Figure 5.

S

x1

x2

→

x1

x2

Figure 5. 2-cut rule creates a heavy edge.

The S-neighbors x′1 of x1 and x′2 of x2 must be distinct, or else we would have applied a 1-cut
reduction on x′1. (This presumes that |S \ {x′1}| ≥ 2, but if it is 0 or 1, we would have 2-reduced on
x′1 or 1-reduced on its S-neighbor — either of which is really a special case of a 1-cut reduction.)

Given that x′1 6= x′2, apply a 2-cut reduction not on x1 and x2 but instead on x′1 and x′2. Following
this with 2-reduction on x′1 and x′2 eliminates the heavy edge x′1x

′
2, giving a light edge x1x2 instead;

see Figure 6.
24

S

x1

x2

x′1

x′2

→

x1

x2

x′1

x′2

→

x1

x2

Figure 6. 2-cut rule avoids creating a heavy edge.

8.6. Solving the programs. Every weight constraint we introduce is of the form
∑

i 2Li ≤ 1,
where the sum is finite and each Li is some linear combination of weights. (Some constraints are
simply of the form L ≤ 0, but this can also be written as 2L ≤ 1.) This standard form (along with
the objective of minimizing we) can be provided, through an interface such as AMPL, to a variety
of mathematical-programming solvers: we used both IPOPT (part of the free, open-source code
repository at coin-or.org) and MINOS (a commercial solver).

Furthermore, it is easily verified that the feasible region is convex. (Convexity of 2x means that

for any p, q ≥ 0, with p+ q = 1, term by term, 2pL+qL
′ ≤ p2L + q2L

′
, and thus a mixture of feasible

solutions is feasible.) This in turn makes it relatively easy for a solver to return a provably optimal
solution: convex programs are much easier to solve than general ones or even the quasi-convex
programs like Eppstein’s [Epp06].

IPOPT solves the nonlinear program for our general algorithm, to optimality, in a second or two
on a typical laptop computer.

To insure that our solutions are truly feasible, in the presence of finite numerical accuracy, we
replace the “1” in the right-hand side of each constraint with 1 − ε, fixing ε = 10−6; this allows
some margin for error. The values we show for the key parameters we and wh are rounded up
(pessimistically) from the higher-precision values returned by the solver, with the other parameter
values rounded fairly. Ideally we would also verify, in an unlimited-accuracy tool such as Mathe-
matica, that our rounded values satisfy the original “≤ 1” constraints, but we have not performed
that final check.

9. Instances of degree 4

We first introduce one more bit of notation, generalizing our earlier definition of h3 (30). For
any d ≥ 3, we define

hd := min
3≤i≤d

{ai − ai−1}.(35)

This is the minimum possible decrease of measure resulting from a half-edge reduction (reduc-
tion 5.6) on a vertex of degree i with 3 ≤ i ≤ d. We will find that such deletions always occur
with the same sign in our nonlinear program — the larger hd, the weaker each constraint is — and
therefore the above definition can be expressed in our mathematical program by simple inequalities

(∀3 ≤ i ≤ d) hd ≤ ai − ai−1.(36)

We now consider a formula F of (maximum) degree 4. The algorithm choses a vertex u of degree
4 with — if possible — at least one neighbor of degree 3. The algorithm sets u to 0 and 1, simplifies
each instance as much as possible (see Section 5), and recursively solves the resulting instances F0

and F1.
The instances F0 and F1 are either 4-regular, of degree at most 3, or nonregular. By the

arguments presented in Section 3.6, the case where the degree of the graph decreases can be safely
ignored (the measure decrease C4 − C3 can be made as large as necessary).

25

9.1. 4-regular. If F is 4-regular, first consider the case in which F0 and F1 are 4-regular. Since
splitting on u decreases the degree of each vertex in N(u), and none of our reduction rules in-
creases the degree of a vertex, every vertex in N(u) must have been removed from F0 and F1 by
simplification rules.2 This gives a splitting number of at most

(5a4, 5a4) .(37)

If neither F0 nor F1 is 4-regular, then u is removed (a4), the degree of its neighbors decreases
(4h4), and we obtain an additional gain because F0 and F1 are not regular (R4). Thus, the splitting
number is at most

(a4 + 4h4 +R4, a4 + 4h4 +R4) .(38)

If exactly one of F0 and F1 is 4-regular, we obtain a splitting number of (5a4, a4 + 4h4 +R4).
This constraint is weaker (no stronger) than (37) if 5a4 ≤ a4 + 4h4 + R4, and weaker than (38) if
5a4 > a4 + 4h4 +R4, so we may dispense with it.

9.2. 4-nonregular. If F is not 4-regular, we may assume that u has at least one neighbor of
degree 3. Let us denote by pi the number of degree-i neighbors of u. Thus, 1 ≤ p3 ≤ 4, and
p3 + p4 = 4. Further, let us partition the set P3 of degree-3 neighbors into those incident only to
light edges, P ′3, and those incident to at least one heavy edge, P ′′3 . Define p′3 = |P ′3| and p′′3 = |P ′′3 |
(so p′3 + p′′3 = p3).

For each Fi (F0 and F1), splitting on u removes u (for a measure decrease of a4, compared

with F). If Fi is not 4-regular, the degrees of the neighbors of u all decrease (
∑4

i=3 pihi). If Fi is

regular (−R4), all neighbors of u must have been eliminated as well (
∑4

i=3 piai).
We now argue about additional gains based on the values of p′3 and p′′3, starting with the heavy

edges incident on vertices in P ′′3 . Identify one heavy edge on each such vertex. If such an edge
is between two vertices in P ′′3 associate it with either one of them; otherwise associate it with its
unique endpoint in P ′′3 . This gives a set of at least dp′′3/2e vertices in P ′′3 each with a distinct
associated heavy edge, which we may think of as oriented out of that vertex. If such an edge
incident on v ∈ P ′′3 is also incident on u then it is deleted along with u, for an additional measure
reduction of wh−we we credit to v. This leaves a set of “out” edges that may form paths or cycles.
After deletion of u all the vertices involved have degree 2, so any cycle is deleted as an isolated
component, for a measure reduction of wh −we per vertex. Super 2-reducing on a vertex v deletes
its outgoing edge, which we credit to v, and possibly also an incoming heavy edge associated with
a different v′ ∈ P ′′3 , which we credit to v′. Finally, if v is 2-reduced we consider its outgoing edge
(not its other incident edge) to be contracted out along with v, crediting this to v (and correctly
resulting in a light edge if the other edge incident on v was light, or a heavy one if it was heavy).
This means that if the other edge incident to v was a heavy edge out of a different v′ ∈ P ′′3 , then
v′ still has an associated outgoing heavy edge. In short, each of the dp′′3/2e vertices gets credited
with the loss of a heavy edge, for an additional measure reduction of at least dp′′3/2e (wh − we).

We say that we have a good degree reduction if the degree of a vertex of degree 3 or more
decreases by 1: for graphs of degree 4 this decreases the measure by at least h4. This measure

2There is an important subtlety here: the reduced-degree vertices are eliminated, not merely split off into other
components such that Fi has a 4-regular component and a component of degree 3 (although such an example shares
with 4-regularity the salient property that no degree-4 vertex has a degree-3 neighbor). By definition, the “4-regular
case” we are considering at this point does not include such an Fi, but it is worth thinking about what happens to an
Fi which is not regular but has regular components. No component of Fi is small (simplification 5.4 has been applied),
so in the recursive solution of Fi, Algorithm 1 immediately applies large-component splitting (reduction 7.1). This
reduces Fi to two connected instances, and is guaranteed to satisfy constraint (8′) (the penalty for one instance’s
being 4-regular is more than offset by its being much smaller than Fi). Our machinery takes care of all of this
automatically, but the example illustrates why some of the machinery is needed.

26

decrease comes in addition to what we have accounted for so far, unless Fi is regular and the degree
reduction is on a vertex in N(u) (since we have accounted for the deletion of those vertices, counting
their degree reductions as well would be double counting). We will show that a certain number of
additional-scoring degree reductions occur altogether, in F0 and F1 combined, as a function of p′3.

If p′3 = 1, super 2-reduction on the sole vertex in P ′3 is possible in at least one of F0 or F1 —
without loss of generality say just F0 — and reduces the degrees of at least two neighbors. If F0 is
nonregular this gives a gain of 2h4, while if F0 is regular there may be no gain.

If p′3 = 2, then again if either vertex is super 2-reduced in a nonregular branch there is a gain of at
least 2h4. Otherwise, each vertex is super 2-reduced in a regular branch (both in one branch, or in
two different branches, as the case may be). At least one of the vertices has at least one neighbor in
N2 := N2(G), or else P3 \P ′3 would be 2-cut. In whichever Fi the degree of the neighbor is reduced,
since Fi is regular the neighbor must eventually be deleted, for a gain of at least a3. So there is
either a gain of 2h4 in a nonregular branch or a gain of a3 in a regular branch. (We cannot hope
to replace a3 with 2a3: Figure 7 shows an example where indeed only one good degree reduction
occurs outside N [u].)

u

v1

v2

v3

v4

x1

x2

x3

Figure 7. The case p′3 = 2 may lead to just one good degree reduction outside
N [u]. If both super 2-reductions on v1 and v2 occur in the same branch (say F1),
the degree of x1 is reduced. The degrees of v3 and v4 become 2, so their edges are
contracted eventually creating an edge x2x3, which does not change the degree of x2
or x3. The heavy edge v3v4 gives a bonus measure reduction of wh − we previously
accounted for.

If p′3 = 3, again either there is a gain of 2h4 in a nonregular branch, or each super 2-reduction
occurs in a regular branch. The 3 vertices in P ′3 have at least 2 neighbors in N2, or else these
neighbors, along with P3 \ P ′3, would form a cut of size 2 or smaller. Each of these neighbors has
its degree reduced, and thus must get deleted from a regular Fi, for a gain of at least 2a3. So there
is either a gain of 2h4 in a nonregular branch, or a gain of 2a3 altogether in one or two regular
branches. (We cannot hope to claim 3h4 or 3a3, per the example in Figure 8.)

u

v1

v2

v3

v4

x1

x2

x3

x4

Figure 8. The case p′3 = 3 (P ′3 = {v1, v2, v3}) may lead to just two good degree
reductions.

27

If p′3 = 4, we claim that in the two branches together there are at least 4 good degree reductions
on vertices in N2 and N3(u). Each contributes a gain of at least h4 if it is in a nonregular branch,
a3 in a regular branch. Each vertex in N2 undergoes a good degree reduction in one branch or
the other, so if |N2| ≥ 4 we are done. Since there can be no 2-cut, we may otherwise assume
that |N2| = 3. Since (in F) every vertex in N(u) has degree 3, there is an even number of edges
between N(u) and N2, thus there are at least 4 such edges. Since each vertex in N2 has an edge
from N(u), there must be two such edges incident on one vertex x1 ∈ N2, and one edge each
incident on the other vertices x2, x3 ∈ N2. Again we guaranteed 4 good degree reductions unless
x1 has degree 3 and undergoes both of its reductions in one branch (so that degree 3 to 2 is a good
reduction, but 2 to 1 is not). In that case, though, x1 has degree 1, its remaining neighbor must
be in N3(u) (otherwise {x1, x2} is a 2-cut), and 1-reducing on x1 gives a good degree reduction on
that neighbor. So there is a total gain of 4h4 in a nonregular branch and 4a3 in a regular branch.

By convexity, the elementwise average of two pairs of splitting numbers is a constraint dominated
by one or the other, so it suffices to write down the extreme constraints, with all the gain from
super 2-reductions given to a single nonregular or regular branch.

Before counting the super 2-reduction gains, if Fi is nonregular the measure decrease µ(F)−µ(Fi)
is at least

∆r(p3, p
′′
3, p4) := a4 +

4∑
i=3

pihi +
⌈
p′′3
2

⌉
(wh − we),(39)

and if Fi is 4-regular, at least

∆r(p3, p
′′
3, p4) := a4 +

4∑
i=3

piai +
⌈
p′′3
2

⌉
(wh − we)−R4.(40)

The super 2-reductions give an additional gain, in a nonregular branch, of at least

gr :=
⌊
p′3+2
3

⌋
2h4,(41)

and in a regular branch, at least

gr :=
(⌊

p′3
2

⌋
+
⌊
p′3
3

⌋
+
⌊
p′3
4

⌋)
a3,(42)

where the tricky floor and ceiling expressions are just a way of writing an explicit expression
convenient for passing to the nonlinear solver. The constraints arising from splitting on a vertex
of degree 4 with at least one neighbor of degree 3 are thus dominated by the following, taken over
p′3 + p′′3 + p4 = 4, with p4 ≤ 3 and p3 = p′3 + p′′3:

(∆r,∆r + gr),(43)

(∆r,∆r + gr),(44)

(∆r,∆r + gr),(45)

(∆r,∆r + gr)(46)

10. Instances of degree 5

This section considers formulas of maximum degree 5. As an overview, if there is a 3-cut isolating
a set S with 6 or more vertices the algorithm splits on any vertex in the cut. Otherwise, the
algorithm chooses a vertex u of degree 5 with — if possible — at least one neighbor of degree at
most 4, and splits on u either as was done in the degree-4 case, or using clause-learning splitting
(see Lemma 8). We use clause learning when the neighbors of u have high degrees, because clause
learning sets many variables in N(u), and this is most effective when the degrees are large (since

28

ai ≥ ai−1). We use normal splitting when the neighbors have low degrees, because setting u reduces
their degrees, and this is effective when the degrees are small (hi ≤ hi+1, with an additional bonus
in super 2-reductions for a degree-3 variable). (This is also why we always prefer to split on vertices
of maximum degree with neighbors of low degree, and why the regular cases need special attention.)

10.1. 3-cut. There is a 3-cut C = {x1, x2, x3} isolating a set S of vertices such that 6 ≤ |S| ≤ 10
and S contains at least one vertex of degree 5. Splitting on the cut vertex x1 leaves constraint graphs
where {x2, x3} form a 2-cut. Thus S ∪ {x1} are removed from both resulting instances (a5 + 6a3),
a neighbor of x1 outside S ∪ C has its degree reduced (h5), a heavy edge x2x3 appears (in the
worst case) but at least 2 half-edges incident on x2 and x3 disappear (−wh + we). Additionally,
the resulting instances may become 5-regular (−R5). So, the splitting number is at most(

a5 + 6a3 + h5 − wh + we −R5, a5 + 6a3 + h5 − wh + we −R5

)
.(47)

�
In light of reduction 10.1 we may henceforth assume that each degree-5 variable u has |N2(u)| ≥ 4.

10.2. 5-regular. If every vertex has degree 5, the same analysis as for 4-regular instances (reduc-
tion 9.1, constraints (37) and (38)) gives a splitting number which is at most one of the following:

(6a5, 6a5),(48)

(a5 + 5h5 +R5, a5 + 5h5 +R5).(49)

�
Otherwise, let u be a degree-5 vertex with a minimum number of degree-5 neighbors, and as

usual let pi be the number of degree-i neighbors of u (since the instance is not regular, p5 < 5).
Let H := χ(u is incident to a heavy edge). Depending on the values of H and pi we will use either
regular 2-way splitting (reduction 10.3) or clause-learning 3-way splitting (reduction 10.4).

10.3. 5-nonregular, 2-way splitting. H = 1 or p3 ≥ 1 or p5 ≤ 2.
In this case we use the usual 2-way splitting, setting u to 0 and to 1, and simplifying to obtain F0

and F1. If Fi is not regular, the measure decrease µ(F)−µ(Fi) is at least a5+
∑5

i=3 pihi+H(wh−we),
and if Fi is 5-regular, it is at least a5 +

∑5
i=3 piai + H(wh − we) − R5. Thus if both branches are

regular the splitting number is at most(
a5 +

∑5
i=3 piai +H(wh − we)−R5, a5 +

∑5
i=3 piai +H(wh − we)−R5

)
,(50)

and if one branch is regular and one nonregular, at most(
a5 +

∑5
i=3 piai +H(wh − we)−R5, a5 +

∑5
i=3 pihi +H(wh − we)

)
.(51)

If both branches are nonregular, we use that if p3 ≥ 1, any degree-3 neighbor of u either has a
heavy edge not incident to u, giving an additional measure reduction of at least wh − we, or in
at least one branch may be super 2-reduced, for a measure reduction of at least 2h5. (The latter
requires a justification we give explicitly, although Lemma 9 could be invoked. At the start of the
first super 2-reduction, every vertex has degree 2 or more. Each of the two “legs” of the super
2-reduction propagates through a [possibly empty] chain of degree-2 vertices before terminating
either in a good degree reduction or by meeting a vertex that was reduced to degree 1 by the other
leg. In the latter case all the vertices involved had degree 2, thus were neighbors of u originally
of degree 3; also, there must have been at least three of them to form a cycle, and the remaining
2 or fewer vertices in N(u) contradict the assumption that F was simplified.) Thus, the splitting
number is at most(

a5 +
∑5

i=3 pihi +H(wh − we) + χ(p3 ≥ 1)2h5, a5 +
∑5

i=3 pihi +H(wh − we)
)

or(52)

29

(
a5 +

∑5
i=3 pihi +H(wh − we) + χ(p3 ≥ 1)(wh − we),

a5 +
∑5

i=3 pihi +H(wh − we) + χ(p3 ≥ 1)(wh − we)
)
.(53)

�

10.4. 5-nonregular, clause learning. H = 0 and p3 = 0 and p5 ∈ {3, 4}.
Let v be a degree 5 (degree 5 in G) neighbor of u with a minimum number of degree-5 neighbors

in N2 := N2(u). The clause learning splitting (see Lemma 8) will set u in the first branch, u and v
in the second branch, and all of N [u] in the third branch. In each of the 3 branches, the resulting
instance could become 5-regular or not.

In the first branch, the measure of the instance decreases by at least

∆51 := min

{
a5 +

∑5
i=4 pihi (5-nonregular case), or

a5 +
∑5

i=4 piai −R5 (5-regular case).
(54)

In the analysis of the second and third branches we distinguish between the case where v has at
most one neighbor of degree 5 in N2, and the case where v (and thus every degree-5 neighbor of u)
has at least two neighbors of degree 5 in N2.

In the second branch, if v has at most one neighbor of degree 5 in N2, the measure of the instance
decreases by at least

∆1
52 := min

{
a5 +

∑5
i=4 pihi + a4 + 3h4 + h5 (5-nonregular case), or

a5 +
∑5

i=4 piai −R5 (5-regular case).
(55)

(The degree reductions 3h4+h5 from the nonregular case do not appear in the regular case because
they may pertain to the same vertices as the deletions

∑
piai.)

If v has at least two neighbors of degree 5 in N2, the measure decreases by at least

∆2
52 := min

{
a5 +

∑5
i=4 pihi + a4 + 4h5 (5-nonregular case), or

a5 +
∑5

i=4 piai + 2a5 −R5 (5-regular case).
(56)

In the third branch, first take the case where v has at most one neighbor of degree 5 in N2. Since
|N2| ≥ 4, there are at least 4 good degree reductions on vertices in N2. If the instance becomes
regular, this implies a measure decrease of at least 4a3. If the instance remains nonregular, this
is a measure reduction of at least 4h5, and we now show that if p5 = 4 then there is a fifth good
degree reduction. We argue this just as the 4-nonregular case (Section 9.2) with p′3 = 4; we could
alternatively apply Lemma 9. If |N2| = 5 the desired 5h5 is immediate. Otherwise, |N2| = 4, the
number of edges between N(u) and N2 is at least 4, and odd (from p5 = 4 and p4 = 1, recalling
that p3 = 0), so |N(u) × N2| ≥ 5. At least one edge incident on each vertex in N2 gives a good
degree reduction, and we fail to get a fifth such reduction only if the fifth edge is incident on a
vertex x ∈ N2 of degree 3, leaving it with degree 1. But in that case the remaining neighbor of x
must be in N3(u) (otherwise N2 \ x is a 3-cut, a contradiction by reduction 10.1), and 1-reducing
x gives the fifth good degree reduction. Thus the measure decreases by at least

∆1
53 := min

{
a5 +

∑5
i=4 piai + 4h5 + χ(p5 = 4)h5 (5-nonregular case), or

a5 +
∑5

i=4 piai + 4a3 −R5 (5-regular case).
(57)

Otherwise, in the third branch, v has at least two neighbors of degree 5 in N2. For the regular
case we simply note that each vertex in N2 has its degree reduced and must be deleted, N2 has
at least four vertices of which at least two are of degree 5, for a measure reduction of at least
2a5 + 2a3. We now address the nonregular case. Letting P5 be the set of degree-5 vertices in N(u)
(so |P5| = p5), by definition of v every vertex in P5 has at least two degree-5 neighbors in N2. Let
R ⊆ N2 be the set of degree-5 vertices in N2 adjacent to P5, and let E5 = E ∩ (P5 × R) be the

30

set of edges between P5 and R. There is one last case distinction, according to the value of p5. If
p5 = 3 there are at least 6 good degree reductions: |E5| = 6, each vertex in R has at most |P5| = 3
incident edges from E5, and thus each such incidence results in a good degree reduction (the vertex
degree is reduced at most from 5 to 4 to 3 to 2). Here we have 6h5.

If p5 = 4 we claim that the good degree reductions amount to at least min{8h5, 5h5 + h4 + h3}.
By default the 8 edges in E5 all generate good degree reductions, with fewer only if some of the
degree-5 vertices in R have more than 3 incident edges from E5. The “degree spectrum” on R is
thus a partition of 8 (the number of incident edges) into |R| parts, where no part can be larger
than |P4| = 4. If the partition is 4 + 4 this means two reductions that are not good (2h2), but then
this implies that |R| = 2, and the other two vertices in N2 \ R also have their degrees reduced,
restoring the total of 8 good reductions. If the partition has exactly one 4, on a vertex r ∈ R, then
just one of the 8 degree reductions is not good, and the 7 good reductions include those on r, thus
giving a measure reduction of at least 5h5 + h4 + h3.

Considering the difference, which we will denote gp5=4, between these guaranteed measure de-
creases and the guarantee of 6h5 when p5 = 3, we constrain

gp5=4 ≤ 8h5 − 6h5 = 2h5,(58)

gp5=4 ≤ (5h5 + h4 + h3)− 6h5 = −h5 + h4 + h3.(59)

and we obtain a measure reduction of at least

∆2
53 := min

{
a5 +

∑5
i=4 piai + 6h5 + χ(p4 = 1)gp5=4 (5-nonregular case), or

a5 +
∑5

i=4 piai + 2a5 + 2a3 −R5 (5-regular case).
(60)

Wrapping up this reduction, the case that v has at most 1 degree-5 neighbor in N , or at least
two such neighbors, respectively impose the constraints (splitting numbers)

(∆51,∆
1
52,∆

1
53) and(61)

(∆51,∆
2
52,∆

2
53).(62)

�

11. Instances of degree 6

This section considers formulas of maximum degree 6. The algorithm chooses a vertex u of
degree 6 with — if possible — at least one neighbor of lower degree, and splits on u by setting it
to 0 and 1.

11.1. 6-regular. If every vertex has degree 6, the same analysis as for regular instances of degree
4 gives a splitting number which is at least one of the following:

(7a6, 7a6),(63)

(a6 + 6h6 +R6, a6 + 6h6 +R6).(64)

�

11.2. 6-nonregular. Vertex u has at least one neighbor of degree at most 5.
31

It is straightforward that the splitting number is at least as large as one of the following (only
distinguishing if the instance becomes 6-regular or not):(

a6 +

6∑
i=3

pihi, a6 +

6∑
i=3

pihi

)
,(65)

(
a6 +

6∑
i=3

piai −R6, a6 +
6∑
i=3

piai −R6

)
.(66)

�

12. Tuning the bounds

For any values of we and wh satisfying the constraints we have set down, we have shown that
any Max 2-CSP instance F is solved in time O?

(
2|E|we+|H|wh

)
.

For a given instance F , the running-time bound is best for the feasible values of we and wh
which minimize |E|we + |H|wh. As usual taking |E| = (1 − p)m and |H| = pm, this is equivalent
to minimizing

(1− p)we + pwh,(67)

allowing us to obtain a 1-parameter family of running-time bounds — pairs (we, wh) as a function
of p — tuned to a formula’s fraction of conjunctive and general 2-clauses.

Reiterating, if a formula’s “p” value is p(F) = |H|/(|E|+ |H|), and if minimizing (67) for a given
p gives a pair (we, wh)(p), then the optimal bound for formula F is the one given by (we, wh)(p(F)),

but for any (we, wh)(p), the running-time bound O?
(
2|E|we+|H|wh

)
is valid for every formula F ,

even if p 6= p(F). This is simply because every such pair (we, wh) is a feasible solution of the
nonlinear program, even if it is not the optimal solution for the appropriate objective function.

For cubic instances, minimizing (67) with p small gives we ≈ 0.10209 and wh ≈ 0.23127, while
minimizing with p close to 1 gives we = wh = 1/6 (the tight constraints are all linear, so the
solution is rational), matching the best known polynomial space running time for general instances
of Max 2-CSP (see [SS07a]). It appears that the first result is obtained for all p ≤ 1/2 and the
second for all p > 1/2.

For instances of degrees 4, 5, and 6 or more, the results of minimizing with various values of
p are shown in Table 2, and the most interesting of these is surely that of degree 6 or more (the
general case). Here, taking p small gives we ≈ 0.15820 and wh ≈ 0.31174. For instances of Max

2-Sat this gives a running-time bound of O?
(
20.1582m

)
or O?

(
2m/6.321

)
, improving on the best

bound previously known, giving the same bound for mixtures of OR and AND clauses, and giving
nearly as good run times when a small fraction of arbitrary integer-weighted clauses are mixed
in. We observe that any p ≥ 0.29 leads to we = wh = 0.19 (as for cubic case with p > 1/2,
the tight constraints are linear, so the value is rational), matching the best known bound (for
polynomial-space algorithms) of O?

(
20.19m

)
from [SS07a]. Figure 1 shows the values of we, wh,

and the objective (1 − p)we + (p)wh, as a function of p. Numerically, the values we and wh meet
for some value of p between 0.2899 and 0.29.

13. Conclusions

In this paper, we introduced a hybrid model for mixed 2-Sat and 2-CSP instances. It captures the
algorithmic benefits of both a more general setting, where powerful reductions can be performed,
and a narrower one, where more specialized reductions come into play. Whereas in all previous
improvements for Max 2-Sat, the specific 2-Sat setting and the more general 2-CSP setting were

32

permanently competing, we use in this paper, for the first time, a unified setting taking advantage
of both worlds.

We introduced hybrid instances in the context of Max 2-Sat and Max 2-CSP, a pair of well-
studied and important problems, but we believe they will be of use in branching algorithms for
other problems. Natural candidates are k-coloring and (k,2)-CSP, Maximum Independent Set and
Max 2-CSP, or Maximum Cut and Max 2-CSP. A virtue of the hybrid approach is that the method
itself imposes no overhead. For Max 2-Sat, for example, if we included no transformation producing
heavy edges from light ones, the method would yield the same result as an analysis confined to
simple clauses. If there is even one rule producing heavy edges, and one rule decreasing the number
of such edges, it is already possible to get a better result. The hybrid method could well be
generalized beyond light and heavy edges. For example, better running-time bounds for Max 2-Sat
and/or Max Cut might come from allowing one type of edges for conjunctions and disjunctions, a
second type for exclusive-or, and a third type for general, weighted, 2-variable constraints. In this
case it is not clear which of the first two types of constraints would get a heavier weight, but (given
a set of transformation rules) the hybrid method will establish the “exchange rate” between all the
edge types.

Recently, Bonsma and Lokshtanov [BL] explored feedback vertex set in what they call “mixed”
graphs, with directed and undirected edges, and showed that the problem is fixed-parameter
tractable. It is interesting to see the hybrid viewpoint adopted but pursued with different tech-
niques.

Acknowledgment

The authors are very grateful to Alex Scott for initiating this project and contributing some of
the first key ideas.

References

[BE05] Richard Beigel and David Eppstein, 3-coloring in time O(1.3289n), J. Algorithms 54 (2005), no. 2,
168–204.

[BL] Paul Bonsma and Daniel Lokshtanov, Feedback vertex set in mixed graphs, Proceedings of the
12th Algorithms and Data Structures Symposium (WADS 2011), to appear, preprint available at
http://arxiv.org/abs/1010.5974.

[BR99] Nikhil Bansal and Venkatesh Raman, Upper bounds for MaxSat: Further improved, Proceedings of the
10th International Symposium on Algorithms and Computation (ISAAC 1999), Lecture Notes in Comput.
Sci., vol. 1741, Springer, 1999, pp. 247–258.

[Epp06] David Eppstein, Quasiconvex analysis of multivariate recurrence equations for backtracking algorithms,
ACM Trans. Algorithms 2 (2006), no. 4, 492–509.

[FGK09] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch, A measure & conquer approach for the analysis
of exact algorithms, J. ACM 56 (2009), no. 5, 1–32.

[GHNR03] Jens Gramm, Edward A. Hirsch, Rolf Niedermeier, and Peter Rossmanith, Worst-case upper bounds for
MAX-2-SAT with an application to MAX-CUT, Discrete Appl. Math. 130 (2003), no. 2, 139–155.

[GS09] Serge Gaspers and Gregory B. Sorkin, A universally fastest algorithm for Max 2-Sat, Max 2-CSP, and
everything in between, Proceedings of the 20th annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2009), SIAM, 2009, pp. 606–615.

[Hir00] Edward A. Hirsch, A new algorithm for MAX-2-SAT, Proceedings of the 17th Annual Symposium on
Theoretical Aspects of Computer Science (STACS 2000), Lecture Notes in Comput. Sci., vol. 1770,
Springer, 2000, pp. 65–73.

[KK06] Arist Kojevnikov and Alexander S. Kulikov, A new approach to proving upper bounds for MAX-2-SAT,
Proceedings of the 17th Annual ACM–SIAM Symposium on Discrete Algorithms (SODA 2006), ACM,
2006, pp. 11–17.

[KK07] Alexander S. Kulikov and Konstantin Kutzkov, New bounds for MAX-SAT by clause learning, Proceedings
of the 2nd International Symposium on Computer Science in Russia (CSR 2007), Lecture Notes in
Comput. Sci., vol. 4649, Springer, 2007, pp. 194–204.

33

[KMRR05] Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith, Algorithms based on the treewidth of
sparse graphs, Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in Computer
Science (WG 2005), Lecture Notes in Comput. Sci., vol. 3787, Springer, 2005, pp. 385–396.

[Koi06] Mikko Koivisto, Optimal 2-constraint satisfaction via sum-product algorithms, Information Proc. Lett.
98 (2006), no. 1, 24–28.

[KR05] Joachim Kneis and Peter Rossmanith, A new satisfiability algorithm with applications to Max-Cut, Tech.
Report AIB-2005-08, Department of Computer Science, RWTH Aachen, 2005.

[Kul97] Oliver Kullmann, Worst-case analysis, 3-SAT decision and lower bounds: Approaches for improved SAT
algorithms, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 35, American
Mathematical Society, 1997, pp. 261–313.

[Kul99] , New methods for 3-SAT decision and worst-case analysis, Theoret. Comput. Sci. 223 (1999),
no. 1-2, 1–72.

[NR00] Rolf Niedermeier and Peter Rossmanith, New upper bounds for maximum satisfiability, J. Algorithms 36
(2000), no. 1, 63–88.

[RF08] Daniel Raible and Henning Fernau, A new upper bound for Max-2-SAT: A graph-theoretic approach,
Proceedings of the 33rd International Symposium on Mathematical Foundations of Computer Science
(MFCS 2008), Lecture Notes in Comput. Sci., vol. 5162, Springer, 2008, pp. 551–562.

[SS03] Alexander D. Scott and Gregory B. Sorkin, Faster algorithms for MAX CUT and MAX CSP, with polyno-
mial expected time for sparse instances, Proceedings of the 7th International Workshop on Randomization
and Approximation Techniques in Computer Science (RANDOM 2003), Lecture Notes in Comput. Sci.,
vol. 2764, Springer, 2003, pp. 382–395.

[SS04] , A faster exponential-time algorithm for Max 2-Sat, Max Cut, and Max k-Cut, Tech. Report
RC23456 (W0412-001), IBM Research Report, December 2004, See http://domino.research.ibm.com/
library/cyberdig.nsf.

[SS07a] , Linear-programming design and analysis of fast algorithms for Max 2-CSP, Discrete Optim. 4
(2007), no. 3-4, 260–287.

[SS07b] , Polynomial constraint satisfaction: A framework for counting and sampling CSPs and other
problems, Tech. Report cs:DM/0604079v3, arxiv.org, February 2007, See http://arxiv.org/abs/cs.DM/
0604079.

[Wah04] Magnus Wahlström, Exact algorithms for finding minimum transversals in rank-3 hypergraphs, J. Algo-
rithms 51 (2004), no. 2, 107–121.

[Wil05] Ryan Williams, A new algorithm for optimal 2-constraint satisfaction and its implications, Theoret.
Comput. Sci. 348 (2005), no. 2-3, 357–365.

34

Appendix: Convex Program for Computing the Optimal Weights

Below we show, in AMPL notation, the objective function and all the constraints of the math-
ematical program we solve to optimize an algorithm for hybrid instances with a fraction p of
non-simple clauses. Constraints are annotated the numbers of the corresponding inequalities in the
paper’s body. The parameter margin is the “ε” discussed in Section 8.6 to ensure that a solution
is truly feasible even in the face of finite-precision arithmetic.

Max 2-Sat and Max 2-CSP

maximum degree

param maxd integer >=3;

fraction of non-simple clauses

param p;

param margin;

set DEGREES := 0..maxd;

weight for edges

var We >= 0;

weight for degree reductions from degree at most i

var h {DEGREES} >= 0;

vertex of degree i + i/2 surrounding half-edges

var a {DEGREES};

weight for heavy edges

var Wh;

Regular weights

var R4 >= 0; (14)
var R5 >= 0; (14)
var R6 >= 0; (14)
additional degree reductions in the 3rd branch (nonregular)

of the clause learning branching for p5=4 vs p5=3

var nonreg53;

change in measure for the 3 branches

1st argument is the nb of deg-4 nbs of u

2nd argument distinguishes (if present) if v has at most 1 deg-5 nb in N^2 (1)

or at least 2 (2)

set TWO := 1..2;

var f1 {TWO};

var f2 {TWO,TWO};

var f3 {TWO,TWO};

var D4r {0..4, 0..4};

var D4n {0..4, 0..4};

var g4r {0..4};

var g4n {0..4};

analysis in terms of the number of edges

minimize Obj: (1-p)*We + p*Wh;

Some things we know

subject to Known:

a[0] = 0; (24)
35

Constrain W values non-positive

subject to Wnonpos {d in DEGREES : d>=1}:

a[d] - d*We/2 <= 0 - margin; (16)(12)

a[] value positive

subject to MeasurePos {d in DEGREES : d>=1}:

a[d] >= 0 + margin; (17)

Intuition: weight for heavy edges >= weight for light edges

subject to HeavyEdge:

We - Wh <= 0 - margin; (19)

collapse parallel edges

subject to parallel {d in DEGREES : d >= 3}:

Wh - We - 2*a[d] + 2*a[d-1] <= 0 - margin; (22)

decomposable edges

subject to Decomposable {d in DEGREES : d >= 1}:

- a[d] + a[d-1] <= 0 - margin; (25)

constraints for the values of h[]

subject to hNotation {d in DEGREES, i in DEGREES : 3 <= i <= d}:

h[d] - a[i] + a[i-1] <= 0 - margin; (30)(35)

#######################################

constraints for cubic

#######################################

3-cut

subject to Cut3:

2*2^(-5*a[3] - 2*h[3]) <= 1 - margin; (31)

Independent neighborhood

subject to Indep {q in 0..3}:

2^(-a[3] - 3*h[3] -q*(Wh-We)) + 2^(-a[3] -3*h[3] - q*(Wh-We) - 2*(3-q)*h[3])

<= 1 - margin; (32)

One edge in neighborhood

subject to OneEdge1:

2^(-5*a[3]-h[3]) + 2^(-5*a[3] -3*h[3]) <= 1 - margin; (34)

subject to OneEdge2:

2^(-5*a[3] - h[3] - Wh + We) + 2^(-5*a[3] - h[3] - Wh + We) <= 1 - margin; (33)

#######################################

constraints for degree 4

#######################################

36

4-regular

regular becomes nonregular

subject to Regular41:

2* 2^(-a[4] - 4*h[4]-R4) <= 1 - margin; (38)

regular becomes regular

subject to Regular42:

2* 2^(-5*a[4]) <= 1 - margin; (37)

4 non-regular

subject to 4nonregularBase

{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

D4n[p3p,p3pp] = -a[4] -(p3p+p3pp)*h[3] -p4*h[4] -ceil(p3pp/2)*(Wh-We); (39)

subject to 4regularBase

{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

D4r[p3p,p3pp] = -a[4] -(p3p+p3pp)*a[3] -p4*a[4] -ceil(p3pp/2)*(Wh-We) +R4; (40)

subject to 4nonregularBonus

{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

g4n[p3p] = - floor((p3p+2)/3) * (2*h[4]); (41)

subject to 4regularBonus

{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

g4r[p3p] = - (floor(p3p/2)+floor(p3p/3)+floor(p3p/4)) * a[3]; (42)

subject to Nonregular41 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4n[p3p,p3pp]) + 2^(D4n[p3p,p3pp] + g4n[p3p])

<= 1 - margin; (43)

subject to Nonregular42 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4n[p3p,p3pp]) + 2^(D4r[p3p,p3pp] + g4r[p3p])

<= 1 - margin; (44)

subject to Nonregular43 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4r[p3p,p3pp]) + 2^(D4n[p3p,p3pp] + g4n[p3p])

<= 1 - margin; (45)

subject to Nonregular44 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:

2^(D4r[p3p,p3pp]) + 2^(D4r[p3p,p3pp] + g4r[p3p])

<= 1 - margin; (46)

#######################################

constraints for degree 5

#######################################

3-cut for degree 5

37

subject to Cut5_3:

2* 2^(-a[5] - 6*a[3] + R5 +(Wh-We)) <= 1 - margin; (47)

5-regular

regular becomes nonregular

subject to Regular51:

2* 2^(-a[5] - 5*h[5]-R5) <= 1 - margin; (48)

regular stays regular

subject to Regular52:

2* 2^(-6*a[5]) <= 1 - margin; (49)

5 non-regular

clause learning

first branch

subject to Cf1 {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f1[p4] >= -a[5]-p4*h[4]-p5*h[5]; (54)
subject to Cf1reg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f1[p4] >= -a[5]-p4*a[4]-p5*a[5]+R5; (54)

second branch, v has at most 1 deg-5 neighbor in N^2

subject to Cf2a {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,1] >= -a[5]-p4*h[4]-p5*h[5]-a[4]-3*h[4]-h[5]; (55)
subject to Cf2areg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,1] >= -a[5]-p4*a[4]-p5*a[5]+R5; (55)

second branch, v (and all other deg-5 nbs of u) has at least 2 deg-5 nbs in N^2

subject to Cf2b {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,2] >= -a[5]-p4*h[4]-p5*h[5]-a[4]-4*h[5]; (56)
subject to Cf2breg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-2*a[3]+R5; (56)

additional degree reductions in the 3rd branch (nonregular) for p5=4 vs p5=3

subject to addDegRedNR53_1:

nonreg53 <= 2*h[5]; (58)
subject to addDegRedNR53_2:

nonreg53 <= h[4]+h[3]-h[5]; (59)

third branch, v has at most 1 deg-5 neighbor in N^2

subject to Cf3a {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,1] >= -a[5]-p4*a[4]-p5*a[5]-(4+((4*p4+5*p5-5) mod 2))*h[5]; (57)
subject to Cf3areg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,1] >= -a[5]-p4*a[4]-p5*a[5]-4*a[3]+R5; (57)

third branch, v (and all other deg-5 nbs of u) has at least 2 deg-5 nbs in N^2

subject to Cf3b {p4 in 1..2, p5 in 3..4: p4+p5=5}:

38

f3[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-6*h[5]-floor(p5/4)*nonreg53; (60)
subject to Cf3breg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-2*a[3]-2*a[5]+R5; (60)

the clause learning splitting

subject to Nonregular5cl {p4 in 1..2, nb5 in 1..2}:

2^(f1[p4]) + 2^(f2[p4,nb5]) + 2^(f3[p4,nb5]) <= 1; (61)(62)

2-way splitting

2-way splitting, non-reg in both branches, if p3>0, then additional heavy edge

subject to Nonregular51a {p3 in 0..5, p4 in 0..5,

p5 in 0..4, H in 0..1: p3+p4+p5=5

and ((H=1) or (p5 < 3 or p3>0))}:

2* 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We) -ceil(p3/5)*(Wh-We))

<= 1 - margin; (53)

2-way splitting, non-reg in both branches, if p3>0, then additional super-2

subject to Nonregular51b {p3 in 0..5, p4 in 0..5, p5 in 0..4,

H in 0..1: p3+p4+p5=5

and ((H=1) or (p5 < 3 or p3>0))}:

2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We) -ceil(p3/5)*2*h[5])

+ 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We))

<= 1 - margin; (52)

2-way splitting, becomes reg in both branches

subject to Nonregular52 {p3 in 0..5, p4 in 0..5, p5 in 0..4,

H in 0..1: p3+p4+p5=5

and ((H=1) or (p5 < 3 or p3>0))}:

2* 2^(-a[5] - p3*a[3] - p4*a[4] - p5*a[5] -H*(Wh-We) + R5) <= 1 - margin; (50)

2-way splitting, becomes reg in 1 branch

subject to Nonregular52b {p3 in 0..5, p4 in 0..5, p5 in 0..4,

H in 0..1: p3+p4+p5=5

and ((H=1) or (p5 < 3 or p3>0))}:

2^(-a[5] - p3*a[3] - p4*a[4] - p5*a[5] -H*(Wh-We) + R5)

+ 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We))

<= 1 - margin; (50)

#######################################

constraints for degree 6

#######################################

6-regular

regular becomes nonregular

subject to Regular61:

2* 2^(-a[6] - 6*h[6]-R6) <= 1 - margin; (64)

39

regular stays regular

subject to Regular62:

2* 2^(-7*a[6]) <= 1 - margin; (63)

6 non-regular

nonregular stays nonregular

subject to Nonregular61 {p3 in 0..6, p4 in 0..6, p5 in 0..6, p6 in 0..5:

p3+p4+p5+p6=6}:

2* 2^(-a[6] - p6*h[6] - p5*h[5] - p4*h[4] - p3*h[3]) <= 1 - margin; (65)

nonregular becomes regular

subject to Nonregular62 {p3 in 0..6, p4 in 0..6, p5 in 0..6, p6 in 0..5:

p3+p4+p5+p6=6}:

2* 2^(-a[6] - p6*a[6] - p5*a[5] - p4*a[4] - p3*a[3] +R6) <= 1 - margin; (66)

(Serge Gaspers) Institute of Information Systems (184/3), Vienna University of Technology, Fa-
voritenstrasse 9-11, A-1040 Vienna, Austria

E-mail address: gaspers@kr.tuwien.ac.at

(Gregory B. Sorkin) Department of Management, London School of Economics, Houghton Street,
London WC2A 2AE, UK

E-mail address: g.b.sorkin@lse.ac.uk

40

