
Finding a Minimum Feedback Vertex Set in time
O(1.7548n) ?

Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin??

Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.

{Fedor.Fomin|Serge.Gaspers|Artem.Pyatkin}@ii.uib.no

Abstract. We present an O(1.7548n) algorithm finding a minimum
feedback vertex set in a graph on n vertices.

Keywords: minimum feedback vertex set, maximum induced forest, exact
exponential algorithm

1 Introduction

The problem of finding a minimum feedback vertex set has many applica-
tions and its history can be traced back to the early ’60s (see the survey of
Festa at al. [2]). It is also one of the classical NP-complete problems from
Karp’s list [5]. There is quite a dramatic story of obtaining faster and
faster parameterized algorithms with a chain of improvements (see e.g.
[7]) concluding with 2O(k)nO(1)-time algorithms obtained independently
by different research groups [1, 4].

A feedback vertex set of a graph on n vertices can be trivially found in
time O(2nn) by trying all possible vertex subsets. For a long time, despite
attacks of many researchers, no faster exponential time algorithm was
known. Very recently Razgon [8] broke the 2n barrier with an O(1.8899n)
time algorithm. The algorithm of Razgon is based on the Branch & Re-
duce paradigm and its analysis is nice and clever.

In this paper we show how to find a minimum feedback vertex set in
time O(1.7548n). Our improvement is based on Razgon’s idea of measur-
ing the progress of the branching algorithm. The most significant improve-
ment in the running time of our algorithm is due to a new branching rule
which is based on Proposition 2. This rule works nicely except one case,
which, luckily, can be reduced to finding an independent set of maximum
size.
? Additional support by the Research Council of Norway.

?? The work was partially supported by grants of the Russian Foundation for Basic
Research (project code 05-01-00395), INTAS (project code 04–77–7173)

2 Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin

2 Preliminaries

Let G = (V,E) be an undirected graph on n vertices. For V ′ ⊆ V we
denote by G[V ′] the graph induced by V ′ and by G\V ′ the graph induced
by V \ V ′. For a vertex v ∈ V let N(v) be the sets of its neighbors. We
denote by ∆(G) the maximum vertex degree of G.

The set X ⊆ V is called a feedback vertex set or an FVS if G \ X
is a forest. Thus the problem of finding a minimum FVS is equivalent
to the problem of finding a maximum induced forest or an MIF. For the
description of the algorithm it is more convenient to work with MIF than
with FVS.

We call a subset F ⊆ V acyclic if G[F] is a forest and independent if
every component of G[F] is an isolated vertex; F is a maximum indepen-
dent set of G if has a maximum cardinality among all independent sets.
If F is acyclic but not independent then every connected component on
at least two vertices is called non-trivial. If T is a non-trivial component
then we denote by Id(T, t) the operation of contracting all edges of T
into one vertex t and removing appeared loops. Note that this operation
may create multiedges in G. We denote by Id∗(T, t) the operation Id(T, t)
followed by the removal of all vertices connected with t by multiedges.

For an acyclic subset F ⊆ V , denote by MG(F) the set of all max-
imum acyclic supersets of F in G (we omit the subindex G when it is
clear from the context which graph is meant). Let M = M(∅). Then the
problem of finding a MIF can be stated as finding an element of M. We
solve a more general problem, namely finding an element of M(F) for an
arbitrary acyclic subset F .

To simplify the description of the algorithm, we suppose that F is
always an independent set. The next proposition justifies this supposition.

Proposition 1. Let G = (V,E) be a graph, F ⊆ V be an acyclic subset
of vertices and T be a non-trivial component of F . Denote by G′ the graph
obtained from G by the operation Id∗(T, t) and let F ′ = F ∪{t}\T . Then
X ∈MG(F) if and only if X ′ ∈MG′(F ′) where X ′ = X ∪ {t} \ T .

Proof. If, after the operation Id(T, t), a vertex v is connected with t by
a multiedge then the set T ∪ {v} is not acyclic in G. Hence, no element
of MG(F) may contain v. Therefore, the function X 7→ X ∪ {t} \ T is a
bijection from MG(F) to MG′(F ′). ut

By using the operation Id∗ on every non-trivial component of F , we
obtain an independent set F ′.

Finding a Minimum Feedback Vertex Set in time O(1.7548n) 3

The following proposition is used to justify the main branching rule
of the algorithm.

Proposition 2. Let G = (V,E) be a graph, F ⊆ V be an independent
subset of vertices and v 6∈ F be a vertex adjacent to exactly one vertex
t ∈ F . Then, there exists X ∈ M(F) such that either v or at least two
vertices of N(v) \ {t} are in X.

Proof. Suppose, for the sake of contradiction, that there is X ∈ M(F)
such that v 6∈ X and only one vertex of N(v)\{t} is in X, say z. It follows
from the maximality of X that X ∪ {v} is not acyclic. But since v has
degree at most 2 in X all the cycles in X ∪{v} must contain z. Then the
set X ∪{v} \ {z} is in M(F) and satisfies the conditions. The case where
no vertex of N(v) \ {t} is in X is even simpler. ut

Consequently, if N(v) = {t, v1, v2, . . . , vk}, then there exists X ∈
M(F) satisfying one of the following properties:

1. v ∈ X;
2. v 6∈ X, vi ∈ X for some i ∈ {1, 2, . . . , k−2} while vj 6∈ X for all j < i;
3. v, v1, v2, . . . , vk−2 6∈ X but vk−1, vk ∈ X.

In particular, if k ≤ 1, then v ∈ X for some X ∈M(F).
We also need the following

Proposition 3. Let G = (V,E) be a graph and F be an independent
set in G such that G \ F = N(t) for some t ∈ F . Consider the graph
G′ = G[N(t)] and for every pair of vertices u, v ∈ N(t) having a common
neighbor in F \ {t} add an edge uv to G′. Denote the obtained graph by
H and let I be a maximum independent set in H. Then F ∪ I ∈MG(F).

Proof. Let X ∈ MG(F) and u, v ∈ G \ F . If uv ∈ E then u, v, t form
a triangle. If there is a vertex w ∈ F \ {t} adjacent to both u and v
then tuwv is a 4-cycle. In both cases, X cannot contain u and v at the
same time. Therefore, X ∈ MG(F) if and only if X \ F is a maximum
independent set in H. ut

There are several fast exponential algorithms computing a maximum
independent set in a graph. We use the fastest known polynomial space
algorithm.

Proposition 4 ([3]). Let G be a graph on n vertices. Then a maximum
independent set in G can be found in time O(1.2210n).

4 Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin

3 The algorithm

In this section the algorithm finding the maximum size of an induced
forest containing a given acyclic set F is presented. This algorithm can
easily be turned into an algorithm computing at least one element of
MG(F). During the work of the algorithm one vertex t ∈ F is called
an active vertex. The algorithm branches on a chosen neighbor of t. Let
v ∈ N(t). Denote by K the set of all vertices of F other than t that are
adjacent to v. Let G′ be the graph obtained after the operation Id(K ∪
{v}, u). We say that a vertex w ∈ V \ {t} is a generalized neighbor of v in
G if w is the neighbor of u in G′. Denote by gd(v) the generalized degree
of v which is the number of its generalized neighbors.

The description of the algorithm consists of a sequence of cases and
subcases. To avoid a confusing nesting of if-then-else statements let us
use the following convention: The first case which applies is used in the
algorithm. Thus, inside a given case, the hypotheses of all previous cases
are assumed to be false.

Algorithm mif(G, F) computing for a given graph G and an acyclic
set F the maximum size of an induced forest containing F is described
by the following preprocessing and main procedures. (Let us note that
mif(G, ∅) computes the maximum size of an induced forest in G.)

Preprocessing

1. If G consists of k ≥ 2 connected components G1, G2, . . . , Gk, then the
algorithm is called on each of the components and

mif(G, F) =
k∑

i=1

mif(Gi, Fi),

where Fi = Gi ∩ F for all i ∈ {1, 2, . . . , k}.
2. If F is not independent, then apply operation Id∗(T, vT) on every non-

trivial component T of F . Moreover, if T contains the active vertex
then vT becomes active. Let G′ be the resulting graph and let F ′ be
the independent set in G′ obtained from F . Then

mif(G, F) = mif(G′, F ′) + |F \ F ′|.

Main procedures

1. If F = V then MG(F) = {V }. Thus,

mif(G, F) = |V |.

Finding a Minimum Feedback Vertex Set in time O(1.7548n) 5

2. If F = ∅ and ∆(G) ≤ 1 then MG(F) = {V } and

mif(G, F) = |V |.

3. If F = ∅ and ∆(G) ≥ 2 then the algorithm chooses a vertex t ∈ V (G)
of degree at least 2. Then t is either contained in a maximum induced
forest or not. Thus the algorithm branches on two subproblems and
returns the maximum:

mif(G, F) = max { mif(G, F ∪ {t}),
mif(G \ {t}, F)}.

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F
as an active vertex. Denote the active vertex by t from now on.

5. If V \ F = N(t) then the algorithm constructs the graph H from
Proposition 3 and computes a maximum independent set I in H.
Then

mif(G, F) = |F |+ |I|.

6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F .

mif(G, F) = mif(G, F ∪ {v})

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove
v from G.

mif(G, F) = max { mif(G, F ∪ {v}),
mif(G \ {v}, F)}

8. If there is v ∈ N(t) with gd(v) = 2 then denote its generalized neigh-
bors by w1 and w2. Either add v to F or remove v from G but add
w1 and w2 to F .

mif(G, F) = max { mif(G, F ∪ {v}),
mif(G \ {v}, F ∪ {w1, w2})}

9. If all vertices in N(t) have exactly three generalized neighbors then at
least one of these vertices must have a generalized neighbor outside
N(t), since the graph is connected and the condition of the case Main 5
does not hold. Denote such a vertex by v and its generalized neighbors
by w1, w2 and w3 in such a way that w1 6∈ N(t). Then we either add
v to F ; or remove v from G but add w1 to F ; or remove v and w1

from G and add w2 and w3 to F .

6 Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin

mif(G, F) = max { mif(G, F ∪ {v}),
mif(G \ {v}, F ∪ {w1}),
mif(G \ {v, w1}, F ∪ {w2, w3})}

The behavior of the algorithm is analyzed in the following

Theorem 1. Let G be a graph on n vertices. Then a maximum induced
forest of G can be found in time O(1.7548n).

Proof. Let us consider the algorithm mif(G, F) described above. The cor-
rectness of Preprocessing 1 and Main 1,2,3,4,7 is clear. The correctness of
Main 5 follows from Proposition 3, while the correctness of Preprocess-
ing 2 and Main 6,8,9 follows from Proposition 1 and 2 (indeed, apply-
ing Proposition 2 to the vertex u of the graph G′ shows that for some
X ∈ MG(F) either v or at least two of its generalized neighbors are in
X).

In order to evaluate the time complexity of the algorithm we use the
following measure:

µ = |V \ F |+ α|V \ (F ∪N(t))|

where α = 0.955. In other words, each vertex in F has weight 0, each
vertex in N(t) has weight 1, each other vertex has weight 1 + α, and the
size of the problem is equal to the sum of the vertex weights. We will
prove that a problem of size µ can be solved in time O(xµ) where

x < 1.333277.

Denote by f(µ) the maximum number of times the algorithm is called
recursively on a problem of size µ (i. e. the number of leaves in the
search tree). Then the running time T (µ) of the algorithm is bounded
by O(f(µ) · nO(1)). We use induction on µ to prove that f(µ) ≤ xµ.
Then T (µ) = O(f(µ) · nO(1)), and since the polynomial is suppressed by
rounding the exponential base, we have T (µ) = O(1.333277µ). Clearly,
f(0) = 1. Suppose that f(k) ≤ xk for every k < µ and consider a problem
of size µ.

It is clear that the following steps do not contribute to the exponen-
tial factor of the running time of the algorithm: Preprocessing 1,2 and
Main 1,2,4,6.

Finding a Minimum Feedback Vertex Set in time O(1.7548n) 7

If the condition of the case Main 5 holds then the graph H has ex-
actly µ vertices since each vertex that is not in F has weight 1. By
Theorem 4, a maximum independent set in H can be found in time
O(1.2210µ). Also the algorithm computing a maximum independent set
in [3] is a branching algorithm with a number of recursive calls bounded
by 1.2210µ < 1.333277µ.

In all remaining cases the algorithm is called recursively on smaller
problems. We consider these cases separately.

In the case Main 3 every vertex has weight 1+α. So, removing v leads
to a problem of size µ−1−α. Otherwise, v becomes active after the next
Main 4 step. Then all its neighbors become of weight 1, and we obtain a
problem of size at most µ− 1− 3α since v has degree at least 2. Thus

f(µ) ≤ f(µ− 1− α) + f(µ− 1− 3α) ≤ (xµ−1−α + xµ−1−3α) ≤ xµ

by the induction assumption and the choice of x and α.
In the case Main 7 removing the vertex v decreases the size of the

problem by 1. If v is added to F then we obtain a non-trivial component
in F , which is contracted into a new active vertex t′ at the next Prepro-
cessing 2 step. Those of the generalized neighbors of v that had weight
1 will be connected with t′ by multiedges and thus removed during the
next Preprocessing 2 step. If a generalized neighbor of v had weight 1+α
then it will become a neighbor of t′, i. e. of weight 1. Thus, in any case
the size of the problem is decreased by at least 1 + 4α. So, we have that

f(µ) ≤ f(µ− 1) + f(µ− 1− 4α) ≤ (xµ−1 + xµ−1−4α) ≤ xµ.

In the case Main 8 we distinguish three subcases depending on the
weights of the generalized neighbors of v. Let i be the number of general-
ized neighbors of v having weight 1+α. Adding v to F reduces the weight
of a generalized neighbor either from 1 to 0 or from 1+α to 1. Removing v
from the graph reduces the weight of both generalized neighbors of v to 0
(since we add them to F). According to this, we obtain three recurrences:
for i ∈ {0, 1, 2},

f(µ) ≤ f(µ− (3− i)− iα)+ f(µ− 3− iα) ≤ (xµ−3+i−iα +xµ−3−iα) ≤ xµ.

The case Main 9 is considered analogously to the case Main 8, except
that at least one of the generalized neighbors of v has weight 1 + α, that
is i ≥ 1. In this case, we have for i ∈ {1, 2, 3},

f(µ) ≤ f(µ− (4− i)− iα) + f(µ− 2− α) + f(µ− 4− iα)
≤ (xµ−4+i−iα + xµ−2−α + xµ−4−iα) ≤ xµ.

8 Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin

Thus
f(µ) ≤ xµ.

Since every vertex of G is of weight at most 1 + α, we have that the
running time of the algorithm is

T (µ) = O(xµ) = O(x(1+α)n) = O(1.3332771.955n) = O(1.7548n).

ut

Remark 1. The only tight recurrence is the one of case Main 7 when v has
degree 4. Thus, an improvement of this case would improve the overall
(upper bound of the) running time of the algorithm.

4 Conclusion

We have shown that a few simple changes in the branch-and-reduce al-
gorithm of Razgon [8] together with a flexible measure of the size of
a (sub)problem leads to a significant improvement in the proved upper
bound of the worst case running time of the algorithm.

Note added in camera-ready: Recently, we also proved that the num-
ber of maximal induced forests (and thus the number of minimal feedback
vertex sets) in a graph on n vertices is at most 1.8638n. Schwikowski and
Speckenmeyer presented in [6] an algorithm which enumerates all mini-
mal feedback vertex sets of a graph with polynomial time delay. Thus our
upper bound implies that all minimal feedback vertex sets (and maximal
induced forests) can be enumerated in time O(1.8638n).

Acknowledgment. We thank Igor Razgon for sending us a preliminary
version of [8].

References

1. F. K. H. A. Dehne, M. R. Fellows, M. A. Langston, F. A. Rosamond, and
K. Stevens, An O(2O(k)n3) FPT algorithm for the undirected feedback vertex set
problem., in Proceedings of the 11th Annual International Conference on Computing
and Combinatorics (COCOON 2005), vol. 3595 of LNCS, Berlin, 2005, Springer,
pp. 859–869.

2. P. Festa, P. M. Pardalos, and M. G. C. Resende, Feedback set problems, in
Handbook of combinatorial optimization, Supplement Vol. A, Kluwer Acad. Publ.,
Dordrecht, 1999, pp. 209–258.

3. F. V. Fomin, F. Grandoni, and D. Kratsch, Measure and conquer: A simple
O(20.288 n) independent set algorithm, in 17th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2006), New York, 2006, ACM and SIAM, pp. 18–25.

Finding a Minimum Feedback Vertex Set in time O(1.7548n) 9

4. J. Guo, R. Niedermeier, and S. Wernicke, Parameterized complexity of gen-
eralized vertex cover problems., in Proceedings of the 9th International Workshop
on Algorithms and Data Structures (WADS 2005), vol. 3608 of LNCS, Springer,
Berlin, 2005, pp. 36–48.

5. R. M. Karp, Reducibility among combinatorial problems, in Complexity of com-
puter computations, Plenum Press, New York, 1972, pp. 85–103.

6. B. Schwikowski, and E. Speckenmeyer, On Computing All Minimal Solutions
for Feedback Problems, in Discrete Applied Mathematics 117(1-3), 2002, pp. 253–
265.

7. V. Raman, S. Saurabh, and C. R. Subramanian, Faster fixed parameter tractable
algorithms for undirected feedback vertex set, in Proceedings of the 13th Interna-
tional Symposium on Algorithms and Computation (ISAAC 2002), vol. 2518 of
LNCS, Springer-Verlag, Berlin, 2002, pp. 241–248.

8. I. Razgon, Exact computation of maximum induced forest, in Proceedings of the
10th Scandinavian Workshop on Algorithm Theory (SWAT 2006), LNCS, Berlin,
2006, Springer, to appear.

