
A Linear Vertex Kernel forMaximum Internal Spanning TreeFedor V. Fomin1, Serge Gaspers2, Saket Saurabh1, and Stéphan Thomassé2
1 Department of Informatics, University of Bergen, Norway.{fomin|saket}@ii.uib.no

2 LIRMM � University of Montpellier 2, CNRS, France.{gaspers|thomasse}@lirmm.frAbstract. We present a polynomial time algorithm that for any graph
G and integer k ≥ 0, either �nds a spanning tree with at least k internalvertices, or outputs a new graph GR on at most 3k vertices and an integer
k

′ such that G has a spanning tree with at least k internal vertices if andonly if GR has a spanning tree with at least k
′ internal vertices. In otherwords, we show that theMaximum Internal Spanning Tree problemparameterized by the number of internal vertices k has a 3k-vertex kernel.Our result is based on an innovative application of a classical min-maxresult about hypertrees in hypergraphs which states that �a hypergraph

H contains a hypertree if and only if H is partition connected.�1 IntroductionIn the Maximum Internal Spanning Tree problem (MIST), we are given agraph G and the task is to �nd a spanning tree of G with a maximum number ofinternal vertices. MIST is a natural generalization of the Hamiltonian Pathproblem because an n-vertex graph has a Hamiltonian path if and only if it hasa spanning tree with n − 2 internal vertices.In this paper we study a parameterized version of MIST. Parameterized de-cision problems are de�ned by specifying the input (I), the parameter (k), andthe question to be answered. A parameterized problem that can be solved in time
f(k)|I|O(1), where f is a function of k alone is said to be �xed parameter tractable(FPT). The natural parameter k for MIST is the number of internal vertices inthe spanning tree and the parameterized version of MIST, p-Internal Span-ning Tree or p-IST for short, is for a given graph G and integer k, decide if Gcontains a spanning tree with at least k internal vertices. It follows from Robert-son and Seymour's Graph Minors theory that p-IST is FPT [10]. Indeed, theproperty of not having a spanning tree with at least k internal vertices is closedunder taking minors, and thus such graphs can be characterized by a �nite set offorbidden minors. One of the consequences of the Graph Minors theory is thatevery graph property characterized by a �nite set of forbidden minors is FPT,and thus p-IST is FPT. These arguments are however not constructive. The �rstconstructive algorithm for p-IST is due to Prieto and Sloper [12] and has run-ning time 24k log k · nO(1). Recently this result was improved by Cohen et al. [2]

who solved a more general directed version of the problem in time 49.4k · nO(1).In this paper we study p-IST from the kernelization viewpoint.A parameterized problem is said to admit a polynomial kernel if there is apolynomial time algorithm (where the degree of the polynomial is independentof k), called a kernelization algorithm, that reduces the input instance to aninstance whose size is bounded by a polynomial p(k) in k, while preserving theanswer. This reduced instance is called a p(k) kernel for the problem. Let usremark that the instance size and the number of vertices in the instance maybe di�erent, and thus for bounding the number of vertices in the reduced graph,the term p(k)-vertex kernel is often used. While many problems on graphs areknown to have polynomial kernels (parameterized by the solution size), thereare not so many O(k), or linear-vertex kernels known in the literature. Notableexamples include a 2k-vertex kernel for Vertex Cover [3], a k-vertex kernelfor Set Splitting [6], and a 6k-vertex kernel for Cluster Editing [5].No linear-vertex kernel for p-IST was known prior to our work. Prieto andSloper [11] provided an O(k3)-kernel for the problem and then improved it to
O(k2) in [12]. The main result of this paper is that p-IST has a 3k-vertex ker-nel. The kernelization of Prieto and Sloper is based on the so-called �CrownDecomposition Method� [1]. Here, we use a di�erent method, based on a min-max characterization of hypergraphs containing hypertrees by Frank et al. [4].As a corollary of the new kernelization, we obtain an algorithm for solving p-ISTrunning in time 8k · nO(1).The paper is organized as follows. In Section 2, we provide necessary de�ni-tions and facts about graphs and hypergraphs. In Section 3, we give the kernel-ization algorithm. Section 4 is devoted to the proof of the main combinatoriallemma, which is central to the correctness of the kernelization algorithm.2 Preliminaries2.1 GraphsLet G = (V, E) be an undirected simple graph with vertex set V and edge set E.For any nonempty subset W ⊆ V , the subgraph of G induced by W is denotedby G[W]. The neighborhood of a vertex v in G is NG(v) = {u ∈ V : {u, v} ∈ E},and for a vertex set S ⊆ V we set NG(S) =

⋃
v∈S NG(v) \ S. The degree ofvertex v in G is dG(v) = |NG(v)|. Sometimes, when the graph is clear from thecontext, we omit the subscripts.2.2 The Hypergraphic MatroidLet H = (V, E) be a hypergraph. A hyperedge e ∈ E is a subset of V . A subset

F of hyperedges is a hyperforest if | ∪ F ′| ≥ |F ′| + 1 for every subset F ′ of F ,where ∪F ′ denotes the union of vertices contained in the hyperedges of F ′. Thiscondition is also called the strong Hall condition, where strong stands for theextra plus one added to the usual Hall condition. A hyperforest with |V |−1 edges

is called a hypertree. Lorea proved (see [4] or [7]) that MH = (E,F), where Fconsists of the hyperforests of H , is a matroid, called the hypergraphic matroid.Observe that these de�nitions are well-known when restricted to graphs.Lovász proved (see [8]) that F is a hyperforest if and only if every hyperedge
e of F can be shrunk into an edge e′ (that is, e′ ⊆ e contains two vertices of e)in such a way that the set F ′ consisting of these contracted edges forms a forestin the usual sense, that is, forest of a graph. Observe that if F is a hypertreethen its set of contracted edges F ′ forms a spanning tree on V .The border of a partition P = {V1, . . . , Vp} of V is the set δ(P) of hyperedgesof H which intersect at least two parts of P . A hypergraph is partition-connectedwhen |δ(P)| ≥ |P| − 1 for every partition P of V . The following theorem can befound in [4, Corollary 2.6].Theorem 1. H contains a hypertree if and only if H is partition-connected.The proof of Theorem 1 can be turned into a polynomial time algorithm,that is, given a hypergraph H = (V, E) we can either �nd a hypertree or �nd apartition P of V such that |δ(P)| < |P| − 1 in polynomial time. For the sake ofcompleteness, we brie�y mention a polynomial time algorithm to do this, thoughthe running time may be easily improved. Recall that MH = (E,F), where Fconsists of the hyperforests of H , is a matroid and hence we can construct ahypertree, if one exists, greedily. We start with an empty forest and iterativelytry to grow our current hyperforest by adding new edges. When inspecting anew edge we either reject or accept it in our current hyperforest depending onwhether by adding it we still have a hyperforest. The only question is to beable to test e�ciently if a given collection of edges forms a hyperforest. In otherwords, we have to check if the strong Hall condition holds. This can be done inpolynomial time by simply running the well-known polynomial time algorithmfor testing the usual Hall condition for every subhypergraph H \ v, where v is avertex and H \ v is the hypergraph containing all hyperedges e \ v for e ∈ E.We can also �nd a contraction of the edges of a hypertree into a spanningtree in polynomial time. For this, consider any edge e of the hypertree withmore than two vertices (if none exist, we already have our tree). By a resultof Lovász [8] mentioned above, one of the vertices v ∈ e can be deleted from ein such a way that we still have a hypertree. Hence we just �nd this vertex bychecking the strong Hall condition for every choice of e \ v where v ∈ e. Thisimplies that we need to apply the algorithm to test the strong Hall condition atmost |V | times to obtain the desired spanning tree. Consequently, there existsa polynomial time algorithm which can �nd a contracted spanning tree out of apartition-connected hypergraph.We now turn to the co-NP certi�cate, that is, we want to exhibit a partition Pof V such that |δ(P)| < |P|−1 when H is not partition-connected. The algorithmsimply tries to contract every pair of vertices in H = (V, E) and checks if theresulting hypergraph is partition-connected. When it is not, we contract the twovertices, and recurse. We stop when the resulting hypergraph H ′ is not partition-connected, and every contraction results in a partition-connected hypergraph.

Observe then that if a partition P of H ′ is such that |δ(P)| < |P|− 1 and P hasa part which is not a singleton, then contracting two vertices of this part resultsin a non partition-connected hypergraph. Hence, the singleton partition is theunique partition P of H ′ such that |δ(P)| < |P| − 1. This singleton partitioncorresponds to the partition of H which gives our co-NP certi�cate.3 Kernelization AlgorithmLet G = (V, E) be a connected graph on n vertices and k ∈ N be a parameter. Inthis section we describe an algorithm that takes G and k as an input, and in timepolynomial in the size of G either solves p-IST, or produces a reduced graph
GR on at most 3k vertices and an integer k′ ≤ k, such that G has a spanningtree with at least k internal vertices if and only if GR has a spanning tree withat least k′ internal vertices. In other words, we show that p-IST has a 3k-vertexkernel.The algorithm is based on the following combinatorial lemma, which is in-teresting on its own. For two disjoint sets X, Y ⊆ V , we denote by B(X, Y)the bipartite graph obtained from G[X ∪ Y] by removing all edges with bothendpoints in X or Y .Lemma 1. If n ≥ 3, and I is an independent set of G of cardinality at least
2n/3, then there are nonempty subsets S ⊆ V \ I and L ⊆ I such that(i) N(L) = S, and(ii) B(S, L) has a spanning tree such that all vertices of S and |S| − 1 verticesof L are internal.Moreover, given a graph on at least 3 vertices and an independent set of cardi-nality at least 2n/3, such subsets can be found in time polynomial in the size of
G.The proof of Lemma 1 is postponed to Section 4. Now we give the descriptionof the kernelization algorithm and use Lemma 1 to prove its correctness. Thealgorithm consists of the following reduction rules.Rule 1 If n ≤ 3k, then output graph G and stop. In this case G is a 3k-vertexkernel. Otherwise proceed with Rule 2.Rule 2 Choose an arbitrary vertex v ∈ V and run a DFS (depth �rst search)from v. If the DFS tree T has at least k internal vertices, then the algorithmhas found a solution and stops. Otherwise, because n > 3k, T has at least

2n/3+2 leaves, and since all leaves but the root of the DFS tree are pairwisenonadjacent, the algorithm has found an independent set of G of cardinalityat least 2n/3. Proceed with Rule 3.

Rule 3 (reduction) Find nonempty subsets of vertices S, L ⊆ V as in Lemma 1.Add a vertex vS and make it adjacent to every vertex in N(S) \ L and adda vertex vL and make it adjacent to vS . Finally, remove all vertices of S ∪L.Let GR = (VR, ER) be the new graph and k′ = k − 2|S| + 2. Go to Rule 1with G := GR and k := k′.To prove the soundness of Rule 3, we need the following lemma. Here, S and
L are as in Lemma 1. If T is a tree and X a vertex set, we denote by iT (X) thenumber of vertices of X that are internal in T .Lemma 2. If G has a spanning tree with k internal vertices, then G has aspanning tree with at least k internal vertices in which all the vertices of S andexactly |S| − 1 vertices of L are internal.Proof. Let T be a spanning tree of G with k internal vertices. Denote by F theforest obtained from T by removing all edges incident to L. Then, as long as 2vertices of S are in the same connected component in F , remove an edge from
F incident to one of these two vertices. Now, obtain the spanning tree T ′ byadding the edges of a spanning tree of B(S, L) to F in which all vertices of Sand |S| − 1 vertices of L are internal (see Lemma 1). Clearly, all vertices of Sand |S| − 1 vertices of L are internal in T ′. It remains to show that T ′ has atleast as many internal vertices as T .Let U := V \ (S ∪ L). Then, we have that iT (L) ≤

∑
u∈L dT (u) − |L| asevery vertex in a tree has degree at least 1 and internal vertices have degree atleast 2. We also have iT ′(U) ≥ iT (U) − (|L| + |S| − 1 −

∑
u∈L dT (u)) as at most

|S|−1− (
∑

u∈L dT (u)−|L|) edges incident to S are removed from F to separate
F \ L into |S| connected components, one for each vertex of S. Thus,

iT ′(V) = iT ′(U) + iT ′(S ∪ L)

≥ iT (U) − (|L| + |S| − 1 −
∑

u∈L

dT (u)) + iT ′(S ∪ L)

= iT (U) + (
∑

u∈L

dT (u) − |L|) − |S| + 1 + iT ′(S ∪ L)

≥ iT (U) + iT (L) − |S| + 1 + iT ′(S ∪ L)

= iT (U) + iT (L) − (|S| − 1) + (|S| + |S| − 1)

= iT (U) + iT (L) + |S|

≥ iT (U) + iT (L) + iT (S)

= iT (V).This �nishes the proof of the lemma. utLemma 3. Rule 3 is sound, |VR| < |V |, and k′ ≤ k.Proof. We claim �rst that the resulting graph GR = (VR, ER) has a spanningtree with at least k′ = k − 2|S| + 2 internal vertices if and only if the originalgraph G has a spanning tree with at least k internal vertices. Indeed, assume

G has a spanning tree with ` ≥ k internal vertices. Then, let B(S, L) be as inLemma 1 and T be a spanning tree of G with ` internal vertices such that allvertices of S and |S| − 1 vertices of L are internal (which exists by Lemma 2).Because T [S ∪ L] is connected, every two distinct vertices u, v ∈ NT (S) \ L arein di�erent connected components of T \ (L∪S). But this means that the graph
T ′ obtained from T \ (L∪S) by connecting vS to all neighbors of S in T \ (S∪L)is also a tree in which the degree of every vertex in NG(S)\L is unchanged. Thegraph T ′′ obtained from T ′ by adding vL and connecting vL to vS is also a tree.Then T ′′ has exactly ` − 2|S| + 2 internal vertices.In the opposite direction, if GR has a tree T ′′ with ` − 2|S| + 2 internalvertices, then all neighbors of vS in T ′′ are in di�erent components of T ′′ \ {vS}.By Lemma 1 we know that B(S, L) has a spanning tree TSL such that all thevertices of S and |S|−1 vertices of L are internal. We obtain a spanning tree T of
G by considering the forest T ∗ = T ′′ \ {vS , vL}∪ TSL and adding edges betweendi�erent components to make it connected. For each vertex u ∈ NT ′′(vS) \ {vL},add an edge uv to T ∗, where uv is an edge of G and v ∈ S. By construction weknow that such an edge always exists. Moreover, the degrees of the vertices in
NG(S) \L are the same in T as in T ′′. Thus T is a spanning tree with ` internalvertices.Finally, as |S| ≥ 1 and |L ∪ S| ≥ 3, we have that |VR| < |V | and k′ ≤ k. utThus Rule 3 compresses the graph and we conclude with the following theo-rem.Theorem 2. p-IST has a 3k-vertex kernel.Corollary 1. p-IST can be solved in time 8k · nO(1).Proof. Obtain a 3k-vertex kernel for the input graph G in polynomial time usingTheorem 2 and run the 2nnO(1) time algorithm of Nederlof [9] on the kernel. ut4 Proof of Lemma 1In this section we provide the postponed proof of Lemma 1. Let G = (V, E) bea connected graph on n vertices, I be an independent set of G of cardinality atleast 2n/3 and C := V \ I.Let Y be a subset of V . A subset X ⊆ (V \ Y) has Y -expansion c, for some
c > 0, if for each subset Z of X , |N(Z)∩Y | ≥ c · |Z|. We �rst �nd an independentset L ⊆ I whose neighborhood has L-expansion 2. For this, we need the followingresult.Lemma 4 ([13]). Let B be a nonempty bipartite graph with vertex bipartition
(X, Y) with |Y | ≥ 2|X | and such that every vertex of Y has at least one neighborin X. Then there exist nonempty subsets X ′ ⊆ X and Y ′ ⊆ Y such that theset of neighbors of Y ′ in B is exactly X ′, and such that X ′ has Y ′-expansion 2.Moreover, such subsets X ′, Y ′ can be found in time polynomial in the size of B.

By using Lemma 4, we �nd nonempty sets of vertices S′ ⊆ C and L′ ⊆ Isuch that N(L′) = S′ and S′ has L′-expansion 2.Lemma 5. Let G = (V, E) be a connected graph on n vertices, I be an inde-pendent set of G of cardinality at least 2n/3 and C := V \ I. Furthermore let
S′ ⊆ C and L′ ⊆ I such that N(L′) = S′ and S′ has L′-expansion 2. Then thereexist nonempty subsets S ⊆ S′ and L ⊆ L′ such that� B(S, L) has a spanning tree in which all the vertices of L have degree at most

2,� S has L-expansion 2, and� N(L) = S.Moreover, such sets S and L can be found in time polynomial in the size of G.Proof. The proof is by induction on |S′|. If |S′| = 1, the lemma holds with
S := S′ and L := L′. Let H = (S′, E′) be the hypergraph with edge set E′ =
{N(v) | v ∈ L′}. If H contains a hypertree, then it has |S′| − 1 hyperedges andwe can obtain a tree TS′ on S′ by contracting edges. We use this to �nd a subtree
T ′ of B(S′, L′) spanning S′ as follows: for every edge e = uv of TS′ there existsa hyperedge corresponding to it and hence a unique vertex, say w, in L′; wedelete the edge e = uv from TS′ and add the edges wu and wv to TS′ . Observethat the resulting subtree T ′ of B(S′, L′) has the property that every vertex in
T ′ which is in L′ has degree 2 in it. Finally, we extend T ′ to a spanning treeof B(S′, L′) by adding the remaining vertices of L′ as pending vertices. All thiscan be done in polynomial time using the algorithm in Section 2.2. Thus S′ and
L′ are the sets of vertices we are looking for. Otherwise, if H does not contain ahypertree, then H is not partition-connected by Theorem 1. Then we can �nd apartition P = {P1, P2, . . . , P`} of S′ such that its border δ(P) contains at most
` − 2 hyperedges of H in polynomial time. Let bi be the number of hyperedgescompletely contained in Pi, where 1 ≤ i ≤ `. Then there is j, 1 ≤ j ≤ `, suchthat bj ≥ 2|Pj|. Indeed, otherwise |L′| ≤ (`−2)+

∑`

i=1(2|Pi|−1) < 2|S′|, whichcontradicts the choice of L′ and S′ and the fact that S′ has an L′-expansion
2. Let X := Pj and Y := {w ∈ L′| N(w) ⊆ Pj}. We know that |Y | ≥ 2|X |and hence by Lemma 4 there exists a S∗ ⊆ X and L∗ ⊆ Y such that S∗ has
L∗-expansion 2 and N(L∗) = S∗. Thus, by the induction assumption, there exist
S ⊆ S∗ and L ⊆ L∗ with the desired properties. utLet S and L, be as in Lemma 5. We will prove in the following that thereexists a spanning tree of B(S, L) such that all the vertices of S and exactly |S|−1vertices of L are internal. Note that there cannot be more than 2|S|− 1 internalvertices in a spanning tree of B(S, L) without creating cycles. By Lemma 5, weknow that there exists a spanning tree of B(S, L) in which |S| − 1 vertices of Lhave degree exactly 2.Consider the bipartite graph B2 obtained from B(S, L) by adding a copy Scof S (each vertex in S has the same neighborhood as its copy in Sc and no vertexof Sc is adjacent to a vertex in S). As |L| ≥ |S ∪Sc| and each subset Z of S ∪Schas at least |Z| neighbors in L, by Hall's theorem, there exists a matching in

B2 saturating S ∪ Sc. This means that in B(S, L), there exist two edge-disjointmatchings M1 and M2, both saturating S. We refer to the edges from M1 ∪M2as the favorite edges.Lemma 6. B(S, L) has a spanning tree T such that all the vertices of S and
|S| − 1 vertices of L are internal in T .Proof. Let T be a spanning tree of B(S, L) in which all vertices of L have degreeat most 2, obtained using Lemma 5. As T is a tree, exactly |S| − 1 vertices of Lhave degree 2 in T . As long as a vertex v ∈ S is not internal in T , add a favoriteedge uv to T which was not yet in T (u ∈ L), and remove an appropriate edgefrom the tree which is incident to u so that T remains a spanning tree. Vertex
v becomes internal and the degree of u in T remains unchanged. As u is onlyincident to one favorite edge, this rule increases the number of favorite edges in
T even though it is possible that some other vertex in S would have become aleaf. We apply this rule until no longer possible. We know that this rule can onlybe applied at most |S| times. In the end, all the vertices of S are internal and
|S| − 1 vertices among L are internal as their degrees remain the same. utTo conclude with the proof of Lemma 1, we observe that S ⊆ C, L ⊆ I and
N(L) = S by the construction of S and L, and by Lemma 6, B(S, L) has aspanning tree in which all the vertices of S and |S|−1 vertices of L are internal.References1. F. N. Abu-Khzam, M. R. Fellows, M. A. Langston, and W. H. Suters. CrownStructures for Vertex Cover Kernelization. Theory Comput. Syst. 41(3), (2007),pp. 411-430.2. N. Cohen, F. V. Fomin, G. Gutin, E. J. Kim, S. Saurabh, and A. Yeo, Algorithmfor Finding k-Vertex Out-trees and its Application to k-Internal Out-branchingProblem. In the proceedings of COCOON 2009, volume 5609 of LNCS, pp. 37�46.Springer, 2009.3. J. Chen, I. A. Kanj, and W. Jia. Vertex Cover: Further observations and furtherimprovements. J. Algorithms, 41(2), (2001), pp. 280�301.4. A. Frank, T. Király, and M. Kriesell, On decomposing a hypergraph into k con-nected sub-hypergraphs, Discrete Appl. Math. 131 (2003), pp. 373�383.5. J. Guo. A more e�ective linear kernelization for cluster editing. Theor. Comput.Sci., 410(8-10), (2009), pp. 718-726.6. D. Lokshtanov and S. Saurabh. Even faster algorithm for Set Splitting! To appearin the proceedings of IWPEC 2009.7. M. Lorea, Hypergraphes et matroides, Cahiers Centre Etud. Rech. Oper. 17 (1975),pp. 289�291.8. L. Lovász, A generalization of König's theorem, Acta. Math. Acad. Sci. Hungar.21 (1970), pp. 443�446.9. J. Nederlof, Fast polynomial-space algorithms using Möbius inversion: Improvingon Steiner Tree and related problems. In the Proceedings of ICALP 2009, volume5555 of LNCS, pp. 713�725. Springer, 2009.

10. N. Robertson and P. D. Seymour, Graph minors-a survey. In I. Anderson (Ed.)Surveys in Combinatorics, Cambridge Univ. Press, (1985), pp. 153�171.11. E. Prieto and C. Sloper. Either/or: Using vertex cover structure in designing FPT-algorithms�the case of k-internal spanning tree. In the proceedings ofWADS 2003,volume 2748 of LNCS, pp. 465�483. Springer, 2003.12. E. Prieto and C. Sloper, Reducing to Independent Set Structure � the Case of
k-Internal Spanning Tree, Nord. J. Comput. 12(3) (2005), pp. 308-318.13. S. Thomassé, A quadratic kernel for feedback vertex set, In the proceedings ofSODA 2009, SIAM, pp. 115�119.

