
Branching and Treewidth Based Exact Algorithms?

Fedor V. Fomin1, Serge Gaspers1 and Saket Saurabh2

1 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.
{fomin|serge}@ii.uib.no

2 The Institute of Mathematical Sciences,
Chennai 600 113, India.
saket@imsc.res.in

Abstract. Branch & Reduce and dynamic programming on graphs of bounded
treewidth are among the most common and powerful techniques used in the de-
sign of exact (exponential time) algorithms for NP hard problems. In this paper
we discuss the efficiency ofsimplealgorithms based on combinations of these
techniques. We give several examples of possible combinations of branching and
programming which provide the fastest known algorithms for a number of NP
hard problems: M M M and some variations, counting the
number of maximum weighted indepndent sets. We also briefly discuss how sim-
ilar techniques can be used to design parameterized algorithms. As an example,
we give fastest known algorithm solvingk-W V C problem.

1 Introduction

It is a common belief that exponential time algorithms are unavoidable when we want
to find an exact solution of a NP hard problem. The last few years have seen an emerg-
ing interest in designing exponential time exact algorithms and we recommend recent
surveys [4, 14] for an introduction to the topic.

One of the major techniques for constructing fast exponential time algorithms is the
Branch & Reduce paradigm. Branch & Reduce algorithms (also called search tree algo-
rithms, Davis-Putnam-style exponential-time backtracking algorithms etc.) recursively
solve NP hard combinatorial problems using reduction rules and branching rules. Such
an algorithm is applied to a problem instance by recursively calling itself on smaller
instances of the problem.

Treewidth is one of the most basic parameters in graph algorithms. There is a well
established theory on the design of polynomial (or even linear) time algorithms for
many intractable problems when the input is restricted to graphs of bounded treewidth
(see [1] for a comprehensive survey). What is more important for us here is that many
problems on graphs withn vertices and treewidth at most` can be solved in time
O(c`nO(1)), wherec is some problem dependent constant. This observation combined
with upper bounds on treewidth was used to obtain fast exponential algorithms for NP
hard problems on cubic, sparse and planar graphs [4, 5, 9]. For example, a maximum

? Additional support by the Research Council of Norway.

2 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

independent set of a graph given with a tree decomposition of width at most` can be
found in timeO(2`n) (see e.g. [1]). So, a quite natural approach to solve the independent
set problem would be to branch on vertices of high degree and if a subproblem with all
vertices of small degrees is obtained, then use dynamic programming. Unfortunately,
such a simple approach still provides poor running time mainly because the best known
upper bounds on treewidth of graphs with small maximum degree are too large to be
useful.

In this paper we show two different approaches based on combinations of branching
and treewidth techniques. Both approaches are based on a careful balancing of these
two techniques. In the first approach the algorithm either performs fast branching, or
if there is an obstacle for fast branching, this obstacle is used for the construction of
a path decomposition of small width for the original graph. In the second approach
the branching occurs until the algorithm reaches a subproblem with a small number of
edges (and here the right choice of the size of the subproblems is crucial). We exemplify
our approaches on the following problems.

• M M M (MMM): Given a graphG, find a maximal matching
of minimum size.

• #MW I S (#MWIS): Given a weighted graphG, count
the number of independent sets inG of maximum weight.

For MMM, a number of exact algorithms can be found in the literature. Randerath
and Schiermeyer [13] gave an algorithm of time complexityO(1.44225m) 3 for MMM,
wherem is the number of edges. Raman et al [12] improved the running time by giving
an algorithm of time complexityO(1.44225n) for MMM, where n is the number of
vertices. Here, using a combination of branching, dynamic programming over bounded
treewidth and enumeration of minimal vertex covers we give anO(1.4082n) algorithm
for MMM.

There was number of algorithms for #MWIS in the literature [2, 6, 7]. The current
fastest algorithm is by F̈urer and Kasiviswanathan [6] and runs inO(1.2461n). All men-
tioned algorithms are complicated and use many smart tricks (like splitting of a graph
into its biconnected components and involved measure) and extensive case analysis.

In this paper we show how a combination of branching and dynamic programming
can be used to obtain a simple algorithm solving #MWIS in timeO(1.2431n). This
is also the fastest known algorithm to find a maximum weighted independent set in a
weighted graphG.

Finally we apply our technique to Parameterized Complexity. Here, we apply our
technique to parameterizedk-W V C.

• k-W V C (k-WVC): Given a graphG = (V,E), a weight function
w : V :→ R+ such that for every vertexv, w(v) ≥ 1 andk ∈ R+, find a vertex cover
of weight at mostk. The weight of a vertex coverC is w(C) =

∑
v∈C w(v).

For k-W V C, also known as R V C, Niedermeier and
Rossmanith [11] gave two algorithms, one with running timeO(1.3954k+kn) and poly-
nomial space and the other one using timeO(1.3788k + kn) and spaceO(1.3630k).

3 We round the base of the exponent in all our algorithms which allows us to ignore polynomial
terms and writeO(cnnO(1) asO(cn).

Branching and Treewidth Based Exact Algorithms 3

Their dedicated paper onk-W V C is based on branching, kerneliza-
tion and the idea of memorization. Their analysis involves extensive case distinctions
when the maximum degree of the reduced graph becomes 3. Here, we give a very sim-
ple algorithm running in timeO(1.3570kn) for this problem, improving the previous
O(1.3788k + kn) time algorithm of [11].

While the basic idea of our algorithms looks quite natural, the approach is generic
and the right application of our approach improves many known results.

2 Preliminaries

In this paper we consider simple undirected graphs. LetG = (V,E) be a (weighted)
graph and letn denote the number of vertices andm the number of edges ofG. We
denote by∆(G) the maximum vertex degree inG. For a subsetV′ ⊆ V, G[V′] is the
graph induced byV′, andG − V′ = G[V \ V′]. For a vertexv ∈ V we denote the set of
its neighbors byN(v) and itsclosed neighborhoodby N[v] = N(v) ∪ {v}. Similarly, for
a subsetD ⊆ V, we defineN[D] = ∪v∈DN[v]. An independent setin G is a subset of
pair-wise non-adjacent vertices. Amatchingis a subset of edges having no endpoints in
common. A subset of verticesS ⊆ V is avertex coverin G if for every edgee of G at
least one endpoint ofe is in S.

Major tools of our paper are tree and path decompositions of graphs. We refer to [1]
for definitions of tree decomposition, path decomposition, treewidth and pathwidth of
a graph. We denote bytw(G) andpw(G), treewidth and pathwidth of the graphG.

We need the following bounds on the pathwidth (treewidth) of sparse graphs. The
proof of Lemma 1 is simple and based on the result of [5] and by induction on the
number of vertices in a graph.

Lemma 1. For anyε > 0, there exists an integer nε such that for every graph G with
n > nε vertices and m= βn edges,1.5 ≤ β ≤ 2, the treewidth of G is bounded by
(m− n)/3+ εn.

3 Minimum Maximal Matching

Given a graphG = (V,E), any set of pairwise disjoint edges is called amatchingof
G. The problem of finding a maximum matching is well studied in algorithms and
combinatorial optimization. One can find a matching of maximum size in polynomial
time but there are many versions of matching which are NP hard. Here, we give an exact
algorithm for one such version, that is MMM (MMM).

We need the following proposition which is a combination of two classical results
due to Moon and Moser [10] and Johnson, Yannakakis and Papadimitriou in [8].

Proposition 1 ([8, 10]).Every graph on n vertices contains at most3n/3 = O(1.4423n)
maximal (with respect to inclusion) independent sets. Moreover, all these maximal in-
dependent sets can be enumerated with polynomial delay.

Since for everyS ⊆ V, S is a vertex cover ofG if and only if V \ S is an independent
set ofG, Proposition 1 can be used for enumerating minimal vertex covers as well.

Our algorithm also uses the following characterization of a MMM.

4 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

Algorithm MMM(G)
Data: A graphG.
Result: A minimum maximal matching ofG or a path decomposition ofG.

return findMMM(G,G, ∅)

Function findMMM(G,H,C)
Input : A graphG, an induced subgraphH of G and a set of verticesC ⊆ V(G) − V(H).
Output : A minimum maximal matching ofG subject toH andC or a path decomposition of

G.
if (∆(H) ≥ 4) or (∆(H) = 3 and |C| > 0.17385|V(G)|) then

choose a vertexv ∈ V(H) of maximum degree
M1 ← findMMM(G,H − N[v],C ∪ N(v)) (R1)
M2 ← findMMM(G,H − {v},C ∪ {v}) (R2)
return the set of minimum size among{M1,M2}

else if (∆(H) = 3 and |C| ≤ 0.17385|V(G)|) or (∆(H) ≤ 2 and |C| ≤ 0.31154|V(G)|) then
output a path decomposition ofG using Lemma 3
The Algorithm stops.

else
X← E(G)
foreachminimal vertex cover Q of Hdo

M′ ← a maximum matching ofG[C ∪ Q]
Let V[M′] be the set of end points ofM′

M′′ ← a maximum matching ofG[C ∪ V(H) \ V[M′]]
if M′ ∪ M′′ is a maximal matching of G and|X| > |M′ ∪ M′′| then

X← M′ ∪ M′′

return X

Fig. 1.Algorithm for Minimum Maximal Matching.

Proposition 2 ([12]).Let G= (V,E) be a graph and M be a minimum maximal match-
ing of G. Let

V[M] = {v | v ∈ Vand v is an end point of some edge of M}

be a subset of all endpoints of M. Let S⊆ V[M] be a vertex cover of G . Let M′ be
a maximum matching in G[S] and M′′ be a maximum matching in G− V[M′], where
V[M′] is the set of the endpoints of edges of M′. Then X= M′ ∪ M′′ is a minimum
maximal matching of G.

Note that in Proposition 2,S does not need to be aminimalvertex cover.
The proof of the next lemma is based on standard dynamic programming on graphs

of bounded treewidth, and we omit it.

Lemma 2. There exists an algorithm to compute a minimum maximal matching of a
graph G on n vertices in time O(3pn) when a path decomposition of width at most p is
given.

The algorithm of Figure 1 outputs either a path decomposition of the input graphG of
reasonable width or a minimum maximal matching ofG. The parameterG of Function
findMMM corresponds always to the original input graph,H is a subgraph ofG andC
is a vertex cover ofG − V(H). The algorithm consists of three parts.

Branching and Treewidth Based Exact Algorithms 5

Branch. The algorithm branches on a vertexv of maximum degree and returns the
matching of minimum size found in the two subproblems created according to the
following rules:
(R1) VerticesN(v) are added to the vertex coverC andN[v] is deleted fromH;
(R2) Vertexv is added to the vertex coverC andv is deleted fromH.

Compute path decomposition.The algorithm outputs a path decomposition using Le-
mma 3. Then the algorithm stops without backtracking. A minimum maximal match-
ing can then be found using the pathwidth algorithm of Lemma 2.

Enumerate minimal vertex covers. The algorithm enumerates all minimal vertex cov-
ers ofH. For every minimal vertex coverQ of H, S = C ∪ Q is a vertex cover of
G and the characterization of Proposition 2 is used to find a minimum maximal
matching ofG.

The conditions under which these different parts are executed have been carefully cho-
sen to optimize the overall running time of the algorithm, including the pathwidth al-
gorithm of Lemma 2. Note that a path decomposition is computed at most once in an
execution of the algorithm asfindMMM stops right after outputting the path decompo-
sition. Also note that the minimal vertex covers ofH can only be enumerated in a leaf
of the search tree corresponding to the recursive calls of the algorithm, as no recursive
call is made in this part.

We define abranch nodeof the search tree of the algorithm to be a recursive call of
the algorithm. Such a branch node is uniquely identified by the triple (G,H,C), that is
the parameters offindMMM.

Theorem 1. A minimum maximal matching of a graph on n vertices can be found in
time O(1.4082n).

Proof. The correctness of the algorithm is clear from the above discussions. Here we
give the running time for the algorithm.
Time Analysis: In the rest of the proof we upper bound the running time of this algo-
rithm. It is essential to provide a good bound on the width of the produced path decom-
position ofG. The following lemma gives us the desired bounds on the pathwidth. Its
proof is easy and is based on the bound on the pathwidth given in Lemma 1.

Lemma 3. Let G = (V,E) be the input graph and(G,H,C) be a branch node of the
search tree of our algorithm then the pathwidth of the graph is bounded bypw(H)+ |C|.
In particular,
(a) If ∆(H) ≤ 3, thenpw(G) ≤ (1

6 + ε)|V(H)| + |C| for anyε > 0.
(b) If ∆(H) ≤ 2, thenpw(G) ≤ |C|+1. A path decomposition of the corresponding width
can be found in polynomial time.

Setα = 0.17385 andβ = 0.31154. First, consider the conditions under which a path
decomposition may be computed. By combining the pathwidth bounds of Lemma 3
and the running time of the algorithm of Lemma 2, we obtain that MMM can be solved
in time O(max(3(1+5α)/6,3β)n) when the path decomposition part of the algorithm is
executed.

Assume now that the path decomposition part is not executed. Then, the algorithm
continues to branch when the maximum degree∆(H) of the graphH is 3. And so,

6 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

|C| > αn when∆(H) first becomes 3. At this point, the setC has been obtained by
branching on vertices of degree at least 4 and we investigate the number of subproblems
obtained so far. LetL be the the set of nodes in the search tree of the algorithm that
correspond to subproblems where∆(H) first becomes 3. Note that we can express|L|
by a two parameter functionA(n, k) wheren = |V(G)| andk = αn. This function can
be upper bounded by a two parameter recurrence relation corresponding to the unique
branching rule of the algorithm:

A(n, k) = A(n− 1, k− 1)+ A(n− 5, k− 4).
When the algorithm branches on a vertexv of degree at least 4 the function is called on
two subproblems. Ifv is not added toC ((R1)), then |N[v]| ≥ 5 vertices are removed
from H and|C| increases by|N(v)| ≥ 4. If v is added toC ((R2)), then both parameters
decrease by 1.

Let r be the number of times the algorithm branches in the case(R1). Observe that
0 ≤ r ≤ k/4. Let Lr be a subset ofL such that the algorithm has branched exactlyr
times according to(R1) in the unique paths from the root to the nodes inLr . Thus,|L|
is bounded by

∑k/4
i=0 |Li |.

To bound the number of nodes in eachLi , let l ∈ Lr andPl be the unique path from
l to the root in the search tree. Observe that on this path the algorithm has branched
k− 4i times according to(R2) andi times according to(R1). So, the length of the path
Pl is k− 3i. By counting the number of sequences of lengthk− 3i where the algorithm
has branched exactlyi times according to(R1), we get|Li | ≤

(
k−3i

i

)
. Thus if the path

decomposition is not computed, the time complexityT(n) of the algorithm is

T(n) = O

 k/4∑
i=0

(
k− 3i

i

)
T′(n− 5i − (k− 4i))

 = O

 k/4∑
i=0

(
k− 3i

i

)
T′(n− i − k)

 (1)

whereT′(n′) is the time complexity to solve a problem on a branch node (G,H,C) in
L with n′ = |VH |. (Let us remind that in this case the algorithm branches on vertices
of degree 3 and enumerates minimal vertex covers ofH.) Let p = (β − α)n. To bound
T′(n′) we use similar arguments as before and use Proposition 1 to bound the running
time of the enumerative step of the algorithm. Thus we obtain:

T′(n′) = O

 p/3∑
i=0

(
p− 2i

i

)
3

n′−4i−(p−3i)
3

 = O

3(n′−p)/3
p/3∑
i=0

(
p− 2i

i

)
3−i/3

 . (2)

We boundT(n′) by O(3(n′−p)/3dp) for some constantd, 1 < d < 2 (the value ofd is
determined later). Substituting this in Equation (1), we get:

T(n) = O

 k/4∑
i=0

(
k− 3i

i

)
3

n−i−k−p
3 dp

 = O

3(1−β)n/3dp
k/4∑
i=0

(
k− 3i

i

)
3−i/3

 .
Further suppose that

∑k/4
i=0

(
k−3i

i

)
3−i/3 sums toO(ck) for a constantc, 1 < c < 2, then

the overall time complexity of the algorithm is bounded by:O((3(1−β)/3dβ−αcα)n) .
Claim. c< 1.3091 andd < 1.3697.
Proof.The sum over binomial coefficients

∑k/4
i=0

(
k−3i

i

)
3−i/3 is bounded by (k/4)B where

B is the maximum term in this sum. Let us assume thatB =
(
k−3i

i

)
3−i/3 for somei ∈

{1,2, . . . , k/4}. To compute the constantc, let r := c − 1. We obtainB =
(
k−3i

i

)
3−i/3 ≤

(1+r)k−3i

r i 3−i/3. Here we use the well known fact that for anyx > 0 and 0≤ k ≤ n,

Branching and Treewidth Based Exact Algorithms 7(
n
k

)
≤

(1+x)n

xk . By choosingr to be the minimum positive root of(1+r)−3

r 3−1/3 − 1, we

arrive atB < (1 + r)k for 0.3090< r < 0.3091. Thusc < 1.3091. The value ofd is
computed in a similar way. ut

Finally, we get the following running time for Algorithm MMM by substituting the
values forα, β, c andd:

O
(
max

(
3(1−β)/3dβ−αcα,3(1+5α)/6,3β

)n)
≤ O(1.4082n) .

ut

4 Counting Maximum Weighted Independent Sets

In this section we give an algorithm counting the number of maximum weighted inde-
pendent sets in a graph, that is an algorithm for the #MWIS problem .

Most of the recent advances in counting maximum weighted independent sets are
based on a reduction to counting satisfiable assignments of a 2-SAT formula. All these
algorithms are based on the Branch & Reduce paradigm and involve detailed case dis-
tinctions. Here, we present a simple algorithm that combines Branch & Reduce and
dynamic programming on graphs of bounded treewidth. It is well known (see for exam-
ple [1]) that a maximum independent set can be found in timeO(2`n) in a graph if a tree
decomposition of width at most̀is given. This algorithm can be slightly modified to
find the total number of maximum weighted independent sets in a graph with treewidth
` without increasing the running time of the algorithm.

Proposition 3. Given a graph G with n vertices and a tree decomposition of G of width
at most̀ , all maximum weighted independent sets of G can be counted in time O(2`n).

Our algorithm#MWIS , to count all maximum weighted independent sets of a graph,
is depicted in Figure 2. The algorithm branches on a vertexv chosen by the following
function which returns the vertex selected by the first applicable rule.
Pivot(G)

1. If ∃v ∈ V such thatd(v) ≥ 7, then returnv.
2. If ∃v ∈ V such thatG − v is disconnected, then returnv.
3. If ∃u, v ∈ V such thatG − {u, v} is disconnected andd(u) ≤ d(v), then returnv.
4. Return a vertexv of maximum degree such that

∑
u∈N(v) d(u) is maximized.

When |E| ≤ 1.5185n the treewidth algorithm counts all maximum weighted inde-
pendent sets. The procedure#MWISTW is a dynamic programming algorithm solving
#MWIS of running time given in Proposition 3. When the algorithm branches on a
vertexv, two subproblems are created according to the following rules:

(R1) addv to the partially constructed independent set and deleteN[v] from the graph.
(R2) deletev from the graph.

The correctness of the algorithm is clear from the presentation. Now we discuss
its time complexity in detail which is based on a careful counting of subproblems of
different size. We also need the following lemma for the analysis of the time complexity.

8 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

Algorithm #MWIS (G = (V,E),w)
Input : A graphG = (V,E) and a weight functionw : V → R+.
Output : A couple (size,nb) wheresizeis the maximum weight of an independent set ofG

andnb the number of different independent sets of this weight.
if G is disconnected with connected components G1, · · · ,Gk then

s′ ←
∑k

i=1 si , n′ ←
∏k

i=1 ni where (si ,ni)← #MWIS(Gi ,w)
return (s′,n′)

if |E| ≤ 1.5185|V| then
return #MWISTW(G)

else
v← Pivot(G)
(s1,n1)← #MWIS(G − N[v],w)
(s2,n2)← #MWIS(G − {v},w)
s1 ← s1 + w(v)
if s1 > s2 then

return (s1,n1)

else if s1 = s2 then
return (s1,n1 + n2)

else
return (s2,n2)

Fig. 2.An Algorithm to count all Maximum Weighted Independent Sets of a Graph

Lemma 4 ([3, 7]).Let G= (V,E) be a graph with n vertices, m edges, average degree
a > 0 and v be a vertex chosen by Rule4 of the functionPivot. Then the average degrees
of G− v and G− N[v] are less than a.

Theorem 2. Let G= (V,E) be a graph on n vertices.Algorithm#MWIS computes the
number ofMW I S of G in time O(1.2431n).

Proof. (1) If G has at most 1.5n edges, its treewidth is at most (1/6+ ε)n by Lemma 1.
Since only the treewidth algorithm is executed in this case, the running time is
O(2(1/6+ε)n) = O(1.1225n).

(2) Assume thatG has at most 2n edges. The worst case of the algorithm is when it
branches on a vertex chosen by Rule 4 of the functionPivot. In this case the algorithm
branches on vertices of degree at least 4 and executes the treewidth algorithm when
m ≤ 1.5185n. Setβ = 1.5185. Letxn be the number of times the algorithm branches.
The constantx is at least 0 and satisfies the inequality 2n − 4xn ≥ β(n − xn) which
implies thatx ≤ (2− β)/(4− β).

Let s be the number of times the algorithm branches according to(R1). Then, the
algorithm branchesxn− s times according to(R2). When the treewidth algorithm is
executed, the size of the remaining graph is at mostn− 5s− (xn− s) = n− xn− 4s. By
Lemma 1,tw(G) is bounded byn(β − 1)/3. Let Ttw(n) = 2n(β−1)/3 be the bound on the
running time of the treewidth algorithm when executed on a graph withn vertices and
βn edges. The running time of the algorithm is then bounded by

T1(n) =
xn∑

s=0

(
xn
s

)
Ttw(n− xn− 4s) = 2

β−1
3 (1−x)n(1+ 2−4 β−1

3)xn .

Branching and Treewidth Based Exact Algorithms 9

T1(n) is maximum whenx = (2− β)/(4− β). By replacingx by this value, we have that
T1(n) ≤ 1.20935n.

With an analysis similar to the one for the case when the graph has at most 2n edges,
we can show that the Algorithm#MWIS takesO(1.23724n) time or O(1.2431n) time
when the graph has at most 2.5n edges or 3n edges respectively.

(3) Now, if G has more than 3n edges then it contains vertices of degree at least 7
and hence the running time of the algorithm is smaller because the recurrenceT(n) =
T(n− 8)+ T(n− 1) solves toO(1.2321n).

ut

5 Application to Parameterized Algorithms

Here we apply our technique to design a fixed parameter tractable algorithm for the
parameterized version of W V C.

We needkernelizationfor our algorithm for weighted vertex cover. The main idea
of kernelizationis to replace a given instance (I , k) by a simpler instance (I ′, k′) using
somedata reduction rulesin polynomial time such that (I , k) is a yes-instance if and
only if (I ′, k′) is a yes-instance and|I ′| is bounded by a function ofk alone. We state the
kernelization proposition of [11] that we use in our algorithm.

Proposition 4 ([11]). Let G = (V,E) be a graph, w: V :→ R+ such that for every
vertex v, w(v) ≥ 1 and k ∈ R+. There is an algorithm that in time O(kn+ k3) either
concludes that G has no vertex cover of weight≤ k, or outputs a kernel of size≤ 2k.

Our algorithm is very similar to the one presented for counting all maximum indepen-
dent sets. First we apply Proposition 4 to obtain a kernel of size at most 2k. Then, as
long as|E| > 3.2k, the algorithm branches on a vertexv chosen by the functionPivot as
in the algorithm presented in Figure 2. If|E| ≤ 3.2k, then by Lemma 1, a tree decom-
position of small width (tw) can be found in polynomial time and we can use aO(2twn)
dynamic programming algorithm to solvek-W V C.

Theorem 3. k-WVC on a graph on n vertices can be solved in time O(1.3570kn).

6 Conclusion

Branching and dynamic programming on graphs of bounded treewidth are very pow-
erful techniques to design efficient exact algorithms. In this paper, we combined these
two techniques in different ways and obtained improved exact algorithms for #MWIS
and MMM. Other problems for which we obtain faster algorithms using this technique
include variants of MMM that are M E D S and M D-
 S. We also applied the technique to design fixed parameter tractable algorithms
and obtained the best known algorithm fork-WVC which also shows the versatility
of our technique. The most important aspects of this technique are that the resulting
algorithms are veryelegantand simplewhile at the same time the analysis of these
algorithms is highlynon-trivial. Our improvement in the runtime for #MWIS directly
gives improved algorithms for #1-IN-k-SAT, #E H S, #E C and

10 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

#W S C. The definitions and reductions of these problems to #MWIS can
be found in [2]. Other parameterized problems for which we obtain the fastest known al-
gorithms using the techniques developed in this paper are theweightedandunweighted
version ofparameterized minimum maximal matchingandminimum edge dominating
set, which will appear in the longer version of this paper.

It would be interesting to find some other applications of the techniques presented
here in the design of exact exponential time algorithms and fixed parameter tractable
algorithms.

References

1. H. L. B, A partial k-arboretum of graphs with bounded treewidth, Theoretical
Computer Science, 209 (1998), pp. 1–45.

2. V. D̈  P. J, An algorithm for counting maximum weighted independent
sets and its applications, in 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), ACM and SIAM, 2002, pp. 292–298.

3. V. D̈, P. J,  M. W̈, Counting models for 2SAT and 3SAT formulae,
Theoretical Computer Science, 332 (2005), pp. 265–291.

4. F. V. F, F. G,  D. K, Some new techniques in design and analysis of
exact (exponential) algorithms, Bulletin of the EATCS, 87 (2005), pp. 47–77.

5. F. V. F  K. H, Pathwidth of cubic graphs and exact algorithms, Information Pro-
cessing Letters, 97 (2006), pp. 191–196.

6. M. F̈  S. P. K, Algorithms for counting 2-SAT solutions and colorings
with applications, Electronic Colloquium on Computational Complexity (ECCC), vol. 33,
2005.

7. M. K. G, D. B,  T. S A Low-Exponential Algorithm for Counting
Vertex Covers, Graph Theory, Combinatorics, Algorithms, and Applications, vol. 1, (1995),
pp. 431–444.

8. D. S. J, M. Y,  C. H. P, On generating all maximal inde-
pendent sets, Information Processing Letters, 27 (1988), pp. 119–123.

9. J. K, D. M̈, S. R,  P. R, Algorithms based in treewidth of sparse
graphs, in Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2005), vol. 3787 of LNCS, Springer, (2005), pp. 385–396.

10. J. W. M  L. M, On cliques in graphs, Israel Journal of Mathematics, 3 (1965),
pp. 23–28.

11. R. N  P. R, On efficient fixed-parameter algorithms for weighted
vertex cover, Journal of Algorithms, 47 (2003), pp. 63–77.

12. V. R, S. S,  S. S, Efficient exact algorithms through enumerating maxi-
mal independent sets and other techniques, Theory of Computing Systems, to appear.

13. B. R  I. S, Exact algorithms for MINIMUM DOMINATING SET,
Technical Report zaik-469, Zentrum für Angewandte Informatik K̈oln, Germany, 2004.

14. G. W, Exact algorithms for NP-hard problems: A survey, in Combinatorial Opti-
mization - Eureka, you shrink!, vol. 2570 of LNCS, Springer, (2003), pp. 185–207.

