Branching and Treewidth Based Exact Algorithms*

Fedor V. Fomid, Serge Gaspetsind Saket Saurabh

1 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.
{fomin|serge}@ii.uib.no
2 The Institute of Mathematical Sciences,
Chennai 600 113, India.
saket@imsc.res.in

Abstract. Branch & Reduce and dynamic programming on graphs of bounded
treewidth are among the most common and powerful techniques used in the de-
sign of exact (exponential time) algorithms for NP hard problems. In this paper
we discuss thefliciency of simplealgorithms based on combinations of these
techniques. We give several examples of possible combinations of branching and
programming which provide the fastest known algorithms for a number of NP
hard problems: Miumum MaximaL Marcaing and some variations, counting the
number of maximum weighted indepndent sets. We also briefly discuss how sim-
ilar techniques can be used to design parameterized algorithms. As an example,
we give fastest known algorithm solvilkg\WeiGaTtep Vertex Cover problem.

1 Introduction

It is a common belief that exponential time algorithms are unavoidable when we want
to find an exact solution of a NP hard problem. The last few years have seen an emerg-
ing interest in designing exponential time exact algorithms and we recommend recent
surveys [4, 14] for an introduction to the topic.

One of the major techniques for constructing fast exponential time algorithms is the
Branch & Reduce paradigm. Branch & Reduce algorithms (also called search tree algo-
rithms, Davis-Putnam-style exponential-time backtracking algorithms etc.) recursively
solve NP hard combinatorial problems using reduction rules and branching rules. Such
an algorithm is applied to a problem instance by recursively calling itself on smaller
instances of the problem.

Treewidth is one of the most basic parameters in graph algorithms. There is a well
established theory on the design of polynomial (or even linear) time algorithms for
many intractable problems when the input is restricted to graphs of bounded treewidth
(see [1] for a comprehensive survey). What is more important for us here is that many
problems on graphs with vertices and treewidth at mostcan be solved in time
O(c'n®D), wherec is some problem dependent constant. This observation combined
with upper bounds on treewidth was used to obtain fast exponential algorithms for NP
hard problems on cubic, sparse and planar graphs [4, 5, 9]. For example, a maximum

* Additional support by the Research Council of Norway.

2 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

independent set of a graph given with a tree decomposition of width atéuast be
found in timeO(2'n) (see e.g. [1]). So, a quite natural approach to solve the independent
set problem would be to branch on vertices of high degree and if a subproblem with all
vertices of small degrees is obtained, then use dynamic programming. Unfortunately,
such a simple approach still provides poor running time mainly because the best known
upper bounds on treewidth of graphs with small maximum degree are too large to be
useful.

In this paper we show two flerent approaches based on combinations of branching
and treewidth techniques. Both approaches are based on a careful balancing of these
two techniques. In the first approach the algorithm either performs fast branching, or
if there is an obstacle for fast branching, this obstacle is used for the construction of
a path decomposition of small width for the original graph. In the second approach
the branching occurs until the algorithm reaches a subproblem with a small number of
edges (and here the right choice of the size of the subproblems is crucial). We exemplify
our approaches on the following problems.

o Mmnivum MaxiMaL Marcaing (MMM): Given a graphG, find a maximal matching
of minimum size.

o #Maxmum WEIGHTED INDEPENDENT SET (#MWIS): Given a weighted grap®, count
the number of independent setsGrof maximum weight.

For MMM, a number of exact algorithms can be found in the literature. Randerath
and Schiermeyer [13] gave an algorithm of time complegitg.44225" 2 for MMM,
wheremis the number of edges. Raman et al [12] improved the running time by giving
an algorithm of time complexityD(1.44225") for MMM, where n is the number of
vertices. Here, using a combination of branching, dynamic programming over bounded
treewidth and enumeration of minimal vertex covers we giv©&h4082") algorithm

for MMM.

There was number of algorithms for #MWIS in the literature [2, 6, 7]. The current
fastest algorithm is by #rer and Kasiviswanathan [6] and runsd(iL.2461"). All men-
tioned algorithms are complicated and use many smatrt tricks (like splitting of a graph
into its biconnected components and involved measure) and extensive case analysis.

In this paper we show how a combination of branching and dynamic programming
can be used to obtain a simple algorithm solving #MWIS in ti@(@.2431"). This
is also the fastest known algorithm to find a maximum weighted independent set in a
weighted grapit.

Finally we apply our technique to Parameterized Complexity. Here, we apply our
technique to parameteriz&e\WeiGHTED VERTEX COVER.

o k-WeigHtep VERTEX CovEr (K-WVC): Given a graplG = (V, E), a weight function
w: V :— R* such that for every vertex w(v) > 1 andk € R*, find a vertex cover
of weight at mosk. The weight of a vertex cove is w(C) = > yc W(V).

For k-WEeiGHTED VERTEX COVER, also known as RiL Vertex Cover, Niedermeier and
Rossmanith [11] gave two algorithms, one with running tid{&.3954 + kn) and poly-
nomial space and the other one using tidE.3788 + kn) and spaceD(1.3630).

3 We round the base of the exponent in all our algorithms which allows us to ignore polynomial
terms and writeD(c"n®*) asO(c").

Branching and Treewidth Based Exact Algorithms 3

Their dedicated paper daWeigntep Vertex Cover is based on branching, kerneliza-
tion and the idea of memorization. Their analysis involves extensive case distinctions
when the maximum degree of the reduced graph becomes 3. Here, we give a very sim-
ple algorithm running in timeD(1.3570n) for this problem, improving the previous
0O(1.3788 + kn) time algorithm of [11].

While the basic idea of our algorithms looks quite natural, the approach is generic
and the right application of our approach improves many known results.

2 Preliminaries

In this paper we consider simple undirected graphs.Get (V,E) be a (weighted)
graph and len denote the number of vertices anmdthe number of edges @&. We
denote by4(G) the maximum vertex degree {B. For a subseY’ C V, G[V’] is the
graph induced by’, andG - V' = G[V \ V’]. For a vertexv € V we denote the set of
its neighbors byN(v) and itsclosed neighborhooby N[v] = N(v) U {v}. Similarly, for

a subseD c V, we defineN[D] = UypN[V]. An independent seh G is a subset of
pair-wise non-adjacent vertices.matchingis a subset of edges having no endpoints in
common. A subset of vertices C V is avertex coveiin G if for every edgee of G at
least one endpoint @is in S.

Major tools of our paper are tree and path decompositions of graphs. We refer to [1]
for definitions of tree decomposition, path decomposition, treewidth and pathwidth of
a graph. We denote by (G) andpw(G), treewidth and pathwidth of the gragh

We need the following bounds on the pathwidth (treewidth) of sparse graphs. The
proof of Lemma 1 is simple and based on the result of [5] and by induction on the
number of vertices in a graph.

Lemma 1. For anye > 0, there exists an integer,rsuch that for every graph G with
n > n, vertices and m= Bn edgesl.5 < B < 2, the treewidth of G is bounded by
(m-n)/3+en.

3 Minimum Maximal Matching

Given a graplG = (V, E), any set of pairwise disjoint edges is callednatchingof
G. The problem of finding a maximum matching is well studied in algorithms and
combinatorial optimization. One can find a matching of maximum size in polynomial
time but there are many versions of matching which are NP hard. Here, we give an exact
algorithm for one such version, that isstmMum MaxmmarL Marcaing (MMM).

We need the following proposition which is a combination of two classical results
due to Moon and Moser [10] and Johnson, Yannakakis and Papadimitriou in [8].

Proposition 1 ([8, 10]).Every graph on n vertices contains at m8% = O(1.4423)
maximal (with respect to inclusion) independent sets. Moreover, all these maximal in-
dependent sets can be enumerated with polynomial delay.

Since for evenS C V, S is a vertex cover o6 if and only if V \ S is an independent
set of G, Proposition 1 can be used for enumerating minimal vertex covers as well.
Our algorithm also uses the following characterization of a MMM.

4 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

Algorithm MMM(G)

Data: A graphG.

Result A minimum maximal matching o& or a path decomposition .
return £indMMM(G, G, 0)

Function findMMM(G, H, C)
Input: A graphG, an induced subgrap of G and a set of vertice8 C V(G) — V(H).
Output: A minimum maximal matching o& subject toH andC or a path decomposition o
G.
if (4(H) > 4) or (4(H) = 3and|C| > 0.17383V(G)|) then
choose a vertex € V(H) of maximum degree
M; « £findMMM(G, H — N[v], C U N(v)) (R1)
M, « findMMM(G, H — {v},C U {v}) (R2)
| return the set of minimum size amofig,, M}
Ise if (4(H) = 3and|C| < 0.17383V(G)|) or (4(H) < 2 and|C| < 0.31154V(G)|) then
output a path decomposition @ using Lemma 3
| The Algorithm stops.
Ise
X « E(G)
foreach minimal vertex cover Q of ido
M’ « a maximum matching d6[C U Q]
Let V[M'] be the set of end points ofl’
M” « a maximum matching a6[C U V(H) \ V[M']]
if M”U M” is a maximal matching of G ani| > |[M’ U M”| then
L X MuM”

L return X

0]

0]

Fig. 1. Algorithm for Minimum Maximal Matching.

Proposition 2 ([12]).Let G = (V, E) be a graph and M be a minimum maximal match-
ing of G. Let

V[M] ={v|v € Vand v is an end point of some edge of M

be a subset of all endpoints of M. LetSV[M] be a vertex cover of G . Let Ve
a maximum matching in [§] and M’ be a maximum matching in 6 V[M’], where
V[M’] is the set of the endpoints of edges of Mhen X= M’ U M” is a minimum
maximal matching of G.

Note that in Proposition Z does not need to berainimalvertex cover.
The proof of the next lemma is based on standard dynamic programming on graphs
of bounded treewidth, and we omit it.

Lemma 2. There exists an algorithm to compute a minimum maximal matching of a
graph G on n vertices in time (3°n) when a path decomposition of width at most p is
given.

The algorithm of Figure 1 outputs either a path decomposition of the input @ayh
reasonable width or a minimum maximal matching3fThe paramete® of Function
findMMM corresponds always to the original input graphis a subgraph o6 andC
is a vertex cover o6 — V(H). The algorithm consists of three parts.

Branching and Treewidth Based Exact Algorithms 5

Branch. The algorithm branches on a verteof maximum degree and returns the
matching of minimum size found in the two subproblems created according to the
following rules:

(R1) VerticesN(v) are added to the vertex cov@randN[V] is deleted fromH;
(R2) Vertexv is added to the vertex cov€randyv is deleted fronH.

Compute path decomposition. The algorithm outputs a path decomposition using Le-
mma 3. Then the algorithm stops without backtracking. A minimum maximal match-
ing can then be found using the pathwidth algorithm of Lemma 2.

Enumerate minimal vertex covers. The algorithm enumerates all minimal vertex cov-
ers ofH. For every minimal vertex coved of H, S = C U Q is a vertex cover of
G and the characterization of Proposition 2 is used to find a minimum maximal
matching ofG.

The conditions under which thesdfdrent parts are executed have been carefully cho-
sen to optimize the overall running time of the algorithm, including the pathwidth al-
gorithm of Lemma 2. Note that a path decomposition is computed at most once in an
execution of the algorithm &smdMMM stops right after outputting the path decompo-
sition. Also note that the minimal vertex coverskdfcan only be enumerated in a leaf
of the search tree corresponding to the recursive calls of the algorithm, as no recursive
call is made in this part.

We define @ranch nodeof the search tree of the algorithm to be a recursive call of
the algorithm. Such a branch node is uniquely identified by the tripl&l(C), that is
the parameters dindMMM.

Theorem 1. A minimum maximal matching of a graph on n vertices can be found in
time (1.4082").

Proof. The correctness of the algorithm is clear from the above discussions. Here we
give the running time for the algorithm.

Time Analysis: In the rest of the proof we upper bound the running time of this algo-
rithm. It is essential to provide a good bound on the width of the produced path decom-
position ofG. The following lemma gives us the desired bounds on the pathwidth. Its
proof is easy and is based on the bound on the pathwidth given in Lemma 1.

Lemma 3. Let G = (V, E) be the input graph andG, H, C) be a branch node of the
search tree of our algorithm then the pathwidth of the graph is boundgaviy) + |C]|.

In particular,

(a) If 4(H) < 3, thenpw(G) < (5 + &)IV(H)| + IC| for anys > 0.

(b) If 4(H) < 2, thenpw(G) < |C|+ 1. A path decomposition of the corresponding width
can be found in polynomial time.

Seta = 0.17385 ang3 = 0.31154. First, consider the conditions under which a path
decomposition may be computed. By combining the pathwidth bounds of Lemma 3
and the running time of the algorithm of Lemma 2, we obtain that MMM can be solved
in time O(max31+5)/6 35" when the path decomposition part of the algorithm is
executed.

Assume now that the path decomposition part is not executed. Then, the algorithm
continues to branch when the maximum degiéH) of the graphH is 3. And so,

6 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

IC] > an whenA(H) first becomes 3. At this point, the s€thas been obtained by
branching on vertices of degree at least 4 and we investigate the number of subproblems
obtained so far. LeL be the the set of nodes in the search tree of the algorithm that
correspond to subproblems whetgH) first becomes 3. Note that we can expriigs
by a two parameter functioA(n, k) wheren = [V(G)| andk = an. This function can
be upper bounded by a two parameter recurrence relation corresponding to the unique
branching rule of the algorithm:
Ank) =An-1k-1)+ A(n-5k—4).

When the algorithm branches on a venexf degree at least 4 the function is called on
two subproblems. If is not added t&C ((R1)), then|N[v]| > 5 vertices are removed
from H and|C| increases byN(v)| > 4. If vis added tdC ((R2)), then both parameters
decrease by 1.

Letr be the number of times the algorithm branches in the R%g Observe that
0 < r < k/4. LetL, be a subset of such that the algorithm has branched exactly
times according tgR1) in the unique paths from the root to the node&.inThus,|L|
is bounded byy, /2 |Ll.

To bound the number of nodes in edghlet| € L, andP, be the unique path from
| to the root in the search tree. Observe that on this path the algorithm has branched
k — 4i times according t¢R2) andi times according t¢R1). So, the length of the path
P, is k — 3i. By counting the number of sequences of lergth3i where the algorithm
has branched exactiytimes according tgR1), we get|Li| < (k 3') Thus if the path

decomposition is not computed, the time compledity) of the algorithm is
k/4 k/4

D (k 3')T (n-5i - (k-4))|=0| Y (k 3')T (h-i- k)] (1)
i=0 i=0

whereT’(n’) is the time complexity to solve a problem on a branch ndsldH, C) in

L with n” = |V4|. (Let us remind that in this case the algorithm branches on vertices
of degree 3 and enumerates minimal vertex covetd.piLet p = (8 — @)n. To bound

T’(n’) we use similar arguments as before and use Proposition 1 to bound the running
time of the enumerative step of the algorithm. Thus we obtain:

p/3 p/3
3= p)/3Z(p 2I)3_i/3]) 2)

o Z (p— 2i)3n —4i- (p—3l)
i=0 !

We boundT () by O(3("-P/3dP) for some constard, 1 < d < 2 (the value ofl is

determined later). Substituting this in Equation (1), we get:

k/4 k/4
k — 3i\ _ni k n-i-k-p k — 3i .
T(n)=0 (.) dP| = O 3&-An/3gr ()3—|/3 _
5[5
Further suppose that g (*;¥)37/ sums toO(c*) for a constant, 1 < ¢ < 2, then

the overall time complexity of the algorithm is bounded B¢(32/3df-2c*)") .
Claim. c< 1.3091 andd < 1.3697. o
Proof. The sum over binomial cdecientsy, g (*;*)37/% is bounded byk/4)B where

B is the maximum term in this sum. Let us assume Bat (k‘i3i)3*‘/3 for somei €

{1,2,...,k/4}. To compute the constant letr := ¢ — 1. We obtainB = (k‘i3i)3“/3 <
“—*?ki'?‘/?’. Here we use the well known fact that for ary> 0 and 0< k < n,

T(n)=0

T'(n') =

Branching and Treewidth Based Exact Algorithms 7

(E) < % . By choosingr to be the minimum positive root MS‘W -1, we
arrive atB < (1 + r)k for 0.3090 < r < 0.3091. Thusc < 1.3091. The value ofl is
computed in a similar way. O
Finally, we get the following running time for Algorithm MMM by substituting the
values fora, 8, c andd:
O (max(31-A/3gs-ce, 31518, ") < 0(1.4082) .

4 Counting Maximum Weighted Independent Sets

In this section we give an algorithm counting the number of maximum weighted inde-
pendent sets in a graph, that is an algorithm for the #MWIS problem .

Most of the recent advances in counting maximum weighted independent sets are
based on a reduction to counting satisfiable assignments of a 2-SAT formula. All these
algorithms are based on the Branch & Reduce paradigm and involve detailed case dis-
tinctions. Here, we present a simple algorithm that combines Branch & Reduce and
dynamic programming on graphs of bounded treewidth. It is well known (see for exam-
ple [1]) that a maximum independent set can be found in @§&n) in a graph if a tree
decomposition of width at mogtis given. This algorithm can be slightly modified to
find the total number of maximum weighted independent sets in a graph with treewidth
¢ without increasing the running time of the algorithm.

Proposition 3. Given a graph G with n vertices and a tree decomposition of G of width
at mostt, all maximum weighted independent sets of G can be counted in {{248)O

Our algorithm#MWIS, to count all maximum weighted independent sets of a graph,
is depicted in Figure 2. The algorithm branches on a verteixosen by the following
function which returns the vertex selected by the first applicable rule.
Pivot(G)

1. If 3v e V such thad(v) > 7, then returrv.

2. If Av e V such thatG - vis disconnected, then retum

3. If Au,v € V such thaG — {u, v} is disconnected and(u) < d(v), then returrv.

4. Return a vertex of maximum degree such thalt,cy) d(u) is maximized.

When|E| < 1.518% the treewidth algorithm counts all maximum weighted inde-
pendent sets. The proceddt®WISTW is a dynamic programming algorithm solving
#MWIS of running time given in Proposition 3. When the algorithm branches on a
vertexv, two subproblems are created according to the following rules:

(R1) addv to the partially constructed independent set and d&l@iefrom the graph.
(R2) deletev from the graph.

The correctness of the algorithm is clear from the presentation. Now we discuss
its time complexity in detail which is based on a careful counting of subproblems of
different size. We also need the following lemma for the analysis of the time complexity.

8 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

Algorithm #MWIS (G = (V, E), w)
Input: A graphG = (V, E) and a weight functiom : V — R*.
Output: A couple ize nb) wheresizeis the maximum weight of an independent seGof
andnbthe number of dferent independent sets of this weight.
if G is disconnected with connected components G, G, then
L S « 3.5, 0« 1%, nwhere §,n) « #MWIS(G;,w)
return (s,n)
if |E| < 1.5188V| then
| return #MWISTW(G)
else
V « Pivot(G)
(s1, M) « #MWIS(G — N[v], w)
(S2, M) « #MWIS(G — {V}, W)
1 < S+ W(V)
if 51 > s, then
| return (s, ny)
else ifs; = s, then
| return (s, Ny +ny)
else
| return (s, ny)

Fig. 2. An Algorithm to count all Maximum Weighted Independent Sets of a Graph

Lemma 4 ([3,7]).Let G= (V, E) be a graph with n vertices, m edges, average degree
a> 0andv be a vertex chosen by Rdlef the functiorPivot. Then the average degrees
of G- v and G- N|v] are less than a.

Theorem 2. Let G = (V, E) be a graph on n vertices.Algorith#MWIS computes the
number ofMaxmvMum WEIGHTED INDEPENDENT SETS Of G in time (§1.2431").

Proof. (1) If G has at most bn edges, its treewidth is at most/@+ €)n by Lemma 1.
Since only the treewidth algorithm is executed in this case, the running time is
O(2WW/6+any = 0(1.12283).

(2) Assume tha6 has at most2edges. The worst case of the algorithm is when it
branches on a vertex chosen by Rule 4 of the fundéimot. In this case the algorithm
branches on vertices of degree at least 4 and executes the treewidth algorithm when
m < 1.518%. Setg = 1.5185. Letxn be the number of times the algorithm branches.
The constanik is at least 0 and satisfies the inequality 24xn > B(n — xn) which
implies thatx < (2 - 8)/(4 - B).

Let s be the number of times the algorithm branches accordinf®1). Then, the
algorithm branchesn — s times according tgR2). When the treewidth algorithm is
executed, the size of the remaining graph is at mesbs— (xn— s) = n— xn—4s. By
Lemma 1,tw(G) is bounded byi(3 — 1)/3. Let Tyy(n) = 2"¢-1/3 pe the bound on the
running time of the treewidth algorithm when executed on a graphnwbrtices and
Bnedges. The runnir}(g time of the algorithm is then bounded by

FIOEDY (Xn)TtW(n ~ xn—4g) = 255 @91 4 -4y

s:OS

Branching and Treewidth Based Exact Algorithms 9

T1(n) is maximum wherx = (2 - 8)/(4 —). By replacingx by this value, we have that
T1(n) < 1.20935.

With an analysis similar to the one for the case when the graph has at medges,
we can show that the Algorith#MWIS takesO(1.23724") time or O(1.2431") time
when the graph has at mos6@ edges or B edges respectively.

(3) Now, if G has more thanrBedges then it contains vertices of degree at least 7
and hence the running time of the algorithm is smaller because the recufr@r)ce
T(n-8)+ T(n- 1) solves tdD(1.2321").

O

5 Application to Parameterized Algorithms

Here we apply our technique to design a fixed parameter tractable algorithm for the
parameterized version of Méutep VErRTEX COVER.

We needkernelizationfor our algorithm for weighted vertex cover. The main idea
of kernelizationis to replace a given instanck K) by a simpler instancd {, k') using
somedata reduction rulesn polynomial time such thatl (k) is a yes-instance if and
only if (I’,k’) is a yes-instance ant| is bounded by a function dfalone. We state the
kernelization proposition of [11] that we use in our algorithm.

Proposition 4 ([11]). Let G = (V,E) be a graph, w: V :— R* such that for every
vertex v, iv) > 1 and k € R*. There is an algorithm that in time @n + k%) either
concludes that G has no vertex cover of weight, or outputs a kernel of size 2k.

Our algorithm is very similar to the one presented for counting all maximum indepen-
dent sets. First we apply Proposition 4 to obtain a kernel of size at rko3th2n, as
long agE| > 3.2k, the algorithm branches on a verteghosen by the functioRivot as

in the algorithm presented in Figure 2.|H| < 3.2k, then by Lemma 1, a tree decom-
position of small width {w) can be found in polynomial time and we can usg(@"n)
dynamic programming algorithm to sol4eNeiGuTED VERTEX COVER.

Theorem 3. k-WVC on a graph on n vertices can be solved in tim@ @570n).

6 Conclusion

Branching and dynamic programming on graphs of bounded treewidth are very pow-
erful techniques to desigrfficient exact algorithms. In this paper, we combined these
two techniques in dierent ways and obtained improved exact algorithms for #MWIS
and MMM. Other problems for which we obtain faster algorithms using this technique
include variants of MMM that are Mimum Epce Dominaring Ser and Marrix DomiNa-

tioN Ser. We also applied the technique to design fixed parameter tractable algorithms
and obtained the best known algorithm felWVC which also shows the versatility

of our technique. The most important aspects of this technique are that the resulting
algorithms are verglegantand simplewhile at the same time the analysis of these
algorithms is highlynon-trivial. Our improvement in the runtime for #MWIS directly
gives improved algorithms for #1-1K-SAT, #Exact Hirting Set, #Exact Cover and

10 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

#WEeiGntep Ser Cover. The definitions and reductions of these problems to #MWIS can
be found in [2]. Other parameterized problems for which we obtain the fastest known al-
gorithms using the techniques developed in this paper amsgfghtedandunweighted
version ofparameterized minimum maximal matchiagd minimum edge dominating
set which will appear in the longer version of this paper.

It would be interesting to find some other applications of the techniques presented
here in the design of exact exponential time algorithms and fixed parameter tractable
algorithms.

References

1. H. L. BooLaENDER, A partial k-arboretum of graphs with bounded treewidifheoretical
Computer Science, 209 (1998), pp. 1-45.

2. V. DanLLor anp P. Dnsson, An algorithm for counting maximum weighted independent
sets and its applicationsn 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), ACM and SIAM, 2002, pp. 292—298.

3. V. DaHLLOF, P. bNssoN, anp M. WanLsTROM, Counting models for 2SAT and 3SAT formulae
Theoretical Computer Science, 332 (2005), pp. 265—291.

4. F. V. Fomin, F. Granpont, anp D. Krarsca, Some new technigues in design and analysis of
exact (exponential) algorithm8ulletin of the EATCS, 87 (2005), pp. 47-77.

5. F. V. Fomv anp K. Hgig, Pathwidth of cubic graphs and exact algorithnisformation Pro-
cessing Letters, 97 (2006), pp. 191-196.

6. M. FUrer anD S. P. Kasiviswanatnan, Algorithms for counting 2-SAT solutions and colorings
with applications Electronic Colloquium on Computational Complexity (ECCC), vol. 33,
2005.

7. M. K. GoLpeerG, D. BerQuE, anp T. Seencer A Low-Exponential Algorithm for Counting
Vertex CoversGraph Theory, Combinatorics, Algorithms, and Applications, vol. 1, (1995),
pp. 431-444.

8. D. S. dunsoN, M. Yannakakis, axp C. H. Rweabivitriou, On generating all maximal inde-
pendent setdnformation Processing Letters, 27 (1988), pp. 119-123.

9. J. Kness, D. MOLLE, S. RcHTER, AND P. Rossmanit, Algorithms based in treewidth of sparse
graphs in Proceedings of the 31st International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2005), vol. 3787 of LNCS, Springer, (2005), pp. 385-396.

10. J. W. Mbon anp L. Moser, On cliques in graphslsrael Journal of Mathematics, 3 (1965),
pp. 23-28.

11. R. NeperMmeiEr anNDp P. Rossmantrh, On gficient fixed-parameter algorithms for weighted
vertex coverJournal of Algorithms, 47 (2003), pp. 63-77.

12. V. Raman, S. SwrasH, AND S. SkpaRr, Efficient exact algorithms through enumerating maxi-
mal independent sets and other technigiégseory of Computing Systems, to appear.

13. B. RanperatH AND |. ScHiErMEYER, Exact algorithms for MINIMUM DOMINATING SET
Technical Report zaik-469, ZentrurarfAngewandte Informatik Kln, Germany, 2004.

14. G. WbeGINGERr, Exact algorithms for NP-hard problems: A suryéy Combinatorial Opti-
mization - Eureka, you shrink!, vol. 2570 of LNCS, Springer, (2003), pp. 185-207.

