
On Independent Sets and Bicliques in Graphs∗

Serge Gaspers† Dieter Kratsch‡ Mathieu Liedloff§

Abstract

Bicliques of graphs have been studied extensively, partially motivated by the large
number of applications. In this paper we improve Prisner’s upper bound on the number
of maximal bicliques [Combinatorica, 2000] and show that the maximum number of
maximal bicliques in a graph on n vertices is Θ(3n/3). Our major contribution is an
exact exponential-time algorithm. This branching algorithm computes the number
of distinct maximal independent sets in a graph in time O(1.3642n), where n is the
number of vertices of the input graph. We use this counting algorithm and previously
known algorithms for various other problems related to independent sets to derive
algorithms for problems related to bicliques via polynomial-time reductions.

1 Introduction

Bicliques. Let the vertex sets X and Y be independent sets of a graph G = (V,E) such
that xy ∈ E for all x ∈ X and y ∈ Y . The subgraph of G induced by X ∪ Y is called a
biclique of G. Furthermore depending on the context and the application area, one also
calls the pair (X,Y) or the vertex set X ∪ Y a biclique. From a graph-theoretic point
of view it is natural to consider a biclique of a graph G as a complete bipartite induced
subgraph of G. For technical reasons, we prefer to consider a biclique B ⊆ V of a graph
G = (V,E) as a vertex set inducing a complete bipartite subgraph of G.

Note that our definition allows X or Y to be an empty set, and thus X ∪ Y to be
an independent set. In [9, 10], such X ∪ Y are not considered to be bicliques, whereas
independents sets are considered to be bicliques in [18, 27] and in the present paper.
Bicliques with at least one edge are called proper bicliques.

A biclique B ⊆ V of G is a maximal biclique of G if B is not properly contained in
another biclique of G.

Applications. Research on maximal bicliques and algorithms to enumerate all maximal
bicliques of (bipartite) graphs with polynomial delay is motivated by various applications of
bicliques in (bipartite) graphs. Applications of bicliques in automata and language theory,
graph compression, artificial intelligence and biology are discussed in [3]. An important

∗A large part of the research was done while Serge Gaspers was visiting the University of Metz. A
preliminary version of this paper appeared in the proceedings of WG 2008. Serge Gaspers acknowledges
partial support of NFR and of Conicyt Chile via the project Basal-CMM.
†Institute of Information Systems, Vienna University of Technology, Favoritenstraße 9-11, A-1040 Vi-

enna, Austria. Email: gaspers@kr.tuwien.ac.at
‡LITA, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France. Email: kratsch@univ-metz.fr
§LIFO, Université d’Orléans, 45067 Orléans Cedex 2, France. Email: liedloff@univ-orleans.fr

1

application in data mining is based on the formal concept analysis [16] where each concept
is a maximal biclique of a bipartite graph.

Previous work. The complexity of algorithmic problems on bicliques has been studied
extensively. First results were mentioned by Garey and Johnson [15], among them the
NP-completeness of the balanced complete bipartite subgraph problem. The maximum
biclique problem is polynomial for bipartite graphs [7], and NP-hard for general graphs [32].
The maximum edge biclique problem was shown to be NP-hard by Peeters [26].

Approximation algorithms for node and edge deletion biclique problems are given by
Hochbaum [18]. Enumerating maximal bicliques has attracted a lot of attention in the last
decade. The algorithms in [23, 24] enumerate all maximal bicliques of a bipartite graph as
concepts during the construction of the concept lattice. Nowadays there are polynomial
delay enumeration algorithms for maximal (proper) bicliques in bipartite graphs [10, 21]
and general graphs [9]. There are also polynomial delay algorithms to enumerate all
maximal non-induced bicliques of a graph [2, 10].1

Prisner studied various aspects of bicliques in graphs. Among others, he showed that
the maximum number of maximal bicliques in a bipartite graph on n vertices is 2n/2. He
also established a lower bound of 3n/3 and an upper bound of 1.6181n (up to a polynomial
factor) on the maximum number of maximal bicliques in a graph on n vertices [27].

Our Results. We use polynomial-time Turing reductions to transform results on maximal
independent sets into results on maximal bicliques. In this way we improve upon Prisner’s
upper bound and show that the maximum number of maximal bicliques in a graph on
n vertices is at most 1

31/3−1 · 3
n/3. Our main contribution is an algorithm to count all

maximal independent sets in a graph. This branching algorithm has worst-case running
time O(1.3642n) and this upper bound is established by making use of the Measure &
Conquer technique, see e.g. [13]. We also provide a lower bound for the running time of
this counting algorithm. Finally we show how to use this algorithm to count all maximal
bicliques of a graph within the same time bound.

2 Preliminaries

All graphs in this paper are simple and undirected. For a graph G = (V,E), we let n = |V |
and m = |E|. An edge between vertices u and v is denoted by uv. The set of neighbors
of a vertex v ∈ V is the set of all vertices adjacent to v, denoted by N(v). The closed
neighborhood of a vertex v is N [v] = {v} ∪N(v). The distance between two vertices u, v
is the length of the shortest path from u to v. We denote by Nk(v) the set of all vertices
at distance k from v, and by Nk[v] the set of all vertices at distance at most k from v.
The degree of a vertex v is d(v) = |N(v)|. A clique is a set of vertices that are all pairwise
adjacent, and an independent set is a set of vertices that are all pairwise non-adjacent.
An independent set is maximal if it is not properly contained in another independent set.
The subgraph of G induced by a vertex set A ⊆ V is denoted by G[A]. A graph is called
bipartite if its vertex set can be partitioned into two independent sets V and W . The

1When the condition that X and Y are independent sets in the definition of a biclique is omitted, then
(X,Y) is called a non-induced biclique of G. In this case a different maximality notion is used. See for
example [2].

2

bipartite complement of a bipartite graph G = (V,W,E) is a bipartite graph having the
vertices of G as its vertex set and the non-edges of G with an endpoint in V and another
in W as its edge set.

3 Improving Prisner’s Bound

There is a natural relation between independent sets (and cliques) on one hand and bi-
cliques on the other hand. Thus it is not surprising that polynomial-time Turing reductions
(in fact mainly Karp reductions) have been used in various hardness proofs for problems
on bicliques [15]. The following property is central for our purpose.

Lemma 1. Let G = (V,E) be a graph. For every v ∈ V , the graph Hv is the graph with
vertex set V (Hv) = N(v) ∪N2(v). Its edge set E(Hv) consists of the following edges:

• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N(v),

• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N2(v),

• xy ∈ E(Hv) if xy /∈ E, x ∈ N(v) and y ∈ N2(v).

Then B ⊆ V is a (maximal) biclique of G if and only if B− v is a (maximal) independent
set of a graph Hv for some v ∈ B.

Proof. LetB be a (maximal) biclique ofG. Take some v ∈ B. ThenB ⊆ {v}∪N(v)∪N2(v)
in G, where the independent sets X and Y of the biclique B satisfy X ⊆ N(v) and
Y ⊆ {v} ∪ N2(v). Since B is a biclique and by the construction of Hv, we obtain that
B−v is an independent set in Hv. On the other hand, if B′ is a (maximal) independent set
of Hv, for some v ∈ V , then B′ ∩N(v) is an independent set of G[N(v)] and B′ ∩N2(v) is
an independent set of G[N2(v)]. Hence B′ is a biclique of G− v and B′ ∪ {v} is a biclique
of G.

Finally, due to the correspondence between bicliques and independent sets, this also
holds for maximality by inclusion of vertices.

The corresponding Turing reduction does not increase the number of vertices since |V (Hv)|
≤ |V | − 1. Thus this reduction is useful for exact exponential-time algorithms.

Corollary 2. Given an algorithm to find a maximum independent set of a graph in time
O∗(cn), it can be used to establish an algorithm to find a maximum biclique of a graph in
time O∗(cn). Given an algorithm to count all independent sets of size k of a graph in time
O∗(cn), it can be used to establish an algorithm to count all bicliques of size k of a graph
in time O∗(cn).2

Proof. To find a maximum biclique of a graph G = (V,E), compute a maximum indepen-
dent set for each Hv, v ∈ V , constructed according to Lemma 1 and return the largest set
of vertices found.

To count all bicliques of size k of a graph G = (V,E) on n vertices, order the vertices
of G: V = {v1, v2, . . . , vn}. For i = 1, . . . , n, compute the number of independent sets of
size k − 1 of H i

vi where H i
vi is obtained from Gi = G[{vi, vi+1, . . . , vn}] using Lemma 1.

Adding up the results gives the number of bicliques of size k of G.

2Throughout the paper we write f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some polynomial p(n).

3

By this corollary and the algorithms in [28, 31], a maximum biclique of a graph can be
found in time O(1.2109n) and all maximum bicliques of a graph can be counted in time
O(1.2377n).

We emphasize that the approach of Corollary 2 is not directly applicable to use an
algorithm counting the maximal independent sets of a graph to establish one to count the
maximal bicliques of a graph. The issues are that double-counting has to be avoided at the
same time as the maximality of each counted biclique has to be ensured. Such counting
algorithms are established in the next section.

We finish this section with a combinatorial problem. The maximum number of maximal
bicliques in a graph on n vertices has been studied by Prisner [27]. He settled the question
for bipartite graphs. The maximum number of maximal bicliques in a bipartite graph on n
vertices is precisely 2n/2. For general graphs the question remained open. He established
a lower bound of 3n/3 and an upper bound of (1.618034n + o(1)) · n5/2 for the maximum
number of maximal bicliques in a graph on n vertices. We significantly improve the upper
bound.

Theorem 3. The maximum number of maximal bicliques in a graph on n vertices is at
most c · 3n/3 where c = 1

31/3−1 < 2.2612.

Proof. Let n be a positive integer and let G be any graph on n vertices. Let v1, v2, . . . , vn
be the vertices of G and let B be the set of maximal bicliques of G. We show that |B| is
at most c · 3n/3.

Let Bi ⊆ B, 1 ≤ i ≤ n, be the set of bicliques B of B such that vi ∈ B and
{v1, v2, . . . , vi−1} ∩B = ∅. Note that by definition the Bi’s form a partition of B.

Consider a Bi for any 1 ≤ i ≤ n. Any maximal biclique B ∈ Bi contains no vj with
j < i. Thus B is also a maximal biclique of G \ {v1, . . . , vi−1} which contains n − i + 1
vertices. Applying Lemma 1, there is a one-to-one correspondence between the maximal
bicliques B of Bi and the maximal independent sets B−vi of the graph Hvi \{v1, . . . , vi−1}.
Note that Hvi contains n− i vertices. By a well-known theorem of Moon and Moser [22],
the maximum number of maximal independent sets in a graph on n′ vertices is 3n

′/3. Thus
the number of maximal bicliques of Bi is at most 3(n−i)/3.

As a consequence, |B| ≤
∑n

i=1 3(n−i)/3 < 1
31/3−1 · 3

n/3

Corollary 4. The maximum number of maximal bicliques in a graph is Θ(3n/3).

4 Counting Algorithms

There are decision, optimization, counting and enumeration problems. Algorithms solving
hard problems of any of these types are studied in the domain of exact exponential-time
algorithms using worst-case running times to measure the quality of algorithms. Obviously,
each enumeration algorithm can be used to solve corresponding counting, optimization
and decision problems. On the other hand, the worst-case running time of an enumeration
algorithm is lower bounded by the number of objects to be enumerated. Thus, for example,
each algorithm to enumerate all maximal independent sets of a graph or to enumerate all
maximal bicliques of a graph has a worst-case running time of Ω(3n/3) ([22, 27]).

4

Counting problems are a classical subject in algorithms and complexity. Recently
within the domain of exact exponential-time algorithms the time complexity of counting
problems attracts a lot of attention. For example, it is interesting that the best known
algorithm to compute the chromatic number of a graph [4] and the best known algorithm
to compute a minimum dominating set of a graph [30], both solve in fact a corresponding
counting problem (within the same running time).

In this section we present an exact exponential-time algorithm to count all maximal
independent sets of a graph. Based on a polynomial-time Turing reduction this algorithm
can be used to establish an algorithm to count all maximal bicliques of a graph. No such
counting algorithms of running time O∗(cn), with c < 3

√
3 were known prior to our work.

On the other hand, the problem to count the maximal independent sets is known to be
#P -complete even when restricted to chordal graphs [25]. Our goal is to construct and
analyze a branching algorithm solving the counting problem.

4.1 Algorithm to Count All Maximal Independent Sets

We would first like to say a word of precaution. Even if the problem of counting all
maximal independent sets of a graph seems very similar to the problems of counting all
maximum independent sets of a graph, or all independent sets of a given size k, there is
a fundamental difference coming from the notion of maximality. The best known exact
exponential-time algorithm to count all independent sets of maximum size or of size k
[5, 6, 14, 31] rely on a branching strategy which has the following properties: vertices
that are decided not to be in the counted independent sets of a subproblem (generated
by a branching algorithm) can be deleted and removed from further consideration, and
graphs of maximum degree 2 can be handled in polynomial time. But if the algorithm
is supposed to count all maximal independent sets, this strategy does not work (unless
P = #P). Consider a graph G = (F ∪M,E) for which we would like to count all maximal
independent sets of G that are included in F . In other words, M is the set of vertices that
have been decided not to be in any maximal independent set in the current subproblem,
but for each of them, a neighbor must be added to ensure the maximality of the counted
independent sets. By a simple reduction from the #Satisfiability problem, requiring to
count all satisfying assignments to a boolean formula, it can be shown that this problem is
#P-hard even if G[F] has maximum degree 1 (an edge in G[F] corresponds to a variable,
its end points to the true/false value of this variable, and the vertices in M correspond to
the clauses of the formula).

Our algorithm deals with marked graphs G = (F,M,E), where vertices of F are called
free and vertices of M are called marked. Let u be a vertex of F ∪M . The degree of u is
the number of neighbors in F ∪M and is denoted by d(u). Given a set D ⊆ (F ∪M), the
set N(u) ∩D is denoted by ND(u) and its cardinality is denoted by dD(u). For a marked
graph G = (F,M,E), the marked graph induced by the vertex sets F ′ ⊆ F and M ′ ⊆ M
is G[F ′,M ′] = (F ′,M ′, E ∩ ((F ′ ∪M ′)× (F ′ ∪M ′))).

The following notions are crucial for our algorithm. A set S ⊆ F is a maximal inde-
pendent set of a marked graph G = (F,M,E) if S is a maximal independent set of G[F].
We say that the maximal independent set S of G satisfies property Π if each vertex of M
has a neighbor in S.

Given a marked graph G, our algorithm computes the number of maximal independent

5

sets of G = (F,M,E) satisfying Π. Thus, a marked vertex u is used to force that each
maximal independent set S of G counted by the algorithm contains at least one free
neighbor of u. This is particularly useful to guarantee that only maximal independent sets
of the input graph are counted. In the remainder of this section, we suppose that G is a
connected graph, otherwise the algorithm is called for each of its connected components,
and the product of the results gives the number of maximal independent sets of G satisfying
Π.

Given a simple graph G′ = (V,E), #MaximalIS
(
G = (V, ∅, E)

)
returns the number of

maximal independent sets of G′. See Figure 1 for the description of the algorithm.
We emphasize that all the halting ((H1)–(H2)) and reduction ((R1)–(R7)) rules are

necessary for our running time analysis in Subsections 4.3 and 4.4. The branching rule (B)
selects a vertex u, orders its free neighbors in a list BL(u) = [v1, v2, . . . , vdF (u)] and makes
a recursive call (that is a branching) counting all maximal independent sets containing u,
and a recursive call for each i = 1, 2, . . . , dF (u) where it counts all maximal independent
sets containing vi but none of v1, v2, . . . , vi−1.

The selected vertex u is chosen according to three criteria (i)–(iii). By (i), u has
minimum degree, which ensures either that the algorithm makes few recursive calls or
that many vertices are removed in each branching. By (ii), u has a neighbor of maximum
degree among all vertices satisfying (i). If the degree of this neighbor is high, then many
vertices are removed in at least one recursive call. If the degree of this vertex is low, every
vertex of minimum degree has no high-degree neighbor. This property is exploited in the
analysis of our algorithm, which considers a decrease in the degree of a vertex of small
degree more advantageous than a decrease in the degree of a high-degree vertex. Similarly,
(iii) ensures either many recursive calls where many vertices are removed or a knowledge
on the degrees of the neighbors of a vertex of minimum degree. The ordered list BL(u)
is defined in this way to ensure that for certain configurations of N2[u], reduction rule
(R1) or a (fast) subsequent branching on a marked vertex of degree 2 is applied in many
recursive calls.

4.2 Correctness of #MaximalIS

We show the correctness of the branching and reduction rules of #MaximalIS. (H1) If
the input graph has no vertices then the only maximal independent set is the empty set.
(H2) If there is a marked vertex u without any free neighbor then there is no maximal
independent set satisfying Π. (R1) If a marked vertex u has only one free neighbor, it
has to be in the maximal independent set to satisfy Π. (R2) By maximality, each free
vertex without any free neighbor has to belong to all maximal independent sets. (R3)
Since marked vertices cannot belong to any maximal independent set, edges between two
marked vertices are irrelevant and can be removed. (R4) Suppose u, v ∈ F are two free
vertices and N [u] = N [v]. Every maximal independent set containing a neighbor of u does
not contain v. Moreover, every maximal independent set containing u can be replaced by
one containing v instead of u. Thus, it is sufficient to remove v and to return the number
of maximal independent sets containing a neighbor of u plus twice the number of maximal
independent sets containing u. (Note that the algorithm can easily be implemented such
that the number of maximal independent sets containing u is obtained from the recursive
call. For example, keep a counter to associate to each free vertex the number of maximal

6

Algorithm #MaximalIS
(
G = (F,M,E)

)
Input: A marked graph G = (F,M,E).
Output: The number of maximal independent sets of G satisfying Π.
// Reduction rules

if F ∪M is empty then
return 1; (H1)

if there exists u ∈M such that dF (u) = 0 then
return 0; (H2)

if there exists u ∈M such that NF (u) = {v} then
return #MaximalIS

(
G[F \N [v],M \N(v)]

)
; (R1)

if there exists u ∈ F such that dF (u) = 0 then
return #MaximalIS

(
G[F \N [u],M \N(u)]

)
; (R2)

if there exists u, v ∈M such that {u, v} ∈ E then
return #MaximalIS

(
(F,M,E \ {u, v})

)
; (R3)

if there exists u, v ∈ F such that N [u] = N [v] then
count← #MaximalIS

(
G[F \ {v},M]

)
;

Let MISu be the number of maximal independent sets computed by
#MaximalIS

(
G[F \ {v},M]

)
containing u;

return MISu + count; (R4)

if there exists u ∈M and v ∈ N(u) such that N [v] ⊆ N [u] then
return #MaximalIS

(
G[F,M \ {u}]

)
; (R5)

if there exists u, v ∈M such that N(u) = N(v) then
return #MaximalIS

(
G[F,M \ {v}]

)
; (R6)

if there exists u ∈ F ∪M and v ∈ F such that N(u) = N(v) then
return #MaximalIS

(
G[F \ {v},M]

)
; (R7)

// Branching rule (B)

if there exists a marked vertex u with d(u) = 2 then
Choose u;

else
Choose a vertex u ∈ (F ∪M) such that

(i) u has minimum degree among all vertices in F ∪M ,
(ii) among all vertices fulfilling (i), u has a neighbor of maximum degree, and
(iii) among all vertices fulfilling (i) and (ii), u has maximum dual degree (that is the sum of
the degrees of its neighbors);

Let BL(u)← [v1, . . . , vdF (u)] be an ordered list of NF (u) such that
(i) v1 is a vertex of NF (u) having a minimum number of neighbors in V \N(u); if there are
several choices, choose v1 of minimum degree,
(ii) append (in any order) the vertices of N(v1) ∩NF (u) to the ordered list, and
(iii) append the vertices of NF (u) \N [v1] ordered by increasing number of neighbors in V \N(u);

count← 0;
if u is free then // select u (to be in the current maximal independent set)

count← #MaximalIS
(
G[F \N [u],M \N(u)]

)
;

foreach vi ∈ BL(u) do // mark each vertex of M ′ and select vi
M ′ ← {vj ∈ BL(u) : 1 ≤ j < i and {vj , vi} 6∈ E};
count← count+ #MaximalIS

(
G[F \ (M ′ ∪N [vi]), (M ∪M ′) \N(vi)]

)
;

return count;

Figure 1: Algorithm #MaximalIS counting all maximal independent sets.

7

independent sets containing this vertex.) (R5) If u ∈ M has a neighbor v such that all
neighbors of v are also neighbors of u, then every maximal independent set of G− u must
contain a vertex of N [v] \ {u} and thus a neighbor of u in G. (R6) If two marked vertices
have the same neighborhood then one of them is irrelevant. (R7) Let v be a free vertex
and u a vertex such that N(u) = N(v), and thus u and v are non adjacent. Hence every
maximal independent set containing a neighbor of u does not contain v and every maximal
independent set containing u (if u is free) also contains v. Thus the number of maximal
independent sets is the same as for G− v.

(B) The algorithm considers the two possibilities that either u or at least one neighbor
of u is in the current maximal independent set. By induction and the fact that N [u] is
removed if the algorithm decides to add u to the current maximal independent set, every
maximal independent set containing u is counted and it is counted only once. Consider the
possibility that at least one neighbor of u is in the current maximal independent set and
let vi be the first such neighbor in the ordered list BL(u), containing all the free neighbors
of u. That no maximal independent set containing a vertex appearing before vi in BL(u)
is counted, is ensured by either its deletion (because it is a neighbor of vi) or the marking
of this vertex. So, every maximal independent set containing vi but neither u (removed as
it is a neighbor of vi) nor a vertex appearing before vi in BL(u) is counted exactly once.

4.3 Running Time Analysis of #MaximalIS

The goal is to analyze the running of the branching algorithm. Measure & Conquer is
a technique available since a few years for this purpose. For an introduction to Measure
& Conquer we refer the reader to [13]. Measure & Conquer has been used to establish
several of the fastest known exact exponential-time algorithms for well-studied NP-hard
problems [11, 12, 13, 17, 20, 29].

To analyze the running time of our algorithm, we use the following measure µ(G) of a
marked graph G.

µ := µ
(
G = (F,M,E)

)
:=

n−1∑
i=1

wi|Vi|+m2 · Kδ(G has no marked vertex of degree 2)

The weights m2 and wi, 1 ≤ i ≤ n− 1 are real numbers taken from [0, 1] that will be fixed
later. For 1 ≤ i ≤ n−1, Vi denotes the set of vertices of degree i in G and Kδ is the logical
Kronecker Delta returning 1 if its argument is true and 0 otherwise. The following values
will be useful in the analysis.

∆wi =

{
wi − wi−1 if 2 ≤ i ≤ n− 1
w1 if i = 1

To further simplify the forthcoming analysis, we assume:

wi = 1, 4 ≤ i ≤ n− 1

wi−1 ≤ wi, 2 ≤ i ≤ n− 1, and

∆wi ≥ ∆wi+1, 1 ≤ i ≤ n− 1.

8

It is not hard to see that an application of a reduction rule will not increase
∑n−1

i=1 wi|Vi|.
Furthermore no reduction rule can be applied more than n times, respectively m times
for (R3). Finally, each reduction rule can be implemented to run in polynomial time, and
thus for each subproblem the running time of our algorithm, excluding the recursive calls
by branching rule (B), is polynomial. Consequently we need to analyze the maximum
number of such recursive calls, that is the maximum number of subproblems generated
by a recursive call by (B), during the execution of our algorithm on a marked graph of
measure µ, which we denote by T (µ).

We only have to analyze the changes in measure when applying branching rule (B).
Case 1: (B) is applied to a marked vertex u with d(u) = 2.
Let v1 and v2 be its two neighbors. By (R3), that is since (R3) could not be applied,
v1, v2 ∈ F , and by (R2), d(v1), d(v2) ≥ 2.

(a) Suppose d(v1) = d(v2) = 2. For i ∈ {1, 2}, let xi be the other neighbor of vi. If
d(x1) = d(x2) = 1 then the algorithm deals with a component of constant size, and
the number of maximal independent sets of such a component can be computed in
constant time. Suppose now that d(x1) ≥ 2. In the first branch (or subproblem) u,
v1 and x1 are removed. In the second branch u, v2 and x2 are removed. In both
branches, the graph might not have a marked vertex of degree 2 any more. Thus,
the corresponding recurrence is majorized by

T (µ) ≥ T (µ− 3w2 +m2) + T (µ− w1 − 2w2 +m2).

(b) Suppose d(v1) ≥ 3 and d(v2) ≥ 2. In the first branch u, v1 and at least two other
neighbors of v1 are removed. In the second branch u, v2 and the other neighbors of
v2, at least one, are removed. Thus, the corresponding recurrence is majorized by

T (µ) ≤ T (µ− 2w1 − w2 − w3 +m2) + T (µ− w1 − 2w2 +m2).

Since w2 ≤ w3 and w2 ≤ 2w1 (recall that ∆w1 ≥ ∆w2), it follows that 3w2 ≤
2w1 + w2 + w3 and thus the solution of the recurrence in case (b) is not worse than
the one of case (a).

Case 2: Vertex u is chosen by the else statement of (B).
Thus u satisfies the conditions (i), (ii) and (iii). Let [v1, . . . , vdF (u)] be the Branching List,
short BL(u), built by the algorithm. Given a vertex vi, 1 ≤ i ≤ dF (u), of BL(u), we denote
by Op(vi) the operation of adding vi to the current maximal independent set, removing
N [vi] and marking the vertices v1, . . . , vi−1 that are not adjacent to vi.

Let ∆u denote the gain on the measure obtained by adding u to the current maximal
independent set. Removing u and its neighbors from the graph decreases µ(G) by wd(u) +∑

v∈N(u)wd(v). Moreover, the decrease of the degrees of vertices in N2(u) implies a gain
of
∑

x∈N2(u)(wd(x)−wd(x)−dN(u)(x)). Let m2(u) be equal to m2 if the subinstance obtained
from adding u to the current maximal independent set has a marked vertex of degree 2
after exhaustively applying all the reduction rules, and equal to 0 otherwise. Then,

∆u = wd(u) +
∑

v∈N(u)

wd(v) +
∑

x∈N2(u)

(wd(x) − wd(x)−dN(u)(x)) +m2(u).

9

Let ∆Op(vi) denote the gain on the measure when vi ∈ BL(u), 1 ≤ i ≤ dF (u), is selected
and added to the maximal independent set. Again, by selecting vertex vi the vertices of
N [vi] are removed and thus a gain of wd(vi) +

∑
x∈N(vi)

wd(x) is obtained. Since neighbors

of vertices of N2(vi) have been removed, we gain
∑

y∈N2(vi)
(wd(y) − wd(y)−dN(vi)

(y)). The

measure further decreases whenever among the marked vertices of {v1, . . . , vi−1}, some
of them have only one remaining free neighbor after the deletion of N [vi]. By direct
application of reduction rule (R1), these vertices and their neighbors are also removed
from the graph. We denote this extra gain by marked1(Op(vi)) Thus,

∆Op(vi) = wd(vi) +
∑

x∈N(vi)

wd(x) +
∑

y∈N2(vi)

(wd(y) − wd(y)−dN(vi)
(y))

+ marked1(Op(vi)) +m2(vi).

Putting all together, we obtain the following general recurrence for case 2:

T (µ) ≤ T (µ−∆u) +
∑

vi∈BL(u)

T (µ−∆Op(vi))

Finally, we conclude the time analysis by Measure & Conquer. We solve the corresponding
system of linear recurrences and establish an upper bound on the worst case running time
of our algorithm. The key step is to choose the weights m2, w1, w2 and w3 such that the
worst-case solution taken over all recurrences is minimized (see for example [13]). Using
the weights w1 = 0.8473, w2 = 0.9181, w3 = 0.9875 and m2 = 0.4, we obtain:

Theorem 5. Algorithm #MaximalIS counts all maximal independent sets of a given graph
G in time O(1.3642n), where n is the number of vertices of G.

Typically using a computer program, first the collection of recurrences that are obtained
for all possible cases of vertices, degrees, etc. in the general recurrence are computed and
then the optimal values of the weights are computed. For our problem the number of
recurrences is still rather moderate and therefore we are able to provide for the interested
reader the details of the analysis and list all possible worst cases in the next subsection.

4.4 Detailed Running Time Analysis of Algorithm #MaximalIS

In this subsection we provide a detailed running time analysis of Algorithm
#MaximalIS. The branching corresponding to the selection of a marked vertex of degree 2
has already been analyzed in detail in our high level analysis in Subsection 4.3. Here we
give a list of cases, corresponding to the analysis in Case 2 in Subsection 4.3. Each case
has a number, a condition telling us in which case we are, a picture and a recurrence based
on the measure of the created subinstances in this case. For those cases, where it is not
immediate how the recurrence is obtained, a comment is added observing facts needed to
obtain it.

Denote the neighbors of u by v1, v2, . . . , vd(u). For a selected vertex u, we say that x is
an external neighbor of a vertex v ∈ N(u) if x is a vertex of N(v) \N [u].

Note that the algorithm can apply the branching rule on a r-regular graph, 2 ≤ r ≤ 4.
However, when dealing with such an r-regular graph any subsequent recursive calls will

10

never be on an r-regular graph again (see for example [28]). Thus, these graphs are not
relevant to establish the running time bound. If the graph is 1-regular, then the algorithm
would treat it in polynomial time since the size of each connected component is bounded
by a constant.

In the following case analysis, cases number 1 (with d(x1) = 4), 18 and 21 correspond
to the tight cases.

1) d(u) = 1, d(v1) = 2

u
v1 x1

T (µ) ≤ T (µ− w1 − w2 −∆wd(x1)) + T (µ− w1 − w2 − wd(x1))

2) d(u) = 1, d(v1) ≥ 3

u
v1

T (µ) ≤ T (µ−w1−wd(v1))+T (µ−wd(v1)− (d(v1)−1) ·w1−w2)

Comment: v1 has a neighbor of degree at least 2, otherwise N [v1] is a connected
component.

3) d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) = 2, x1 being the other neighbor of v1

u

v1

v2

x1

T (µ) ≤ T (µ+w1−3w2−w3)+T (µ−2w2−w3)+T (µ−5w2−w3)

Comment: {v1, v2} 6∈ E, as d(x1) 6= d(v2). In the branch where v2 is selected,
x1 is also selected by (R1) as v1 becomes marked and has a unique neighbor. As
N(u) 6= N(x1), which is ensured by (R6) and (R7), x1 and v2 are not adjacent.

4) d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) ≥ 3

u

v1

v2

x1

T (µ) ≤ T (µ− 2w2−w3) +T (µ−w2− 2w3) +T (µ− 2w2− 4w3)

Comment: {v1, v2} 6∈ E, otherwise N [u] = N [v1] and (R4) or (R5) would apply.
When v2 is selected, x1 is also selected by (R1). By the selection rule of u, d(x1) = 3
and no common neighbor of v2 and x1 has degree 2. If v2 and x1 are adjacent, the
last branch can be ignored as the instance has no maximal independent set by halting
rule (H2). For analyzing the last branch, also note that w3 ≤ 2w2 as ∆w3 ≤ ∆w2.

5) d(u) = 2, d(v1) = 3, d(v2) = 3

u

v1

v2
T (µ) ≤ T (µ− w2 − 2w3) + 2T (µ− 4w3)

Comment: The vertices of degree 2 in N2(u) are not adjacent to both v1 and v2
(otherwise they have the same open neighborhood as u). Moreover, two adjacent
vertices in N2(u) of degree 2 are not adjacent to the same vertex in N(u) due to the
reduction rules. So, they have neighbors outside N [u] of degree at most 3.

11

6) d(u) = 2, d(v1) = 2, d(v2) ≥ 4

u

v1

v2
T (µ) ≤ T (µ− 2w2 − w4) + T (µ− 3w2) + T (µ− 6w2 − w4)

Comment: v1 and v2 are not adjacent due to (R4) and (R5). If they have a common
neighbor, ignore the last branch. In the last branch, v2 and the external neighbor of
v1 are selected.

7) d(u) = 2, d(v1) ≥ 3, d(v2) ≥ 4

u

v1

v2
T (µ) ≤ T (µ−w2−w3−w4)+T (µ−3w2−w3)+T (µ−4w2−w4)

8) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are adjacent

u

v1

v2

v3

T (µ) ≤ T (µ− 3w3 − w4) + 2T (µ− 4w3) + T (µ− 9w3 − w4)

Comment: v1 and v2 are not adjacent to v3, otherwise (R4) or (R5) would apply
as v1 or v2 would have the same closed neighborhood as u. Moreover, v1 and v2
do not share the same external neighbor otherwise v1 and v2 have the same closed
neighborhood. If v3 has a common neighbor in N2(u) with v1 or v2, then ignore the
last branch, otherwise v3 and both external neighbors of v1 and v2 are selected.

9) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, N(u) is independent, in the last
branch v1 and v2 disappear by reduction rules

u

v1

v2

v3

T (µ) ≤ T (µ− 3w3−w4) + 2T (µ+w2− 5w3) +T (µ− 7w3−w4)

Comment: In this case, when v3 is selected, v1 and v2 are removed by recursively
applying the reduction rules.

12

10) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, N(u) is independent, in the last
branch v1 (or v2) does not disappear by reduction rules

u

v1

v2

v3

T (µ) ≤ T (µ − 3w3 − w4) + 2T (µ + w2 − 5w3) + T (µ + 2w2 −
7w3 − w4 −m2)

Comment: In the last branch v1 and v2 are marked and become of degree 2.
Therefore a marked vertex of degree 2 appears (−m2).

11) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are not adjacent, v3 is
adjacent to v1 and v2

u

v1

v2

v3

T (µ) ≤ T (µ+2w2−5w3−w4)+T (µ+w1−4w3−w4)+2T (µ−
5w3 − w4)

Comment: The external neighbors of v1 and v2 have degree 3, otherwise v1 or v2
would have a neighbor of higher degree or higher dual degree and would have been
selected for branching instead of u. Moreover, the external neighbors of v1 and v2 are
distinct, otherwise (R6) or (R7) would apply. Finally, note that BL(u) = [v1, v3, v2] or
BL(u) = [v2, v3, v1]. and are distinct.

12) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 are not adjacent, v3 is
adjacent to v2 (or v1)

u

v1

v2

v3

T (µ) ≤ 2T (µ+w2−4w3−w4)+T (µ+w2−6w3−w4)+T (µ−6w3)

Comment: BL(u) = [v2, v3, v1] and the external neighbor of v2 has degree 3, other-
wise v2 would have been selected for branching as it has either a neighbor of higher
degree or higher dual degree than u.

13) d(u) = 3, d(v1) ≥ 3, d(v2) ≥ 4, d(v3) ≥ 5

u

v1

v2

v3

T (µ) ≤ T (µ − 2w3 − 2w4) + T (µ − 4w3) + T (µ − 4w3 − w4) +
T (µ− 5w3 − w4)

13

14) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are adjacent

u

v1

v2

v3

T (µ) ≤ T (µ−w3−3w4)+2T (µ−2w3−2w4)+T (µ−8w3−w4)

Comment: v1 and v2 are not adjacent to v3 because of (R4) and (R5) and they have
distinct (by (R4) and (R5)) external neighbors of degree 3 or 4 (by the selection rule
of u). If v3 has a common neighbor with v1 or v2 (except u), ignore the last branch.

15) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are not adjacent, v3 is
adjacent to v1 and v2

u

v1

v2

v3

T (µ) ≤ T (µ+ 2w2− 5w3−w4) + T (µ+w1 +w2− 5w3−w4) +
T (µ+ 2w2 − 6w3 − w4) + T (µ− 5w3 − w4)

Comment: Note that BL(u) = [v1, v3, v2] or BL(u) = [v2, v3, v1] and that v1 and v2
have distinct external neighbors of degree 3.

16) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 are not adjacent, v3 is
adjacent to v2 (or v1)

u

v1

v2

v3

T (µ) ≤ T (µ + 2w2 − 4w3 − 2w4) + T (µ + 2w2 − 5w3 − w4) +
T (µ+ 2w2 − 6w3 − w4) + T (µ+ 2w2 − 7w3 − w4)

Comment: BL(u) = [v2, v3, v1]. The external neighbor of v2 has degree 3 and
neighbors of degree 3 and 3 or 4. In the third branch where v3 is selected, N [v3] is
deleted (−4w3−w4), v1 has its degree decreased (+w2−w3), and another vertex has
its degree decreased from 3 to 2 (+w2 −w3): the external neighbor x of v2 if it is not
adjacent to v3, or a neighbor of x if x and v3 are neighbors and N [x] 6⊆ N [v3], or the
vertex in N2(x) \N2[u] in the remaining case.

14

17) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, N(u) is independent

u

v1

v2

v3

T (µ) ≤ T (µ + 2w2 − 3w3 − 3w4) + T (µ + w2 − 2w3 − 3w4) +
T (µ+ w2 − 2w3 − 3w4 −m2) + T (µ+ 2w2 − 6w3 − w4 −m2)

Comment: The external neighbors of v1 and v2 have degree 3 and 3 or 4. In the
last two branches, a marked vertex of degree 2 is created.

18) d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is not adjacent to v2 and v3

u

v1

v2

v3

T (µ) ≤ T (µ − w3 − 3w4) + T (µ − 2w3 − 2w4) + 2T (µ + w2 −
4w3 − 2w4)

19) d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is adjacent to v2 (or v3)

u

v1

v2

v3

T (µ) ≤ T (µ − w3 − 3w4) + T (µ − 2w3 − 2w4) + T (µ − 3w3 −
2w4) + T (µ− 5w3 − 2w4)

20) d(u) = 3, d(v1) = 4, d(v2) = 4, d(v3) = 4

u

v1

v2

v3

T (µ) ≤ T (µ− w3 − 3w4) + 3T (µ− 2w3 − 3w4)

Comment: Consider the branch where v1 is selected. A total of 5 vertices disappear
and at least 3 vertices of degree 4 either disappear or have their degree reduced from
4 to 3: the vertices in N(u).

15

21) d(u) = 4, d(v1) = 4, d(v2) = 4, d(v3) = 4, d(v4) = 5

u

v1

v2

v3

v4

T (µ) ≤ 4T (µ− 5w4) + T (µ+ 3w3 − 9w4)

Comment: Consider the branch where v4 is selected. A total of 6 vertices disappear
and at least 3 vertices have their degree reduced from 4 to 3. We use the same
argument for v1, v2 and v3. Consider v1.
If v4 is not adjacent to v1: the degree of v4 is reduced.
If v4 is adjacent to v1 and N [v1] 6⊆ N [v4]: a neighbor of v1 has its degree reduced from
4 to 3.
If v4 is adjacent to v1 and N [v1] ⊆ N [v4]: Let y1 and y2 be the two common neighbors
of v1 and v4 (except u). y1 and y2 have degree 4 and neighbors of degree 4, 4, 4 and
5. At least one of y1 and y2 has a neighbor of degree 4 outside N [v4], otherwise
N [y1] = N [y2].

22) d(u) = 4, d(v3) = 5, d(v4) = 5

u

v1

v2

v3

v4

T (µ) ≤ 3T (µ− 5w4) + 2T (µ− 6w4)

23) d(u) = 4, d(v4) ≥ 6

u

v1

v2

v3

v4

T (µ) ≤ 4T (µ− 5w4) + T (µ− 7w4)

24) d(u) ≥ 5

u T (µ) ≤ 6T (µ− 6w4)

16

4.5 Count all Maximal Independent Sets in a Marked Graph of Maxi-
mum Degree Two

On input graphs of maximum degree 2 the algorithm #MaximalIS has an exponential
worst-case running time. We show in this subsection, that all maximal independent sets
of a marked graph of maximum degree 2 can be counted in polynomial time. Adding this
polynomial time procedure to #MaximalIS is likely to be of help in implementations of the
algorithm; it does however not improve its worst case running time.

Suppose first that G is a path Pn = (v1, v2, . . . , vn). Let Vi = {v1, v2, . . . , vi} for
i = 1, . . . , n. We define three values for the vertices of G with the following meaning:

• is(vi) - the number of maximal independent sets of G[Vi] containing vi

• od(vi) - the number of maximal independent sets of G[Vi−1] containing vi−1

• ond(vi) - the number of maximal independent sets of G[Vi−1] not containing vi−1

The algorithm gives the following values to v1:

• is(v1) = 0 if v1 is marked, and 1 otherwise,

• od(v1) = 0, and

• ond(v1) = 1.

Suppose the values for vi−1 are known, then the values for vi are computed by simple
dynamic programming as follows:

• is(vi) = 0 if vi is marked, and od(vi−1) + ond(vi−1) otherwise,

• od(vi) = is(vi−1), and

• ond(vi) = od(vi−1).

The number of maximal independent sets of G satisfying property Π (defined in Subsec-
tion 4.1) of G is is(vn) + od(vn).

If G is a cycle Cn, select an arbitrary vertex vi with neighbors vi−1 and vi+1 and return
the sum of the number of maximal independent sets

• containing vi if vi is not marked, or 0 otherwise,

• containing vi−1 if vi−1 is not marked, or 0 otherwise, and

• containing vi+1 but not vi−1 if vi+1 is not marked, or 0 otherwise.

This can easily be done by 3 recursive calls on the instances G \ N [vi], G \ N [vi−1] and
G \N [vi+1] and by marking vi−1 in the last recursive call.

Lemma 6. Let G be a marked graph with maximum degree 2. The number of maximal
independent sets of G satisfying property Π can be computed in linear time.

Remark 1. As od(vi) = is(vi−1), the value od(·) is redundant. But the above description
makes it easier to see that a slight generalization of this algorithm, which is very similar to
the algorithm in [1], makes it possible to count all maximal independent sets of a marked
graph satisfying property Π in time 3knO(1) when a path decomposition of width k of the
graph is known.

17

4.6 Lower Bound on the Running Time of the Algorithm

We do not know whether the current techniques to analyze the running time of branch-
ing algorithms establish the worst-case running time (up to a polynomial factor). Even
Measure & Conquer provides only upper bounds of the running time, but it is not known
how far this upper bound might be from the (usually unknown) worst-case running time
of the algorithm. Therefore a lower bound for the worst case running time of branching
algorithms is desirable (see for example [13]). Here we establish a lower bound the running
time of Algorithm #MaximalIS.

Theorem 7. There exists an infinite family of graphs for which Algorithm #MaximalIS

runs in time Ω(1.3247n). Thus its worst case running time is Ω(1.3247n).

v1 v2 v3 v4 v5 vl−1 vl

u1 u2 u3 u4 u5 ul−1 ul

· · ·

Figure 2: Graph Gl used to lower bound the running time of Algorithm #MaximalIS

Proof. The lower bound for the running time of #MaximalIS established here uses the same
family of graphs as the lower bound for an algorithm computing a minimum independent
dominating set [17].

Consider the graph Gl of Figure 2. It has n = 2l vertices. Note that none of the
reduction or halting rules are applicable to Gl. The first branching of #MaximalIS is on
vertex u1 or vertex vl. Without loss of generality, suppose the algorithm always chooses
the vertex with smallest index when it has more than one choice (that is it chooses u1 for
the first recursive call).

u1

v2

u4

v2

v4

u3

u5

v3

u1

u3

v4

u3

u5

v3

v5

u4

v1

v3

u5

v3

v5

u4

u6

v4

u2

Figure 3: A part of the search tree of the execution of Algorithm #MaximalIS on the graph
Gl

The branching rule (B) then makes recursive calls on graphs with n−3, n−4 and n−5
vertices, not marking any vertex. The structure of all resulting graphs is similar to Gl:

18

either isomorphic to Gl−2 or equal to Gl \N [u1] or Gl \N [u2]. The subsequent recursive
calls again remove 3, 4 and 5 vertices in each case and do not mark any vertices.
The first levels of the corresponding search tree are depicted in Figure 3. Unless the graph
has at most 4 vertices, each application of branching rule (B) satisfies the recurrence

T (n) = T (n− 3) + T (n− 4) + T (n− 5)

for this graph and therefore the running time for this class of graphs is Ω(αn) where α is
the positive root of x−3 + x−4 + x−5 − 1, that is 1.3247 < α < 1.3248.

4.7 Algorithm to Count All Maximal Bicliques

Finally we show how to use the algorithm to count the maximal independent sets of a
graph to establish an algorithm to count the maximal bicliques of a graph G = (V,E).

We use the following polynomial-time Turing reduction of Dias et al. [9]. Let G′ =
(V ′, E′) be a copy of G. Let G′′ = (V ′′, E′′) where V ′′ = V ∪ V ′ and E′′ = E ∪E′ ∪ {xy′ :
x, y ∈ V, y′ is a copy of y in V ′, and (x = y or xy 6∈ E)}.

The following lemma is an immediate consequence of the 2–1 correspondence between
the maximal cliques of the complement of G′′ and the maximal bicliques of G shown by
Dias et al. [9]. For the sake of completeness, a proof is provided.

Lemma 8. The number of maximal independent sets of G′′ equals twice the number of
maximal bicliques of G.

Proof. We show that there is a one-to-one correspondence between the bicliques of G and
the symmetric pairs of independent sets of G′′.

Let X ∪ Y be a biclique of G. Clearly, X,Y are independent sets in G and their
copies X ′, Y ′ are independent sets in G′. Let x ∈ X and y ∈ Y . Then xy, x′y′ ∈ E′′ and
xy′, x′y 6∈ E′′. So, X ∪ Y ′ and X ′ ∪ Y are independent sets in G′′.

Let X,Y ⊆ V be such that X ∪ Y ′ is an independent set in G′′ where X ′, Y ′ are the
copies of X,Y . Hence X,Y are independent sets in G. Let x ∈ X and y′ ∈ Y ′. Then
xy ∈ E. So, X ∪Y is a biclique in G. By the symmetry of G′′, the independent set X ′∪Y
in G′′ also corresponds to the biclique X ∪ Y in G.

Clearly, this correspondence also holds for maximality by inclusion of vertices.
This implies that X ∪Y is a maximal biclique of G if and only if X ∪Y ′, and thus also

Y ∪X ′, are maximal independent sets of G′′.

Using Lemma 8 and the algorithm to count the maximal independent sets of a graph, we
establish an algorithm to count the maximal bicliques of a graph.

Theorem 9. There is an algorithm to count the maximal bicliques of a graph in time
O(1.3642n), where n is the number of vertices of the input graph.

Proof. The algorithm simply calls #MaximalIS
(
(V ′′, ∅, E′′)

)
and divides the result by 2.

Notice that G′′ has 2n vertices and that every vertex of G′′ has degree n. The first
application of branching rule (B) makes n + 1 recursive calls and in each one, n + 1
vertices are removed from the marked graph. Thus the running time is (n+ 1)(cn−1)nO(1)

where cnnO(1) is the running time of #MaximalIS on a graph with n vertices. The constant
c = 1.3642 was rounded to derive the running time for #MaximalIS, and thus the running
time of the algorithm to count maximal bicliques is O(1.3642n).

19

5 Conclusion

We have seen in this paper that various results for independent sets translate to results
for bicliques. The reverse questions are also interesting. For example, given an algorithm
to find a maximum biclique in a graph of running time O∗(cn), is it possible to establish
a O∗(cn) time algorithm for finding a maximum independent set in a graph?

Given a graph G = (V,E) on n vertices, finding a maximum independent set in G
could be done by constructing a graph G′ obtained from G by adding an independent set
I of size n such that every vertex of I is adjacent to every vertex of V . Then G has an
independent set of size k if and only if G′ has a biclique of size n+ k. This shows that it
is possible to obtain a O∗(c2n) algorithm for computing a maximum independent set from
an algorithm for computing a maximum biclique in a graph in time O∗(cn).

A simple variant of this reduction also shows that it is W[1]-hard to find an induced
Kk,k, that is a biclique with k vertices in each part of its bipartition, in a graph, where the
parameter is k (now only k independent vertices need to be added to G and made adjacent
to every vertex in V). However the following question [8] about non-induced bicliques is
still open.

Open Question. Determine the parameterized complexity of the following problem: given
a graph G and a parameter k, does G have a Kk,k as a subgraph.

Acknowledgment

The authors would like to thank the coordinating editor, Richard Cole, for his suggestion
how to improve the upper bound of Theorem 3 from n · 3n/3 to 1

31/3−1 · 3
n/3.

References

[1] J. Alber, R. Niedermeier, Improved tree decomposition based algorithms for
domination-like problems. Proc. of LATIN 2002, Springer, LNCS 2286, 613–627.

[2] G. Alexe, S. Alexe, Y. Crama, S. Foldes, P.L. Hammer, B. Simeone, Con-
sensus algorithms for the generation of all maximal bicliques. Discrete Appl. Math.
145 (2004), 11–21.

[3] J. Amilhastre, M.C. Vilarem, P. Janssen, Complexity of minimum biclique
cover and minimum biclique decomposition for bipartite dominofree graphs. Discrete
Appl. Math. 86 (1998), 125–144.

[4] A. Björklund, T. Husfeldt, M. Koivisto, Set partitioning via inclusion–
exclusion. SIAM J. Comput. 39 (2009), 546–563.

[5] V. Dahllöf, P. Jonsson, An algorithm for counting maximum weighted indepen-
dent sets and its applications. Proc. of SODA 2002, ACM and SIAM, 292–298.

[6] V. Dahllöf, P. Jonsson, M. Wahlström, Counting models for 2SAT and 3SAT
formulae. Theor. Comput. Sci. 332 (2005), 265–291.

20

[7] M. Dawande, J. Swaminathan, P. Keskinocak, S. Tayur, On bipartite and
multipartite clique problems. J. Algorithms 41 (2001), 388–403.

[8] E.D. Demaine, G. Gutin, D. Marx, U. Stege, Open Problems – Structure The-
ory and FPT Algorithmcs for Graphs, Digraphs and Hypergraphs. Dagstuhl Seminar
Proceedings 07281 (2007), IBFI, Schloss Dagstuhl, Germany.

[9] V.M.F. Dias, C.M. Herrera de Figueiredo, J.L. Szwarcfiter, Generating
bicliques of a graph in lexicographic order. Theoret. Comput. Sci. 337 (2005), 240–248.

[10] V.M.F. Dias, C.M. Herrera de Figueiredo, J.L. Szwarcfiter, On the gen-
eration of bicliques of a graph. Discrete Appl. Math. 155 (2007), 1826–1832.

[11] H. Fernau, J. Kneis, D. Kratsch, A. Langer, M. Liedloff, D. Raible,
P. Rossmanith, An exact algorithm for the maximum leaf spanning tree problem.
Proc. of IWPEC 2009, Springer, LNCS 5917, 161–172.

[12] F.V. Fomin, S. Gaspers, A.V. Pyatkin, I. Razgon, On the minimum feedback
vertex set problem: Exact and enumeration algorithms. Algorithmica 52 (2008), 293–
307.

[13] F.V. Fomin, F. Grandoni, D. Kratsch, A measure & conquer approach for the
analysis of exact algorithms. J. ACM 56 (2009).

[14] M. Fürer, S.P. Kasiviswanathan, Algorithms for counting 2-SAT solutions and
colorings with applications. Proc. of AAIM 2007, Springer, LNCS 4508, 47–57.

[15] M.R. Garey, D.S. Johnson, Computers and Intractability: A guide to the Theory
of NP-completeness. Freeman, New York, 1979.

[16] B. Ganter, R. Wille, Formal Concept Analysis, Mathematical Foundations.
Springer, Berlin, 1996.

[17] S. Gaspers, M. Liedloff, A branch-and-reduce algorithm for finding a minimum
independent dominating set. ArXiv Report CoRR abs/1009.1381 (2010).

[18] D.S. Hochbaum, Approximating clique and biclique problems. J. Algorithms 29
(1998), 174–200.

[19] M. Hujter, Z. Tuza, The number of maximal independent sets in triangle-free
graphs. SIAM J. Discrete Math. 6 (1993), 284–288.

[20] J. Kneis, A. Langer, P. Rossmanith, A fine-grained analysis of a simple inde-
pendent set algorithm. Proc. of FSTTCS 2009, LIPICS, vol. 4, pp. 287–298. Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, Germany.

[21] K. Makino, T. Uno, New algorithms for enumerating all maximal cliques. Proc. of
SWAT 2004, Springer, LNCS 3111, 260–272.

[22] J.W. Moon, L. Moser, On cliques in graphs. Israel J. Math. 3 (1965) 23–28.

21

[23] L. Nourine, O. Raynaud, A Fast Algorithm for Building Lattices. Inf. Process.
Lett. 71 (1999), 199–204.

[24] L. Nourine, O. Raynaud, A fast incremental algorithm for building lattices. J.
Exp. Theor. Artif. Intell. 14 (2002), 217–227.

[25] Y. Okamoto, T. Uno, R. Uehara, Counting the number of independent sets in
chordal graphs. J. Discrete Algorithms 6 (2008), 229–242.

[26] R. Peeters, The maximum edge biclique problem is NP-complete. Discrete Appl.
Math. 131 (2003), 651–654.

[27] E. Prisner, Bicliques in Graphs I: Bounds on Their Number. Combinatorica 20
(2000), 109–117.

[28] J.M. Robson, Algorithms for maximum independent sets. J. Algorithms 7 (1986),
425–440.

[29] J.M.M. van Rooij, H.L. Bodlaender, Design by measure and conquer: a faster
exact algorithm for dominating set. Proc. of STACS 2008, LIPIcs, pp. 657–668.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany.

[30] J.M.M. van Rooij, J. Nederlof, T.C. van Dijk, Inclusion/exclusion meets
measure and conquer. Proc. of ESA 2009, Springer, LNCS 5757, 554–565.

[31] M. Wahlström, A tighter bound for counting max-weight solutions to 2SAT in-
stances. Proc. of IWPEC 2008, Springer, LNCS 5018, 202–213.

[32] M.Yannakakis, Node and edge deletion NP-complete problems. Proc. of STOC
1978, ACM, 253–264.

22

