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Abstract

We present a first theoretical analysis of the power of polynomial-time preprocessing for important
combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction,
Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions.
All these problems involve two tasks: (i) identifying the structure in the input as required by the restric-
tion, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most
of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose
size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not
admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assump-
tion. As a notable exception we show that the consistency problem for the AtMost-NValue constraint
admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results
provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time
preprocessing algorithms for the considered problems.

Keywords: Fixed-Parameter Tractability; Kernelization; Constraint Satisfaction; Reasoning; Computa-
tional Complexity

1 Introduction
Many important computational problems that arise in various areas of AI are intractable. Nevertheless, AI re-
search has been very successful in developing and implementing heuristic solvers that work well on real-world
instances. An important component of virtually every solver is a powerful polynomial-time preprocessing
procedure that reduces the problem input. For instance, preprocessing techniques for the propositional sat-
isfiability problem are based on Boolean Constraint Propagation (see, e.g., [27]), CSP solvers make use of
various local consistency algorithms that filter the domains of variables (see, e.g., [4]); similar preprocessing
methods are used by solvers for Nonmonotonic and Bayesian reasoning problems (see, e.g., [38, 13], respec-
tively). The history of preprocessing, like applying reduction rules to simplify truth functions, can be traced
back to the 1950’s [55]. A natural question in this regard is how to measure the quality of preprocessing
rules proposed for a specific problem.

Until recently, no provable performance guarantees for polynomial-time preprocessing methods have
been obtained, and so preprocessing was only subject of empirical studies. A possible reason for the lack of
theoretical results is a certain inadequacy of the P vs NP framework for such an analysis: if we could reduce
in polynomial time an instance of an NP-hard problem just by one bit, then we can solve the entire problem
in polynomial time by repeating the reduction step a polynomial number of times, and P = NP follows.

With the advent of parameterized complexity [25], a new theoretical framework became available that
provides suitable tools to analyze the power of preprocessing. Parameterized complexity considers a problem
in a two-dimensional setting, where in addition to the input size n, a problem parameter k is taken into
consideration. This parameter can encode a structural aspect of the problem instance. A problem is called
fixed-parameter tractable (FPT) if it can be solved in time f(k)p(n) where f is a function of the parameter
k and p is a polynomial of the input size n. Thus, for FPT problems, the combinatorial explosion can be
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†UNSW Australia and NICTA, Sydney, Australia
‡Institute of Information Systems, Vienna University of Technology, Austria

1



confined to the parameter and is independent of the input size. It is known that a problem is fixed-parameter
tractable if and only if every problem input can be reduced by polynomial-time preprocessing to an equivalent
input whose size is bounded by a function of the parameter [24]. The reduced instance is called the problem
kernel, the preprocessing is called kernelization. The power of polynomial-time preprocessing can now be
benchmarked in terms of the size of the kernel. Once a small kernel is obtained, we can apply any method of
choice to solve the kernel: brute-force search, heuristics, approximation, etc. [42]. Because of this flexibility
a small kernel is generally preferable to a less flexible branching-based fixed-parameter algorithm. Thus,
small kernels provide an additional value that goes beyond bare fixed-parameter tractability.

Kernelization is an important algorithmic technique that has become the subject of a very active field
in state-of-the-art combinatorial optimization (see, e.g., the references in [28, 42, 45, 57]). Kernelization can
be seen as a preprocessing with performance guarantee that reduces a problem instance in polynomial time
to an equivalent instance, the kernel, whose size is a function of the parameter [28, 33, 42, 45].

Once a kernel is obtained, the time required to solve the instance is a function of the parameter only
and therefore independent of the input size. While, in general, the time needed to solve an instance does
not necessarily depend on the size of the instance alone, the kernelization view is that it preprocesses the
easy parts of an instance, leaving a core instance encoding the hard parts of the problem instance. Naturally
one aims at kernels that are as small as possible, in order to guarantee good worst-case running times as a
function of the parameter, and the kernel size provides a performance guarantee for the preprocessing. Some
NP-hard combinatorial problems such as k-Vertex Cover admit polynomially sized kernels, for others
such as k-Path an exponential kernel is the best one can hope for [11].

As an example of a polynomial kernel, consider the k-Vertex Cover problem, which, for a graph
G = (V,E) and an integer parameter k, is to decide whether there is a set S of at most k vertices such that
each edge from E has at least one endpoint in S. Buss’ kernelization algorithm for k-Vertex Cover (see
[14]) computes the set U of vertices with degree at least k+ 1 in G. If |U | > k, then reject the instance, i.e.,
output a trivial No-instance (e.g., the graph K2 consisting of one edge and the parameter 0), since every
vertex cover of size at most k contains each vertex from U . Otherwise, if G \ U has more than k(k − |U |)
edges, then reject the instance, since each vertex from G \ U covers at most k edges. Otherwise, output the
instance (G \ (U ∪ L), k − |U |), where L is the set of degree-0 vertices in G \ U . This instance has O(k2)
vertices and edges. Thus, Buss’ kernelization algorithm gives a quadratic kernel for k-Vertex Cover.

In previous research several NP-hard AI problems have been shown to be fixed-parameter tractable. We
list some important examples from various areas:

1. Constraint satisfaction problems (CSP) over a fixed universe of values, parameterized by the induced
width [41].

2. Consistency and generalized arc consistency for intractable global constraints, parameterized by the
cardinalities of certain sets of values [5].

3. Propositional satisfiability (SAT), parameterized by the size of backdoors [50].

4. Positive inference in Bayesian networks with variables of bounded domain size, parameterized by size
of loop cutsets [52, 9].

5. Nonmonotonic reasoning with normal logic programs, parameterized by feedback width [41].

All these problems involve the following two tasks.

(i) Structure Recognition Task : identify the structure in the input as required by the considered parameter.

(ii) Reasoning Task : use the identified structure to solve a reasoning task efficiently.

For most of the considered problems we observe the following pattern: the Structure Recognition Task
admits a polynomial kernel, in contrast to the Reasoning Task, which does not admit a polynomial kernel,
unless the Polynomial Hierarchy collapses to its third level.

A negative exception to this pattern is the recognition problem for CSPs of small induced width, which
most likely does not admit a polynomial kernel.
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A positive exception to this pattern is the AtMost-NValue global constraint, for which we obtain a
polynomial kernel. As in [5], the parameter is the number of holes in the domains of the variables, measuring
how close the domains are to being intervals. More specifically, we present a linear time preprocessing
algorithm that reduces an AtMost-NValue constraint C with k holes to a consistency-equivalent AtMost-
NValue constraint C ′ of size polynomial in k. In fact, C ′ has at most O(k2) variables and O(k2) domain
values. We also give an improved branching algorithm checking the consistency of C ′ in time O(1.6181k +
n). The combination of kernelization and branching yields efficient algorithms for the consistency and
propagation of (AtMost-)NValue constraints.

Outline
This article is organized as follows. Parameterized complexity and kernelization are formally introduced
in Section 2. Section 3 describes the tools we use to show that certain parameterized problems do not
have polynomial kernels. Sections 4–8 prove kernel lower bounds for parameterized problems in the areas
of constraint networks, satisfiability, global constraints, Bayesian reasoning, and nonmonotonic reasoning.
Each of these sections also gives all necessary definitions, relevant background, and related work for the
considered problems. In addition, Section 6 describes a polynomial kernel for the consistency problem for
the AtMost-NValue constraint parameterized by the number of holes in the variable domains, and an
FPT algorithm that uses this kernel as a first step. The correctness and performance guarantees of the
kernelization algorithm are only outlined in Section 6 and proved in detail in A. The conclusion, Section 9,
broadly recapitulates the results and suggests the study of Turing kernels to overcome the shortcomings of
(standard) kernels for many fundamental AI and Resoning problems.

2 Formal Background
A parameterized problem P is a subset of Σ∗ × N for some finite alphabet Σ. For a problem instance
(x, k) ∈ Σ∗ × N we call x the main part and k the parameter. We assume the parameter is represented in
unary. For the parameterized problems considered in this paper, the parameter is a function of the main
part, i.e., k = π(x) for a function π. We then denote the problem as P (π), e.g., U-CSP(width) denotes the
problem U-CSP parameterized by the width of the given tree decomposition.

A parameterized problem P is fixed-parameter tractable if there exists an algorithm that solves any input
(x, k) ∈ Σ∗×N in time O(f(k) ·p(|x|)) where f is an arbitrary computable function of k and p is a polynomial
in |x|.

A kernelization for a parameterized problem P ⊆ Σ∗ × N is an algorithm that, given (x, k) ∈ Σ∗ × N,
outputs in time polynomial in |x|+ k a pair (x′, k′) ∈ Σ∗ × N such that

1. (x, k) ∈ P if and only if (x′, k′) ∈ P , and

2. |x′|+ k′ ≤ g(k), where g is an arbitrary computable function, called the size of the kernel.

In particular, for constant k the kernel has constant size g(k). If g is a polynomial then we say that P admits
a polynomial kernel.

Every fixed-parameter tractable problem admits a kernel. This can be seen by the following argument
due to Downey et al. [24]. Assume we can decide instances (x, k) of problem P in time f(k)|x|O(1). We
kernelize an instance (x, k) as follows. If |x| ≤ f(k) then we already have a kernel of size f(k). Otherwise,
if |x| > f(k), then f(k)|x|O(1) = |x|O(1) is a polynomial; hence we can decide the instance in polynomial
time and replace it with a small decision-equivalent instance (x′, k′). Thus we always have a kernel of size
at most f(k). However, f(k) is super-polynomial for NP-hard problems (unless P = NP), hence this generic
construction does not provide polynomial kernels.

We understand preprocessing for an NP-hard problem as a polynomial-time procedure that transforms
an instance of the problem to a (possible smaller) solution-equivalent instance of the same problem. Kernel-
ization is such a preprocessing with a performance guarantee, i.e., we are guaranteed that the preprocessing
yields a kernel whose size is bounded in terms of the parameter of the given problem instance. In the litera-
ture also different forms of preprocessing have been considered. An important one is knowledge compilation,
a two-phases approach to reasoning problems where in a first phase a given knowledge base is (possibly in
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exponential time) preprocessed (“compiled”), such that in a second phase various queries can be answered in
polynomial time [15].

3 Tools for Kernel Lower Bounds
In the sequel we will use recently developed tools to obtain kernel lower bounds. Our kernel lower bounds are
subject to the widely believed complexity theoretic assumption NP 6⊆ coNP/poly. In other words, the tools
allow us to show that a parameterized problem does not admit a polynomial kernel unless NP ⊆ coNP/poly.
In particular, NP ⊆ coNP/poly would imply the collapse of the Polynomial Hierarchy to the third level:
PH = Σ3

p [51].
A composition algorithm for a parameterized problem P ⊆ Σ∗×N is an algorithm that receives as input a

sequence (x1, k), . . . , (xt, k) ∈ Σ∗×N, uses time polynomial in
∑t

i=1 |xi|+k, and outputs (y, k′) ∈ Σ∗×N with
(i) (y, k′) ∈ P if and only if (xi, k) ∈ P for some 1 ≤ i ≤ t, and (ii) k′ is polynomial in k. A parameterized
problem is compositional if it has a composition algorithm. With each parameterized problem P ⊆ Σ∗ × N
we associate a classical problem

UP[P ] = {x#1k : (x, k) ∈ P }

where 1 denotes an arbitrary symbol from Σ and # is a new symbol not in Σ. We call UP[P ] the unparam-
eterized version of P .

The following result is the basis for our kernel lower bounds.

Theorem 1 ([11, 34]). Let P be a parameterized problem whose unparameterized version is NP-complete.
If P is compositional, then it does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Let P,Q ⊆ Σ∗ × N be parameterized problems. We say that P is polynomial parameter reducible to Q
if there exists a polynomial time computable function K : Σ∗ × N→ Σ∗ × N and a polynomial p, such that
for all (x, k) ∈ Σ∗ × N we have (i) (x, k) ∈ P if and only if K(x, k) = (x′, k′) ∈ Q, and (ii) k′ ≤ p(k). The
function K is called a polynomial parameter transformation.

The following theorem allows us to transform kernel lower bounds from one problem to another.

Theorem 2 ([12]). Let P and Q be parameterized problems such that UP[P ] is NP-complete, UP[Q] is in
NP, and there is a polynomial parameter transformation from P to Q. If Q has a polynomial kernel, then
P has a polynomial kernel.

4 Constraint Networks
Constraint networks have proven successful in modeling everyday cognitive tasks such as vision, language
comprehension, default reasoning, and abduction, as well as in applications such as scheduling, design,
diagnosis, and temporal and spatial reasoning [21]. A constraint network is a triple I = (V,U,C) where
V is a finite set of variables, U is a finite universe of values, and C = {C1, . . . , Cm} is set of constraints.
Each constraint Ci is a pair (Si, Ri) where Si is a list of variables of length ri called the constraint scope,
and Ri is an ri-ary relation over U , called the constraint relation. The tuples of Ri indicate the allowed
combinations of simultaneous values for the variables Si. A solution is a mapping τ : V → U such that for
each 1 ≤ i ≤ m and Si = (x1, . . . , xri), we have (τ(x1), . . . , τ(xri)) ∈ Ri. A constraint network is satisfiable
if it has a solution.

With a constraint network I = (V,U,C) we associate its constraint graph G = (V,E) where E contains
an edge between two variables if and only if they occur together in the scope of a constraint. A width w
tree decomposition of a graph G is a pair (T, λ) where T is a tree and λ is a labeling of the nodes of T with
sets of vertices of G such that the following properties are satisfied: (i) every vertex of G belongs to λ(p) for
some node p of T ; (ii) every edge of G is is contained in λ(p) for some node p of T ; (iii) For each vertex v
of G the set of all tree nodes p with v ∈ λ(p) induces a connected subtree of T ; (iv) |λ(p)| − 1 ≤ w holds for
all tree nodes p. The treewidth of G is the smallest w such that G has a width w tree decomposition. The
induced width of a constraint network is the treewidth of its constraint graph [22].
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Figure 1: Constraint graph G.

Kernelization fits perfectly into the context of Constraint Processing where preprocessing and data re-
duction (e.g., in terms of local consistency algorithms, propagation, and domain filtering) are key methods
[4, 63].

Let U be a fixed universe containing at least two elements. We consider the following parameterized
version of the constraint satisfaction problem (CSP).

U-CSP(width)

Instance: A constraint network I = (V,U,C) and a width w tree decomposition of the constraint
graph of I.

Parameter: The integer w.

Question: Is I satisfiable?

Associated with this problem is also the task of recognizing instances of small treewidth. We state this
problem in form of the following decision problem.

Rec-U-CSP(width)

Instance: A constraint network I = (V,U,C) and an integer w ≥ 0.

Parameter: The integer w.

Question: Does I admit a tree decomposition of width ≤ w?

It is well known that U-CSP(width) is fixed-parameter tractable over any fixed universe U [22, 41] (for
generalizations see [61]). We contrast this classical result and show that it is unlikely that U-CSP(width)
admits a polynomial kernel, even in the simplest case where U = {0, 1}.

Theorem 3. {0, 1}-CSP(width) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We show that {0, 1}-CSP(width) is compositional. Let (Ii, Ti), 1 ≤ i ≤ t, be a given sequence of
instances of {0, 1}-CSP(width) where Ii = (Vi, {0, 1},Ci) is a constraint network and Ti is a width w tree
decomposition of the constraint graph of Ii. We may assume, w.l.o.g., that Vi ∩ Vj = ∅ for 1 ≤ i < j ≤ t
(otherwise we can simply change the names of variables). We form a new constraint network I = (V, {0, 1},C)
as follows. We put V =

⋃t
i=1 Vi ∪ {a1, . . . , at, b0, . . . , bt} where ai, bi are new variables. We define the set C

of constraints in three groups.

1. For each 1 ≤ i ≤ t and each constraint C = ((x1, . . . , xr), R) ∈ Ci we add to C a new constraint
C ′ = ((x1, . . . , xr, ai), R

′)) where R′ = { (u1, . . . , ur, 0) : (u1, . . . , ur) ∈ R } ∪ {(1, . . . , 1)}.

2. We add t ternary constraints C∗1 , . . . , C∗t where C∗i = ((bi−1, bi, ai), R
∗) and R∗ = {(0, 0, 1), (0, 1, 0),

(1, 1, 1)}.

3. Finally, we add two unary constraints C0 = ((b0), (0)) and C1 = ((bt), (1)) which force the values of b0
and bt to 0 and 1, respectively.

Let G,Gi be the constraint graphs of I and Ii, respectively. Fig. 1 shows an illustration of G for t = 4.
We observe that a1, . . . , at are cut vertices of G. Removing these vertices separates G into independent parts
P,G′1, . . . , G

′
t where P is the path b0, b1, . . . , bt, and G′i is isomorphic to Gi. By standard techniques (see,
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e.g., [43]), we can put the given width w tree decompositions T1, . . . , Tt of G′1, . . . , G′t and the trivial width 1
tree decomposition of P together to a width w+1 tree decomposition T of G. Clearly (I, T ) can be obtained
from (Ii, Ti), 1 ≤ i ≤ t, in polynomial time.

We claim that I is satisfiable if and only if at least one of the Ii is satisfiable. This claim can be verified
by means of the following observations: The constraints in groups (2) and (3) provide that for any satisfying
assignment there will be some 0 ≤ i ≤ t − 1 such that b0, . . . , bi are all set to 0 and bi+1, . . . , bt are all set
to 1; consequently ai is set to 0 and all aj for j 6= i are set to 1. The constraints in group (1) provide
that if we set ai to 0, then we obtain from C ′ the original constraint C; if we set ai to 1 then we obtain a
constraint that can be satisfied by setting all remaining variables to 1. We conclude that {0, 1}-CSP(width)
is compositional.

In order to apply Theorem 1, we need to establish that the unparameterized version of {0, 1}-CSP(width)
is NP-complete. Deciding whether a constraint network I over the universe {0, 1} is satisfiable is well-known
to be NP-complete (say by reducing 3-SAT). To a constraint network I on n variables we can always add a
trivial width w = n − 1 tree decomposition of its constraint graph (taking a single tree node t where λ(t)
contains all variables of I). Hence UP[{0, 1}-CSP(width)] is NP-complete.

Let us turn now to the recognition problem Rec-U-CSP(width). By Bodlaender’s Theorem [10], the
problem is fixed-parameter tractable. However, the problem is unlikely to admit a polynomial kernel. In
fact, Bodlaender et al. [11] showed that the related problem of testing whether a graph has treewidth at
most w does not have a polynomial kernel (taking w as the parameter), unless a certain “AND-conjecture”
fails. In turn, Drucker [26] showed that a failure of the AND-conjecture implies NP ⊆ coNP/poly. The
combination of these two results relates directly to Rec-U-CSP(width).

Proposition 1. Rec-{0, 1}-CSP(width) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

5 Satisfiability
The propositional satisfiability problem (SAT) was the first problem shown to be NP-hard [18]. Despite
its hardness, SAT solvers are increasingly leaving their mark as a general-purpose tool in areas as diverse
as software and hardware verification, automatic test pattern generation, planning, scheduling, and even
challenging problems from algebra [40]. SAT solvers are capable of exploiting the hidden structure present
in real-world problem instances. The concept of backdoors, introduced by Williams et al. [65], provides a
means for making the vague notion of a hidden structure explicit. Backdoors are defined with respect to
a “sub-solver” which is a polynomial-time algorithm that correctly decides the satisfiability for a class C of
CNF formulas. More specifically, Gomes et al. [40] define a sub-solver to be an algorithm A that takes as
input a CNF formula F and has the following properties:

1. Trichotomy : A either rejects the input F , or determines F correctly as unsatisfiable or satisfiable;

2. Efficiency : A runs in polynomial time;

3. Trivial Solvability : A can determine if F is trivially satisfiable (has no clauses) or trivially unsatisfiable
(contains only the empty clause);

4. Self-Reducibility : if A determines F , then for any variable x and value ε ∈ {0, 1}, A determines F [x = ε].
F [τ ] denotes the formula obtained from F by applying the partial assignment τ , i.e., satisfied clauses
are removed and false literals are removed from the remaining clauses.

We identify a sub-solver A with the class CA of CNF formulas whose satisfiability can be determined by
A. A strong A-backdoor set (or A-backdoor, for short) of a CNF formula F is a set B of variables such that
for each possible truth assignment τ to the variables in B, the satisfiability of F [τ ] can be determined by
sub-solver A in time O(nc). The smaller the backdoor B, the more useful it is for satisfiability solving, which
makes the size of the backdoor a natural parameter to consider (see [37] for a survey on the parameterized
complexity of backdoor problems). If we know an A-backdoor of size k, we can decide the satisfiability of F
by running A on 2k instances F [τ ], yielding a time bound of O(2knc). Hence SAT decision is fixed-parameter
tractable in the backdoor size k for any sub-solver A. Hence the following problem is clearly fixed-parameter
tractable for any sub-solver A.
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SAT(A-backdoor)

Instance: A CNF formula F , and an A-backdoor B of F of size k.

Parameter: The integer k.

Question: Is F satisfiable?

We also consider for every subsolver A the associated recognition problem.

Rec-SAT(A-backdoor)

Instance: A CNF formula F , and an integer k ≥ 0.

Parameter: The integer k.

Question: Does F have an A-backdoor of size at most k?

With the problem SAT(A-backdoor) we are concerned with the question of whether instead of trying all
2k possible partial assignments we can reduce the instance to a polynomial kernel. We will establish a very
general result that applies to all possible sub-solvers.

Theorem 4. SAT(A-backdoor) does not admit a polynomial kernel for any sub-solver A unless NP ⊆
coNP/poly.

Proof. We will devise polynomial parameter transformations from the following parameterized problem which
is known to be compositional [34] and therefore unlikely to admit a polynomial kernel.

SAT(vars)

Instance: A propositional formula F in CNF on n variables.

Parameter: The number n of variables.

Question: Is F satisfiable?

Let F be a CNF formula and V the set of all variables of F . Due to trivial solvability (Property 3) of a
sub-solver, V is an A-backdoor set for any A. Hence, by mapping (F, n) (as an instance of SAT(vars))
to (F, V ) (as an instance of SAT(A-backdoor)) provides a (trivial) polynomial parameter transformation
from SAT(vars) to SAT(A-backdoor). Since the unparameterized versions of both problems are clearly
NP-complete, the result follows by Theorem 2.

Let us denote by rCNF the class of CNF formulas where each clause has at most r literals, and by Horn
the class of CNF formulas where each clause has at most one positive literal. Sub-solvers for Horn and
2CNF follow from [23] and [44], respectively.

Let 3SAT(π) (where π is an arbitrary parameterization) denote the problem SAT(π) restricted to 3CNF
formulas. In contrast to SAT(vars), the parameterized problem 3SAT(vars) has a trivial polynomial kernel:
if we remove duplicate clauses, then any 3CNF formula on n variables contains at most O(n3) clauses, and so
is a polynomial kernel. Hence the easy proof of Theorem 4 does not carry over to 3SAT(A-backdoor). We
therefore consider the cases 3SAT(Horn-backdoor) and 3SAT(2CNF-backdoor) separately, these cases
are important since the detection of Horn and 2CNF-backdoors is fixed-parameter tractable [50].

Theorem 5. Neither 3SAT(Horn-backdoor) nor 3SAT(2CNF-backdoor) admit a polynomial kernel un-
less NP ⊆ coNP/poly.

Proof. Let C ∈ {Horn, 2CNF}. We show that 3SAT(C-backdoor) is compositional. Let (Fi, Bi), 1 ≤ i ≤ t,
be a given sequence of instances of 3SAT(C-backdoor) where Fi is a 3CNF formula and Bi is a C-backdoor
set of Fi of size k. We distinguish two cases.

Case 1: t > 2k. Let ‖Fi‖ :=
∑

C∈Fi
|C| and n := maxt

i=1 ‖Fi‖. Whether Fi is satisfiable or not can be
decided in time O(2kn) since the satisfiability of a Horn or 2CNF formula can be decided in linear time.
We can check whether at least one of the formulas F1, . . . , Ft is satisfiable in time O(t2kn) = O(t2n) which
is polynomial in t + n. If some Fi is satisfiable, we output (Fi, Bi); otherwise we output (F1, B1) (F1 is
unsatisfiable). Hence we have a composition algorithm.
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Case 2: t ≤ 2k. This case is more involved. We construct a new instance (F,B) of 3SAT(C-backdoor)
as follows.

Let s = dlog2 te. Since t ≤ 2k, s ≤ k follows.
Let Vi denote the set of variables of Fi. We may assume, w.l.o.g., that B1 = · · · = Bt and that Vi∩Vj = B1

for all 1 ≤ i < j ≤ t since otherwise we can change names of variable accordingly. In a first step we obtain
from every Fi a CNF formula F ′i as follows. For each variable x ∈ Vi \ B1 we take s + 1 new variables
x0, . . . , xs. We replace each positive occurrence of a variable x ∈ Vi \ B1 in Fi with the literal x0 and each
negative occurrence of x with the literal ¬xs.

We add all clauses of the form (¬xj−1 ∨xj) for 1 ≤ j ≤ s; we call these clauses “connection clauses.” Let
F ′i be the formula obtained from Fi in this way. We observe that F ′i and Fi are SAT-equivalent, since the
connection clauses form an implication chain. Since the connection clauses are both Horn and 2CNF, B1 is
also a C-backdoor of F ′i .

For an illustration of this construction see Example 1 below.
We take a set Y = {y1, . . . , ys} of new variables. Let C1, . . . , C2s be the sequence of all 2s possible

clauses (modulo permutation of literals within a clause) containing each variable from Y either positively or
negatively. Consequently we can write Ci as (`i1 ∨ · · · ∨ `is) where `ij ∈ {yj ,¬yj}.

For 1 ≤ i ≤ t we add to each connection clause (¬xj−1 ∨ xj) of F ′i the literal `ij ∈ Ci. Let F ′′i denote the
3CNF formula obtained from F ′i this way.

For t < i ≤ 2s we define 3CNF formulas F ′′i as follows. If s ≤ 3 then F ′′i consists just of the clause Ci.
If s > 3 then we take new variables zi2, . . . , zis−2 and let F ′′i consist of the clauses (`i1 ∨ `i2 ∨ ¬zi2), (`i3 ∨ zi2 ∨
¬zi3), . . . , (`is−2 ∨ zis−3 ∨¬zis−2), (`is−1 ∨ `is ∨ zis−2). Finally, we let F be the 3CNF formula containing all the
clauses from F ′′1 , . . . , F

′′
2s . Any assignment τ to Y ∪ B1 that satisfies Ci can be extended to an assignment

that satisfies F ′′i since such assignment satisfies at least one connection clause (xj−1 ∨ xj ∨ `ij) and so the
chain of implications from from xo to xs is broken.

It is not difficult to verify the following two claims. (i) F is satisfiable if and only if at least one of the
formulas Fi is satisfiable. (ii) B = Y ∪B1 is a C-backdoor of F . Hence we have also a composition algorithm
in Case 2, and thus 3SAT(C-backdoor) is compositional. Clearly UP[3SAT(C-backdoor)] is NP-complete,
hence the result follows from Theorem 1.

Example 1. We illustrate the constructions of this proof with a running example, where we let s = 2, t = 4,
i = 2, and B1 = {b}.
Assume that we have

Fi = (x ∨ ¬u ∨ v) ∧ (¬x ∨ u ∨ v) ∧ (¬x ∨ ¬u).

From this we obtain the following formula, containing four connection clauses

F ′i = (x0 ∨ ¬u2 ∨ v) ∧ (¬x2 ∨ u0 ∨ v) ∧ (¬x2 ∨ ¬u2)∧
(¬x0 ∨ x1) ∧ (¬x1 ∨ x2) ∧ (¬u0 ∨ u1) ∧ (¬u1 ∨ u2).

Now assume Ci = (y1 ∨ ¬y2). We add to the connection clauses literals from Ci and we obtain

F ′′i = (x0 ∨ ¬u2 ∨ v) ∧ (¬x2 ∨ u0 ∨ v) ∧ (¬x2 ∨ ¬u2)∧
(¬x0 ∨ x1 ∨ y1) ∧ (¬x1 ∨ x2 ∨ ¬y2) ∧ (¬u0 ∨ u1 ∨ y1) ∧ (¬u1 ∨ u2 ∨ ¬y2).

Assigning y1 to false and y2 to true reduces F ′′i to F ′i . The other three possibilities of assigning truth values
to y1, y2 break the connection clauses and make the formula trivially satisfiable. a

We now turn to the recognition problem Rec-SAT(A-backdoor), in particular for A ∈ {Horn, 2CNF}
for which, as mentioned above, the problem is known to be fixed-parameter tractable [50]. Here we are able
to obtain positive results.

Proposition 2. Both Rec-SAT(Horn-backdoor) and Rec-SAT(2CNF-backdoor) admit polynomial ker-
nels, with a linear and quadratic number of variables, respectively.
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Proof. Let (F, k) be the instance of Rec-SAT(Horn-backdoor). We construct a graph G(F ) whose vertices
are the variables of F and which contains an edge between two variables u, v if and only if both variables
appear as positive literals together in a clause. It is well-known and easy to see that the vertex covers of
G(F ) are exactly the Horn-backdoor sets of F [60]. Recall that a vertex cover of a graph is a set of vertices
that contains at least one end of each edge of the graph. Now, we apply the known kernelization algorithm
for vertex covers [17] to (G(F ), k) and obtain in polynomial time an equivalent instance (G′, k′) where G′
has at most 2k vertices. Now it only remains to consider G′ as a CNF formula F ′ where each edge gives rise
to a binary clause on two positive literals. Since evidently G(F ′) = G′, we conclude that (F ′, k′) constitutes
a polynomial kernel for Rec-SAT(Horn-backdoor).

For Rec-SAT(2CNF-backdoor) we proceed similarly. Let (F, k) be an instance of this problem. We
construct a 3-uniform hypergraph H(F ) whose vertices are the variables of F and which contains a hyperedge
on any three variables that appear (positively or negatively) together in a clause of F . Again, it is well-known
and easy to see that the hitting sets of H(F ) are exactly the 2CNF-backdoor sets of F [60]. Recall that a
hitting set of a hypergraph is a set of vertices that contains at least one vertex from each hyperedge. Now
we apply a known kernelization algorithm for the hitting set problem on 3-uniform hypergraphs (3HS) [1]
to (H(F ), k) and obtain in polynomial time an equivalent instance (H ′, k′) where H ′ has at most O(k2)
vertices. It remains to consider H ′ as a CNF formula F ′ where each hyperedge gives rise to a ternary clause
on three positive literals. Since evidently H(F ′) = H ′, we conclude that (F ′, k′) constitutes a polynomial
kernel for Rec-SAT(2CNF-backdoor).

6 Global Constraints
Constraint programming (CP) offers a powerful framework for efficient modeling and solving of a wide range
of hard problems [58]. At the heart of efficient CP solvers are so-called global constraints that specify patterns
that frequently occur in real-world problems. Efficient propagation algorithms for global constraints help
speed up the solver significantly [63]. For instance, a frequently occurring pattern is that we require that
certain variables must all take different values (e.g., activities requiring the same resource must all be assigned
different times). Therefore most constraint solvers provide a global AllDifferent constraint and algorithms
for its propagation. Unfortunately, for several important global constraints a complete propagation is NP-
hard, and one switches therefore to incomplete propagation such as bound consistency [8].

In their AAAI’08 paper, Bessière et al. [5] showed that a complete propagation of several intractable
constraints can efficiently be done as long as certain natural problem parameters are small, i.e., the prop-
agation is fixed-parameter tractable [25]. Among others, they showed fixed-parameter tractability of the
AtLeast-NValue and Extended Global Cardinality (EGC) constraints parameterized by the num-
ber of “holes” in the domains of the variables. If there are no holes, then all domains are intervals and
complete propagation is polynomial by classical results; thus the number of holes provides a way of scaling
up the nice properties of constraints with interval domains.

In the sequel we bring this approach a significant step forward, picking up a long-term research objective
suggested by Bessière et al. [5] in their concluding remarks: whether intractable global constraints admit a
reduction to a problem kernel or kernelization.

More formally, a global constraint is defined for a set S of variables, each variable x ∈ S ranges over a
finite domain dom(x) of values. For a set X of variables we write dom(X) =

⋃
x∈X dom(x). An instantiation

is an assignment α : S → dom(S) such that α(x) ∈ dom(x) for each x ∈ S. A global constraint defines
which instantiations are legal and which are not. This definition is usually implicit, as opposed to classical
constraints, which list all legal tuples. Examples of global constraints include:

1. The global constraint NValue is defined over a set X of variables and a variable N and requires from
a legal instantiation α that |{α(x) : x ∈ X }| = α(N);

2. The global constraint AtMost-NValue is defined for fixed values of N over a set X of variables and
requires from a legal instantiation α that |{α(x) : x ∈ X }| ≤ N ;

3. The global constraint Disjoint is specified by two sets of variables X,Y and requires that α(x) 6= α(y)
for each pair x ∈ X and y ∈ Y ;
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4. The global constraint Uses is also specified by two sets of variables X,Y and requires that for each
x ∈ X there is some y ∈ Y such that α(x) = α(y).

5. The global constraint EGC is specified by a set of variables X, a set of values D = dom(X), and
a finite domain dom(v) ⊆ N for each value v ∈ D, and it requires that for each v ∈ D we have
|{α(x) = v : x ∈ X }| ∈ dom(v).

A global constraint C is consistent if there is a legal instantiation of its variables. The constraint C is
hyper arc consistent (HAC ) if for each variable x ∈ scope(C) and each value v ∈ dom(x), there is a legal
instantiation α such that α(x) = v (in that case we say that C supports v for x). In the literature, HAC is
also called domain consistent or generalized arc consistent. The constraint C is bound consistent if when a
variable x ∈ scope(C) is assigned the minimum or maximum value of its domain, there are compatible values
between the minimum and maximum domain value for all other variables in scope(C). The main algorithmic
problems for a global constraint C are the following: Consistency, to decide whether C is consistent, and
Enforcing HAC, to remove from all domains the values that are not supported by the respective variable.

It is clear that if HAC can be enforced in polynomial time for a constraint C, then the consistency of C
can also be decided in polynomial time (we just need to see if any domain became empty). The reverse is
true if for each x ∈ scope(C) and v ∈ dom(x), the consistency of C ∧ (x ← v), requiring x to be assigned
the value v, can be decided in polynomial time (see [63, Theorem 17]). This is the case for most constraints
of practical use, and in particular for all constraints considered below. The same correspondence holds with
respect to fixed-parameter tractability. Hence, we will focus mainly on Consistency.

For several important types T of global constraints, the problem of deciding whether a constraint of type
T is consistent is NP-hard. This includes the 5 global constraints NValue, AtMost-NValue, Disjoint,
Uses, and EGC defined above (see [8]).

Each global constraint of type T and parameter par gives rise to a parameterized problem:

T -Cons(par)

Instance: A global constraint C of type T .
Parameter: The integer par.

Question: Is C consistent?

Bessière et al. [5] considered dx = |dom(X)| as parameter for NValue, dxy = |dom(X) ∩ dom(Y )| as
parameter for Disjoint, and dy = |dom(Y )| as parameter for Uses. They showed that consistency checking
is fixed-parameter tractable for the constraints under the respective parameterizations, i.e., the problems
NValue-Cons(dx), Disjoint-Cons(dxy), and Uses-Cons(dy) are fixed-parameter tractable.

Bessière et al. [5] also showed that polynomial time algorithms for enforcing bounds consistency imply
that the corresponding consistency problem is fixed-parameter tractable parameterized by the number of
holes. This is the case for the global constraints NValue, AtMost-NValue, and EGC.

Definition 1. When D is totally ordered, a hole in a subset D′ ⊆ D is a couple (u,w) ∈ D′×D′, such that
there is a v ∈ D \D′ with u < v < w and there is no v′ ∈ D′ with u < v′ < w.

We denote the number of holes in the domain of a variable x ∈ X by #holes(x). The parameter of the
consistency problem for AtMost-NValue constraints is holes =

∑
x∈X #holes(x).

6.1 Kernel Lower Bounds
We show that it is unlikely that most of the FPT results of Bessière et al. [5] can be improved to polynomial
kernels.

Theorem 6. The problems NValue-Cons(dx), Disjoint-Cons(dxy), Uses-Cons(dy) do not admit
polynomial kernels unless NP ⊆ coNP/poly.

Proof. We devise a polynomial parameter transformation from SAT(vars). We use a construction of Bessière
et al. [8]. Let F = {C1, . . . , Cm} be a CNF formula over variables x1, . . . , xn. We consider the clauses and
variables of F as the variables of a global constraint with domains dom(xi) = {−i, i}, and dom(Cj) =
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{ i : xi ∈ Cj } ∪ {−i : ¬xi ∈ Cj }. Now F can be encoded as an NValue constraint with X =
{x1, . . . , xn, C1, . . . , Cm} and dom(N) = {n}. By the pigeonhole principle, a legal instantiation α for
this constraint has |{α(xi) : 1 ≤ i ≤ n}| = N . Setting α(xi) = i corresponds to setting the variable
xi of F to 1 and setting α(xi) = −i corresponds to setting the variable xi of F to 0. Now, for each
Cj ∈ F , α(Cj) ∈ {α(xi) : 1 ≤ i ≤ n} since only n values are available for α, and the literal corre-
sponding to α(Cj) satisfies the clause Cj . Since dx = 2n we have a polynomial parameter reduction from
SAT(vars) to NValue-Cons(dx). Similarly, as observed by Bessière et al. [7], F can be encoded as a
Disjoint constraint with X = {x1, . . . , xn} and Y = {C1, . . . , Cm} (dxy ≤ 2n), or as a Uses constraint
with X = {C1, . . . , Cm} and Y = {x1, . . . , xn} (dy = 2n). Since the unparameterized problems are clearly
NP-complete, and SAT(vars) is known to have no polynomial kernel unless NP ⊆ coNP/poly (as remarked
in the proof of Theorem 4), the result follows by Theorem 2.

The Consistency problem for EGC constraints is NP-hard [54]. However, if all sets dom(·) are intervals,
then consistency can be checked in polynomial time using network flows [56]. By the result of Bessière et
al. [5], the Consistency problem for EGC constraints is fixed-parameter tractable, parameterized by the
number of holes in the sets dom(·). Thus Régin’s result generalizes to instances that are close to the interval
case.

However, it is unlikely that EGC constraints admit a polynomial kernel.

Theorem 7. EGC-Cons(holes) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We use the following result of Quimper et al. [54]: Given a CNF formula F on k variables, one can
construct in polynomial time an EGC constraint CF such that

1. for each value v of CF , dom(v) = {0, iv} for an integer iv > 0,

2. iv > 1 for at most 2k values v, and

3. F is satisfiable if and only if CF is consistent.

Thus, the number of holes in CF is at most twice the number of variables of F .
We observe that this result provides a polynomial parameter reduction from SAT(vars) to EGC-

Cons(holes). As remarked in the proof of Theorem 4, SAT(vars) is known to have no polynomial kernel
unless NP ⊆ coNP/poly. Hence the theorem follows.

6.2 A Polynomial Kernel for NValue Constraints
Beldiceanu [3] and Bessière et al. [6] decompose NValue constraints into two other global constraints:
AtMost-NValue and AtLeast-NValue, which require that at most N or at least N values are used
for the variables in X, respectively. The Consistency problem is NP-complete for NValue and AtMost-
NValue constraints, and polynomial time solvable for AtLeast-NValue constraints.

In this subsection, we will present a polynomial kernel for AtMost-NValue-Cons(holes).

AtMost-NValue-Cons(holes)

Instance: An instance I = (X,D, dom, N), where X = {x1, . . . , xn} is a set of variables, D is a
totally ordered set of values, dom : X → 2D is a map assigning a non-empty domain dom(v) ⊆ D
to each variable x ∈ X, and an integer N .

Parameter: The integer k = #holes(X).

Question: Is there a set S ⊆ D, |S| ≤ N , such that for every variable x ∈ X, dom(x) ∩ S 6= ∅?

Theorem 8. The problem AtMost-NValue-Cons(holes) has a polynomial kernel. In particular, an
AtMost-NValue constraint with k holes can be reduced in linear time to a consistency-equivalent AtMost-
NValue constraint with O(k2) variables and O(k2) domain values.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

N = 6

x1 x3 x6 x9 x′3 x13 x′13

x2 x4 x7 x′2 x12 x15

x8 x10 x11 x′11

x5 x′5 x14

Figure 2: Interval representation of an AtMost-NValue instance I = (X,D, dom, N), with X =
{x1, . . . , x15}, N = 6, D = {1, . . . , 14}, and dom(x1) = {1, 2}, dom(x2) = {2, 3, 10}, etc.

The proof of the theorem is based on a kernelization algorithm that we will describe in the remaining
part of this section.

We say that a subset of D is an interval if it has no hole. An interval I = [v1, v2] of a variable x is an
inclusion-wise maximal hole-free subset of its domain. Its left endpoint l(I) and right endpoint r(I) are the
values v1 and v2, respectively. Fig. 2 gives an example of an instance and its interval representation. We
assume that instances are given by a succinct description, in which the domain of a variable is given by the
left and right endpoint of each of its intervals. As the number of intervals of the instance I = (X,D, dom, N)
is n+k, its size is |I| = O(n+ |D|+k). In case dom is given by an extensive list of the values in the domain
of each variable, a succinct representation can be computed in linear time.

Also, in a variant of AtMost-NValue-Cons(holes) where D is not part of the input, we may construct
D by sorting the set of all endpoints of intervals in time O((n + k) log(n + k)). Since, w.l.o.g., a solution
contains only endpoints of intervals, this step does not compromise the correctness.

A greedy algorithm by Beldiceanu [3] checks the consistency of an AtMost-NValue constraint in linear
time when all domains are intervals (i.e., k = 0). Further, Bessière et al. [5] have shown that Consistency (and
Enforcing HAC) is fixed-parameter tractable, parameterized by the number of holes, for all constraints for
which bound consistency can be enforced in polynomial time. A simple algorithm for checking the consistency
of AtMost-NValue goes over all instances obtained from restricting the domain of each variable to one
of its intervals, and executes the algorithm of [3] for each of these 2k instances. The running time of this
algorithm is clearly bounded by O(2k · |I|).

Let I = (X,D, dom, N) be an instance for the consistency problem for AtMost-NValue constraints.
The algorithm is more intuitively described using the interval representation of the instance.The friends of
an interval I are the other intervals of I’s variable. An interval is optional if it has at least one friend, and
required otherwise. For a value v ∈ D, let ivl(v) denote the set of intervals containing v.

A solution for I is a subset S ⊆ D of at most N values such that there exists an instantiation assigning
the values in S to the variables in X. The algorithm may detect for some value v ∈ D, that, if the problem
has a solution, then it has a solution containing v. In this case, the algorithm selects v, i.e., it removes all
variables whose domain contains v, it removes v from D, and it decrements N by one. The algorithm may
detect for some value v ∈ D, that, if the problem has a solution, then it has a solution not containing v. In
this case, the algorithm discards v, i.e., it removes v from every domain and from D. (Note that no new
holes are created since D is replaced by D \ {v}.) The algorithm may detect for some variable x, that every
solution for (X \ {x}, D, dom|X\{x}, N) contains a value from dom(x). In that case, it removes x.

The algorithm sorts the intervals by increasing right endpoint (ties are broken arbitrarily). Then, it
exhaustively applies the following three reduction rules.

Red-⊆: If there are two intervals I, I ′ such that I ′ ⊆ I and I ′ is required, then remove the variable of I
(and its intervals).

Red-Dom: If there are two values v, v′ ∈ D such that ivl(v′) ⊆ ivl(v), then discard v′.

Red-Unit: If |dom(x)| = 1 for some variable x, then select the value in dom(x).
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4 6 7 8 9 10 11 12 13 14

N = 5

x3 x6 x9 x′3 x13 x′13

x4 x7 x12 x15

x10 x11 x′11

x14

Figure 3: Instance obtained from the instance of Fig. 2 by exhaustively applying rules Red-⊆, Red-Dom,
and Red-Unit.

In the example from Fig. 2, Red-⊆ removes the variables x5 and x8 because x10 ⊆ x′5 and x7 ⊆ x8, Red-
Dom removes the values 1 and 5, Red-Unit selects 2, which deletes variables x1 and x2, and Red-Dom
removes 3 from D. The resulting instance is depicted in Fig. 3.

After none of the previous rules apply, the algorithm scans the remaining intervals from left to right (i.e.,
by increasing right endpoint). An interval that has already been scanned is either a leader or a follower of
a subset of leaders. Informally, for a leader L, if a solution contains r(L), then there is a solution containing
r(L) and the right endpoint of each of its followers.

The algorithm scans the first intervals up to, and including, the first required interval. All these intervals
become leaders.

The algorithm then continues scanning intervals one by one. Let I be the interval that is currently
scanned and Ip be the last interval that was scanned. The active intervals are those that have already been
scanned and intersect Ip. A popular leader is a leader that is either active or has at least one active follower.

• If I is optional, then I becomes a leader, the algorithm continues scanning intervals until scanning a
required interval; all these intervals become leaders.

• If I is required, then it becomes a follower of all popular leaders that do not intersect I and that have
no follower intersecting I. If all popular leaders have at least two followers, then set N := N − 1
and merge the second-last follower of each popular leader with the last follower of the corresponding
leader; i.e., for every popular leader, the right endpoint of its second-last follower is set to the right
endpoint of its last follower, and then the last follower of every popular leader is removed.

After having scanned all the intervals, the algorithm exhaustively applies the reduction rules Red-⊆, Red-
Dom, and Red-Unit again.

In the example from Fig. 3, the interval of variable x6 is merged with x9’s interval, and the interval of
x7 with the interval of x10. Red-Dom then removes the values 7 and 8, resulting in the instance depicted
in Fig. 4.

The correctness and performance guarantee of this kernelization algorithm are proved in A. In particular,
for the correctness, we prove that a solution S for an instance I can be obtained from a solution S′ for an
instance I ′ that is obtained from I by one merge-operation by adding to S′ one value that is common to all
second-last followers of the popular leaders that were merged. We can easily bound the number of leaders
by 4k and we prove that each leader has at most 4k followers. Since each interval is a leader or a follower
of at least one leader, this bounds the total number of intervals by O(k2). Using the succinct description of
the domains, the size of the kernel is O(k2). We also give some details for a linear-time implementation of
the algorithm.
Remark: Denoting var(v) = {x ∈ X : v ∈ dom(x)}, Rule Red-Dom can be generalized to discard any
v′ ∈ D for which there exists a v ∈ D such that var(v′) ⊆ var(v) at the expense of a higher running time.

The kernel for AtMost-NValue-Cons(holes) can now be used to derive a kernel for NValue-Cons(holes).

Corollary 1. The problem NValue-Cons(holes) has a polynomial kernel. In particular, an NValue con-
straint with k holes can be reduced in O((|X|+ |D|)ω/2) time to a consistency-equivalent NValue constraint
with O(k2) variables and O(k2) domain values, where ω < 2.3729 is the exponent of matrix multiplication.
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Proof. As in [6], we determine the largest possible value for N if its domain were the set of all integers.
This can be done in O((|X|+ |D|)ω/2) time [48, 64] by computing a maximum matching in the graph whose
vertices are X ∪ D with an edge between x ∈ X and v ∈ D iff v ∈ dom(x). Suppose this largest possible
value is N+. Now, set dom(N) := {v ∈ dom(N) : v ≤ N+}, giving a consistency-equivalent NValue
constraint. Note that if this constraint has a legal instantiation α with α(N) ≤ max(dom(N)), then it
has a legal instantiation α′ with α′(N) = max(dom(N)). Therefore, it suffices to compute a kernel for
AtMost-NValue-Cons(holes) with the same variables and domains and value N = max(dom(N)), and
return it.

6.3 Improved FPT Algorithm using the Kernel
Using the kernel from Theorem 8 and the simple algorithm described in the beginning of this section, one
arrives at a O(2kk2 + |I|) time algorithm for checking the consistency of an AtMost-NValue constraint.
Borrowing ideas from the kernelization algorithm, we now reduce the exponential dependency on k in the
running time. The speed-ups due to this branching algorithm and the kernelization algorithm lead to a
speed-up for enforcing HAC for AtMost-NValue constraints (by Corollary 2) and for enforcing HAC for
NValue constraints (by the decomposition of [6]).

Theorem 9. The Consistency problem for AtMost-NValue constraints admits a O(ϕkk2 + |I|) time
algorithm, where k is the number of holes in the domains of the input instance I, and ϕ = 1+

√
5

2 < 1.6181.

Proof. The first step of the algorithm invokes the kernelization algorithm and obtains an equivalent instance
I ′ with O(k2) intervals in time O(|I|).

Now, we describe a branching algorithm checking the consistency of I ′. Let I1 denote the first interval
of I ′ (in the ordering by increasing right endpoint). I1 is optional. Let I1 denote the instance obtained from
I ′ by selecting r(I1) and exhaustively applying Reduction Rules Red-Dom and Red-Unit. Let I2 denote
the instance obtained from I ′ by removing I1 (if I1 had exactly one friend, this friend becomes required)
and exhaustively applying Reduction Rules Red-Dom and Red-Unit. Clearly, I ′ is consistent if and only
if I1 or I2 is consistent.

Note that both I1 and I2 have at most k − 1 holes. If either I1 or I2 has at most k − 2 holes, the
algorithm recursively checks whether at least one of I1 and I2 is consistent. If both I1 and I2 have exactly
k − 1 holes, we note that in I ′,

1. I1 has one friend,

2. no other optional interval intersects I1, and

3. the first interval of both I1 and I2 is If , which is the third optional interval in I ′ if the second optional
interval is the friend of I1, and the second optional interval otherwise.

Thus, the instance obtained from I1 by removing I1’s friend and applying Red-Dom and Red-Unit may
differ from I2 only in N . Let s1 and s2 denote the number of values smaller than r(If ) that have been
selected to obtain I1 and I2 from I ′, respectively. If s1 ≤ s2, then the non-consistency of I1 implies the
non-consistency of I2. Thus, the algorithm need only recursively check whether I1 is consistent. On the
other hand, if s1 > s2, then the non-consistency of I2 implies the non-consistency of I1. Thus, the algorithm
need only recursively check whether I2 is consistent.

The recursive calls of the algorithm may be represented by a search tree labeled with the number of holes
of the instance. As the algorithm either branches into only one subproblem with at most k− 1 holes, or two
subproblems with at most k − 1 and at most k − 2 holes, respectively, the number of leaves of this search
tree is T (k) ≤ T (k − 1) + T (k − 2), with T (0) = T (1) = 1. Using standard techniques in the analysis of
exponential time algorithms (see, e.g., [32, Chapter 2] and [35, Lemma 2.3]), it suffices to find a value c > 1
for the base of the exponential function bounding the running time, that we will minimize, such that

ck−1 + ck−2 ≤ ck for all k ≥ 0,

or, equivalently, such that

c+ 1 ≤ c2
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It now suffices to find the unique positive real root of x2 − x− 1, which is ϕ = 1+
√
5

2 < 1.6181, to determine
the optimal value of c for this analysis.

Since the size of the search tree is O(ϕk) and the number of operations executed at each node of the
search tree is O(k2), the running time of the branching algorithm can be upper bounded by O(ϕkk2).

For the example of Fig. 4, the instances I1 and I2 are computed by selecting the value 4, and removing the
interval x3, respectively. The reduction rules select the value 9 for I1 and the values 6 and 10 for I2. Both
instances start with the interval x11, and the algorithm recursively solves I1 only, where the values 12 and
13 are selected, leading to the solution {4, 9, 12, 13} for the kernelized instance, which corresponds to the
solution {2, 4, 7, 9, 12, 13} for the instance of Fig. 2.

Corollary 2. HAC for an AtMost-NValue constraint can be enforced in time O(ϕk·k2·|D|+|I|·|D|), where
k is the number of holes in the domains of the input instance I = (X,D, dom, N), and ϕ = 1+

√
5

2 < 1.6181.

Proof. We first remark that if a value v can be filtered from the domain of a variable x (i.e., v has no support
for x), then v can be filtered from the domain of all variables, as for any legal instantiation α with α(x′) = v,
x′ ∈ X \ {x}, the assignment obtained from α by setting α(x) := v is a legal instantiation as well. Also,
filtering the value v creates no new holes as the set of values can be set to D \ {v}.

Now we enforce HAC by applying O(|D|) times the algorithm from Theorem 9. Assume the instance
I = (X,D, dom, N) is consistent. If (X,D, dom, N−1) is consistent, then no value can be filtered. Otherwise,
check, for each v ∈ D, whether the instance obtained from selecting v is consistent and filter v if this is not
the case.

Using the same reasoning as in Corollary 1, we now obtain the following corollary for NValue.

Corollary 3. HAC for an NValue constraint can be enforced in time O((ϕk · k2 + (|X| + |D|)ω/2) · |D|),
where k is the number of holes in the domains of the input instance I = (X,D, dom, N), ϕ = 1+

√
5

2 < 1.6181,
and ω < 2.3729 is the exponent of matrix multiplication.

7 Bayesian Reasoning
Bayesian networks (BNs) have emerged as a general representation scheme for uncertain knowledge [53]. A
BN models a set of stochastic variables, the independencies among these variables, and a joint probability
distribution over these variables. For simplicity we consider the important special case where the stochastic
variables are Boolean. The variables and independencies are modeled in the BN by a directed acyclic graph
G = (V,A), the joint probability distribution is given by a table Tv for each node v ∈ V which defines a
probability Tv|U for each possible instantiation U = (d1, . . . , ds) ∈ {true, false}s of the parents v1, . . . , vs of
v in G. The probability Pr(U) of a complete instantiation U of the variables of G is given by the product
of Tv|U over all variables v. We consider the problem Positive-BN-Inference which takes as input a
Boolean BN (G,T ) and a variable v, and asks whether Pr(v = true) > 0. The problem is NP-complete [19]
and moves from NP to #P if we ask to compute Pr(v = true) [59]. The problem can be solved in polynomial
time if the BN is singly connected, i.e, if there is at most one undirected path between any two variables
[52]. It is natural to parametrize the problem by the number of variables one must delete in order to make
the BN singly connected (the deleted variables form a loop cutset). This yields the following parameterized
problem.

Positive-BN-Inference(loop cutset size)

Instance: A Boolean BN (G,T ), a variable v, and a loop cutset S of size k.

Parameter: The integer k.

Question: Is Pr(v = true) > 0?

Again we also state a related recognition problem.

15



Rec-Positive-BN-Inference(loop cutset size)

Instance: A Boolean BN (G,T ) and an integer k ≥ 0.

Parameter: The integer k.

Question: Does (G,T ) has a loop cutset of size ≤ k?.

Now, Positive-BN-Inference(loop cutset size) is easily seen to be fixed-parameter tractable as we
can determine whether Pr(v = true) > 0 by taking the maximum of Pr(v = true | U) over all 2k possible
instantiations of the k cutset variables, each of which requires processing of a singly connected network.
However, although fixed-parameter tractable, it is unlikely that the problem admits a polynomial kernel.

Theorem 10. Positive-BN-Inference(loop cutset size) does not admit a polynomial kernel unless
NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from SAT(vars) and apply Theorem 2. The reduc-
tion is based on the reduction from 3SAT given by Cooper [19]. Let F be a CNF formula on n variables.
We construct a BN (G,T ) such that for a variable v we have Pr(v = true) > 0 if and only if F is satisfiable.
Cooper uses input nodes ui for representing variables of F , clause nodes ci for representing the clauses of F ,
and conjunction nodes di for representing the conjunction of the clauses. For instance, if F has three clauses
and four variables, then Cooper’s reduction produces a BN (G,T ) where G has the following shape:

u1 u2 u3 u4

c1 c2 c3

d1 d2 d3

Clearly, the input nodes form a loop cutset of G. However, in order to get a polynomial parameter transfor-
mation from SAT(vars) we must allow in F that clauses contain an arbitrary number of literals, not just
three. If we apply Cooper’s reduction directly, then a single clause node ci with many parents requires a
table Tci of exponential size. To overcome this difficulty we simply split clause nodes ci containing more
than 3 literals into several clause nodes, as indicated below, where the last one feeds into a conjunction node
di.

u1 u2 u3 u4

c1

c′1
c′′1

It remains to observe that the set of input nodes E = {u1, . . . , un} still form a loop cutset of the
constructed BN, hence we have indeed a polynomial parameter transformation from SAT(vars) to
Positive-BN-Inference(loop cutset size). The result follows by Theorem 2.

Let us now turn to the recognition problem Rec-Positive-BN-Inference(loop cutset size).

Proposition 3. Rec-Positive-BN-Inference(loop cutset size) admits a polynomial kernel with O(k2)
nodes.

Proof. Let ((G,T ), k) be an instance of Rec-Positive-BN-Inference(loop cutset size). We note that
loop cutsets of (G,T ) are just the so-called feedback vertex sets of G. Hence we can apply a known kerneliza-
tion algorithm for feedback vertex sets [16] to G and obtain a kernel (G′, k) with at most O(k2) many ver-
tices. We translate this into an instance (G′, T ′, k′) of Rec-Positive-BN-Inference(loop cutset size)
by taking an arbitrary table T ′.
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8 Nonmonotonic Reasoning
Logic programming with negation under the stable model semantics is a well-studied form of nonmonotonic
reasoning [39, 46]. A (normal) logic program P is a finite set of rules r of the form

h←− a1 ∧ · · · ∧ am ∧ ¬b1 ∧ · · · ∧ ¬bn

where h, ai, bi are atoms, where h forms the head and the ai, bi from the body of r. We write H(r) = h,
B+(r) = {a1, . . . , am}, and B−(r) = {b1, . . . , bn}. Let I be a finite set of atoms. The GF reduct P I of a
logic program P under I is the program obtained from P by removing all rules r with B−(r) ∩ I 6= ∅, and
removing from the body of each remaining rule r′ all literals ¬b with b ∈ I. I is a stable model of P if I is
a minimal model of P I , i.e., if (i) for each rule r ∈ P I with B+(r) ⊆ I we have H(r) ∈ I, and (ii) there is
no proper subset of I with this property. The undirected dependency graph U(P ) of P is formed as follows.
We take the atoms of P as vertices and add an edge x − y between two atoms x, y if there is a rule r ∈ P
with H(r) = x and y ∈ B+(r), and we add a path x− u− y if H(r) = x and y ∈ B−(r) (u is a new vertex
of degree 2). The feedback width of P is the size of a smallest set V of atoms such that every cycle of U(P )
runs through an atom in V (such a set V is called a feedback vertex set).

A fundamental computational problems is Stable Model Existence (SME), which asks whether a
given normal logic program has a stable model. The problem is well-known to be NP-complete [47]. Gottlob
et al. [41] considered the following parameterization of the problem and showed fixed-parameter tractability
(see [31] for generalizations).

SME(feedback width)

Instance: A logic program P and feedback vertex set V of size k.

Parameter: The integer k.

Question: Does P have a stable model?

Again we also state a related recognition problem.

Rec-SME(feedback width)

Instance: A logic program P and an integer k ≥ 0.

Parameter: The integer k.

Question: Does P have a a feedback vertex set of size at most k?

We show that the result of Gottlob et al. [41] cannot be strengthened towards a polynomial kernel.

Theorem 11. SME(feedback width) does not admit a polynomial kernel unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from SAT(vars) to SME(feedback width) using a
construction of Niemelä [49]. Given a CNF formula F on n variables, we construct a logic program P as
follows. For each variable x of F we take two atoms x and x̂ and include the rules (x̂← ¬x) and (x← ¬x̂);
for each clause C of F we take an atom c and include for each positive literal a of C the rule (c ← a),
and for each negative literal ¬a of C the rule (c ← â); finally, we take two atoms s and f and include the
rule (f ← ¬f ∧ ¬s) and for each clause C of F the rule (s ← ¬c). The formula F is satisfiable if and
only if P has a stable model [49]. It remains to observe that each cycle of U(P ) runs through a vertex
in V = {x, x̂ : x ∈ vars(F ) }, hence the feedback width of P is at most 2n. Hence we have a polynomial
parameter transformation from SAT(vars) to SME(feedback width). The result follows by Theorem 2.

Using a similar approach as for Proposition 3 we can establish the following result.

Proposition 4. Rec-SME(feedback width) admits a polynomial kernel with O(k2) atoms.
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Figure 4: Kernelized instance.

9 Conclusion
We have provided the first theoretical evaluation of the guarantees and limits of polynomial-time preprocess-
ing for hard AI problems. In particular we have established super-polynomial kernel lower bounds for many
problems, providing firm limitations for the power of polynomial-time preprocessing for these problems.
On the positive side, we have developed an efficient linear-time kernelization algorithm for the consistency
problem for AtMost-NValue constraints, and have shown how it can be used to speed up the complete
propagation of NValue and related constraints.

Subsequent to our work, Fellows et al. [29] investigated the parameterized complexity and kernelization for
various parameterizations of Abductive Reasoning. Their kernelization results were mostly negative, showing
that many parameterizations for the Abduction problem have no polynomial kernels unless NP ⊆ coNP/poly.
Similarly negative are the kernelization results of Bäckström et al. [2] for planning problems, parameterized
by the length of the plan.

We conclude from these results that in contrast to many optimization problems (see Section 1), typical AI
problems do not admit polynomial kernels. Our results suggest the consideration of alternative approaches.
For example, it might still be possible that some of the considered problems admit polynomially sized Turing
kernels, i.e., a polynomial-time preprocessing to a Boolean combination of a polynomial number of polynomial
kernels. In the area of optimization, parameterized problems are known that do not admit polynomial kernels
but admit polynomial Turing kernels [30]. This suggests a theoretical and empirical study of Turing kernels
for the AI problems considered.

A Appendix: Proof of Theorem 8
In this appendix, we prove Theorem 8 by proving the correctness of the algorithm, upper bounding the size
of the kernel, and analyzing its running time.

Let I ′ = (X ′, D′, dom ′, N ′) be the instance resulting from applying one operation of the kernelization
algorithm to an instance I = (X,D, dom, N). An operation is an instruction which modifies the instance:
Red-⊆, Red-Dom, Red-Unit, and merge. We show that there exists a solution S for I if and only if
there exists a solution S′ for I ′. A solution is nice if each of its elements is the right endpoint of some
interval. Clearly, for every solution, a nice solution of the same size can be obtained by shifting each value to
the next right endpoint of an interval. Thus, when we construct S′ from S (or vice-versa), we may assume
that S is nice.

Reduction Rule Red-⊆ is sound because a solution for I is a solution for I ′ and vice-versa, because any
solution I ′ contains a value v of I ⊆ I ′, as I is required. Reduction Rule Red-Dom is correct because if
v′ ∈ S, then S′ := (S \ {v′}) ∪ {v} is a solution for I ′ and for I. Reduction Rule Red-Unit is obviously
correct (S = S′ ∪ dom(x)).

After having applied these 3 reduction rules, observe that the first interval is optional and contains only
one value. Suppose the algorithm has started scanning intervals. By construction, the following properties
apply to I ′.
Property 1. A follower does not intersect any of its leaders.

Property 2. If I, I ′ are two distinct followers of the same leader, then I and I ′ do not intersect.
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Before proving the correctness of the merge operation, let us first show that the subset of leaders of a
follower is not empty.
Claim 1. Every interval that has been scanned is either a leader or a follower of at least one leader.

Proof. First, note that Red-Dom ensures that each domain value in D is the left endpoint of some interval
and the right endpoint of some interval. We show that when an interval I is scanned it either becomes a
leader or a follower of at least one leader. By induction, assume this is the case for all previously scanned
intervals. Denote by Ip the interval that was scanned prior to I. If Ip or I is optional, then I becomes a
leader. Suppose I and Ip are required. We have that l(I) > l(Ip), otherwise I would have been removed
by Red-⊆. By Rule Red-Dom, there is some interval I` with r(I`) = l(Ip). If I` is a leader, I becomes a
follower of I`; otherwise I becomes a follower of I`’s leader.

We will now prove the correctness of the merge operation. Recall that I ′ is an instance obtained from I by
one application of themerge operation. Let I denote the interval that is scanned when themerge operation
is applied. At this computation step, each popular leader has at least two followers and the algorithm merges
the last two followers of each popular leader and decrements N by one. Let F2 denote the set of all intervals
that are the second-last follower of a popular leader, and F1 the set of all intervals that are the last follower
of a popular leader before merging. Let M denote the set of merged intervals. Clearly, every interval of
F1 ∪ F2 ∪M is required as all followers are required.

Lemma 1. Every interval in F1 intersects l(I).

Proof. Let I1 ∈ F1. By construction, r(I1) ∈ I, as I becomes a follower of every popular leader that has no
follower intersecting I, and no follower has a right endpoint larger than r(I). Moreover, l(I1) ≤ l(I) as no
follower is a strict subset of I by Red-⊆ and the fact that all followers are required.

The correctness of the merge operation will follow from the next two lemmas.

Lemma 2. If S is a nice solution for I, then there exists a solution S′ for I ′ with S′ ⊆ S.

Proof. Let I− be the interval of F2 with the largest right endpoint. Let L be a leader of I−. By construction
and Red-⊆, L is a leader of I as well and is therefore popular. Let t1 ∈ S ∩ I be the smallest value of S
that intersects I and let t2 ∈ S ∩ I− be the largest value of S that intersects I−. By Property 2, we have
that t2 < t1.
Claim 2. The set S contains no value t0 such that t2 < t0 < t1.

Proof. For the sake of contradiction, suppose S contains a value t0 such that t2 < t0 < t1. Since S is nice,
t0 is the right endpoint of some interval I0. Since t2 is the rightmost value intersecting S and any interval in
F2, the interval I0 is not in F2. Since I0 has already been scanned, and was scanned after every interval in
F2, the interval I0 is in F1. However, by Lemma 1, I0 intersects l(I). Since no scanned interval has a larger
right endpoint than I, we have that t0 ∈ S ∩ I, which contradicts the fact that t1 is the smallest value in
S ∩ I and that t0 < t1.

Claim 3. Suppose I1 ∈ F1 and I2 ∈ F2 are the last and second-last follower of a popular leader L′, respec-
tively. Let M12 ∈M denote the interval obtained from merging I2 with I1. If t2 ∈ I2, then t1 ∈M12.

Proof. For the sake of contradiction, assume t2 ∈ I2, but t1 /∈M12. As t2 < t1, we have that t1 > r(M12) =
r(I1). But then S is not a solution as S ∩ I1 = ∅ by Claim 2 and the fact that t2 < l(I1).

Claim 4. If I ′ is an interval with t2 ∈ I ′, then I ′ ∈ F2 ∪ F1.

Proof. First, suppose I ′ is a leader. As every leader has at least two followers when I is scanned, I ′ has
two followers whose left endpoint is larger than r(I ′) ≥ t2 (by Property 1) and smaller than l(I) ≤ t1 (by
Red-⊆). Thus, at least one of them is included in the interval (t2, t1) by Property 2, which contradicts S
being a solution by Claim 2.

Similarly, if I ′ is a follower of a popular leader, but not among the last two followers of any popular
leader, Claim 2 leads to a contradiction as well.

Finally, if I ′ is a follower, but has no popular leader, then it is to the left of some popular leader, and
thus to the left of t2.
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Consider the set T2 of intervals that intersect t2. By Claim 4, we have that T2 ⊆ F2 ∪ F1. For every
interval I ′ ∈ T2 ∩ F2, the corresponding merged interval of I ′ intersects t1 by Claim 3. For every interval
I ′ ∈ T2 ∩ F1, and every interval I ′′ ∈ F2 with which I ′ is merged, S contains some value x ∈ I ′′ with x < t2.
Thus, S′ := S \ {t2} is a solution for I ′.

Lemma 3. If S′ is a nice solution for I ′, then there exists a solution S for I with S′ ⊆ S.

Proof. As in the previous proof, consider the step where the kernelization algorithm applies the merge
operation. Recall that the currently scanned interval is I. Let F2 and F1 denote the set of all intervals that
are the second-last and last follower of a popular leader before merging, respectively. Let M denote the set
of merged intervals.

By Lemma 1, every interval of M intersects l(I). On the other hand, every interval of I ′ whose right
endpoint intersects I is in M , by construction. Thus, S′ contains the right endpoint of some interval of M .
Let t1 denote the smallest such value, and let I1 denote the interval of I with r(I1) = t1 (due to Red-⊆,
there is a unique such interval). Let I2 denote the interval of I with the smallest right endpoint such that
there is a leader L whose second-last follower is I2 and whose last follower is I1, and let t2 := r(I2).
Claim 5. Let I ′1 ∈ F1 and I ′2 ∈ F2 be two intervals from I that are merged into one interval M ′12 of I ′. If
t1 ∈M ′12, then t2 ∈ I ′2.

Proof. For the sake of contradiction, suppose t1 ∈M ′12 but t2 /∈ I ′2. We consider two cases. In the first case,
I ′2 ⊆ (t2, l(I

′
1)). But then, I ′2 would have become a follower of L, which contradicts that I1 is the last follower

of L. In the second case, r(I ′2) < t2. But then, I1 is a follower of the same leader as I ′1, as l(I1) ≤ l(I ′1), and
thus I1 = I ′1. By the definition of I2, however, t2 = r(I2) ≤ r(I ′2), a contradiction.

By the previous claim, a solution S for I is obtained from a solution S′ for I ′ by setting S := S′ ∪ {t2}.

After having scanned all the intervals, Reduction Rules Red-⊆, Red-Dom, and Red-Unit are applied
again, and we have already proved their correctness.

Thus, the kernelization algorithm returns an equivalent instance. To bound the kernel size by a polynomial
in k, let I∗ = (V ∗, D∗, dom∗, N∗) be the instance resulting from applying the kernelization algorithm to an
instance I = (V,D, dom, N).
Property 3. The instances I and I∗ have at most 2k optional intervals.
Property 3 holds for I as every optional interval of a variable x is adjacent to at least one hole and each hole
is adjacent to two optional intervals of x. It holds for I∗ as the kernelization algorithm introduces no holes.

Lemma 4. The instance I∗ has at most 4k leaders.

Proof. Consider the unique step of the algorithm that creates leaders. An optional interval is scanned, the
algorithm continues scanning intervals until scanning a required interval, and all these scanned intervals
become leaders. As every interval is scanned only once, we have that for every optional interval there are at
most 2 leaders. By Property 3, the number of leaders is thus at most 4k.

Lemma 5. Every leader has at most 4k followers.

Proof. Consider all steps where a newly scanned interval becomes a follower, but is not merged with another
interval. In each of these steps, the popular leader Lr with the rightmost right endpoint either

(a) has no follower and intersects I, or

(b) has no follower and does not intersect I, or

(c) has one follower and intersects I.

Now, let L be some leader and let us consider a period where no optional interval is scanned. Let us bound
the number of intervals that become followers of L during this period without being merged with another
interval. If the number of followers of L increases in Situation (a), it does not increase in Situation (a) again
during this period, as no other follower of L may intersect I. After Situation (b) occurs, Situation (b) does
not occur again during this period, as I becomes a follower of Lr. Moreover, the number of followers of L
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does not increase during this period in Situation (c) after Situation (b) has occurred, as no other follower
of L may intersect I. After Situation (c) occurs, the number of followers of L does not increase in Situation
(c) again during this period, as no other follower of L may intersect I. Thus, at most 2 followers are added
to L in each period. As the first scanned interval is optional, Property 3 bounds the number of periods by
2k. Thus, L has at most 4k followers.

As, by Claim 1, every interval of I∗ is either a leader or a follower of at least one leader, Lemmas 4 and 5
imply that I∗ has O(k2) intervals, and thus |X∗| = O(k2). Because of Reduction Rule Red-Dom, every
value in D∗ is the right endpoint and the left endpoint of some interval, and thus, |D∗| = O(k2).

This bounds the kernel size, and we will now show that the algorithm can be implemented to run in
linear time. First, using a counting sort algorithm with satellite data (see, e.g., [20]), the initial sorting of
the n + k intervals can be done in time O(n + |D| + k). To facilitate the application of Red-⊆, counting
sort is used a second time to also sort by increasing left endpoint the sets of intervals with coinciding right
endpoint. An optimized implementation applies Red-⊆, Red-Dom and Red-Unit simultaneously in one
pass through the intervals, as one rule might trigger another. To guarantee a linear running time for the
scan-and-merge phase of the algorithm, only the first follower of a leader stores a pointer to the leader; all
other followers store a pointer to the previous follower. This proves Theorem 8.
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