
Backdoors to q-Horn

Serge Gaspers1, Sebastian Ordyniak2, M. S. Ramanujan3, Saket

Saurabh3, and Stefan Szeider4

1 The University of New South Wales and National ICT Australia

sergeg@cse.unsw.edu.au

2 Masaryk University, Brno

sordyniak@gmail.com

3 The Institute of Mathematical Sciences, Chennai

{msramanujan | saket}@imsc.res.in

4 Institute of Information Systems, Vienna University of Technology

stefan@szeider.net

Abstract

The class q-Horn, introduced by Boros, Crama and Hammer in 1990, is one of the largest known

classes of propositional CNF formulas for which satis�ability can be decided in polynomial time.

This class properly contains the fundamental classes of Horn and Krom formulas as well as the

class of renamable (or disguised) Horn formulas. In this paper we extend this class so that its

favorable algorithmic properties can be made accessible to formulas that are outside but �close� to

this class. We show that deciding satis�ability is �xed-parameter tractable parameterized by the

distance of the given formula from q-Horn. The distance is measured by the smallest number of

variables that we need to delete from the formula in order to get a q-Horn formula, i.e., the size of a

smallest deletion backdoor set into the class q-Horn. This result generalizes known �xed-parameter

tractability results for satis�ability decision with respect to the parameters distance from Horn,

Krom, and renamable Horn.

1998 ACM Subject Classi�cation G.2.1, F.2.2

Keywords and phrases Algorithms and data structures. Backdoor sets. Satis�ability. Fixed Pa-

rameter Tractability.

Digital Object Identi�er 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The satis�ability problem (SAT) is a well-known fundamental problem in Computer Sci-

ence [3]. Many hard combinatorial problems including problems from the domains of hard-

ware and software veri�cation, Arti�cial Intelligence, planning and scheduling can be en-

coded as SAT instances [2, 4, 15, 17, 23]. However, the problem is known to be NP-hard

and thus we cannot hope to solve it polynomial time [7]. In spite of this, over the last

two decades, SAT-solvers have become quite successful in solving formulas with hundreds

of thousands of variables that encode problems arising from various application areas (see,

e.g., [14]), but theoretical performance guarantees are far from explaining this empirically

observed e�ciency. In fact, there is an enormous gap between theory and practice.

The discrepancy between theory and practice can be potentially explained by the pres-

ence of a certain �hidden structure� in real-world problem instances. One such �hidden

structure� in real-world instances of SAT is the presence of small backdoor sets [24]. There

are three variants of backdoor sets with respect to a particular base class C of polynomial-

time decidable CNF formulas: strong C-backdoor sets, where for each truth assignment to

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

the backdoor variables, the reduced formula belongs to C; deletion C-backdoor sets, where
deleting all backdoor variables and their negations from the formula moves the formula into

the base class C; and weak backdoor sets where, for at least one truth assignment to the

backdoor variables, the reduced formula belongs to C and is satis�able. Given a backdoor

set of a formula with respect to a particular tractable base class C, the satis�ability of the

formula can be decided by guessing an assignment to the variables in the backdoor set and

deciding the satis�ability of the reduced formula, which is guaranteed to be in C, using a

sub-solver for C. An equivalent view of this is to consider the size of the backdoor set to

be the �distance� of the formula from the class C. The objective is to extend the favorable

algorithmic properties of the class C to formulas which are �close� to this class. Ideally, we

would want the class C to be as large as possible.

In a 1990 paper [5], Boros, Crama and Hammer introduced an interesting class of CNF

formulas, later called q-Horn [6], with favorable algorithmic properties: both recognition as

well as satis�ability decision of q-Horn formulas can be carried out in linear-time [5, 6]. This

class q-Horn properly contains the fundamental classes of Horn and Krom formulas [22], and

the class of renamable (or disguised) Horn formulas [16, 1]:

Horn (renamableHorn (q-Horn) Krom.

The fact that this class is so large serves as an additional motivation for choosing it as our

base class of interest. In this paper, we study the problem of �nding small backdoor sets

with respect to the class of q-Horn formulas and obtain algorithmic as well as hardness

results.

Contribution The main contribution of this paper is an algorithm that, given a CNF

formula F of length ` with n variables and an integer k ≥ 0, runs in time O(6kk`n), and

either returns a deletion q-Horn-backdoor set for F of size at most k2 + k, or concludes

correctly that no such set of size at most k exists. As a consequence, we obtain that SAT is

�xed-parameter tractable with the size of the smallest deletion q-Horn-backdoor set as the

parameter, as we can use this algorithm to reduce the satis�ability problem of a CNF formula

F of distance k from being q-Horn to testing the sats�ability of 2O(k2)-many q-Horn formulas.

Our result simultaneously generalizes the known �xed-parameter tractability results for SAT

parameterized by the deletion distance from the class of renamable Horn formulas [20] and

from the class of Krom formulas [19].

At the highest level, our algorithm works by �nding a bounded number of variables

whose deletion results in an instance with an optimal solution strictly smaller than that

of the original instance. By repeatedly computing such a set and deleting it, we obtain

the approximate solution. The main technical part of the paper is the algorithm to com-

pute the bounded set of variables with the required properties. This algorithm relies on a

characterization of q-Horn formulas in terms of their quadratic cover by Boros, Hammer,

and Sun [6]. We use this characterization to model the problem of �nding a small deletion

q-Horn-backdoor set as a problem of hitting certain types of paths in an auxiliary digraph

related to the formula. Using this characterization, we show that if we are guaranteed that

an optimal solution hits all paths between a carefully chosen pair of vertices in this digraph,

then we can compute in polynomial time a set of variables whose size is bounded by some

f(k) such that (a) there is a minimal (though not necessarily optimal) solution containing

these variables and (b) deletion of these variables results in a formula whose solution is

strictly smaller than the solution for the formula we started with. A standout feature of

our algorithm is that at its core, it reduces to computing �ows in a directed graph whose

size is linear in the input size. As a result, our algorithm is quite e�cient not only with

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

respect to the dependence of the running time on the parameter, but also with respect to

the dependence on the input size, along with having only a small hidden constant factor in

the asymptotic running time. Finally, towards the end of the paper we also provide param-

eterized complexity results regarding the detection of weak and strong backdoor sets with

respect to the class q-Horn.

Related Work The parameterized complexity of �nding small backdoor sets was initiated

by Nishimura et al. [19] who showed that for the base classes of Horn formulas and Krom

formulas, the detection of strong backdoor sets is �xed-parameter tractable. Their algo-

rithms exploit the fact that for these two base classes, strong and deletion backdoor sets

coincide, and that deletion backdoor sets with respect to Horn and Krom can be character-

ized in terms of vertex covers and hitting sets of certain graphs and 3-uniform hypergraphs

associated with the input formula, respectively. For base classes other than Horn and Krom,

strong backdoor sets can be much smaller than deletion backdoor sets, and their detection

is more di�cult. In particular, for the base classes of renamable Horn and q-Horn, there are

formulas that have a strong backdoor set of size 1 but require an arbitrarily large deletion

backdoor set. In fact, Razgon and O'Sullivan [20] showed that the detection of deletion

backdoor sets with respect to the base class renamable Horn is �xed-parameter tractable

although the detection of strong backdoor sets is W[2]-hard [13]. For more recent results,

the reader is referred to a survey on the parameterized complexity of backdoor sets [13].

2 Preliminaries

Formulas We assume an in�nite supply of propositional variables. A literal is a variable x

or a negated variable x̄; if y = x or y = x̄ is a literal for some variable x, then we write ȳ to

denote x̄ or x, respectively. For a set S of literals we put S̄ = { x̄ : x ∈ S }; S is consistent if

S ∩ S̄ = ∅. A clause is a �nite consistent set of literals; we consider a clause as a disjunction

of its literals. A �nite set of clauses is a CNF formula (or formula, for short); we consider a

formula to be the conjunction of its clauses. A formula is Horn if each of its clauses contains

at most one positive literal, a formula is Krom (or 2CNF, or quadratic) if each clause contains

at most two literals. A variable x occurs in a clause C if x ∈ C ∪ C̄; var(C) denotes the set

of variables which occur in C. For a set X of variables, lit(X) denotes the set of literals of

the variables in X, that is, lit(X) = X ∪ X̄ and for a set L of literals, var(L) denotes the

set of variables whose literals are in L, that is, var(L) = {x : x ∈ L or x̄ ∈ L }. A variable x

occurs in a formula F if it occurs in one of its clauses, and we let var(F) =
⋃

C∈F var(C) and

lit(F) = var(F) ∪ var(F). The length of a CNF formula F , denoted by ‖F‖, is de�ned as∑
C∈F |C|. If F is a formula and X a set of variables, then we denote by F −X the formula

obtained from F after removing all literals in lit(X) from the clauses in F . If X = {x} we
simply write F − x instead of F − {x}.

Let F be a formula and X ⊆ var(F). A truth assignment is a mapping τ : X → { 0, 1 }
de�ned on some set X of variables; we write var(τ) = X. For x ∈ var(τ) we de�ne τ(x̄) =

1 − τ(x). For a truth assignment τ and a formula F , we de�ne F [τ] = {C \ τ−1(0) : C ∈
F, C ∩ τ−1(1) = ∅ }, i.e., F [τ] denotes the result of instantiating variables according to τ

and applying the usual simpli�cations, i.e., removing clauses that are satis�ed by τ and

removing unsatis�ed literals from clauses. A truth assignment τ satis�es a clause C if C

contains some literal x with τ(x) = 1; τ satis�es a formula F if it satis�es all clauses of F . A

formula is satis�able if it is satis�ed by some truth assignment; otherwise it is unsatis�able.

The Satisfiability (SAT) problem asks whether a given CNF formula is satis�able.

Parameterized Complexity An instance of a parameterized problem is a pair (I, k) where I

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

is the main part and k is the parameter ; the latter is usually a non-negative integer. A

parameterized problem is �xed-parameter tractable if there exist a computable function f

and a constant c such that instances (I, k) can be solved in time O(f(k)‖I‖c) where ‖I‖
denotes the size of I. FPT is the class of all �xed-parameter tractable decision problems

and algorithms which run in the time speci�ed above are called FPT algorithms.

An FPT-reduction is a many-one reduction where the parameter for one problem maps

into the parameter for the other. More speci�cally, given two parameterized decision prob-

lems L and L′, problem L reduces to problem L′ if there is a mapping R from instances of L

to instances of L′ such that (i) (I, k) is a yes-instance of L if and only if (I ′, k′) = R(I, k) is

a yes-instance of L′, (ii) k′ ≤ g(k) for a computable function g, and (iii) R can be computed

in time O(f(k)‖I‖c) where f is a computable function and c is a constant.

The Weft Hierarchy consists of parameterized complexity classes W[1] ⊆ W[2] ⊆ · · ·
which are de�ned as the closure of certain parameterized problems under FPT-reductions

(see [9, 11] for de�nitions). There is strong theoretical evidence that parameterized problems

that are hard for classes W[i] are not �xed-parameter tractable. For example FPT = W[1]

implies that the Exponential Time Hypothesis (ETH) fails; that is, FPT = W[1] implies the

existence of a 2o(n) algorithm for n-variable 3SAT [11].

An FPT-approximation algorithm with ratio ρ for a minimization problem P is an FPT

algorithm that, given an instance x of P and a positive integer k, either determines that there

is no solution of size at most k or computes a solution of size at most kρ(k) (see, e.g., [10]).

The de�nition can be adapted to maximization problems. Note that the approximation

ratio ρ is a function of k and not the input size: intuitively, if k is small, then kρ(k) can

be still considered small. We say that a problem is FPT-approximable if it has an FPT-

approximation algorithm for some function ρ.

Backdoors Here, we introduce the basic terminology for backdoors and the class of q-Horn

formulas. For further information on backdoors and other tractable base classes of Satis-

fiability we refer the reader to [13].

Backdoors are de�ned with respect to a �xed class C of CNF formulas, the base class

(or target class, or more �guratively, island of tractability). We say a class C of formulas is

clause-induced if it is closed under subsets, i.e., if F ∈ C implies F ′ ∈ C for each F ′ ⊆ F .
A strong C-backdoor set of a CNF formula F is a set B of variables such that F [τ] ∈ C

for each assignment τ : B → {0, 1}. A weak C-backdoor set of F is a set B of variables

such that F [τ] is satis�able and F [τ] ∈ C holds for some assignment τ : B → {0, 1}. A

deletion C-backdoor set of F is a set B of variables such that F − B ∈ C. Backdoor sets

where independently introduced by Crama et al. [8] and by Williams et al. [24], the latter

authors coined the term �backdoor�.

If we know a strong C-backdoor set of F of size k, we can reduce the satis�ability of F to

the satis�ability of 2k formulas in C. Thus SAT becomes �xed-parameter tractable with k

as the parameter. If we know a weak C-backdoor set of F , then F is clearly satis�able,

and we can verify it by trying for each τ ∈ 2k whether F [τ] is in C and satis�able. If C
is clause-induced, every deletion C-backdoor set of F is a strong C-backdoor set of F . For

several base classes, deletion backdoor sets are of interest because they are easier to detect

than strong backdoor sets. The challenging problem is to �nd a strong, weak, or deletion

C-backdoor set of size at most k if it exists. For each class C of CNF formulas, the various

backdoor detection problems are de�ned as follows.

Deletion C-Backdoor Set Detection Parameter: k

Input: A CNF formula F and a positive integer k

Question: Does F have a deletion C-backdoor set of size at most k?

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

q-Horn Formulas In this paper we are mainly interested in the class of q-Horn formulas [5,

6]. A CNF formula F is in this class if there is a certifying function β : var(F) ∪ var(F)→
{0, 12 , 1} with β(x) = 1−β(x̄) for every x ∈ var(F) such that

∑
l∈C β(l) ≤ 1 for every clause

C of F .

In the following sense, strong q-Horn-backdoor sets are more general than deletion

q-Horn-backdoor sets: For every positive integer n there is a formula Fn such that Fn

has a strong q-Horn-backdoor set of size 1 but every deletion q-Horn-backdoor set of F has

size at least n. To see this, take for instance F =
⋃

1≤i≤n{{xi, yi, zi, a}, {x̄i, ȳi, z̄i, ā}}. Evi-
dently, {a} is a strong q-Horn-backdoor set of F . However, every deletion q-Horn-backdoor

set of F must contain at least one variable xi, yi, or zi for every 1 ≤ i ≤ n.

3 FPT-approximation for Deletion q-Horn Backdoor Set

Detection

In this section we prove our main result:

I Theorem 1. There is an algorithm that, given an instance (F, k) of Deletion q-Horn

Backdoor Set Detection, runs in time O(6kk`n) and either correctly concludes that F

has no deletion q-Horn-backdoor set of size at most k or returns a deletion q-Horn-backdoor

set of F of size at most k2 + k, where ` is the length of F and n is the number of variables

in F .

3.1 Quadratic covers, implication graphs and separators

In this subsection we give some de�nitions regarding quadratic covers, implication graphs

and separators in implication graphs, which will be required for the description of our algo-

rithm. The following de�nition of the quadratic cover of a CNF formula was used Boros et

al. [6] to give a linear time algorithm to recognize q-Horn formulas.

I De�nition 2. Given a CNF formula F , the quadratic cover of F , is a Krom formula

denoted by F2 and is de�ned as follows. Let x1, . . . , xn be the variables of F . For every

clause C, we have |C| − 1 new variables yC1 , . . . , y
C
|C|−1. We order the literals in each clause

according to their variables, that is, a literal of xi will occur before a literal of xj if i < j.

Let lC1 , . . . , l
C
|C| be the literals of the clause C in this order. The quadratic cover is de�ned

as

F2 =
⋃

C∈F
⋃

1≤i≤|C|−1{{lCi , yCi }, {ȳCi , lCi+1}} ∪
⋃

C∈F
⋃

1≤i≤|C|−2{{ȳCi , yCi+1}}.

I De�nition 3. Given a CNF formula F , the implication graph of F2 is denoted by

D(F2) and de�ned as follows. The vertex set of the graph is the set of literals of F2 and

for every clause {l1, l2} in F2, we have arcs (l̄1, l2) and (l̄2, l1). We refer to the vertices of

the implication graph as literals since there is a one to one correspondence between the two.

Given a set X ⊆ var(F) of variables, we de�ne the graph D(F2)−X as the graph obtained

from D(F2) by deleting lit(X).

The following observations are direct consequences of the de�nition of an implication graph.

I Observation 1. Let F be a CNF formula of length `.

(a) If there is a path from l1 to l2 in D(F2), then there is also a path from l̄2 to l̄1 in D(F2).

(b) The number of arcs in D(F2) is O(`).

(c) Let C = {l1, . . . , lr} be a clause of F . Then, for any 1 ≤ i < j ≤ r, D(F2) contains a

path from l̄i to lj and from l̄j to li whose internal vertices are all disjoint from lit(F).

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

(d) Let X ⊆ var(F) and F ′ = F −X. Then, for any literal l ∈ lit(F) \ lit(X), there is a

path from l to l̄ in D(F ′2) if and only if there is a path from l to l̄ in D(F2)−X.

I De�nition 4. Given a CNF formula F and a set L of literals of F , we denote by N+
F (L)

the set of literals in lit(F) \ L which can be reached from L in D(F2) via a path whose

internal vertices are disjoint from lit(F).

I De�nition 5. ([6]) Given a CNF formula F , de�ne a canonical function β̂ : lit(F) →
{0, 12 , 1} as follows. Consider a topological ordering π of the strongly connected components

of D(F2). For every literal l ∈ lit(F) such that the strongly connected component containing

l appears before the one containing l̄ in π, set β̂(l) = 1 and for every literal l such that the

strongly connected component containing l also contains l̄, set β̂(l) = 1
2 .

I Lemma 6. ([6]) A CNF formula F is q-Horn if and only if the function β̂ de�ned above

is a certifying function for F .

I De�nition 7. A clause C of a given CNF formula is called a violating clause if∑
l∈C β̂(l) > 1. Any three literals l1, l2, l3 of a violating clause such that

∑3
i=1 β̂(li) > 1

form a violating triple.

I Lemma 8. Let F be a CNF formula of length ` and suppose that F is not a q-Horn

formula. Any violating clause of F has a violating triple lying entirely inside a strongly

connected component of D(F2) and we can compute such a violating triple in time O(`).

Because of space constraints we omit the easy proof of this lemma.

We now move on to some de�nitions on separators in implication graphs which will be

required in the description of our algorithm.

I De�nition 9. Let F be a CNF formula and L ⊆ lit(F) be a consistent set of literals. We

say that a set J ⊆ lit(F) is an L-L̄ separator if J is disjoint from L and L̄ and there is no

path from L to L̄ in the graph D(F2)−J . We say that J is a minimal L-L̄ separator if no

proper subset of J is an L-L̄ separator.

I De�nition 10. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and

let X be a set of variables of F . We call X an L-L̄ variable separator if lit(X) is an L-L̄

separator. We call X a minimal L-L̄ variable separator if no proper subset of X is an L-L̄

variable separator. We drop the word variable if it is clear from the context that the set we

are dealing with is a set of variables.

I De�nition 11. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and

X be an L-L̄ variable separator. We denote by R(L,X) the set of literals of F that can be

reached from L via directed paths in D(F2)−X, and we denote by R̄(L,X) the set of literals

of F which have a directed path to L in D(F2)−X.

We also require the following observation.

I Observation 2. Let F be a CNF formula, L ⊆ lit(F) be a consistent set of literals and X

be an L-L̄ variable separator. Then, the sets R(L,X) and R̄(L̄,X) are also consistent and

in fact complements of each other.

3.2 The algorithm

We begin with the following simple lemma.

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

I Lemma 12. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection.

Let (l1, l2, l3) be a violating triple in a strongly connected component of D(F2) and X be

a solution for the given instance disjoint from {var(l1), var(l2), var(l3)}. Then, for some

1 ≤ i ≤ 3, X is an li-l̄i separator in D(F2).

Proof. Let β̂′ be the canonical certifying function for F ′ = F −X obtained from the graph

D(F ′2). We claim that there is an 1 ≤ i ≤ 3 such that β̂′(li) = 0. This is true since F ′

contains a clause with all three literals l1, l2 and l3 and it cannot be the case that any

certifying function sets non zero values to all three. By de�nition of β̂′, β̂′(li) = 0 implies

that there is no path from li to l̄i in the graph D(F ′2). If X were not an li-l̄i separator in

D(F2), then D(F ′2) would also contain an li-l̄i path (by Observation 1(d)), a contradiction.

This completes the proof of the lemma. J

Lemma 8 combined with Lemma 12 allows us to compute in linear time, a set of three literals

such that for every solution X one of the three corresponding variables is part of X or for

at least one of these literals, say l, there is a path from l to l̄ in D(F2) and X an l-l̄ variable

separator in D(F2).

I Lemma 13. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection

and X be a solution such that it is disjoint from var(l) and is an l-l̄ separator for some literal

l ∈ lit(F). Consider an l-l̄ variable separator X ′. Let X ′′ be the set of variables of X with

a literal in R(l,X ′). Then, the set X̃ = (X \X ′′) ∪X ′ is also a deletion q-Horn-backdoor

set for the given instance.

Proof. Let F ′ = F − X and F̃ = F − X̃. If X̃ were not a deletion q-Horn-backdoor set,

then there is a violating clause in F̃ and by Lemma 8, there is a violating triple (l1, l2, l3)

in a strongly connected component of D(F̃2). This implies the presence of a closed walk in

D(F̃2) containing all the literals of the violating triple and their complements (by Lemma 8).

Since X was a solution, this closed walk could not have survived in D(F ′2) and hence must

contain a literal of a variable in X \ X̃. Recall that the only variables of X that are not in X̃

are those in X ′′. Let p be a literal on this closed walk which corresponds to such a variable,

that is, var(p) ∈ X ′′. On the other hand, by de�nition, the literals of the variables in X ′′

can either reach l̄ or be reached from l in D(F̃2), that is, they must lie in R(l, X̃) or R̄(l̄, X̃).

Combining this path along with the closed walk and the fact that D(F̃2) is an implication

graph implies the presence of a path from l to l̄ in D(F̃2). However, by construction, X̃ is

also an l-l̄ separator in D(F2). Observation 1(d) implies that this is a contradiction. This

completes the proof of the lemma. J

I Lemma 14. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detection

where F is a CNF formula of length `, with n variables. Let X be a solution to the given

instance and let l be a literal of F such that there is an l-l̄ path in D(F2). Furthermore,

suppose that X is an l-l̄ variable separator. Then, there is an algorithm that, given F , k

and l, runs in time O(k`n) and either concludes correctly that there is no k-sized l-l̄ variable

separator in D(F2) or returns an l-l̄ variable separator X ′ of size at most 2k such that

(X ′ ∪ var(R(l,X ′))) ∩X is non-empty

Proof. We show that Algorithm 3.1 has the stated properties. The algorithm computes an

l-l̄ variable separator X ′ which essentially maximizes the set of literals of D(F2) reachable

from l after removing X ′. We will then show that such a separator indeed has the required

properties.

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Input : A tuple (F, k, l) where F is a CNF formula, k a positive integer and l a literal of F

Output: No provided that D(F2) has no l-l̄ variable separator of size at most k, or an l-l̄

variable separator S of size at most 2k such that (S ∪ var(R(l, S))) has non-empty

intersection with some minimum deletion q-Horn-backdoor set

1 if there is an l-l̄ separator of size at most 2k in D(F2) then

2 S ← such a separator

3 end

4 else return No

5 L← R(l, var(S)) // L is consistent by Observation 2

6 while there is an L ∪ {l′}-L̄ ∪ {l̄′} separator of size at most 2k where

l′ ∈ (lit(var(S)) ∩N+
F (L)) is an arbitrarily chosen such literal do

7 S ← such a separator

8 L← R(L, var(S))

9 end

10 return var(S)

Algorithm 3.1: Algorithm COMPUTE-SEPARATOR

If it the algorithm returns No in Line 4, then D(F2) has no l-l̄ variable separator of

size at most k. Let S be the minimal separator in D(F2) which was computed in the

penultimate iteration of the while loop. We claim that X ′ = var(S) satis�es the conditions

in the statement of the lemma. Clearly, it must be the case that for some choice of a literal

l′ in lit(var(S)) ∩N+
F (L), the next iteration of the loop could not �nd an L ∪ {l′}-L̄ ∪ {l̄′}

separator of size at most 2k.

Suppose that (X ′ ∪ var(R(l,X ′))) ∩X is empty. Recall that when the procedure stops,

L = R(l,X ′). Furthermore, if there is at least one path from l to l̄ in D(F2) then it

must be the case that lit(var(S)) ∩ N+
F (L) is non-empty. Since X is an l-l̄ separator and

disjoint from L, X is also an L-L̄ separator. Since X is also disjoint from X ′, for any

l′ ∈ lit(var(S)) ∩N+
F (L), X intersects all paths from L ∪ {l′} to L̄ ∪ {l̄′}. Hence, lit(X) is a

set of size at most 2k which intersects all L ∪ {l′}-L̄ ∪ {l̄′} paths, which is a contradiction.

Therefore, the set (X ′ ∪ var(R(l,X ′)))∩X is non-empty for any l-l̄ variable separator X of

size at most k.

To bound the running time, observe that in each iteration, we only need to test if there

is an L-L̄ separator of size at most 2k. Hence, it su�ces for us to run the Ford-Fulkerson

algorithm [12] for at most 2k steps on the graph D(F2) and the number of iterations is

bounded by the number of variables in the formula since in each iteration, we add a literal

to L. Since the number of arcs in D(F2) is O(`) (Observation 1(b)), the claimed time bound

follows. This completes the proof of the lemma. J

I Lemma 15. Let (F, k) be an instance of Deletion q-Horn Backdoor Set Detec-

tion and let l be a literal of F disjoint from a solution X and suppose that X is an l-l̄

variable separator in D(F2). Consider an l-l̄ variable separator in D(F2), X
′, such that

(X ′∪var(R(l,X ′)))∩X is non-empty. Then, the instance F−X ′ has a deletion q-Horn-back-

door set of size at most |X| − 1.

Proof. By Lemma 13, we know that the set X̂ = (X\X ′′)∪X ′ is a deletion q-Horn-backdoor
set. Hence, X \ (X ′′ ∪X ′) is indeed a deletion q-Horn-backdoor set for the instance F −X ′.
Since (X ′ ∪ X ′′) ∩ X is non-empty, the size of X \ (X ′′ ∪ X ′) is at most |X| − 1. This

completes the proof of the lemma. J

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Input : A CNF formula F of length ` with n variables, integer k

Output: Either no solution of size at most k or a solution of size at most k2 + k for the

instance (F, k) of Deletion q-Horn Backdoor Set Detection

1 if k < 0 then return No

2 check for a violating clause by computing D(F2) and a topological ordering of D(F2)

3 if there is no violating clause then return ∅
4 Compute a violating triple (l1, l2, l3)

5 for l = l1, l2, l3 do

6 S1 ← DELETION-QHORN-BSD(F − {var(l)}, k − 1)

7 if S1 is not No then return S1 ∪ {var(l)}
8 end

9 for l = l1, l2, l3 do

10 S ← COMPUTE-SEPARATOR(F, k, l)

11 if S is No then return No else

12 S1 ← DELETION-QHORN-BSD(F − {S}, k − 1)

13 end

14 if S1 is not No then return S1 ∪ {S}
15 end

16 return No

Algorithm 3.2: Algorithm DELETION-QHORN-BSD

Lemmas 14 and 15 allow us to compute a bounded set of variables whose deletion from the

formula results in an instance that has a solution which is strictly smaller than any solution

of the input instance. This completes the formalization of our ideas and we are now ready

to prove Theorem 1 by describing our algorithm for Deletion q-Horn Backdoor Set

Detection.

Description of the Algorithm Algorithm 3.2 checks whether there is a violating triple

and if so, computes one and in the �rst 3 branches, it adds the variable corresponding to

each of the literals of the violating triple to the solution, deletes it from the formula and

recurses on the resulting instance with a budget of k − 1. In each of the next 3 branches, it

picks a literal of the violating triple and continues by assuming that this literal is assigned

0 by a certifying function of F − X where X is a solution. We know that there must be

at least one such literal (see the proof of Lemma 12) in the violating triple. This implies

that X is an l-l̄ separator for the literal l in the violating triple which is assigned 0 by a

certifying function of F−X. Finally, Lemma 14 is used to either conclude that there is no l-l̄

variable separator of size at most k in which case the algorithm returns No, or to compute

an l-l̄ variable separator of size at most 2k with the required properties. The variables in

X ′ are added to our proposed approximate solution and deleted from the formula, and the

algorithm recurses on the resulting instance with a budget of k − 1.

Analysis Since Steps 2, 4, and 10 at any node of the search tree take time O(k`n) and we

have a 6-way branching at each node of the search tree with the budget k dropping by 1

in each branch, the algorithm clearly runs in the claimed time bound. Therefore, it only

remains for us to prove the correctness of the algorithm. Let X be a solution for the given

instance and let β be a certifying function for F − X. We prove the correctness of the

algorithm by induction on k.

In the base case, when k = 0, the algorithm is correct by Lemma 6. We assume as

induction hypothesis that the algorithm is correct for all values of k up to some k′−1 where

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

k′ − 1 > 0. We now consider the case when k = k′.

In Lines 5�8, we consider the case when X intersects the set {var(l1), var(l2), var(l3)} and
branch accordingly. Applying the induction hypothesis, the size of any returned solution

in a subsequent recursive call is at most (k − 1)2 + (k − 1). Hence, the size of a solution

returned here is bounded by 1 + (k − 1)2 + (k − 1) ≤ k2 + k.

In Lines 9�15, we consider the case when X is disjoint from the set of variables corre-

sponding to l1, l2 and l3. Since l1, l2, l3 lie in the same clause and none of their corresponding

variables are in X, by Lemma 12, X is an li-l̄i separator for at least one of the literals li.

Let us assume that this literal is l1. In Line 10, we apply Lemma 14 to compute an l1-l̄1
separator S of size at most 2k and add it to the solution we are constructing. By Lemma 15,

we know that there is a solution for the instance F − S of size at most |X| − 1. Hence, by

the induction hypothesis, we obtain a solution of size at most (k − 1)2 + (k − 1) from the

subsequent recursive call and adding to it the set S of size at most 2k results in a solution

of size at most k2 + k, which proves the correctness of the algorithm, completing the proof

of Theorem 1.

In order to test the satis�ability of a given CNF formula F , it su�ces to �rst compute a

smallest deletion q-Horn-backdoor set of F and for each assignment to this set, test the

satis�ability of the reduced formula which is q-Horn. Since testing satis�ability of a q-Horn

formula is linear time [5], Theorem 1 has the following corollary.

I Corollary 16. There is an algorithm that, given a formula F of length ` with n variables,

runs in time 2O(k2)`n and decides the satis�ability of F , where k is the size of the smallest

deletion q-Horn-backdoor set of F .

4 Hardness

In this section we show that there is no FPT algorithm for Strong q-Horn-backdoor Set

Detection or Weak q-Horn-backdoor Set Detection unless FPT=W[2]. In order to

show this, we begin from the following problem, which is well-known to be W[2]-complete [9].

Hitting Set Parameter: k

Input: A set E of elements, a family S of �nite subsets of E, and an integer k > 0.

Question: Does S have a hitting set, i.e., a subset H of E such that H ∩ S 6= ∅ for
every S ∈ S, of size at most k?

I Theorem 17. Strong q-Horn-backdoor Set Detection is W[2]-hard.

Proof. We prove the theorem via an FPT-reduction from Hitting Set. Let (E,S, k) be

an instance of Hitting Set. We construct a formula F that has a strong q-Horn-backdoor

set of size at most k if and only if S has a hitting set of size at most k. The formula F has

two clauses P i
S = S∪{xi, yi, zi} and N i

S = Ē∪{x̄i, ȳi, z̄i} for every S ∈ S and 1 ≤ i ≤ k+1.

Note that var(F) = E ∪ {xi, yi, zi : 1 ≤ i ≤ k + 1 }. Furthermore, for any S and for any

1 ≤ i ≤ k + 1, the formula comprising the two clauses P i
S and N i

S is clearly not q-Horn. It

is not hard to verify that S has a hitting set of size at most k if and only if F has a strong

q-Horn-backdoor set of size at most k. J

I Theorem 18. Weak q-Horn-backdoor Set Detection is W[2]-hard, even for 3-CNF

formulas.

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

Proof. We prove the theorem via an FPT-reduction from Hitting Set. Let (E,S, k) be an

instance of Hitting Set. We construct a 3-CNF formula F that has a weak q-Horn-back-

door set of size at most k if and only if S has a hitting set of size at most k. For ev-

ery S ∈ S with S = {s1, . . . , s|S|}, every 1 ≤ i ≤ |S|, and every 1 ≤ j ≤ k + 1 the

formula F contains the clauses {zji (S), s̄i, z̄
j
i+1(S)}, {z̄j1(S), zj|S|+1(S)}, {z̄j1(S), z̄j|S|+1(S)},

{zj1(S), zj|S|+1(S)}, {zj|S|+1(S), aj(S), bj(S)}, and {āj(S), b̄j(S)}. Note that var(F) = E ∪
{ zji (S) : S ∈ S and 1 ≤ i ≤ |S| + 1 and 1 ≤ j ≤ k + 1 } ∪ { aj(S), bj(S) : S ∈ S and 1 ≤
j ≤ k + 1 }. Note furthermore that F is satis�able by the assignment τSAT that sets the

variables in { zj|S|+1(S), aj(S) : S ∈ S and 1 ≤ j ≤ k + 1 } to 1 and all other variables to 0.

It is not hard to verify that S has a hitting set of size at most k if and only if F has a weak

q-Horn-backdoor set of size at most k. J

It remains an open problem whether Strong q-Horn-backdoor Set Detection or

Weak q-Horn-backdoor Set Detection are FPT-approximable. However we note

that since the reductions used in the above theorems are parameter preserving, an FPT-

approximation algorithm for either of these problems would imply the existence of an FPT-

approximation algorithm for Hitting Set, which is an open problem [18].

5 Conclusions

In this paper we have developed an FPT-approximation algorithm for the detection of dele-

tion q-Horn-backdoor sets (Theorem 1). This renders SAT, parameterized by the deletion

distance from the class of q-Horn-formulas (i.e., the size of a smallest deletion q-Horn-back-

door set) �xed-parameter tractable (Corollary 16). Our result simultaneously generalizes the

known �xed-parameter tractability results for SAT parameterized by the deletion distance

from the class of renamable Horn formulas [20] and from the class of Krom formulas [19].

We would like to point out that our FPT-approximation algorithm is quite e�cient, and its

asymptotic running time does not include large hidden factors.

The deletion distance from q-Horn is incomparable with parameters for SAT based on

width measures such as the treewidth of the formula's primal, dual, or incidence graph [21].

This can be easily veri�ed, since one can de�ne q-Horn formulas where all of these width

parameters are arbitrarily large. Conversely, by adding to a formula variable-disjoint copies

of itself, we can make the deletion distance from q-Horn arbitrarily large, the width however

does not increase.

There are several interesting research questions that arise from our paper. First, it would

be interesting whether our algorithm can be strengthened to an exact FPT-algorithm for

the detection of deletion q-Horn-backdoor sets. It would also be interesting, whether the

W[2]-hardness of the detection of strong q-Horn-backdoor sets (Theorem 17) also holds if

the input formula is in 3CNF. Finally, our hardness results contribute additional attention

and signi�cance to the problem of whether the parameterized Hitting Set problem has an

FPT-approximation algorithm [18].

Acknowledgments

The authors acknowledge support from the OeAD (Austrian Indian collaboration grant,

IN13/2011). Serge Gaspers, Sebastian Ordyniak, and Stefan Szeider acknowledge support

from the European Research Council (COMPLEX REASON, 239962) and Serge Gaspers

acknowledges support from the Australian Research Council (DE120101761).

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

References

1 B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-time algorithm for testing the truth of

certain quanti�ed Boolean formulas. Information Processing Letters, 8(3):121�123, 1979.

2 A. Biere. Bounded model checking. In A. Biere, M. Heule, H. van Maaren, and T. Walsh,

editors, Handbook of Satis�ability, pages 457�481. IOS Press, 2009.

3 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satis�ability. IOS

Press, 2009.

4 P. Bjesse, T. Leonard, and A. Mokkedem. Finding bugs in an alpha microprocessor using

satis�ability solvers. In Proceedings CAV 2001, pages 454�464, 2001.

5 E. Boros, Y. Crama, and P. L. Hammer. Polynomial-time inference of all valid implications

for horn and related formulae. Ann. Math. Artif. Intell., 1:21�32, 1990.

6 E. Boros, P. L. Hammer, and X. Sun. Recognition of q-Horn formulae in linear time. Discr.

Appl. Math., 55(1):1�13, 1994.

7 S. A. Cook. The complexity of theorem-proving procedures. In Proc. 3rd Annual Symp. on

Theory of Computing, pages 151�158, Shaker Heights, Ohio, 1971.

8 Y. Crama, O. Ekin, and P. L. Hammer. Variable and term removal from Boolean formulae.

Discr. Appl. Math., 75(3):217�230, 1997.

9 R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in Computer

Science. Springer Verlag, New York, 1999.

10 R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation problems. In

Proceedings IWPEC 2006, volume 4169 of LNCS, pages 121�129. Springer Verlag, 2006.

11 J. Flum and M. Grohe. Parameterized Complexity Theory, Springer Verlag, Berlin, 2006.

12 L. R. Ford, Jr. and D. R. Fulkerson. Maximal �ow through a network. Canadian J. Math.,

8:399�404, 1956.

13 S. Gaspers and S. Szeider. Backdoors to satisfaction. In H. L. Bodlaender, R. Downey, F. V.

Fomin, and D. Marx, editors, The Multivariate Algorithmic Revolution and Beyond, volume

7370 of LNCS, pages 287�317. Springer Verlag, 2012.

14 C. P. Gomes, H. Kautz, A. Sabharwal, and B. Selman. Satis�ability solvers. In Handbook of

Knowledge Representation, volume 3 of Foundations of Arti�cial Intelligence, pages 89�134.

Elsevier, 2008.

15 H. A. Kautz and B. Selman. Planning as satis�ability. In Proceedings ECAI 1992, pages

359�363, 1992.

16 H. R. Lewis. Renaming a set of clauses as a Horn set. J. of the ACM, 25(1):134�135, Jan.

1978.

17 A. G. M. Prasad, A. Biere. A survey of recent advances in SAT-based formal veri�cation.

Software Tools for Technology Transfer, 7(2):156�173, 2005.

18 D. Marx. Can you beat treewidth? Theory of Computing, 6:85�112, 2010.

19 N. Nishimura, P. Ragde, and S. Szeider. Detecting backdoor sets with respect to Horn and

binary clauses. In Proceedings of SAT 2004, pages 96�103, 2004.

20 I. Razgon and B. O'Sullivan. Almost 2-SAT is �xed parameter tractable. J. of Computer and

System Sciences, 75(8):435�450, 2009.

21 M. Samer and S. Szeider. Algorithms for propositional model counting. J. Discrete Algorithms,

8(1):50�64, 2010.

22 T. J. Schaefer. The complexity of satis�ability problems. In Proceedings of STOC 1978),

pages 216�226. ACM, 1978.

23 M. N. Velev and R. E. Bryant. E�ective use of Boolean satis�ability procedures in the formal

veri�cation of superscalar and VLIW microprocessors. J. Symbolic Comput., 35(2):73�106,

2003.

24 R. Williams, C. Gomes, and B. Selman. Backdoors to typical case complexity. In Proceedings

of IJCAI 2003, pages 1173�1178. Morgan Kaufmann, 2003.

© Gaspers, Ordyniak, Ramanujan, Saurabh and Szeider;
licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics
Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

	Introduction
	Preliminaries
	FPT-approximation for Deletion q-Horn Backdoor Set Detection
	Quadratic covers, implication graphs and separators
	The algorithm

	Hardness
	Conclusions

