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eunjungkim78@gmail.com

Sebastian Ordyniak
Vienna University of Technology

ordyniak@kr.tuwien.ac.at

Saket Saurabh
The Institute of Mathematical Sciences

saket@imsc.res.in

Stefan Szeider
Vienna University of Technology

stefan@szeider.net

Abstract
Local Search is one of the fundamental approaches to combi-
natorial optimization and it is used throughout AI. Several lo-
cal search algorithms are based on searching the k-exchange
neighborhood. This is the set of solutions that can be obtained
from the current solution by exchanging at most k elements.
As a rule of thumb, the larger k is, the better are the chances
of finding an improved solution. However, for inputs of size
n, a naı̈ve brute-force search of the k-exchange neighborhood
requires nO(k) time, which is not practical even for very small
values of k.
Fellows et al. (IJCAI 2009) studied whether this brute-force
search is avoidable and gave positive and negative answers
for several combinatorial problems. They used the notion of
local search in a strict sense. That is, an improved solution
needs to be found in the k-exchange neighborhood even if a
global optimum can be found efficiently.
In this paper we consider a natural relaxation of local search,
called permissive local search (Marx and Schlotter, IWPEC
2009) and investigate whether it enhances the domain of
tractable inputs. We exemplify this approach on a fundamen-
tal combinatorial problem, VERTEX COVER. More precisely,
we show that for a class of inputs, finding an optimum is
hard, strict local search is hard, but permissive local search
is tractable.
We carry out this investigation in the framework of parame-
terized complexity.

Introduction
Local search is one of the most common approaches applied
in practice to solve hard optimization problems. It is used
as a subroutine in several kinds of heuristics, such as evolu-
tionary algorithms and hybrid heuristics that combine local
search and genetic algorithms. The history of employing lo-
cal search in combinatorial optimization and operations re-
search dates back to the 1950s with the first edge-exchange
algorithms for the traveling salesperson (Bock 1958; Croes
1958).
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In general, such algorithms start from a feasible solution
and iteratively try to improve the current solution. Local
search algorithms, also known as neighborhood search algo-
rithms, form a large class of improvement algorithms. To
perform local search, a problem specific neighborhood dis-
tance function is defined on the solution space and a better
solution is searched in the neighborhood of the current so-
lution. In particular, many local search algorithms are based
on searching the k-exchange neighborhood. This is the set
of solutions that can be obtained from the current solution
by exchanging at most k elements.

Most of the literature on local search is primarily devoted
to experimental studies of different heuristics. The theoreti-
cal study of local search has developed mainly in four direc-
tions.

The first direction is the study of performance guarantees
of local search, i.e., the quality of the solution (Alimonti
1995; 1997; Gupta and Tardos 2000; Khanna et al. 1998;
Papadimitriou and Steiglitz 1977). The second direction of
the theoretical work is on the asymptotic convergence of
local search in probabilistic settings, such as simulated an-
nealing (Aarts, Korst, and van Laarhoven 1997). The third
direction concerns the time required to reach a local opti-
mum. The fourth direction is concerned with so-called ker-
nelization techniques (Guo and Niedermeier 2007) for local
search, and aims at providing the basis for putting our theo-
retical results to work in practice.

In a recent paper by Fellows et al. (2009) another twist
in the study of local search has been taken with the goal of
answering the following natural question. Is there a faster
way of searching the k-exchange neighborhood than brute-
force? This question is important because the typical run-
ning time of a brute-force algorithm is nO(k), where n is the
input length. Such a running time becomes a real obstacle
in using k-exchange neighborhoods in practice even for very
small values of k. For many years most algorithms search-
ing an improved solution in the k-exchange neighborhood
had an nO(k) running time, creating the impression that this
cannot be done significantly faster than brute-force search.



But is there mathematical evidence for this common belief?
Or is it possible for some problems to search k-exchange
neighborhoods in time O(f(k)nc), where c is a small con-
stant, which can make local search much more powerful?

An appropriate tool to answer all these questions is pa-
rameterized complexity. In the parameterized complexity
framework, for decision problems with input size n, and a
parameter k, the goal is to design an algorithm with run-
ning time f(k)nO(1) , where f is a function of k alone.
Problems having such an algorithm are said to be fixed pa-
rameter tractable (FPT). There is also a theory of hard-
ness that allows us to identify parameterized problems that
are not amenable to such algorithms. The hardness hierar-
chy is represented by W [i] for i ≥ 1. The theory of pa-
rameterized complexity was developed by Downey and Fel-
lows (1999). For recent developments, see the book by Flum
and Grohe (2006).

In this paper we consider two variants of the local search
problem for the well-known VERTEX COVER problem, that
is, the strict and the permissive variant of local search (Marx
and Schlotter 2011; Krokhin and Marx). In the strict vari-
ant the task is to either determine that there is no better so-
lution in the k-exchange neighborhood, or to find a better
solution in the k-exchange neighborhood. In the permissive
variant, however, the task is to either determine that there
is no better solution in the k-exchange neighborhood, or to
find a better solution, which may or may not belong to the
k-exchange neighborhood. Thus, permissive local search
does not require the improved solution to belong to the local
neighborhood, but still requires that at least the local neigh-
borhood has been searched before abandoning the search.
It can therefore be seen as a natural relaxation of strict lo-
cal search with the potential to make local search applicable
to a wider range of problems or instances. Indeed, we will
present a class of instances for VERTEX COVER where strict
local search is W[1]-hard, but permissive loal search is FPT.

In heuristic local search, there is an abundance of tech-
niques, such as random restarts and large neighborhood
search, to escape local minima and boost the performance of
algorithms (Hoos and Stützle 2004). Permissive local search
is a specific way to escape the strictness of local search, but
allows a rigorous analysis and performance guarantees.

Relevant results. Recently, the parameterized complexity
of local search has gained more and more attention. Starting
with the first breakthrough in this area by Marx (2008) who
investigated the parameterized complexity of TSP, several
positive and negative results have been obtained in many ar-
eas of AI. For instance, the local search problem has already
been investigated for a variant of the feedback edge set prob-
lem (Khuller, Bhatia, and Pless 2003), for the problem of
finding a minimum weight assignment for a Boolean con-
straint satisfaction instance (Krokhin and Marx), for the sta-
ble marriage problem with ties (Marx and Schlotter 2011),
for combinatorial problems on graphs (Fellows et al. 2009),
for feedback arc set problem on tournaments (Fomin et al.
2010), for the satisfiability problem (Szeider 2011), and for
Bayesian network structure learning (Ordyniak and Szeider
2010).

Our results. We investigate local search for the funda-
mental VERTEX COVER problem. This well-known combi-
natorial optimization problem has many applications (Abu-
Khzam et al. 2004; Gomes et al. 2006) and is closely re-
lated to two other classic problems, INDEPENDENT SET and
CLIQUE. All our results for VERTEX COVER also hold for
the INDEPENDENT SET problem, and for the CLIQUE prob-
lem on the complement graph classes.

• We give the first compelling evidence that it is possible
to enhance the tractability of local search problems if per-
missive local search is considered instead of strict local
search. Indeed, the permissive variant allows us to solve
the local search problem for VERTEX COVER for a sig-
nificantly larger class of sparse graphs than strict local
search.

• We show that the strict local search VERTEX COVER
problem remains W [1]-hard for special sparse instances,
improving a result from Fellows et al. (2009). On the way
to this result we introduce a size-restricted version of a
Hall set problem which be believe to be interesting in its
own right.

• We answer a question of Krokhin and Marx in the affir-
mative, who asked whether there was a problem where
finding the optimum is hard, strict local search is hard,
but permissive local search is FPT.

Preliminaries
The distance between two sets S1 and S2 is dist(S1, S2) =
|S1 ∪ S2| − |S1 ∩ S2|. We say that S1 is in the k-exchange
neighborhood of S2 if dist(S1, S2) ≤ k. If we consider a
universe V with S1, S2 ⊆ V , the characteristic functions
of S1 and S2 with respect to V are at Hamming distance at
most k if dist(S1, S2) ≤ k.

All graphs considered in this paper are finite, undirected,
and simple. Let G = (V,E) be a graph, S ⊆ V be a ver-
tex set, and u, v ∈ V be vertices. The distance dist(u, v)
between u and v is the minimum number of edges on a path
from u to v in G. The (open) neighborhood of v is N(v) =
{u ∈ V | uv ∈ E }, i.e., the vertices at distance one from
v, and its closed neighborhood is N [v] = N(v) ∪ {v}. We
also defineN(S) =

⋃
u∈S N(u)\S andN [S] = N(S)∪S.

More generally, Nd(S) and Nd[S] denote the set of vertices
at distance d and at distance at most d from a vertex in S,
respectively. We write Nd(v) and Nd[v] for Nd({v}) and
Nd[{v}], respectively. The degree of v is d(v) = |N(v)|.
These notations may be subscripted by G, especially if the
graph is not clear from the context.

The graph G \ S is obtained from G by removing all ver-
tices in S and all edges incident to vertices in S. The sub-
graph of G induced by S is G \ (V \ S) and it is denoted
G[S]. The set S is a vertex cover of G if G \ S has no edge.
The set S is an independent set of G if G[S] has no edge.
The graph G is bipartite if its vertex set can be partitioned
into two independent sets A and B. In this case, we also
denote the graph by a triple G = (A,B,E).

The instances considered in this paper are d-degenerate
graphs.



The degeneracy of G is the minimum d such that every
subgraph of G has a vertex of degree at most d. Degeneracy
is a fundamental sparsity measure of graphs. A graph G′ is
obtained from G by subdividing an edge xy ∈ E if G′ is
obtained by removing the edge xy, and adding a new ver-
tex zxy and edges xzxy and zxyy. A graph G′ is obtained
from G by subdividing an edge xy ∈ E twice if G′ is ob-
tained by removing the edge xy, and adding new vertices
zxy and z′xy and edges xzxy , zxyz′xy and z′xyy. The graph
G is 2-subdivided if G can be obtained from a graph G′ by
subdividing each edge of G′ twice.

Hardness proofs
In this section we show that strict local search for VERTEX
COVER is W[1]-hard on 2-subdivided graphs.

LS-VERTEX COVER

Input: A graph G = (V,E), a vertex cover
S ⊆ V of G, and an integer k.

Parameter: The integer k.
Question: Is there a vertex cover S′ ⊆ V in

the k-exchange neighborhood of S with
|S′| < |S|?

Our proof will strengthen the following result of Fellows
et al. (2009).

Theorem 1 (Fellows et al., 2009). LS-VERTEX COVER
is W[1]-hard and remains W[1]-hard when restricted to 3-
degenerate graphs.

As 2-subdivided graphs are 2-degenerate, our result im-
plies that LS-VERTEX COVER is W[1]-hard when restricted
to 2-degenerate graphs as well.

We first show that the following intermediate problem is
W[1]-hard for 2-subdivided graphs.

HALL SET

Input: A bipartite graphG = (A,B,E) and an
integer k.

Parameter: The integer k
Question: Is there a set S ⊆ A of size at most k

such that |N(S)| < |S|?

As HALL SET is a very natural problem related to match-
ing theory, and to give an intuition for the W[1]-hardness
proof for HALL SET restricted to 2-subdivided graphs, we
first show that HALL SET is W[1]-hard on general graphs.

Lemma 2. HALL SET is W[1]-hard.

Proof. We prove the lemma by a parameterized reduction
from CLIQUE, which is W[1]-hard (Downey and Fellows
1999).

CLIQUE

Input: A graph G and an integer k.
Parameter: The integer k.
Question: Does G have a clique of size k?

G

a b

G′

a vab b

U. . .

Figure 1: Reduction from Lemma 2 illustrated for one edge
of G.

G

a b

G′

a vab b

U. . .

Figure 2: Reduction from Lemma 3 illustrated for one edge
of G.

Let (G, k) be an instance for CLIQUE. We construct an
instance (G′, k′) for HALL SET as follows. Set k′ :=

(
k
2

)
.

Subdivide each edge e of G by a new vertex ve, then add a
set of t new vertices U = {u1, . . . , ut}, with t := k′−k−1,
and add an edge veu for each e ∈ E and u ∈ U . Set A :=
{ ve | e ∈ E } and B := V ∪ U .

Suppose G has a clique C of size k. Consider the set
S := { ve ∈ A | e ⊆ C }, i.e., the set of vertices introduced
in G′ to subdivide the edges of C. Then, |S| =

(
k
2

)
= k′.

Moreover, |N(S)| = |C ∪ U | = k + t = k′ − 1. Thus, S is
a Hall set of size k′.

On the other hand, suppose S ⊆ A is a Hall Set of size
at most k′. As S 6= ∅, we have that U ⊆ N(S). Since
each vertex from S has two neighbors in V , we have |S| ≤(|V ∩N(S)|

2

)
. From |S| > t + |V ∩ N(S)| it follows that

|S|−
(
k
2

)
+k+1 > |V ∩N(S)|, which can only be achieved

if |S| =
(
k
2

)
and |V ∩N(S)| = k. But then, V ∩N(S) is a

clique of size k in G.

We now generalize the above proof and reduce CLIQUE
to HALL SET restricted to 2-subdivided graphs.

Lemma 3. HALL SET is W[1]-hard even if restricted to 2-
subdivided graphs.

Proof. Let (G, k) be an instance for CLIQUE. We construct
an instance (G′, k′) for HALL SET as follows. Set t =

(
k
2

)
−

k − 1 and k′ = (3 + t) ·
(
k
2

)
. Subdivide each edge e of

G by a new vertex ve. Then add a set of t new vertices
U = {u1, . . . , ut}, and add an edge veu for each e ∈ E
and u ∈ U . This graph is bipartite with bipartition (A,B)
where A := { ve | e ∈ E } and B := V ∪ U . Now, make a
2-subdivision of each edge. Choose A′ ⊇ A and B′ ⊇ B so



that (A′, B′) is a bipartition of the vertex set of the resulting
graph G′ = (V ′, E′).

Suppose G has a clique C of size k. Consider the set
S := { ve ∈ A | e ⊆ C }, i.e., the set of vertices introduced
to subdivide the edges of C. Set S′ := S ∪N2

G′(S). Then,
S′ ⊆ A′ and |S′| = (3 + t)

(
k
2

)
= k′. Moreover, |N(S′)| =

|C ∪NG′(S)∪U | = k+ (2+ t)
(
k
2

)
+ t = k′ − 1. Thus, S′

is a Hall set of size k′.
On the other hand, suppose S ⊆ A is a Hall Set of G′

of size at most k′. Set S′ := S and exhaustively apply the
following rule.

Minimize If there is a vertex v ∈ A such that ∅ 6= S′ ∩
({v}∪N2(v)) 6= {v}∪N2(v), then remove {v}∪N2(v)
from S′.

To see that the resulting S′ is a Hall Set in G′, con-
sider a set S2 that is obtained from a Hall Set S1 by
one application of the Minimize rule. Suppose v ∈ A
such that ∅ 6= S1 ∩ ({v} ∪ N2(v)) 6= {v} ∪ N2(v) but
S2 ∩ ({v} ∪N2(v)) = ∅. If v /∈ S1, then removing a vertex
u ∈ N2(v) from S1 decreases |S1| by one and |N(S1)| by
at least one; namely the vertex in N(u) ∩ N(v) disappears
from N(S1) when removing v from S1. After removing
all vertices in N2(v) from S1, we obtain a set S2 such that
|N(S1)| − |N(S2)| ≥ |S1| − |S2|. As |N(S1)| ≤ |S1| − 1,
we obtain that |N(S2)| ≤ |S2| − 1 and therefore, S2 is a
Hall Set of size at most k′. On the other hand, if v ∈ S1,
then there is a vertex u ∈ N2(v) \ S1. Then, removing v
from S1 decreases |S1| by one and |N(S1)| by at least one;
namely, the vertex in N(u) ∩N(v) disappears from N(S1)
when removing v from S1. Thus, S1 \ {v} is a Hall Set of
size at most k′ and we can appeal to the previous case with
S1 := S1 \ {v}.

We have now obtained a Hall set S′ of size at most k′
such that for every v ∈ A, either S′ ∩ ({v}∪N2(v)) = ∅ or
{v} ∪N2(v) ⊆ S′

As S′ 6= ∅, we have that U ⊆ N(S′). Expressing the size
of S′ in terms of vertices from A we obtain that

|S′| = (3 + t)|S′ ∩A|.
Similarly, we express |N(S′)|, which contains all vertices
from N(S′ ∩ A), all vertices in U and some vertices from
V ∩N3(S′).

|N(S′)| = (2 + t)|S′ ∩A|+ t+ |V ∩N3(S′)|.
Now,

|S′| > |N(S′)|
(3 + t)|S′ ∩A| > (2 + t)|S′ ∩A|+ t+ |V ∩N3(S′)|

|S′ ∩A| −
(
k

2

)
> |V ∩N3(S′)| − k − 1.

Since there are two vertices in V ∩ N3(v) for each vertex
v ∈ S′ ∩ A, we have |S′ ∩ A| ≤

(|V ∩N3(S′)|
2

)
. Moreover,

|S′ ∩ A| ≤ k′

3+t =
(
k
2

)
. Therefore, the previous inequality

can only be satisfied if |S′∩A| =
(
k
2

)
and |V ∩N3(S′)| = k.

Then, |V ∩N3(S′)| is a clique of size k in G.

Finally, we rely on the previous lemma to establish W[1]-
hardness of LS-VERTEX COVER for 2-subdivided graphs.
The reduction will make clear that the HALL SET problem
captures the essence of the LS-VERTEX COVER problem.

Theorem 4. LS-VERTEX COVER is W[1]-hard when re-
stricted to 2-subdivided graphs.

Proof. The proof uses a reduction from HALL SET re-
stricted to 2-subdivided graphs. Let (G, k) be an instance for
HALL SET where G = (A,B,E) is a 2-subdivided graph.
The set A is a vertex cover for G. Consider (G,A, k′), with
k′ := 2k − 1 as an instance for LS-VERTEX COVER.

Let S ⊆ A be a Hall Set of size at most k for G, i.e.,
|N(S)| < |S|. Then, (A \ S) ∪ N(S) is a vertex cover for
G of size at most |A| − 1. Moreover, this vertex cover is in
the k′-exchange neighborhood of A.

On the other hand, let C be a vertex cover in the k′-
exchange neighborhood of A such that |C| < |A|. Set
C ′ := C. If |A \C| > k, then add |A \C| − k vertices from
A \ C to C ′. The resulting set C ′ is also in the k′-exchange
neighborhood of A and |C ′| < |A|. Set S := A \ C ′. Then,
|S| ≤ k. As C ′ is a vertex cover, N(S) ⊆ C ′. But since C ′
is smaller thanA, we have that |C ′∩B| ≤ |S|−1 Therefore,
|N(S)| ≤ |C ′ ∩B| ≤ |S| − 1, which shows that S is a Hall
Set of size at most k for G.

FPT Algorithm
In this section we will show that the permissive version of
LS-VERTEX COVER is fixed-parameter tractable for a gen-
eralization of 2-subdivided graphs.

PLS-VERTEX COVER

Input: A graph G, a vertex cover S, and a pos-
itive integer k.

Parameter: The integer k.
Task: Determine thatG has no vertex cover S′

with dist(S, S′) ≤ k and |S′| < |S| or
find a vertex cover S′′ with |S′′| < |S|.

The initial algorithm will be randomized, and we will ex-
ploit the following pseudo-random object and theorem to de-
randomize it.

Definition 1 (Naor, Schulman, and Srinivasan, 1995). An
(n, t)-universal set F is a set of functions from {1, . . . , n}
to {0, 1}, such that for every subset S ⊆ {1, . . . , n} with
|S| = t, the set F|S = { f |S | f ∈ F } is equal to the set 2S
of all the functions from S to {0, 1}.
Theorem 5 (Naor, Schulman, and Srinivasan, 1995).
There is a deterministic algorithm with running time
O(2ttO(log t)n log n) that constructs an (n, t)-universal set
F such that |F| = 2ttO(log t) log n.

Our FPT algorithm will take as input a β-separable graph.

Definition 2. For a fixed non-negative integer β, a graph
G = (V,E) is β-separable if there exists a bipartition of V
into V1 and V2 such that

• for each v ∈ V1, |N(v) ∩ V1| ≤ β, and
• for each w ∈ V2, |N(w)| ≤ β.



A bipartition of V satisfying these properties is a partition
certifying β-separability. By G(β) we denote the set of all
β-separable graphs.

Remark 1. Observe that a graph of degree at most d
is d-separable. Similarly every 2-subdivided graph is 2-
separable.

The following lemma characterizes solutions for PLS-
VERTEX COVER that belong to the k-exchange neighbor-
hood of S.

Lemma 6. Let G = (V,E) be a graph, S be a vertex cover
of G and k be a positive integer. Then there exists a vertex
cover S′ such that |S′| < |S| and dist(S, S′) ≤ k if and
only if there exists a set S∗ ⊆ S such that
1. S∗ is an independent set,
2. |N(S∗) \ S| < |S∗|, and
3. |N(S∗) \ S|+ |S∗| ≤ k.

Proof. We first show the forward direction of the proof. Let
S∗ = S \ S′. Since I = V \ S′ is an independent set and
S∗ ⊆ I we have that S∗ is an independent set. Furthermore,
since S∗ is in I we have that N(S∗) ⊆ S′ and in particular
N(S∗) \S is the set of vertices that are present in S′ but not
in S. Since |S′| < |S| we have that |N(S∗) \ S| < |S∗|
and by the fact that dist(S, S′) ≤ k we have that |N(S∗) \
S|+ |S∗| ≤ k. For the reverse direction it is easy to see that
(S \ S∗) ∪ (N(S∗) \ S) is the desired S′. This completes
the proof.

To obtain the FPT algorithm for PLS-VERTEX COVER on
G(β) we will use Lemma 6. More precisely, our strategy is
to obtain an FPT algorithm for finding a subset Q ⊆ S such
that Q is an independent set and S∗ ⊆ Q. Here, S∗ is as
described in Lemma 6. Thus, our main technical lemma is
the following.

Lemma 7. Let β be a fixed non-negative integer. Let G
be a β-separable graph, S be a vertex cover of G and k
be a positive integer. There is a O(2qqO(log q)n log n) time
algorithm finding a family Q of subsets of S such that (a)
|Q| ≤ 2qqO(log q) log n, (b) each Q ∈ Q is an independent
set, and (c) if there exists a S∗ as described in Lemma 6, then
there exists a Q ∈ Q such that S∗ ⊆ Q. Here, q = k + βk.

We postpone the proof of Lemma 7 and first give the main
result that uses Lemma 7 crucially.

Theorem 8. Let β be a fixed non-negative integer. PLS-
VERTEX COVER is FPT on G(β) with an algorithm running
in time 2qqO(log q)nO(1), where q = k + βk.

Proof. Let G be the input graph from G(β), S be a vertex
cover of G, and k be a positive integer. Fix q = k + βk and
I = V \ S. We first apply Lemma 7 and obtain a family Q
of subsets of S such that (a) |Q| ≤ 2qqO(log q) log n and (b)
each Q ∈ Q is an independent set. The family Q has the
additional property that if there exists a set S∗ as described
in Lemma 6, then there exists a Q ∈ Q such that S∗ ⊆ Q.

For every Q ∈ Q, the algorithm proceeds as follows.
Consider the bipartite graph G[Q ∪ I]. Now in polynomial
time check whether there exists a subset W ⊆ Q such that

|N(W )| < |W | in G[Q ∪ I]. This is done by checking
Halls’ condition that says that there exists a matching satu-
rating Q if and only if for all A ⊆ Q, |N(A)| ≥ |A|. A
polynomial time algorithm that finds a maximum matching
in a bipartite graph can be used to find a violating set A if
there exists one. See Kozen (1991) for more details. Return-
ing to our algorithm, if we find such set W then we return
S′ = (S \W ) ∪ N(W ). Clearly, S′ is a vertex cover and
|S′| < |S|. Now we argue that if for every Q ∈ Q we do
not obtain the desired W , then there is no vertex cover S′
such that |S′| < |S| and dist(S, S′) ≤ k. However, this is
guaranteed by the fact that if there would exist such a set S′,
then by Lemma 6 there exist a desired S∗. Thus, when we
consider the set Q ∈ Q such that S∗ ⊆ Q then we would
have found a W ⊆ Q such that |N(W )| < |W | in G[Q∪ I].
This proves the correctness of the algorithm. The running
time of the algorithm is governed by the size of the family
Q. This completes the proof.

To complete the proof of Theorem 8, the only remaining
component is a proof of Lemma 7 which we give below.

Proof of Lemma 7. Let G be a β-separable graph, S be a
vertex cover of G, and k be a positive integer. By the proof
of Lemma 6 we know that if there exists a vertex cover S′
such that |S′| < |S| and dist(S, S′) ≤ k then there exists a
set S∗ ⊆ S such that

1. S∗ is an independent set,
2. |N(S∗) \ S| < |S∗|, and
3. |N(S∗) \ S|+ |S∗| ≤ k.

We first give a randomized procedure that produces a
family Q satisfying the properties of the lemma with high
probability. In a second stage, we will derandomize it us-
ing universal sets. For our argument we fix one such S∗

and let V1 and V2 be a partition certifying β-separability of
G. Let S1 = S∗ ∩ V1 and S2 = S∗ ∩ V2. Since G is
a β-separable graph, we have that |N [S1] ∩ (V1 ∩ S)| +
|N [S2] ∩ S| ≤ β|S1| + |S1| + β|S2| + |S2| ≤ k + βk.
We also know that |S∗| ≤ k. Let q = k + βk and
A = (N [S1]∩ (V1 ∩ S))∪ (N [S2]∩ S). Now, uniformly at
random color the vertices of S with {0, 1}, that is, color each
vertex of S with 0 with probability 1

2 and with 1 otherwise.
Call this coloring f . The probability that for all x ∈ S∗,
f(x) = 0 and for all y ∈ (A \ S∗), f(y) = 1, is

1

2|A|
≥ 1

2q
.

Given the random coloring f we obtain a setQ(f) ⊆ S with
the following properties

• Q(f) is an independent set; and
• with probability at least 2−q , S∗ ⊆ Q(f).

We obtain the set Q(f) as follows.

Let C0 = { v | v ∈ S, f(v) = 0 }, that is, C0 contains
all the vertices of S that have been assigned 0 by f . Let
C1

0 ⊆ C0 ∩ V2 be the set of vertices that have degree at
least 1 in G[C0]. Let C ′0 := C0 \C1

0 . Let E′0 be the set
of edged in the induced graph G[C ′0] and V (E′0) be the



set of end-points of the edges in E′0. Define Q(f) :=
C ′0 \ V (E′0).

By the procedure it is clear that Q(f) is an independent
set. However, note that it is possible that Q(f) = ∅. Now
we show that with probability at least e−q , S∗ ⊆ Q(f). Let
Ci = { v | v ∈ S, f(v) = i }, i ∈ {0, 1}. By the probability
computation above we know that with probability at least
e−q , S∗ ⊆ C0 and A \S∗ ⊆ C1. Now we will show that the
procedure that prunes C0 and obtains Q(f) does not remove
any vertices of S∗. All the vertices in the set N(S2) ∩ S are
contained in C1 and thus there are no edges incident to any
vertex in S2 in G[C0]. Therefore the only other possibility
is that we could remove vertices of S1 ∩C0. However, to do
so there must be an edge between a vertex in S1 and a vertex
in V1 ∩S, but we know that all such neighbors of vertices of
S1 are in C1. This shows that with probability at least 2−q ,
S∗ ⊆ Q(f).

We can boost the success probability of the above random
procedure to a constant, by independently repeating the pro-
cedure 2q times. Let the random functions obtained while
repeating the above procedure be fj , j ∈ {1, . . . , 2q} and
let Q(fj) denote the corresponding set obtained after apply-
ing the above pruning procedure. The probability that one
of the Q(fj) contains S∗ is at least

1−
(
1− 1

2q

)2q

≥ 1− 1

e
≥ 1

2
.

Thus we obtain a collection Q of subsets of S with the fol-
lowing properties.

• |Q| ≤ 2q , where Q = {Q(fj) | j ∈ {1, . . . , 2q} },
• every set Q ∈ Q is an independent set, and
• with probability at least 1

2 , there exists a set Q ∈ Q such
that S∗ ⊆ Q.

Finally, to derandomize the above procedure we will
use Theorem 5. We first compute a (|S|, q)-universal set
F with the algorithm described in Theorem 5 in time
O(2qqO(log q)|S| log |S|) of size 2qqO(log q) log |S|. Now ev-
ery function f ∈ F can be thought of as a function from S to
{0, 1}. Given this f we obtainQ(f) as described above. Let
Q = {Q(f) | f ∈ F }. Clearly, |Q| ≤ 2qqO(log q) log n.
Now if there exists a set S∗ of the desired type then theQ(f)
corresponding to the function f ∈ F , that assigns 0 to every
vertex in S∗ and 1 to every vertex in A \ S∗, has the prop-
erty that S∗ ⊆ Q(f) and Q(f) is an independent set. This
completes the proof.

It is easily seen that finding minimum vertex cover of a 2-
subdivided graph is NP-hard. Indeed, it follows from the
NP-hardness of the VERTEX COVER problem on general
graphs since: if G′ is a 2-subdivision of a graph G with m
edges, thenG has a vertex cover of size at most k if and only
if G′ has a vertex cover of size at most k +m.

Thus, Theorems 4 and 8 together resolve a question raised
by (Krokhin and Marx), who asked for a problem where
finding the optimum is hard, strict local search is hard, but
permissive local search is FPT.

Conclusion
In this paper we have shown that from the parameterized
complexity point of view, permissive Local Search is indeed
more powerful than the strict Local Search and thus may be
more desirable. We have demonstrated this on one example,
namely VERTEX COVER, but it would be interesting to find
a broader set of problems where the complexity status of the
strict and permissive versions of local search differ. We be-
lieve that the results in this paper have opened up a complete
new direction of research in the domain of parameterized lo-
cal search, which is still in nascent stage. It would be inter-
esting to undertake a similar study for FEEDBACK VERTEX
SET, even on planar graphs.
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Hoos, H. H., and Stützle, T. 2004. Stochastic Local Search:
Foundations and Applications. Elsevier/Morgan Kaufmann.
Khanna, S.; Motwani, R.; Sudan, M.; and Vazirani, U. V.
1998. On syntactic versus computational views of approx-
imability. SIAM J. Comput. 28(1):164–191.
Khuller, S.; Bhatia, R.; and Pless, R. 2003. On local search
and placement of meters in networks. SIAM J. Comput.
32(2):470–487.

Kozen, D. C. 1991. The Design and Analysis of Algorithms
(Monographs in Computer Science). Springer-Verlag.
Krokhin, A., and Marx, D. On the hardness of losing weight.
To appear in ACM Transactions on Algorithms.
Marx, D., and Schlotter, I. 2011. Stable assignment with
couples: Parameterized complexity and local search. Dis-
crete Optimization 8(1):25–40.
Marx, D. 2008. Searching the k-change neighborhood for
TSP is W[1]-hard. Oper. Res. Lett. 36(1):31–36.
Naor, M.; Schulman, L. J.; and Srinivasan, A. 1995. Split-
ters and near-optimal derandomization. In Proceedings of
the 36th Annual Symposium on Foundations of Computer
Science (FOCS 1995). IEEE Computer Society. 182–191.
Ordyniak, S., and Szeider, S. 2010. Algorithms and com-
plexity results for exact bayesian structure learning. In
Grünwald, P., and Spirtes, P., eds., Proceedings of UAI 2010,
The 26th Conference on Uncertainty in Artificial Intelli-
gence, Catalina Island, California, USA, July 8-11, 2010.
AUAI Press, Corvallis, Oregon.
Papadimitriou, C. H., and Steiglitz, K. 1977. On the com-
plexity of local search for the traveling salesman problem.
SIAM J. Comput. 6(1):76–83.
Szeider, S. 2011. The parameterized complexity of k-flip
local search for sat and max sat. Discrete Optimization
8(1):139–145.


