
Coalitional Manipulation for Schulze’s Rule

Serge Gaspers
UNSW and NICTA
Sydney, Australia

sergeg@cse.unsw.edu.au

Thomas Kalinowski
University of Rostock
Rostock, Germany

thomas.kalinowski@uni-
rostock.de

Nina Narodytska
NICTA and UNSW
Sydney, Australia

nina.narodytska@nicta.com.au

Toby Walsh
NICTA and UNSW
Sydney, Australia

toby.walsh@nicta.com.au

ABSTRACT
Schulze’s rule is used in the elections of a large number of organi-
zations including Wikimedia and Debian. Part of the reason for its
popularity is the large number of axiomatic properties, like mono-
tonicity and Condorcet consistency, which it satisfies. We identify a
potential shortcoming of Schulze’s rule: it is computationally vul-
nerable to manipulation. In particular, we prove that computing
an unweighted coalitional manipulation (UCM) is polynomial for
any number of manipulators. This result holds for both the unique
winner and the co-winner versions of UCM. This resolves an open
question in [14]. We also prove that computing a weighted coali-
tional manipulation (WCM) is polynomial for a bounded number
of candidates. Finally, we discuss the relation between theunique
winner UCM problem and theco-winnerUCM problem and argue
that they have substantially different necessary and sufficient con-
ditions for the existence of a successful manipulation.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence ]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Economics, Theory

Keywords
social choice, voting, manipulation

1. INTRODUCTION
One important issue with voting is that agents may cast strategic

votes instead of revealing their true preferences. Gibbard[11] and
Sattertwhaite [15] proved that most voting rules are manipulable in
this way. Bartholdi, Tovey and Trick [3] suggested computational
complexity may nevertheless act as a barrier to manipulation. In-
terestingly, it is NP-hard to compute a manipulation for many com-
monly used voting rules, including maximin, ranked pairs [17],
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Borda [6, 4], 2nd order Copeland, STV [2], Nanson and Bald-
win [13]. A recent survey on computational complexity as a barrier
against manipulation in elections can be found in [10]. We study
here the computational complexity of manipulating Schulze’s vot-
ing rule, which is arguably the most widespread Condorcet voting
method in use today.

Schulze’s rule was proposed by Markus Schulze in 1997, and
was quickly adopted by many organizations. It is, for example,
used by the Annodex Association, Blitzed, Cassandra, Debian, the
European Democratic Education Conference, the Free Software
Foundation, GNU Privacy Guard, the Haskell Logo Competition,
Knight Foundation, MTV, Neo, Open Stack, the Pirate Party, RLL-
MUK, Sugar Labs, TopCoder, Ubuntu and the Wikimedia Founda-
tion. In addition to being Condorcet consistent, Schulze’srule satis-
fies many other desirable axiomatic properties, including Pareto op-
timality, monotonicity, Condorcet loser criterion, independence to
clones, reversal symmetry and the majority criterion. Schulze’s rule
is known by several other names including the Beatpath Method
and Path Voting. The method can be seen as the inverse procedure
to another Condorcet consistent voting method, ranked pairs. The
ranked pairs method starts with the largest defeats and usesas much
information about these defeats as it can without creating ambigu-
ity. By comparison, Schulze’s rule repeatedly removes the weakest
defeat until ambiguity is removed.

Schulze’s rule has a number of interesting computational prop-
erties. Whilst it is polynomial to compute the winner of Schulze’s
rule, it requires finding paths in a directed graph labeled with the
strength of defeats. Such paths can be found using a variant of the
cubic time Floyd-Warshall algorithm [1]. More recently, Parkes
and Xia initiated the study of the computational complexityof ma-
nipulating this voting rule [14]. They proved that in the unique
winner UCM problem it is polynomial for a single agent to com-
pute a manipulating vote if one exists. They also investigated the
vulnerability of Schulze’s rule to various types of control. How-
ever, they left the computational complexity of UCM with more
than one manipulator as an open question.

In this paper, we continue this study and show that UCM re-
mains polynomial for an arbitrary number of manipulators. For
users of Schulze’s rule, this result has both positive and negative
consequences. On the negative side, this means that the ruleis
computationally vulnerable to being manipulated. On the positive
side, this means that when eliciting votes, we can compute inpoly-
nomial time when we have collected enough votes to declare the
winner. Our results also highlight the importance of distinguishing
carefully between manipulation problems where we are looking for
a single winner compared to co-winners.
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Figure 1: The weighted majority graph GP and the table of
SP(x,y), x,y ∈ {a,b, c,d, e} from Example 1.

2. DEFINITIONS
Voting systems.Consider an election with a set ofm candidates

C = {c1, . . . , cm}. A voteis specified by a total strict order onC:
ci1 ≻ ci2 ≻ · · · ≻ cim . An n-agent profileP on C consists ofn
votes,P = (≻1,≻2, . . . ,≻n).

Schulze’s voting rule. Given an n-agent profileP on C,
Schulze’s rule determines a set of winnersWP ⊆ C as follows.

1. For candidatesx 6= y, let NP (x, y) denote the number of
agents who preferx overy, i.e. the number of indicesi with
x ≻i y.

2. Theweighted majority graph(WMG) is a directed graphGP

whose vertex set isC, and with an arc of weightwP (x, y) =
NP (x, y) − NP (y, x) for every pair(x, y) of distinct can-
didates. We denote WMG associated with a profileP by
(GP , wP ).

3. Thestrengthof a directed pathπ = (x1, x2, . . . , xk) in GP

is defined to be the minimum weight over all its arcs, i.e.
wP (π) = min

16i6k−1
wP (xi, xi+1).

4. For candidatesx andy, let SP (x, y) denote the maximum
strength of a path fromx to y, i.e.

SP (x, y) = max{wP (π) : π is a path fromx to y in GP }.

A path fromx toy is acritical path if its strength isSP (x, y).

5. The winning set is defined as

WP = {x ∈ C : ∀y ∈ C \ {x} SP (x, y) > SP (y, x)} .

If SP (x, y) > SP (y, x) for two candidatesx, y, then we say that
x dominatesy. Thus,WP is the set of non-dominated vertices.

The winning set is always non-empty [16]. Note that all weights
wP (x, y), (x, y) ∈ GP are either odd or even, depending on the
size of the profileP . Conversely, for any weighted digraph where
all weights have the same parity, a corresponding profile canbe
constructed [7]. In the literature, for example, [17] and [14] refer
to this as McGarvey’s trick [12]. We use this result here as wede-
fine the non-manipulators’ profile by their weighted majority graph
instead of by their votes.

EXAMPLE 1. Consider an election with 5 alternatives
{a, b, c, d, e}. The weighted majority graphGP is shown in
Figure 1. We omit arcs with zero or negative weight for clar-
ity. The table shows valuesSP (x, y), x, y ∈ {a, b, c, d, e}.
As can be seen from the table,SP (a, x) > SP (x, a), for all
x ∈ {b, c, d, e}. Hence, the winning set contains a single
alternativeWP = {a}.

Strategic behavior. We distinguish between agents that vote
truthfully and agents that vote strategically. We call the latter
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Figure 2: The WMG and the table of SPNM∪PM(x,y),
x,y ∈ {a,b, c,d, e} from Example 2.

manipulators. We use the superscriptNM to denote the non-
manipulators’ profile and the superscriptM to denote the manip-
ulators’ profile. The co-winnerunweighted coalitional manipula-
tion (UCM) problem is defined as follows. An instance is a tuple
(PNM , c,M), wherePNM is the non-manipulators’ profile,c is
the candidate preferred by the manipulators andM is the set of ma-
nipulators. We are asked whether there exists a profilePM for the
manipulators such thatc ∈ WPNM∪PM . Theuniquewinner UCM
problem is a variant of the co-winner UCM where we are looking
for a manipulation such that{c} = WPNM∪PM . The weighted
coalitional manipulation(WCM) is defined similarly, where the
weights of the agents (both non-manipulators and manipulators)
are integers and are also given as inputs.

3. WEIGHTED COALITIONAL MANIPU-
LATION

We consider the co-winner WCM problem for Schulze’s voting
rule. We show that if there exists a successful manipulationPM

then there exists a successful manipulationPM′

where all manip-
ulators vote identically. We prove this result in two steps.First, we
construct a kind of directed spanning tree of the WMGGPNM∪PM

rooted atc, which gives us a critical path fromc to all other alter-
natives. Then, by traversing this tree, we build a new linearorder
of candidates that specifies a vote for all manipulators.

EXAMPLE 2. Consider the WMGGP from Example 1. Sup-
pose thatP corresponds to the non-manipulators’ profile, so that
PNM = P . Suppose we have 4 manipulators with weights10, 3, 2
and 5 that vote in the following way: the first three manipula-
tors votec ≻ e ≻ d ≻ b ≻ a and the last manipulator votes
c ≻ a ≻ e ≻ d ≻ b. Hence, the total weight of the vote
c ≻ e ≻ d ≻ b ≻ a in PM is 15 and the total weight of the vote
c ≻ a ≻ e ≻ d ≻ b in PM is 5. The updated WMGGPNM∪PM

and the corresponding table that shows the values of pairwise max-
imum strengths are shown in Figure 2. Note that the alternativec
is non-dominated as well as alternatives{a, d, e}. Hence, the win-
ning setWPNM∪PM = {a, c, d, e}.

We show that given any profileP , a winning candidatec ∈ WP

and a subsetP0 of the set of votes, e.g.P0 = PM , we can modify
the votes inP0 to be all the same, andc is still in the winning set of
the resulting profileP ′. To do this, we construct a voteΛ = (c ≻
c1 ≻ · · · ≻ cm−1) such thatc is still a winner if we replace every
vote inP0 byΛ. Hence, in the context of the manipulation problem
we can think ofP asPNM ∪ PM andP0 asPM .

An out-branchingT of a directed graphG rooted at a vertexr is
a connected spanning subdigraph ofG in which r has in-degree0
and all other vertices have in-degree1.

LEMMA 1. Let G = GP be the digraph associated with the
given profileP . There exists an out-branchingT rooted atc in G
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Figure 3: (a) The out-branching rooted at c that is pro-
duced by Algorithm 1 and the corresponding criticalc-x-paths,
x ∈ {a,b,d, e}; (b) The Λ ordering constructed by Algo-
rithm 2.

such that for every candidatec′ 6= c the unique path fromc to c′ in
T is a critical c-c′-path inG.

PROOF. We construct an out-branchingT of G by Algorithm
1. At the initial step the algorithm makesc the root ofT . At each
step, we add a new vertexx, x ∈ V (G) \ V (T ), to the treeT iff
the arc(x, y), y ∈ V (T ) has maximum valuew(x, y) among all
arcs(x′, y′), x ∈ V (G) \ V (T ), y ∈ V (T ).

Algorithm 1 Out-branching construction

Input: a weighted digraph(G,w) = (GP , wP ) and
a distinguished candidatec.

InitializeF1 = {c}, X1 = C \ {c} andT1 = {}.
for i = 1, . . . ,m− 1 do

D = max{w(x, y) : x ∈ Fi, y ∈ Xi}
Choosea ∈ Fi andb ∈ Xi with w(a, b) = D
Fi+1 = Fi ∪ {b}
Xi+1 = Xi \ {b}
Ti+1 = Ti ∪ {(a, b)}

returnT = Tm

Clearly, Algorithm 1 returns an out-branching because the in-
put digraph is complete. So we just have to show that it satis-
fies the required property. We do this by induction on the size
of T . For i = 1 the claim is obvious, so assume1 < i < m,
and letb be the vertex added in stepi, i.e. {b} = Fi+1 \ Fi.
Let π = (c = a0, a1, . . . , ak−1, ak = b) be thec-b-path in
T , and letj be the index of the first arc on that path realizing
its strength, i.e. j = min{t : w(at, at+1) = w(π)}. Let
q be the step in which the arc(at, at+1) is added toT . Now
suppose that there is ac-b-pathπ′ = (c, f1, . . . , fr, . . . , b) in G
with w(π′) > w(π). Becausec ∈ π′ andπ′ 6⊆ T , there exists
some arc(fr, fr+1) ∈ π′ with fr ∈ Fq andfr+1 ∈ Xq . Then,
w(π) = w(at, at+1) > w(fr, fr+1) > w(π′), contradicting the
assumption and thus concluding the proof.

EXAMPLE 3. Figure 3(a) shows the out-branching for
GPNM∪PM and critical c-x-paths,x ∈ {a, b, d, e}, of the WMG
from Example 2. Consider, for example, the path(c, e, d) in the
out-branching. This path has strength80 and it corresponds to the
maximum strengthc-d-path inGPNM∪PM .

LEMMA 2. LetG = GP be the graph associated with the given
profileP and letT be an out-branching rooted atc as in Lemma 1.
Then there exists an orderingΛ = (c ≻ c1 ≻ · · · ≻ cm−1) on the
set of candidates with the following properties.

• Property 1: For eachci the uniquec-ci-path inT respects
the orderingΛ, i.e. it is of the form(c, cj1 , . . . , cjk =
ci) with 1 6 j1 < j2 < · · · < jk.

• Property 2: The strength of a critical path fromci, i ∈ [1, m)
to c is nonincreasing along the orderingΛ:

SP (ci, c) > SP (cj , c) for 1 6 i < j 6 m− 1.

The intuition for Property 1 is that the strength of each critical path
from c to ci, i ∈ [1, m) does not decrease if we change all votes in
P0 toΛ.

PROOF. Algorithm 2 returns a total order on the set of candi-
dates. The algorithm traverses the out-branchingT obtained by
Algorithm 1. At each step, we identify a vertexx with the largest
value of the strengthSP (x, c). Then we find the pathπ from c to
x in T which is a critical path by Lemma 1. A prefix of the path
π might be added toΛ at this point. Hence, we only focus on the
suffix of π that does not contain vertices added toΛ. Then we add
the vertices in this suffix ofπ toΛ in the order in which they appear
in π. We terminate whenΛ is a total order over all alternatives.

Algorithm 2 Construction of the orderingΛ

Input: a weighted digraph(G,w) = (GP , wP ),
a distinguished candidatec and
the out-branchingT with root c from Algorithm 1.

InitializeΛ = (c), X = C \ {c}
while X 6= ∅ do

D = max{SP (x, c) : x ∈ X}
Let a ∈ X be any vertex withSP (a, c) = D.
Let π be the uniquec-a-path inT .
Add the vertices inπ ∩X toΛ in the order in which
they appear onπ.
UpdateX := X \ π.

returnΛ

We show that it satisfies the two properties by induction on the
length ofΛ. For the initialΛ = (c) it is obviously true. So suppose
we are in the while loop addingπ ∩ X for a c-a-pathπ = (c =
g0, g1, . . . , gk, a). Note thatπ ∩ X is a suffix ofπ, i.e. π ∩ X =
{gj+1, . . . , gk, a} for somej. To see this, letgj be the last vertex
on π that is already inΛ. Then by construction, all the vertices
g1, g2, . . . , gj have been added toΛ in the step in whichgj was
added or earlier.

By the induction hypothesis thec-gj -path in T respects
Λ, and because the suffixgj+1, . . . , gk, a is added toΛ and
gj+1, . . . , gk, a is a sub-path ofπ, the condition of Property 1 is
satisfied for all these vertices.

Next we observe thatSP (gt, c) > SP (a, c) for t = j+1, . . . , k.
To see this, letπ′ be ana-c-path of strengthSP (a, c). We have
w(gt, gt+1) > SP (c, a) > SP (a, c) for all t, where the first in-
equality is true because(gt, gt+1) is an arc on thec-a-path inT
which is a critical path, and the second inequality becausec is a
winner. Thus the concatenation ofgt, gt+1, . . . , gk, a andπ′ pro-
vides agt-c-path of strengthSP (a, c). Now Property 2 follows
from the observation thatSP (x, c) 6 SP (a, c) for all x ∈ X \ π
which follows from the maximality condition in the step wherea is
chosen.

EXAMPLE 4. We construct an orderingΛ based on the out-
branching obtained in Example 3. The alternatives{d, e}
are such that SPNM∪PM (e, c) = SPNM∪PM (d, c) =
max{SPNM∪PM (x, c) : x ∈ {a, b, d}}. We break the tie
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Figure 4: An updated WMG and the table ofSPNM∪PM(x,y),
x,y ∈ {a,b, c,d, e} from Example 4 using the Λ ordering
constructed by Algorithm 2.

betweene and d arbitrarily and selectd. Hence, we build a
partial order c ≻ e ≻ d. The next alternatives that we con-
sider are {b, a} as SPNM∪PM (b, c) = SPNM∪PM (b, a) =
max{SPNM∪PM (x, c) : x ∈ {a, b}}. We selectb and add
the suffixa ≻ b to the partial orderc ≻ e ≻ d, so that we get
Λ = (c ≻ e ≻ d ≻ a ≻ b). Hence,4 manipulators can vote
with respect toΛ. Figure 3(b) shows the execution of Algorithm 2.
Figure 4 shows the new WMG and the corresponding table of max-
imum strengths. It is easy to see thatc is still a winner after the
manipulators change their votes.

For our given profileP and distinguished candidatec, we con-
struct an orderingΛ as described in the proof of Lemma 2.

THEOREM 1. LetP be any profile with candidatec in the win-
ning set, letP0 ⊆ P be any subprofile, and setP1 = P \ P0. Let
P ′ be the profile given byP ′ = P1 ∪

⋃|P0|
i=1 {Λ}, whereΛ is the

ordering constructed in Lemma 2. Thenc is still in the winning set
WP ′ .

PROOF. Denote the WMGs associated with the two profiles by
(G,w) = (GP , wP ) and(G′, w′) = (GP ′ , wP ′). We recall that
we use the out-branchingT with root c obtained by Algorithm 1.
The theorem is based on the following two claims.

CLAIM 1. For each pathπ in T starting fromc the strength of
π does not decrease in the graphG′, i.e.w′(π) > w(π).

By construction ofΛ, we havew′(x, y) > w(x, y) for every arc
(x, y) ∈ T , and this implies Claim 1.

CLAIM 2. For everya-c-pathπ, the strength ofπ in G′ does
not exceed the strength of a criticala-c-path inG, i.e. w′(π) 6

SP (a, c).

To prove Claim 2, assume, for the sake of contradiction, thata is
a vertex such that there is ana-c-pathπ = (a = a1, . . . , ak = c)
with w′(π) > SP (a, c), and w.l.o.g. we assume that for allai-c-
pathsσ, 1 ≤ i ≤ k − 1, we havew′(σ) 6 SP (ai, c). Becausec is
a winner with respect toP , π must contain an arc(x, y) of weight
w(x, y) such thatw(x, y) 6 SP (c, a). Let (b, d) = (ai, ai+1) be
the first arc with this property, i.e.i = min{j : w(aj , aj+1) 6

SP (a, c)}. Next we show the chain of inequalities

w′(π)
(1)
> SP (a, c)

(2)

> SP (b, c)
(3)

> SP (d, c)
(4)

> SP ′(d, c)
(5)

> w′(π),

which is a contradiction and thus proves the claim.
The following arguments for the single inequalities above are

illustrated in Figure 5.

(1) By assumption.

c

a

ai=b ai+1=d

100

30
30

40

Figure 5: A diagram illustrating the arguments for steps (2),(3)
and (4) of the inequality chain in the proof of Claim 2.

(2) As c is a winner forP , everya-c-path must contain an arc
(x, y) with w(x, y) 6 SP (c, a). By the choice ofb,
we know that(b, d) is the first arc such thatw(b, d) 6

SP (a, c). Hence, the strength of thea-b-path is greater than
the strength of thea-c-path, SP (a, b) > SP (a, c). Now
from SP (a, c) > min{SP (a, b), SP (b, c)} it follows that
SP (b, c) 6 SP (a, c).

(3) From the assumptionw′(π) > SP (a, c) it follows that
w′(b, d) > w(b, d) which implies thatb comes befored
in the orderingΛ, and then the inequality (3) follows from
Lemma 2.

(4) By assumption,w′(σ) 6 SP (d, c) for all d-c-pathsσ, hence
SP ′(d, c) 6 SP (d, c).

(5) Let π1 be thed-c-subpath ofπ. ThenSP ′(d, c) > w′(π1) >

w′(π).

Together, Claims 1 and 2 prove the theorem.

COROLLARY 1. The co-winner WCM problem for Schulze’s
rule is polynomial if the number of candidates is bounded.

PROOF. As the number of candidates is bounded we can enu-
merate all possible distinct votes in polynomial time. FromTheo-
rem 1 it follows that it is sufficient to consider manipulations where
all manipulators vote identically.

4. UNWEIGHTED COALITIONAL MA-
NIPULATION

In this section we present our main result: co-winner UCM is
polynomial for any number of manipulators. This closes an open
question raised in [14]. By Theorem 1,(PNM , c,M) is a Yes-
instance for co-winner UCM if and only if there is a vote≻′ such
that c ∈ WPNM∪PM where votes inPM corresponds to≻′. It
remains to decide if such a vote≻′ exists.

As in the weighted case, we denote(G,w) = (GP , wP ) and
(G′, w′) = (GP ′ , wP ′) the WMGs of the voting profilesP =
PNM andP ′ = PNM ∪ PM with arc weight functionsw and
w′, respectively, andSP ′(x, y) denotes the maximum strength of a
path fromx to y in G′.

First, we give a high-level description of the two-stage algorithm.
In the first stage, we run a preprocessing procedure onG that aims
to identify a set of necessary constraints on the strengthsSP ′(x, y),
such asSP ′(x, y) must be equal toSP (x, y)+ |M |. The procedure
is based on a set of rules that enforce necessary conditions for c to
win, namely,SP ′(c, x) > SP ′(x, c) must hold. If the preprocess-
ing procedure detects a failure then there is no set of votes for M
such thatc becomes a winner. The pseudocode for the first stage of
the algorithm is given in Algorithm 3. Section 4.1 proves thecor-
rectness of Algorithm 3. If no failure is detected by applying these
rules during the preprocessing stage, we show that a manipulation
exists and provide a constructive procedure that finds a manipula-
tion. The pseudocode for the second stage of the algorithm isgiven



Algorithm 3 PREPROCESSINGBOUNDS.

Input: a weighted digraph(G = (V,E), w) = (GP , wP ),
the strengthsSP and
a distinguished candidatec.

for (x, y) ∈ V × V do
w(x, y) = w(x, y) + |M |
w(x, y) = w(x, y)− |M |
U(x, y) = SP (x, y) + |M |

while no convergencedo
/* Rule 1 */
for x ∈ V \ {c} do

U(x, c) = min{U(x, c), U(c, x)}
/* Rule 2 */
for x ∈ V \ {c} do

Vr = {y ∈ V : U(y, c) < U(x, c), y 6= c}
Er = {(f, g) ∈ E : w(f, g) < U(x, c)} ∪ Vr × V ∪ V × Vr

Gx =
(

(V \ Vr), (E \Er)
)

if Gx contains noc-x-paththen
U(x, c) = U(x, c)− 2

/* Rule 3 */
for x ∈ V \ {c} do

for y ∈ V \ {x, c} do
if U(x, c) < w(x, y)

U(y, c) = min(U(y, c), U(x, c))
for x ∈ V \ {c} do

if U(x, c) < SP (x, c)− |M | then
returnFAIL

returnU

in Algorithm 4. Here, the algorithm traverses vertices inG in a
specific order, which defines the manipulators votes. Section 4.2
proves the correctness of Algorithm 4.

4.1 Stage 1. Preprocessing
Algorithm 3 uses a functionU(x, y), which for any two can-

didatesx and y, gives an upper bound forSP ′(x, y). Initially,
U(x, y) := SP (x, y) + |M | for each pair(x, y). We also use
the following notation for an upper and lower bound ofw′(x, y):
w(x, y) := w(x, y) + |M | andw(x, y) := w(x, y)− |M |.

In the first stage, Algorithm 3 decreasesU(x, y) when it detects
necessary conditions implyingSP ′(x, y) < U(x, y). The algo-
rithm is based on the following three reduction rules. We show that
these rules are sound in the sense that an application of a rule does
not change the set of solutions of the problem.

Rule 1. If there is a candidatex such thatU(c, x) < U(x, c), then
setU(x, c) := U(c, x).

PROPOSITION 1. Rule 1 is sound.

PROOF. To see that Rule 1 is sound, supposeSP ′(x, c) >
SP ′(c, x). But then,c /∈ WP ′ .

To state the next reduction rule, define for any candidatex the
directed graphGx obtained fromG by removing all verticesy with
U(y, c) < U(x, c) and all arcs(y, z) such thatw(y, z) < U(x, c).

Rule 2. If there is a candidatex such thatGx has no directed path
from c to x, then setU(x, c) := U(x, c)− 2.

PROPOSITION 2. Rule 2 is sound.

PROOF. Suppose the premises of the rule hold, and, for the sake
of contradiction, suppose there exists a path inG′ from x to c with
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Figure 6: The WMG GP from Example 5

strengths, wheres equalsU(x, c) before the application of the
rule. SinceGx has no directed path fromc to x, all directed paths
in G from c to x pass either through a vertexy with U(y, c) < s
or through an arc(y, z) such thatw(y, z) < s. Since any such
path has strength less thans, we have thatSP ′(c, x) < s. But,
sincec belongs to the winning set inG′, we have thatSP ′(c, x) >
SP ′(x, c) > s, a contradiction. Thus,SP ′(x, c) < s. The sound-
ness of Rule 2 now follows from the fact that allSP ′(y, z) have
the same parity as|NM | + |M |, y, z ∈ V , and we maintain the
invariant that allU(·, ·) have this parity.

Rule 3. If there are candidatesx, y 6= c such thatU(x, c) <
w(x, y) and U(y, c) > U(x, c), then setU(y, c) :=
U(x, c).

PROPOSITION 3. Rule 3 is sound.

PROOF. SupposeSP ′(y, c) > U(x, c) andπ is a critical path
fromy to c in G′. But then, the pathx·π, obtained by concatenating
x andπ, has strengthmin{w′(x, y), SP ′(y, c)}. Sincew′(x, y) >
w(x, y) > U(x, c), the strength of this directed path fromx to c
is strictly greater thanU(x, c), contradicting our assumption that
U(x, c) is a necessary upper bound forSP ′(x, c).

We remark that Rules 1-3 decrementU(·, c) when necessary
conditions are found that require a smaller upper bound for
SP ′(·, c). Should at any time such a valueU(x, c) become smaller
thanSP (x, c) − |M |, then there are no votes forM that makec a
winner. In this case, the preprocessing algorithm returnsFAIL .

THEOREM 2. Algorithm 3 is sound.

PROOF. Algorithm 3 implements Rules 1–3. As these rules are
sound, the algorithm is sound.

Consider how Algorithm 3 works on an example.

EXAMPLE 5. Consider an election with eleven alternatives
{a1, a2, b1, b2, c, d1, d2, e1, e2, f1, f2} with the WMG in Figure 6,
where|M | = 1 andc is the preferred candidate. We note that there
are two candidatesb1 andb2 such thatSP (c, x) = SP (x, c) − 2,
x ∈ {b1, b2}. For candidateb1 there are two ways to increase
SP (c, b1). The first way is to increase the strength of thec-e1-d1-
b1-path by rankingd1 ≻ b1. The second way is to increase the
strength of thec-e2-d2-b1-path by rankinge2 ≻ d2. If we select
the first way then an extension ofd1 ≻ b1 to any total order leads
to c /∈ WP ′ . If we select the second way then we can build a suc-
cessful manipulation. We show that Algorithms 3– 4 successfully
construct a valid manipulation. We start with Algorithm 3. Table 1
shows execution of Algorithm 3 on this problem instance.



AlternativesC \ {c}
f1 f2 a1 a2 e1 e2 d1 d2 b1 b2

Initial values
U(c, ·) 11 11 9 9 11 11 11 9 9 7
U(·, c) 9 9 9 9 9 9 9 11 11 9

Rule 1 updatesU(d2, c), U(b1, c) andU(b2, c)
U(c, ·) 11 11 9 9 11 11 11 9 9 7
U(·, c) 9 9 9 9 9 9 9 9 9 7

Rule 3 updatesU(f1, c) asU(b2, c) = 7 andw(b2, f1) = 9
U(c, ·) 11 11 9 9 11 11 11 9 9 7
U(·, c) 7 9 9 9 9 9 9 9 9 7

Rule 2 updatesU(a1, c) (Figure 7(a) forGa1 )
U(c, ·) 11 11 9 9 11 11 11 9 9 7
U(·, c) 7 9 7 9 9 9 9 9 9 7

Rule 3 updatesU(e1, c) andU(d1, c)
U(c, ·) 11 11 9 9 11 11 11 9 9 7
U(·, c) 7 9 7 9 7 9 7 9 9 7

Table 1: Execution of Algorithm 3 on Example 5.
U(c, ·)/U(·, c) stands for the upper bound value
U(c, c′)/U(c′, c), where c′ is the alternative in the corre-
sponding column,c′ ∈ C\{c}.
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Figure 7: (a) Ga1 . Deleted arcs and vertices are in gray. There
is no path from c to a1; (b) WMG GP∪{Λ} from Example 5
whereΛ is a valid manipulation.

4.2 Stage 2. Construct manipulators’ votes

Algorithm 4 constructs a linear orderΛ based on the following
greedy procedure. Initially,Λ = {}, c is the top candidate,lastv =
c, the frontierF = {c} and the set of unreached verticesX =
C\{c}. During the execution of the algorithm,Λ is a linear order on
F and contains an elementx ≻ y for any two consecutive vertices
x, y in this order. The vertexlastv is the last vertex in this order
c ≻ · · · ≻ lastv.

While Λ is not a total order, the algorithm adds one of the
unreached verticesy to the end of a partial orderΛ satisfying
the following conditions:x ∈ F , y ∈ X, U(y, c) = D and
w(x, y) > D, whereD is the maximum valueU(y, c) among all
unreached verticesy ∈ X.

THEOREM 3. Algorithm 4 constructs a total orderΛ with top
elementc. Moreover, for any vertexx ∈ V \ {c}, there is ac-x-
pathπ = (c = x1, . . . , xp = x) such thatw(xi, xi+1) > U(x, c)
andxi ≻ xi+1 ∈ Λ, i = 1, . . . , p− 1.

PROOF. First, we need to prove that the algorithm can always
add a vertexy to the orderΛ satisfying the conditions above. Let
z be any candidate fromX such thatU(z, c) = D. Since Rule 2
does not apply, the subgraphGz has a directed path fromc to z.
Let (x, y) be the arc on this path withx ∈ F andy ∈ X (we could

Algorithm 4 Construction of orderingΛ

Input: a weighted digraph(G = (V,E), w) = (GP , wP ),
the strengthsSP ,
a distinguished candidatec and
the functionU returned by Algorithm 3.

for (x, y) ∈ V × V do
w(x, y) = w(x, y) + |M |

InitializeF = {c}, X = C \ {c}, lastv = c andΛ = {}.
for i = 1, . . . , |V | − 1 do

D = max{U(y, c) : y ∈ X}
Choosex ∈ F andy ∈ X with w(x, y) > U(y, c) = D
F = F ∪ {y}
X = X \ {y}
Λ = Λ ∪ {lastv ≻ y}
lastv = y

returnΛ

possibly have thaty = z). Also, by Rule 2 we have thatU(y, c) >
U(z, c) and thatw(x, y) > U(z, c). Thus,U(y, c) = D and
w(x, y) > D, which means that(x, y) satisfies the conditions of
the alternativey to be added toΛ.

We prove the second statement by induction. In the base case,
F = {c} and we addy such thatw(c, y) > U(y, c). Hence,
π = (c = x1, x2 = y), w(c, y) > U(y, c) andc ≻ y ∈ Λ.

Suppose, the statement holds fori − 1 steps. Let(x, y) be the
arc such thatx ∈ F andy ∈ X, w(x, y) > U(y, c) = D that we
add at theith step. By the induction hypothesis, we know that there
is ac-x-pathπ = (c = x1, . . . , xp = x) such thatw(xj , xj+1) >
U(x, c) andxj ≻ xj+1 ∈ Λ, j = 1, . . . , p− 1, p 6 i− 1. By the
selection ofy, we get thatw(x, y) > U(y, c). By Algorithm 4, we
know thatU(x, c) > U(y, c). Hence,w(xj , xj+1) > U(x, c) >

U(y, c), j = 1, . . . , p − 1. As we addx ≻ y to Λ we get that
there is ac-y-pathπ = (c = x1, . . . , xp = x, xp+1 = y) such that
w(x, y) > U(y, c) andxj ≻ xj+1 ∈ Λ, j = 1, . . . , p.

This orderΛ defines the vote≻′ of the manipulators.

THEOREM 4. Consider the orderΛ returned by Algorithm 4.
Thenc ∈ WP ′ , whereP ′ = PNM ∪

⋃|M|
i=1{Λ}.

PROOF. Due to the construction ofΛ, we know that
SP ′(c, x) > U(x, c), x ∈ V \ {c} as for each vertexx there is a
c-x-pathσ = (c = x1, x2, . . . , xp = x) such thatw(xi, xi+1) >
U(x, c) andxi ≻ xi+1 ∈ Λ, i = 1, . . . , p− 1.

Let us make sure thatSP ′(x, c) 6 U(x, c) for each candidate
x ∈ V \ {c}. On the contrary, suppose there is a candidatex such
thatSP ′(x, c) > U(x, c) and suppose among all such vertices,x
has the shortest critical path toc. Denote byπ = (x, x1, x2, . . . , c)
a shortest critical path fromx to c. Consider two cases depending
on whetherx1 = c or x1 6= c.

Suppose thatx1 6= c. We have thatSP ′(x1, c) > SP ′(x, c)
since the pathπ is critical. Therefore,U(x1, c) > U(x, c) by the
selection ofx andπ. Since candidates are added by non-increasing
values ofU(·, c) to Λ, x1 was added beforex, so thatx1 ≻′ x.
Thus,w′(x, x1) = w(x, x1). By Reduction Rule 3, we have that
w(x, x1) 6 U(x, c). Thus,w′(x, x1) 6 U(x, c), contradicting
thatπ has strength> U(x, c) in G′.

Suppose thatx1 = c. In this case,π = (x, c) andSP ′(x, c) =
w′(x, c). As c is the top element ofΛ we have thatw′(x, c) =
w(x, c) = w(x, c)− |M |. As Algorithm 3 did not detect a failure,
we know thatU(x, c) > SP (x, c) − |M |. Moreover,SP (x, c) >

w(x, c), by definition of the critical path. Therefore,U(x, c) >

SP (x, c)−|M | > w(x, c)−|M | = w′(x, c) = SP ′(x, c). Hence,



SP ′(x, c) 6 U(x, c), contradicting thatπ has strength> U(x, c)
in G′.

Note that Corollary 1 does not follow from Theorem 4, be-
cause Algorithm 3 takesO(wmax|V |3) time, wherewmax =

max(x,y)∈V×V w(x, y). As wmax can beO(2|V |), Algorithm 3
takes exponential number of steps in WCM.

EXAMPLE 6. Consider how Algorithm 4 works on Example 5.
The algorithm traversesG by vertices ordered by the valueU(x, c),
x ∈ C \ {c}. Initially, we start atc, andF = {c} and X =
C \ {c}. We computeD = max{U(y, c) : y ∈ X}, D = 9. We
consider all verticesy ∈ X such thatU(y, c) = 9, which is the
setQ = {f2, a2, e2, d2, b1}. We select one of those vertices,f2,
that satisfies the condition on the valuew(x, y), x ∈ F , y ∈ X:
w(c, f2) = 11 > U(f2, c) = 9. In the next four steps we add all
elements ofQ and obtain a partial orderΛ = c ≻ f2 ≻ a2 ≻
e2 ≻ b1. The next maximum valueD = max{U(y, c) : y ∈ C \
{c, f2, a2, e2, d2, b1} is7. The set of vertices such thatU(y, c) = 7
is Q = {f1, a1, e1, d1, b2}. Hence, we add these vertices toΛ one
by one and obtain a total orderΛ = c ≻ f2 ≻ a2 ≻ e2 ≻ b1 ≻
f1 ≻ a1 ≻ b2 ≻ e1 ≻ d1. Figure 7(b) shows the WMGGP∪{Λ}.
We omitted all arcs of weight 1 for clarity.

5. UNIQUE WINNER VS CO-WINNER
UCM

In this section we consider the unweighted coalitional manipula-
tion problem with a single manipulator that was considered in [14].
Parkes and Xia showed that theunique winner UCMfor Schulze’s
rule with a single manipulator can be solved in polynomial time.
We emphasize that in this variant the aim is to make the pre-
ferred candidatec the unique winner. The aim of this section is
to show that the proof from [14] cannot be extended to the co-
winner UCM problem with one manipulator. This demonstrates
that the co-winner UCM problem with one manipulator was not re-
solved in [14]. We also extend our algorithm for co-winner UCM
to the unique winner case. Another reason to investigate therela-
tion between properties of unique winner and co-winner manipu-
lation problems is that they are closely related to the choice of tie-
breaking rules. If the tie-breaking rule breaks ties against the ma-
nipulators then the manipulators have to ensure that the preferred
candidate is the unique winner of an election. If the tie-breaking
rule breaks ties in favor of the manipulators then it is sufficient for
the manipulators to guarantee that the preferred candidateis one of
the co-winners of the election to achieve the desired outcome.

The proof that the unique winner UCM is polynomial is based
on the resolvability property [16, Section 4.2.2]. The resolvability
criterion states that any co-winner can be made a unique winner by
adding a single vote.

Resolvability. If SP (c, x) > SP (x, c) for all candidatesx ∈
C \ {c}, then there is a votev such thatSP∪{v}(c, x) >
SP∪{v}(x, c) for all candidatesx ∈ C \ {c}.

The proof of the property is constructive. Clearly,c can be the
unique winner inP ∪ {v} only if c is a co-winner inP . The vote
v is constructed using two rules that we describe below. We denote
P = PNM and{v} = PM to simplify notations.

(1) For every alternativex ∈ C \ {c}, we requirey ≻ x in the
manipulator’s votev wherey is the predecessor ofx on some
strongest path fromc to x.

(2) For anyx, y ∈ C \ {c} with SP (x, c) > SP (y, c) we require
x ≻ y in the manipulator’s votev.
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x,y ∈ {a,b, c,d, e} from Example 7; (b)/(c) The WMG
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It was shown in [16] that the resulting set of preference relations
does not contain cycles and thus can be extended to a linear or-
der which makesc the unique winner. However, it was also shown
in [16] that the same approach cannot resolve ties between candi-
dates that do not belong to the winning set. It is a natural ques-
tion if a candidatec that is not in the winning set can be made a
winner by adding a single vote. Clearly a necessary condition is
SP (c, x) > SP (x, c)− 2 for all x ∈ C \ {c}. So we can formulate
the following problem.

Single vote UCM. Given a profileP and a candidatec with
SP (x, c) 6 SP (c, x) + 2 for all x ∈ C \ {c}, does there
exist a single votev such thatc ∈ WP∪{v}?

Here, we show that the straightforward adaption of the aboverules
does not solve this problem, even if there is a single vote manipula-
tion that makesc a winner. A major difference between the unique
winner and the co-winner UCM problems is that the manipulation
always exists in the former problem and it might not exist in the
latter as the following example demonstrates.

EXAMPLE 7. Consider an election with five alternatives
{a, b, c, d, e}. Figure 8(a) shows the WMG and the correspond-
ing table of maximum strengths. The unique winner isb. However,
the differenceSP (x, c)− SP (c, x) 6 2, x ∈ {a, b, d, e}. Hence,c
satisfies the trivial necessary condition for being made a winner by
adding a single vote.

To see that there is no successful manipulation we notice that
SP (c, d) = SP (d, c) − 2. Hence the manipulation must increase
the weight of at least one criticalc-d-path. As there is only one
critical c-d-path this forcese ≻ a ≻ d in the manipulator’s vote.
But on the other handSP (c, b) = SP (b, c) − 2 requires that the
weight of every criticalb-c-path decreases which implies thata ≻ e
or d ≻ a, which gives a contradiction.

Consider the preference relations that are output by the rules.
Following the first rule we adde ≻ a ≻ d and c ≻ b. Following
the second rule, we addd ≻ {a, b, e}. This creates a cycle and
thus cannot be completed to a linear order.

Next, we show that the rules do not find the manipulator vote
even if such a manipulation exists for the co-winner UCM problem
using Examples 8–9.

EXAMPLE 8. Consider an election with four alternatives
{a, b, c, d}. Figure 8(b) shows its WMG and the corresponding



table of maximum strengths. The set of winners is{a, b, d} and
SP (x, c) − SP (c, x) 6 2, x ∈ WP . Following the first rule we
add c ≻ d ≻ a ≻ b. However, by the second rule, we addb ≻ a
which creates a cycle. Note that a successful manipulationv exists
v = (c ≻ d ≻ a ≻ b) (Figure 8(c)).

EXAMPLE 9. Consider the election with 11 alternatives from
Example 5. Following the first rule we addc ≻ e1 ≻ d1 ≻ b1 to
the manipulator vote asπ = (c, e1, d1, b1) is a strongest path from
c to b1. As we showed in Example 5, there does not exist an exten-
sion of this partial order to a total order that makesc a co-winner.
However, a successful manipulationv exists (Figure 7(b)).

Therefore, our study highlights a difference between unique win-
ner and co-winner UCM under Schulze’s rule with a single manip-
ulator and demonstrates that co-winner UCM with a single manip-
ulator was not resolved. Moreover, we believe that Schulze’s rule is
an interesting example, where the tie-breaking in favor of amanip-
ulator, which corresponds to co-winner UCM, makes the problem
non-trivial compared to tie-breaking against manipulators, which
corresponds to unique winner UCM. Two rules with similar prop-
erties have been considered in the literature. Conitzer, Sandholm
and Lang [5] showed that Copeland’s rule is polynomial with 3
candidates in unique winner WCM, while it is NP-hard with 3 can-
didates in co-winner WCM [9]. The most recent result is due to
Hemaspaandra, Hemaspaandra and Rothe [8] who showed that the
online manipulation WCM is polynomial for plurality in the co-
winner model, while it is coNP-hard in the unique winner model.

Our algorithm from Section 5 can still be used as a subroutineto
solve the unique winner UCM problem.

COROLLARY 2. The unique winner UCM problem can be
solved in polynomial time.

PROOF. Run the algorithm from Section 5 with|M | − 1 ma-
nipulators and return the answer. To show the correctness ofthis
procedure, we need to show thatc is a co-winner with|M | − 1
manipulators iffc is a unique winner with|M | manipulators.

(⇒): Supposec can be made a co-winner with|M |−1 manipu-
lators. Use the Resolvability property to add one more vote to make
c a unique winner.

(⇐): Supposec can be made a unique winner with|M | manip-
ulators. Therefore,SP (c, x) ≥ SP (x, c) + 2 for every candidate
x ∈ C \{c} in the profileP = PNM ∪PM . Now, remove an arbi-
trary vote of a manipulator and obtain the profileP ′. We have that
SP ′(c, x) ≥ SP (c, x)−1 andSP ′(x, c) ≤ SP (x, c)+1 for every
candidatex ∈ C \ {c}. Therefore,SP ′(c, x) ≥ SP (c, x) − 1 ≥
SP (x, c)+1 ≥ SP ′(x, c) for every candidatex ∈ C\{c}, showing
thatc is a co-winner with|M | − 1 manipulators.

6. CONCLUSIONS
We have investigated the computational complexity of the coali-

tional weighted and unweighted manipulation problems under
Schulze’s rule. We proved that it is polynomial to manipulate
Schulze’s rule with any number of manipulators in the weighted
co-winner model and in the unweighted case in both unique and
co-winner models. This resolves an open question regardingthe
computational complexity of unweighted coalition manipulation
for Schulze’ rule [14]. This vulnerability to manipulationmay be
of concern to the many supporters of Schulze’s rule.
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