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ABSTRACT

Schulze’s rule is used in the elections of a large number gdrtr
zations including Wikimedia and Debian. Part of the reasworité
popularity is the large number of axiomatic propertiese likono-
tonicity and Condorcet consistency, which it satisfies. datify a
potential shortcoming of Schulze’s rule: it is computasitiy vul-
nerable to manipulation. In particular, we prove that cotimgu
an unweighted coalitional manipulation (UCM) is polynohrfiar
any number of manipulators. This result holds for both thigum
winner and the co-winner versions of UCM. This resolves anop
question in [14]. We also prove that computing a weightedicoa
tional manipulation (WCM) is polynomial for a bounded numbe
of candidates. Finally, we discuss the relation betweenttigue
winner UCM problem and theo-winnerUCM problem and argue
that they have substantially different necessary and sifficon-
ditions for the existence of a successful manipulation.

Categories and Subject Descriptors

1.2.11 Distributed Artificial Intelligence ]: Multiagent Systems;
F.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity

General Terms
Economics, Theory

Keywords

social choice, voting, manipulation

1. INTRODUCTION

One important issue with voting is that agents may castegjiat
votes instead of revealing their true preferences. Gibf&rfand
Sattertwhaite [15] proved that most voting rules are mdaige in
this way. Bartholdi, Tovey and Trick [3] suggested compotzl
complexity may nevertheless act as a barrier to manipulatio-
terestingly, itis NP-hard to compute a manipulation for gneom-
monly used voting rules, including maximin, ranked pairg][1
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Borda [6, 4], 2nd order Copeland, STV [2], Nanson and Bald-
win [13]. A recent survey on computational complexity as aiba
against manipulation in elections can be found in [10]. Welgt
here the computational complexity of manipulating Schilzet-

ing rule, which is arguably the most widespread Condorcghgo
method in use today.

Schulze’s rule was proposed by Markus Schulze in 1997, and
was quickly adopted by many organizations. It is, for examnpl
used by the Annodex Association, Blitzed, Cassandra, Deblie
European Democratic Education Conference, the Free Swftwa
Foundation, GNU Privacy Guard, the Haskell Logo Compatitio
Knight Foundation, MTV, Neo, Open Stack, the Pirate Party, R
MUK, Sugar Labs, TopCoder, Ubuntu and the Wikimedia Founda-
tion. In addition to being Condorcet consistent, Schuladis satis-
fies many other desirable axiomatic properties, includiag® op-
timality, monotonicity, Condorcet loser criterion, indgmlence to
clones, reversal symmetry and the majority criterion. $atsirule
is known by several other names including the Beatpath Mktho
and Path Voting. The method can be seen as the inverse precedu
to another Condorcet consistent voting method, ranked p@ine
ranked pairs method starts with the largest defeats anchgsasch
information about these defeats as it can without creatinigigu-
ity. By comparison, Schulze’s rule repeatedly removes thakest
defeat until ambiguity is removed.

Schulze’s rule has a number of interesting computationapb-pr
erties. Whilst it is polynomial to compute the winner of Sida’s
rule, it requires finding paths in a directed graph labeletth wie
strength of defeats. Such paths can be found using a vafitimt o
cubic time Floyd-Warshall algorithm [1]. More recently, rRes
and Xia initiated the study of the computational complexityna-
nipulating this voting rule [14]. They proved that in the qué
winner UCM problem it is polynomial for a single agent to com-
pute a manipulating vote if one exists. They also investigahe
vulnerability of Schulze’s rule to various types of contréfow-
ever, they left the computational complexity of UCM with reor
than one manipulator as an open question.

In this paper, we continue this study and show that UCM re-
mains polynomial for an arbitrary number of manipulatorsor F
users of Schulze’s rule, this result has both positive aryhtie
consequences. On the negative side, this means that thésrule
computationally vulnerable to being manipulated. On theithe
side, this means that when eliciting votes, we can compypeliyx

Autonomous Agents and Multiagent Systems (AAMAS 2013), 1to nomial time when we have collected enough votes to declare th

Jonker, Gini, and Shehory (eds.), May, 6-10, 2013, Sairit Rén-
nesota, USA.

Copyright (© 2013, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

winner. Our results also highlight the importance of digtiishing
carefully between manipulation problems where we are lopkor
a single winner compared to co-winners.
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Figure 1. The weighted majority graph Gp and the table of
Sp(x,y), %,y € {a,b,c,d, e} from Example 1.
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2. DEFINITIONS

Voting systems.Consider an election with a setof candidates
C ={c1,...,cm}. Avoteis specified by a total strict order @h
Ciy > Ciy > -+ > Ci,,. Ann-agent profileP on C consists ofn
votes,P = (>1,>2,...,>n).

Schulze’s voting rule. Given ann-agent profile P on C,
Schulze’s rule determines a set of winngvs> C C as follows.

1. For candidates # vy, let Np(z,y) denote the number of
agents who prefer overy, i.e. the number of indiceswith
T >iy.

2. Theweighted majority graplWMG) is a directed grapty p
whose vertex set i€, and with an arc of weightp (z,y) =
Np(z,y) — Np(y,x) for every pair(z,y) of distinct can-
didates. We denote WMG associated with a profldy
(GP7 wp).

3. Thestrengthof a directed pathr = (21, z2,...,zx) In Gp
is defined to be the minimum weight over all its arcs, i.e.
wp(mw) = 15&11?71 wp(Ti, Tit1)-

4. For candidates andy, let Sp(x,y) denote the maximum
strength of a path from to y, i.e.

Sp(z,y) = max{wp(m) : wisapathfromztoyin Gp}.

A path fromz to y is acritical pathif its strength isSp (z, y).

5. The winning set is defined as

Wp={xzeC : VyelC\{z} Sp(z,y) = Sp(y,z)}.

If Sp(z,y) > Sp(y,z) for two candidates:, y, then we say that

x dominategy. Thus,Wp is the set of non-dominated vertices.
The winning set is always non-empty [16]. Note that all wésgh

wp(z,y), (z,y) € Gp are either odd or even, depending on the

size of the profileP. Conversely, for any weighted digraph where

all weights have the same parity, a corresponding profilebman

constructed [7]. In the literature, for example, [17] and][fefer

to this as McGarvey'’s trick [12]. We use this result here agiere

fine the non-manipulators’ profile by their weighted majpgtaph

instead of by their votes.

ExaMPLE 1. Consider an election with 5 alternatives
{a,b,c,d,e}. The weighted majority grapl&zp is shown in
Figure 1. We omit arcs with zero or negative weight for clar-
ity. The table shows valueSp(z,y), z,y € {a,b,c,d,e}.
As can be seen from the tabl§p(a,z) > Sp(z,a), for all
z € {b,c,d,e}. Hence, the winning set contains a single
alternativeWp = {a}. O

Strategic behavior. We distinguish between agents that vote
truthfully and agents that vote strategically. We call thé&dr
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Figure 2: The WMG and the table of
x,y € {a,b,c,d, e} from Example 2.
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SpnmupMm (X, Y),

manipulators. We use the superscrigt to denote the non-
manipulators’ profile and the superscripf to denote the manip-
ulators’ profile. The co-winneanweighted coalitional manipula-
tion (UCM) problem is defined as follows. An instance is a tuple
(PNM ¢ M), where PYM is the non-manipulators’ profile; is
the candidate preferred by the manipulators & the set of ma-
nipulators. We are asked whether there exists a prBfifefor the
manipulators such thate Wpn~apar. Theuniqguewinner UCM
problem is a variant of the co-winner UCM where we are looking
for a manipulation such thétc} = Wpnmpa. Theweighted
coalitional manipulation(WCM) is defined similarly, where the
weights of the agents (both non-manipulators and manigdpt
are integers and are also given as inputs.

3. WEIGHTED COALITIONAL MANIPU-
LATION

We consider the co-winner WCM problem for Schulze’s voting
rule. We show that if there exists a successful manipulaidh
then there exists a successful manipulatl‘di‘f’ where all manip-
ulators vote identically. We prove this result in two stefisst, we
construct a kind of directed spanning tree of the WKAG~ |, p s
rooted atc, which gives us a critical path fromto all other alter-
natives. Then, by traversing this tree, we build a new lireder
of candidates that specifies a vote for all manipulators.

EXAMPLE 2. Consider the WMGZ p from Example 1. Sup-
pose thatP corresponds to the non-manipulators’ profile, so that
PNM — p_Suppose we have 4 manipulators with weigiits3, 2
and 5 that vote in the following way: the first three manipula-
tors votec >~ e = d > b = a and the last manipulator votes
¢ > a > e = d > b Hence, the total weight of the vote
c>e>d>=bs>ain PMis15and the total weight of the vote
c>a>e>d>bin PMis5. The updated WM® pn i, p
and the corresponding table that shows the values of pagrmiax-
imum strengths are shown in Figure 2. Note that the altexaati
is non-dominated as well as alternativgs, d, e}. Hence, the win-
ning setWpnnmypy = {a,¢,d,e}. O

We show that given any profil2, a winning candidate € Wp
and a subseP; of the set of votes, e.gP% = P™, we can modify
the votes inP, to be all the same, andis still in the winning set of
the resulting profile”’. To do this, we construct a vote = (c >
c1 > -+ > cm—1) Such that is still a winner if we replace every
vote in Py by A. Hence, in the context of the manipulation problem
we can think ofP asP¥™ U PM and Py asPM.

An out-branching!” of a directed graplds rooted at a vertex is
a connected spanning subdigrapht®fn which r has in-degre@®
and all other vertices have in-degree

LEMMA 1. LetG = Gp be the digraph associated with the
given profileP. There exists an out-branchirg rooted atc in G
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Figure 3: (a) The out-branching rooted at ¢ that is pro-
duced by Algorithm 1 and the corresponding critical c-x-paths,
x € {a,b,d,e}; (b) The A ordering constructed by Algo-
rithm 2.

such that for every candidat€ # c the unique path fromto ¢’ in
T is a critical c-¢’-path inG.

PROOF We construct an out-branchirig of G' by Algorithm
1. At the initial step the algorithm makeghe root of7'. At each
step, we add a new vertex z € V(G) \ V(T), to the treeTl iff
the arc(z,y),y € V(T') has maximum valuev(z,y) among all
arcs(z’,y’),z € V(G)\ V(T),y € V(T).

Algorithm 1 Out-branching construction
Input:  a weighted digrapliG, w) = (Gp,wp) and
a distinguished candidate

Initialize Fy = {c}, X1 =C\ {c} andT1 = {}.
fori=1,...,m—1do
D = max{w(z,y) : z € F}, y € Xi}
Choosen € F; andb € X; with w(a,b) = D
Fi+1 = FZ U {b}
Xip1=X; \ {b}
Tiv1 =Ti U{(a,b)}
returnT = T,

Clearly, Algorithm 1 returns an out-branching because the i
put digraph is complete. So we just have to show that it satis-
fies the required property. We do this by induction on the size
of T. Fori: = 1 the claim is obvious, so assume< i < m,
and letb be the vertex added in stepi.e. {b} = Fiy1 \ Fi.

Let m = (c ao,ai,...,ax—1,ax = b) be thec-b-path in
T, and letj be the index of the first arc on that path realizing
its strength, i.e.; = min{¢ w(at, ary1) w(m)}. Let

g be the step in which the ar@, a:+1) is added to7’. Now
suppose that there is@b-pathn’ = (c, fi,..., fry...,b) IN G
with w(n’) > w(w). Because € n’ andn’ ¢ T, there exists
some arq fr, fr+1) € ©" with f,. € F, and f,11 € X,. Then,
w(m) = w(at, at+1) = w(fr, fr+1) = w(n’), contradicting the
assumption and thus concluding the proof.]

ExampLE 3. Figure 3(a) shows the out-branching for
Gpnuypum and critical c-z-paths,z € {a,b,d, e}, of the WMG
from Example 2. Consider, for example, the péthe, d) in the
out-branching. This path has strength and it corresponds to the
maximum strength-d-path inGpympyv. O

LEMMA 2. LetG = Gp be the graph associated with the given
profile P and letT" be an out-branching rooted atas in Lemma 1.
Then there exists an orderilg= (¢ = ¢1 > --- > ¢m—1) On the
set of candidates with the following properties.

e Property 1: For eache; the uniquec-c;-path inT respects
the ordering A, i.e. it is of the form(c,cj,, ..
Ci)With1<j1 <go <o < Jke

<5 Cj

e Property 2: The strength of a critical path from, i € [1, m)
to c is nonincreasing along the orderinyy:

Sp(ci,c) = Sp(cj,c) forl<i<j<m-—1

The intuition for Property 1 is that the strength of eachicaitpath
fromctoc;, i € [1,m) does not decrease if we change all votes in
Py to A.

PROOF. Algorithm 2 returns a total order on the set of candi-
dates. The algorithm traverses the out-branchihgbtained by
Algorithm 1. At each step, we identify a vertexwith the largest
value of the strengtl¥'r(x, ¢). Then we find the path from ¢ to
x in T which is a critical path by Lemma 1. A prefix of the path
7 might be added ta\ at this point. Hence, we only focus on the
suffix of 7 that does not contain vertices added\toThen we add
the vertices in this suffix of to A in the order in which they appear
in 7. We terminate when is a total order over all alternatives.

Algorithm 2 Construction of the ordering
Input:  a weighted digrapliG, w) = (Gp,wp),
a distinguished candidateand
the out-branching@” with root ¢ from Algorithm 1.

Initialize A = (¢), X = C\ {c¢}
while X # @ do
D = max{Sp(z,c) : v € X}
Leta € X be any vertex witt6p(a,c) = D.
Let 7 be the unique-a-path inT'.
Add the vertices inr N X to A in the order in which
they appear ofr.
UpdateX := X \ 7.
returnA

We show that it satisfies the two properties by induction @n th
length of A. For the initialA = (c) itis obviously true. So suppose
we are in the while loop adding N X for a c-a-pathm = (¢ =
9o, 91, - -+, gk, a). Note thatr N X is a suffix ofr,i.e. 7N X =
{gj+1,--.,9k,a} for somej. To see this, leg; be the last vertex
on « that is already inA. Then by construction, all the vertices
91,92, --.,9; have been added t in the step in whicly; was
added or earlier.

By the induction hypothesis the-g;-path in T respects
A, and because the suffig;t1,...,g9%,a is added toA and
gj+1,---, gk, a IS a sub-path ofr, the condition of Property 1 is
satisfied for all these vertices.

Next we observe thaip (g:, ¢) > Sp(a,c)fort = j+1,... k.
To see this, letr’ be ana-c-path of strengthSp(a,c). We have
w(ge, ge+1) = Sp(c,a) = Sp(a,c) for all t, where the first in-
equality is true becausgy:, g:+1) is an arc on the-a-path inT'
which is a critical path, and the second inequality becausea
winner. Thus the concatenation @f, g:+1, . . ., gk, a andx’ pro-
vides ag:-c-path of strengthSp(a,c). Now Property 2 follows
from the observation thefp(z,¢) < Sp(a,c) forallz € X \ «
which follows from the maximality condition in the step wkeris
chosen. [

ExXAaMPLE 4. We construct an ordering\ based on the out-
branching obtained in Example 3. The alternativés, e}
are such that Spyvmpum(e,c) Spnmypum(d,c)
max{Spnmypm(,c) z € {a,b,d}}. We break the tie
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Figure 4: An updated WMG and the table of Spxm pMm (X, YY),
x,y € {a,b,c,d,e} from Example 4 using the A ordering
constructed by Algorithm 2.
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betweene and d arbitrarily and selectd. Hence, we build a
partial order ¢ > e = d. The next alternatives that we con-
sider are {b,a} as Spnmypm(b,c) = Spymypm(b,a) =
max{Spnmprm(,c) z € {a,b}}. We selech and add

the suffixa > b to the partial orderc > e > d, so that we get

A = (c>e>d > a>0b). Henced manipulators can vote
with respect ta\. Figure 3(b) shows the execution of Algorithm 2.
Figure 4 shows the new WMG and the corresponding table of max-
imum strengths. It is easy to see tha still a winner after the
manipulators change their votes[]

For our given profileP and distinguished candidate we con-
struct an ordering\ as described in the proof of Lemma 2.

THEOREM 1. Let P be any profile with candidatein the win-
ning set, letPs C P be any subprofile, and sé4, = P \ Fy. Let
P’ be the profile given by’ = P U [J!7/{A}, whereA is the
ordering constructed in Lemma 2. Thers still in the winning set
Wepr.

PrRoOOF Denote the WMGs associated with the two profiles by
(G,w) = (Gp,wp) and(G',w’) = (Gp:,wp:). We recall that
we use the out-branchir§ with root ¢ obtained by Algorithm 1.
The theorem is based on the following two claims.

CLAaiM 1. For each pathr in T starting frome the strength of
m does not decrease in the graph, i.e. w’(7) > w(r).

By construction ofA, we havew'(z,y) > w(z,y) for every arc
(z,y) € T, and this implies Claim 1.

CLAIM 2. For everya-c-path w, the strength ofr in G’ does
not exceed the strength of a criticatc-path in G, i.e. w’(7) <
Sp(a,c).

To prove Claim 2, assume, for the sake of contradiction, ¢hat
a vertex such that there is anc-pathm = (a = a1,...,ar = ¢)
with w’(7) > Sp(a,c), and w.l.o.g. we assume that for all-c-
pathso, 1 < i < k — 1, we havew'(c) < Sp(a;, c). Because is
a winner with respect t&, = must contain an argr, y) of weight
w(z,y) such thatw(z,y) < Sp(c,a). Let(b,d) = (ai,ai+1) be
the first arc with this property, i.e. = min{j : w(aj,a;+1) <
Sp(a,c)}. Next we show the chain of inequalities

®)

@ @ ®) (4) ,
w'(m) > Sp(a,c) = Sp(b,c) > Sp(d,c) > Sp:(d,c) > w (n),

which is a contradiction and thus proves the claim.
The following arguments for the single inequalities above a
illustrated in Figure 5.

(1) By assumption.

100

a
A) ai=b

40

— = ain=d

Figure 5: A diagram illustrating the arguments for steps (2),(3)
and (4) of the inequality chain in the proof of Claim 2.

(2) As c is a winner for P, every a-c-path must contain an arc
(z,y) with w(z,y) < Sp(c,a). By the choice ofb,
we know that(b, d) is the first arc such that(b,d) <
Sp(a,c). Hence, the strength of theb-path is greater than
the strength of thei-c-path, Sp(a,b) > Sp(a,c). Now
from Sp(a,c¢) > min{Sp(a,b), Sp(b,c)} it follows that
Sp(b,c) < Sp(a,c).

(3) From the assumptionv’(w) > Sp(a,c) it follows that
w'(b,d) > w(b,d) which implies thatb comes beforel
in the orderingA, and then the inequality (3) follows from
Lemma 2.

(4) By assumptionw’ (o) < Sp(d,c) for all d-c-pathso, hence
Spr(d,c) < Sp(d,c).

(5) Letm be thed-c-subpath ofr. ThenSp/(d,c) > w'(m1)
w' (7).

>

=

Together, Claims 1 and 2 prove the theoreri]

COROLLARY 1. The co-winner WCM problem for Schulze’s
rule is polynomial if the number of candidates is bounded.

PROOF As the number of candidates is bounded we can enu-
merate all possible distinct votes in polynomial time. Froheo-
rem 1 it follows that it is sufficient to consider manipulatsowhere
all manipulators vote identically. ]

4. UNWEIGHTED COALITIONAL MA-
NIPULATION

In this section we present our main result: co-winner UCM is
polynomial for any number of manipulators. This closes aarop
question raised in [14]. By Theorem 1PN ¢, M) is a Yes-
instance for co-winner UCM if and only if there is a voté such
thatc € Wpnumpum Where votes inP™ corresponds to-. It
remains to decide if such a vot€ exists.

As in the weighted case, we dendi®,w) = (Gp,wp) and
(G',w') = (Gpr,wpr) the WMGs of the voting profile® =
PYM and P’ = PYM U PM with arc weight functionsw and
w’, respectively, and'p (z, y) denotes the maximum strength of a
path fromz toy in G'.

First, we give a high-level description of the two-stageoaitihm.

In the first stage, we run a preprocessing proceduré timat aims
to identify a set of necessary constraints on the strengghér, ),
such asSp (z,y) must be equal t&'r (x, y) + | M|. The procedure
is based on a set of rules that enforce necessary conditiongd
win, namely,Sp/ (¢, z) > Sp/(x, c) must hold. If the preprocess-
ing procedure detects a failure then there is no set of votes/f
such that becomes a winner. The pseudocode for the first stage of
the algorithm is given in Algorithm 3. Section 4.1 proves tue-
rectness of Algorithm 3. If no failure is detected by apptythese
rules during the preprocessing stage, we show that a marigul
exists and provide a constructive procedure that finds apuobmni
tion. The pseudocode for the second stage of the algoritiginaés



Algorithm 3 PREPROCESSINBOUNDS.

Input:  aweighted digrapiG = (V, E), w) = (Gp,wp),
the strengths$'» and
a distinguished candidate
for (z,y) € V x V do
w(z,y) = w(z,y) + M|
w(z,y) = w(z,y) — M|

U(z,y) = Sp(z.y) + | M|
while no convergencdo
/*Rule 1 */
for z € V' \ {c} do
U(z,c) = min{U(z,c), Ulc,z)}
/*Rule 2 */
for x € V' \ {c} do
Vi={yeV:U(y,c) <U(z,c),y #c}

E.={(f,9) € E: w(f,9) <U(z,)}UV, x VUV x V,

G = ((V\V2),(B\ E,))
if G contains na:-z-paththen
U(z,c) =U(z,c) —2
/* Rule 3%/
for x € V' \ {c} do
fory € V\ {z,c} do
it Uz, c) <w(z,y)
U(y,c) = min(U(y,c),U(z,c))
for x € V' \ {c} do
if U(z,c) < Sp(z,c) —
returnFAIL

|M | then

returnU

in Algorithm 4. Here, the algorithm traverses verticesdnn a
specific order, which defines the manipulators votes. Seetid
proves the correctness of Algorithm 4.

4.1 Stage 1. Preprocessing

Algorithm 3 uses a functio®/(z, y), which for any two can-
didatesz andy, gives an upper bound fa§p/ (z,y). Initially,
U(z,y) = Sp(z,y) + |M]| for each pair(z,y). We also use
the following notation for an upper and lower boundwdf(x, y):
w(z,y) = w(z,y) + |M| andw(z,y) := w(z,y) — |M].

In the first stage, Algorithm 3 decreadééx, y) when it detects
necessary conditions implyin§p: (z,y) < U(z,y). The algo-
rithm is based on the following three reduction rules. Wenstimat
these rules are sound in the sense that an application of doek
not change the set of solutions of the problem.

Rule 1. If there is a candidate such that/(c, z) < U(z, c), then
setU(z,c¢) :== U(c, x).
PropPosITION 1. Rule 1 is sound.
PrROOF To see that Rule 1 is sound, suppaoSg:(z,c) >
Spr(c,x). Butthenc ¢ Wp,. O

To state the next reduction rule, define for any candidatiee
directed grapliz” obtained from= by removing all verticeg with
U(y,c) < U(z,c)and all arcy, z) such thatw(y, z) < U(z, c).

Rule 2. If there is a candidate such thatZ* has no directed path
from ctoz, then set/(z, ¢) := U(z,c) — 2.

PrRoOPOSITION 2. Rule 2 is sound.

Figure 6: The WMG Gp from Example 5

strengths, wheres equalsU (z, ¢) before the application of the
rule. SinceGG” has no directed path fromto z, all directed paths
in G from c to x pass either through a vertgxwith U(y,c) < s
or through an arcy, z) such thatw(y, z) < s. Since any such
path has strength less thanwe have thatSp/ (¢, z) < s. But,
sincec belongs to the winning set i@’, we have thalp/ (c, ) >
Spr(x,c) > s, acontradiction. ThusSp/ (z,c) < s. The sound-
ness of Rule 2 now follows from the fact that &l (y, z) have
the same parity asVM/| + |M], y,z € V, and we maintain the
invariant that all/ (-, -) have this parity. [

Rule 3. If there are candidates,y # c such thatU(z,c) <
w(z,y) and U(y,c) > U(x,c), then setU(y,c) :=
U(z,c).

ProPOSITION 3. Rule 3 is sound.

PROOF SupposeSe/(y,c) > U(x,c) and is a critical path
fromytocin G’. Butthen, the patl -7, obtained by concatenating
x andr, has strengtmin{w’(z,y), Sp:(y,c)}. Sincew’(z,y) >
w(z,y) > U(z,c), the strength of this directed path framto ¢
is strictly greater thai/(z, ¢), contradicting our assumption that
U(z, c) is a necessary upper bound &g (z,c). O

We remark that Rules 1-3 decremdii(-, ¢) when necessary
conditions are found that require a smaller upper bound for
Spr(+,¢). Should at any time such a vall&z, c) become smaller
thanSp(z, ¢c) — | M|, then there are no votes faf that makec a
winner. In this case, the preprocessing algorithm retBAlg .

THEOREM 2. Algorithm 3 is sound.

PrROOF Algorithm 3 implements Rules 1-3. As these rules are
sound, the algorithm is sound[]

Consider how Algorithm 3 works on an example.

EXAMPLE 5. Consider an election with eleven alternatives
{ah as, b17 bz7 c, d17 dz, er, ez, f17 f2} with the WMG in Figure 6,
where|M| = 1 andcis the preferred candidate. We note that there
are two candidate$; and b, such thatSp(c,z) = Sp(z,c) — 2,

x € {b1,b2}. For candidateb; there are two ways to increase
Sp(c,b1). The first way is to increase the strength of the-d: -
bi-path by rankingd: > b1. The second way is to increase the
strength of thec-e2-d2-b1-path by rankinges >~ ds. If we select
the first way then an extension@f > b, to any total order leads
toc ¢ Wpr. If we select the second way then we can build a suc-
cessful manipulation. We show that Algorithms 3— 4 sucakgsf
construct a valid manipulation. We start with Algorithm awble 1

PROOF. Suppose the premises of the rule hold, and, for the sake Shows execution of Algorithm 3 on this problem instancé.]

of contradiction, suppose there exists a pattiirfrom x to c with



AlternativesC \ {c}
filfelaJaz]ei e [di[da]bi]bo

Initial values
U(e,-) |11 |11 | 9 9 |11 |11 |111| 9 9 7
U 919191911999 (11(11]09
Rule 1 update$/(ds, c¢), U (b1, ¢) andU (b2, ¢)
U(e,-) |11 |11 | 9 9 |11 |11 |111| 9 9 7
UHe)l 9191919191999 |9]|T7
Rule 3 updates/( f1, c) asU(bz, ) = 7 andw(bs, f1) = 9
U(e,-) |11 |11 | 9 9 |11 |11 |11] 9 9 7
Ul 7191919191999 9|7
Rule 2 update#/ (a1, ¢) (Figure 7(a) forG**)
U(e,-) |11 |11 | 9 9 |11 |11 |11 1| 9 9 7

Ube |l 7]9lT7]9l9]9]l9]9]9]|7
Rule 3 update#/ andU (dy, c)
1111119 |9 1111 9 7
Ube | 71979797997

Ne

Table 1. Execution of Algorithm 3 on Example 5.
U(e,)/U(-,¢) stands for the wupper bound value
U(c,c')/U(c’,c), where ¢’ is the alternative in the corre-
sponding column,c’ € C\{c}.

dy d 4 d
N A N A
by by

Figure 7: (a) G®1. Deleted arcs and vertices are in gray. There
is no path from c to a1; (b) WMG Gpygay from Example 5
where A is a valid manipulation.

4.2 Stage 2. Construct manipulators’ votes

Algorithm 4 constructs a linear ordér based on the following
greedy procedure. Initiallh = {}, cis the top candidatéastv =
¢, the frontier ' = {c} and the set of unreached vertic&s =
C\{c}. During the execution of the algorithm,is a linear order on
F and contains an element> y for any two consecutive vertices
x,y in this order. The vertekastv is the last vertex in this order
c> - > lastv.

While A is not a total order, the algorithm adds one of the
unreached verticeg to the end of a partial ordeA satisfying
the following conditions:z € F,y € X, U(y,¢) = D and
w(x,y) = D, whereD is the maximum valué/(y, c) among all
unreached verticeg € X.

THEOREM 3. Algorithm 4 constructs a total ordek with top
elementc. Moreover, for any vertex € V \ {c}, there is ac-z-
pathm = (¢ = z1,...,xp, = x) such thatw(z;, xi+1) = U(z,c)
andz; > ziy1 € A,i=1,...,p— 1.

PROOF. First, we need to prove that the algorithm can always
add a vertex to the orderA satisfying the conditions above. Let
z be any candidate fronX such that/(z,c¢) = D. Since Rule 2
does not apply, the subgraglt has a directed path fromto z.

Let (z,y) be the arc on this path with € F' andy € X (we could

Algorithm 4 Construction of ordering.

Input:  aweighted digrapliG = (V, E),w) = (Gp,wp),
the strengthsp,
a distinguished candidateand
the functionU returned by Algorithm 3.

for (z,y) € V x V do
w(zr,y) =w(z,y) + | M|
Initialize F = {c}, X = C\ {c}, lastv = candA = {}.
fori=1,...,]V]—1do
D =max{U(y,c) : y € X}
Chooser € F andy € X withw(z,y) > U(y,c) = D
F=Fu{y}
X =X\ {y}
A =AU{lastv = y}
lastv =y
returnA

possibly have thag = z). Also, by Rule 2 we have théf(y, c) >
U(z,c) and thatw(z,y) > U(z,c). Thus,U(y,c) = D and
w(x,y) > D, which means thatz, y) satisfies the conditions of
the alternativey to be added ta\.

We prove the second statement by induction. In the base case,
F = {c} and we addy such thatw(c,y) > U(y,c). Hence,
= (c=z1,z2=y), W(c,y) > U(y,c)andc > y € A.

Suppose, the statement holds for 1 steps. Let(z,y) be the
arc such thar € F andy € X, w(z,y) > U(y,c) = D that we
add at theth step. By the induction hypothesis, we know that there
is ac-z-pathm = (¢ = z1,...,zp = z) such thatw(z;, z4+1) >
U(z,c)andz; = zj41 € A,j=1,...,p—1,p<i—1. Bythe
selection ofy, we get thatw(z, y) > U(y, ¢). By Algorithm 4, we
know thatU(z,c) > U(y,c). Hencew(z;,zj4+1) = U(z,c) >
U(y,c),7 = 1,...,p— 1. Aswe addzx > y to A we get that
there is ac-y-pathmr = (¢ = z1,...,2p = ¢, xp+1 = y) such that
w(z,y) > U(y,c)andz; = z;41 € A, j=1,...,p. O

This orderA defines the vote-’ of the manipulators.

THEOREM 4. Consider the order\ returned by Algorithm 4.
Thenc € W/, whereP’ = PNM U JIMI{A}.

ProoFr Due to the construction ofA, we know that
Spr(c,z) 2 Uz, c), x € V \ {c} as for each vertex there is a
c-z-patho = (¢ = z1, 2, ..., xp = x) such thatw(x;, xi+1) >
U(z,c)andz; > zi41 €A, i=1,...,p— 1.

Let us make sure thefp/ (z,c) < U(z,c) for each candidate
z € V'\ {c}. On the contrary, suppose there is a candidagach
that Sp/(z,c) > U(z, c) and suppose among all such vertices,
has the shortest critical path¢oDenote byr = (z,z1, z2, ..., c)

a shortest critical path from to ¢. Consider two cases depending
on whetherz; = corz; # c.

Suppose that; # c. We have thatSp/ (z1,¢) > Sp/(z,c)
since the pathr is critical. Therefore[/(z1,c) > U(z, c) by the
selection ofr andr. Since candidates are added by non-increasing
values ofU(-, ¢) to A, z1 was added before, so thatz; >’ .
Thus,w’(z,z1) = w(x,x1). By Reduction Rule 3, we have that
w(z,r1) < U(z,c). Thus,w’(z,z1) < U(z,c), contradicting
thatr has strength> U(z, c) in G'.

Suppose that; = c. In this caser = (x,¢) andSp/(z,c) =
w'(z,c). As cis the top element oA we have thatw'(z,c) =
w(z,c) = w(zx,c) — |M|. As Algorithm 3 did not detect a failure,
we know thatU (z,c) > Sp(x,c) — |M|. Moreover,Sp(z,c) >
w(z, ¢), by definition of the critical path. Thereforé/(z,c) >
Sp(z,c)—|M| > w(z,c)— |M| =w'(x,c) = Sp/(z, c). Hence,



Spr(z,c) < Uz, c), contradicting thair has strength> U(z, c)
inG'. O

Note that Corollary 1 does not follow from Theorem 4, be-
cause Algorithm 3 take®(wma:|V|?) time, wherewme: =
Max(; yyevxy W(T,y). ASwma: can beO(2!V!), Algorithm 3
takes exponential number of steps in WCM.

EXAMPLE 6. Consider how Algorithm 4 works on Example 5.
The algorithm traverse§ by vertices ordered by the valt&z, c),
z € C\ {c}. Initially, we start atc, and F' = {c} and X =
C\ {c}. We computd = max{U(y,c) : y € X}, D=9. We
consider all verticeg) € X such thatU(y,c) = 9, which is the
set@Q = {f2,a2,e2,d2,b1}. We select one of those verticgs,
that satisfies the condition on the valtgz,y), x € F,y € X:
W(e, f2) = 11 = U(f2,¢) = 9. In the next four steps we add all
elements of) and obtain a partial orderA = ¢ > fo > a2 >
e2 > bi. The next maximum value = max{U(y,c) : y € C\
{¢c, f2,a2,e2,d2,b1}is7. The set of vertices such tha{y, c) = 7
is@Q = {f1,a1,e1,d1,b2}. Hence, we add these verticesAmne
by one and obtain a total ordek = ¢ > fo > a2 > ez > b1 >
fi1 = a1 > bz = e1 > di. Figure 7(b) shows the WMG p 3.
We omitted all arcs of weight 1 for clarity.[]

5. UNIQUE WINNER VS CO-WINNER
UCM

In this section we consider the unweighted coalitional rmpalai-
tion problem with a single manipulator that was considengd 4].
Parkes and Xia showed that theique winner UCMor Schulze’s
rule with a single manipulator can be solved in polynomiaieti
We emphasize that in this variant the aim is to make the pre-
ferred candidate the unique winner. The aim of this section is
to show that the proof from [14] cannot be extended to the co-
winner UCM problem with one manipulator. This demonstrates
that the co-winner UCM problem with one manipulator was eet r
solved in [14]. We also extend our algorithm for co-winnerMC
to the unique winner case. Another reason to investigateetiae
tion between properties of unique winner and co-winner pani
lation problems is that they are closely related to the @hoidie-
breaking rules. If the tie-breaking rule breaks ties agaims ma-
nipulators then the manipulators have to ensure that tHerped
candidate is the unique winner of an election. If the tieakieg
rule breaks ties in favor of the manipulators then it is sigfitfor
the manipulators to guarantee that the preferred candilatee of
the co-winners of the election to achieve the desired ouécom

The proof that the unique winner UCM is polynomial is based
on the resolvability property [16, Section 4.2.2]. The feability
criterion states that any co-winner can be made a uniquearioy
adding a single vote.

Resolvability. If Sp(c,z) > Sp(z,c) for all candidatesr €
C\ {c}, then there is a vote such thatSpy.;(c,z) >
Spuiw}(z, c) for all candidates: € C \ {c}.

The proof of the property is constructive. Cleartycan be the
unique winner inP U {v} only if ¢ is a co-winner inP. The vote
v is constructed using two rules that we describe below. Wetden
P = P"™ and{v} = PM to simplify notations.

(1) For every alternativec € C \ {c}, we requirey > z in the
manipulator’s vote wherey is the predecessor afon some
strongest path fromto x.

(2) Foranyz,y € C\ {c} with Sp(z,c) > Sp(y,c) we require
x > y in the manipulator’s vote.

aaq—10 ¢ 12 vlalb|c|d]|e
\ al| -|s8|10]10]10
10| 12 b ©
/{ 10 10 | 10 | 12
d >c clwo] s 10| 12
12 d 10| 8|12 12
el s |10]10
(@)
a—10 ,p Vvlalb|c|d a 1 .b
- 10 10 | 10
10, 12 8 1 1
10 12 10
d<Tc c 1|0 10 g v
@ 10 10 | 10 "
(b) ©
Figure 8: (a) The WMG Gp and the table of Sp(x,y),
)

x,y € {a,b,c,d,e} from Example 7; (b)/(c) The WMG
GP/GPU{V} and the table of Sp(x,y)/SpU{v} (x,y),
x,y € {a,b, c,d} from Example 8.

It was shown in [16] that the resulting set of preferencetiahas
does not contain cycles and thus can be extended to a linear or
der which makesg the unique winner. However, it was also shown
in [16] that the same approach cannot resolve ties betweaati-ca
dates that do not belong to the winning set. It is a naturabque
tion if a candidatec that is not in the winning set can be made a
winner by adding a single vote. Clearly a necessary comdigo
Sp(c,z) = Sp(z,c)—2forallz € C\ {c}. Sowe can formulate
the following problem.

Single vote UCM. Given a profile P and a candidate: with
Sp(z,¢) < Sp(c,x) +2forallx € C\ {c}, does there
exist a single vote such that € Wpy,3?

Here, we show that the straightforward adaption of the alboles
does not solve this problem, even if there is a single voteipoar
tion that makeg a winner. A major difference between the unique
winner and the co-winner UCM problems is that the manipatati
always exists in the former problem and it might not existha t
latter as the following example demonstrates.

EXAMPLE 7. Consider an election with five alternatives
{a,b,c,d,e}. Figure 8(a) shows the WMG and the correspond-
ing table of maximum strengths. The unique winnéx idowever,
the differenceéSp (z,c) — Sp(c,z) < 2,z € {a,b,d,e}. Hencec
satisfies the trivial necessary condition for being maderaner by
adding a single vote.

To see that there is no successful manipulation we notice tha
Sp(c,d) = Sp(d,c) — 2. Hence the manipulation must increase
the weight of at least one critical-d-path. As there is only one
critical c-d-path this forces: > a > d in the manipulator’s vote.
But on the other hand'r(c,b) = Sp(b, c) — 2 requires that the
weight of every criticab-c-path decreases which implies that- e
or d >~ a, which gives a contradiction.

Consider the preference relations that are output by thesul
Following the first rule we adé > a > d andc > b. Following
the second rule, we add > {a,b,e}. This creates a cycle and
thus cannot be completed to a linear ordef]

Next, we show that the rules do not find the manipulator vote
even if such a manipulation exists for the co-winner UCM peab
using Examples 8-9.

ExAMPLE 8. Consider an election with four alternatives
{a,b,c,d}. Figure 8(b) shows its WMG and the corresponding



table of maximum strengths. The set of winner§dasb, d} and

Sp(z,c) — Sp(c,z) < 2, x € Wp. Following the first rule we
addc > d > a > b. However, by the second rule, we add- o

which creates a cycle. Note that a successful manipulatiexists
v=(c>d>a>Db)(Figure 8(c)). I

ExAMPLE 9. Consider the election with 11 alternatives from
Example 5. Following the first rule we add> e; > di > by to
the manipulator vote as = (¢, e1, d1, b1) is a strongest path from

ctob;. As we showed in Example 5, there does not exist an exten-

sion of this partial order to a total order that makes co-winner.
However, a successful manipulatiorexists (Figure 7(b)). [

Therefore, our study highlights a difference between umigjin-
ner and co-winner UCM under Schulze’s rule with a single mpani
ulator and demonstrates that co-winner UCM with a singleiman
ulator was not resolved. Moreover, we believe that Schsiizgé is
an interesting example, where the tie-breaking in favor raip-
ulator, which corresponds to co-winner UCM, makes the mnwobl
non-trivial compared to tie-breaking against manipukstavhich
corresponds to unique winner UCM. Two rules with similargro
erties have been considered in the literature. Conitzerdigdm
and Lang [5] showed that Copeland’s rule is polynomial with 3
candidates in unique winner WCM, while it is NP-hard with 3-ca
didates in co-winner WCM [9]. The most recent result is due to

Hemaspaandra, Hemaspaandra and Rothe [8] who showedéhat th

online manipulation WCM is polynomial for plurality in theoe
winner model, while it is coNP-hard in the unique winner mode

Our algorithm from Section 5 can still be used as a subroutine
solve the unique winner UCM problem.

COROLLARY 2. The unique winner UCM problem can be
solved in polynomial time.

PrROOF Run the algorithm from Section 5 wiffd/| — 1 ma-
nipulators and return the answer. To show the correctnetisiof
procedure, we need to show thats a co-winner with| M| — 1
manipulators iffc is a unique winner with/| manipulators.

(=): Suppose: can be made a co-winner with/| — 1 manipu-
lators. Use the Resolvability property to add one more \mtedke
¢ a unique winner.

(«=): Suppose: can be made a unique winner with/| manip-
ulators. ThereforeSp(c,z) > Sp(z,c) + 2 for every candidate
x € C\ {c} inthe profileP = PN y P, Now, remove an arbi-
trary vote of a manipulator and obtain the profité. We have that
Spi(c,x) > Sp(c,z) —1andSp:(z,¢c) < Sp(x,c)+ 1 for every
candidater € C \ {c}. Therefore,Sp/(c,xz) > Sp(c,z) — 1 >
Sp(z,c)+1 > Sp/(z, c) for every candidate € C\{c}, showing
thatc is a co-winner witf M| — 1 manipulators. [J

6. CONCLUSIONS

We have investigated the computational complexity of thedieo
tional weighted and unweighted manipulation problems unde
Schulze’s rule. We proved that it is polynomial to manipelat
Schulze’s rule with any number of manipulators in the wedght

co-winner model and in the unweighted case in both unique and [17]

co-winner models. This resolves an open question regairtiieg
computational complexity of unweighted coalition mangiidn
for Schulze’ rule [14]. This vulnerability to manipulationay be
of concern to the many supporters of Schulze’s rule.
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