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Abstract

We study the NP-hard problem of finding a directed acyclic graph (DAG) on a given set of nodes so as
to maximize a given scoring function. The problem models the task of inferring a probabilistic network
from data, which has been studied extensively in the fields of artificial intelligence and machine learning.
Several variants of the problem, where the output DAG is constrained in several ways, are NP-hard as well,
for example when the DAG is required to have bounded in-degree, or when it is required to be a polytree.
Polynomial-time algorithms are known only for rare special cases, perhaps most notably for branchings, that
is, polytrees in which the in-degree of every node is at most one.

In this paper, we generalize this polynomial-time result to polytrees that can be turned into a branching
by deleting a constant number of arcs. Our algorithm stems from a matroid intersection formulation. As
the order of the polynomial time bound depends on the number of deleted arcs, the algorithm does not
establish fixed-parameter tractability when parameterized by that number. We show that certain additional
constraints on the sought polytree render the problem fixed-parameter tractable. We contrast this positive
result by showing that if we parameterize by the number of deleted nodes, a somewhat more powerful
parameter, the problem is not fixed-parameter tractable, subject to a complexity-theoretic assumption.

Keywords: Directed acyclic graphs, branchings, polytrees, parameterized complexity, matroids,
probabilistic networks

1. Introduction

There has been extensive research on learning probabilistic networks from data by maximizing some
suitable scoring function. In this setting, we are given a set of nodes and a scoring function that assigns
a real number to every directed graph (digraph) on the node set, and the goal is to find (or construct) a
directed acyclic graph (DAG) that maximizes the score. As the problem is NP-hard in general [2], researchers
have sought for natural problem variants that would be computationally tractable. One approach to this
end is to tighten the combinatorial constraints for the sought DAG. This approach has two main advantages:
(1) the found more constrained DAG provides a lower bound on the optimum score over less constrained
DAGs, which can be used to guide the search in the less constrained space; and (2) a more constrained
DAG often simplifies the reasoning tasks that will be performed on the learned probabilistic network. It is
important to note that the constraints in question restrict the output of the problem, not the input. Thus,
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tighter constraints do not necessarily amount to easier problem variants. This makes a systematic search
for positive and negative results more challenging than in the case where the restrictions concern the input.

The first positive result in this direction was given by Edmonds [3], who gave an efficient algorithm for
the class of branchings. A branching is a directed forest with in-degree at most one, equivalently, a DAG
with in-degree at most one. The algorithm was discovered independently by Chu and Liu [4], and it has been
later simplified and expedited by others [5, 6, 7, 8, 9, 10, 11]. On the other hand, Chickering [2] showed—by
a reduction from the Feedback Arc Set problem—that the problem becomes NP-hard as soon as the
in-degree bound on the DAG is raised to two (or any larger constant). Motivated by this gap, Dasgupta [12]
asked for a class of DAGs that is more general than branchings yet admitting provably good structure-
learning algorithms. In particular, he studied polytrees, that is, digraphs whose underlying undirected graph
is a tree. The results were, however, rather negative, showing that the optimization problem is NP-hard
when the in-degree bound is two (or any larger constant).

Given the recent advances in exact exponential algorithms in general (see, e.g., the dedicated book [13]),
and in finding optimal DAGs in particular, it is natural to ask, whether “fast” exponential-time algorithms
exist for finding optimal polytrees. For unconstrained DAGs the fastest known algorithms run in time
within a polynomial factor of 2n, where n is the number of nodes [14, 15, 16, 17]. Currently, we do not know
whether these bounds can be achieved for polytrees—a brute-force algorithm would visit each polytree one
by one, whose number scales as the number of directed labeled trees nn−22n−1 [18]. Do significantly faster
algorithms exist? What if we restrict our search for DAGs that are “almost branchings”: Does the problem
become easier if only a small number of nodes are allowed an in-degree larger than one?

Results

This article takes a step towards answering these questions by considering polytrees that differ from
branchings by only a few arcs. More precisely, we study the problem of finding an optimal k-branching,
defined as a polytree that can be turned into a branching by deleting k arcs. In the problem formulation, we
make the assumption—which is standard in the context of learning probabilistic networks—that the score
of a DAG is obtained as the sum of local scores, each of which is a single real number assigned to a node
and its in-neighbors; we give precise definitions in the next section.

Our main result is an algorithm that finds an optimal k-branching in polynomial time for every constant k.
Our overall approach is straightforward: we search exhaustively over all possible sets of at most k “extra
arcs”, fix the guessed arcs, and solve the induced optimization problem for branchings. Implementing this
seemingly innocent algorithm, however, requires a successful treatment of certain complications that arise
when applying the existing matroid machinery for finding optimal branchings. In particular, one needs to
control the interaction of the extra arcs with the solution from the induced subproblem.

While our algorithm for finding an optimal k-branching is polynomial for fixed k, the degree of the
polynomial depends on k. Thus the algorithm does not scale well with respect to k. We therefore investigate
variants of the problem that admit fixed-parameter tractability in the sense of Downey and Fellows [19]: the
running time is given by O(f(k)p(n)), where p is a polynomial depending only on the input size n and f
is a computable function that depends only on the parameter k. In particular, we show that finding an
optimal k-branching is NP-hard but fixed-parameter tractable under the following additional constraint on
the sought k-branching: the set of arcs incident to nodes with more than one parent are required to form
a connected polytree with exactly one sink; in addition, we assume that each node has a bounded number
of possible incoming arcs. We complement the fixed-parameter tractability result by showing that finding
an optimal polytree is not fixed-parameter tractable with respect to another natural parameter, subject
to complexity theoretic assumptions. Namely, we show that the problem is not fixed-parameter tractable
when parameterized by the number of nodes whose deletion produces a branching. We want to point out
that deleting nodes instead of arcs enlarges the class of potential solution networks and therefore potentially
produces higher quality networks. This is what makes this parameterization interesting in its own right.
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v P f(v, P )

1 ∅ 1.0
2 ∅ 1.0
3 {1} 1.0
4 ∅ 0.1
4 {1} 0.2
5 {1} 0.5
5 {1, 2} 1.0
6 {3} 0.8
6 {3, 4} 1.0
7 {5} 0.9
7 {4, 5} 1.0

7→

1 2

3 4 5

6 7

Figure 1: An optimal polytree for a given scoring function.

2. The k-Branching Problem

A (directed) probabilistic network, also called a Bayesian network or directed graphical model, is a mul-
tivariate probability distribution that obeys a structural representation in terms of a directed acyclic graph
(DAG) and a collecion of univariate conditional probability distributions, one for each node of the graph.
In the structure learning problem we consider, the DAG will be the protagonist, whereas the conditional
distributions will only play an implicit role in defining the scoring function [20, 21, 22, 12].

We use the following terminology and notation. A DAG is a pair (N,A), where N is the node set and
A ⊆ N ×N is the arc set. We shall identify the graph with the arc set A when there is no ambiguity about
the node set. We call a node u a parent of v in the graph if (u, v) is an arc in A, and denote by Av the set
of parents of v, that is, the in-neighborhood of v. When our interest is in the undirected structure of the
graph, we may denote by A the skeleton of A, that is, the set of edges { {u, v} : (u, v) ∈ A }. Specifically, we
call A a polytree if A is acyclic, and a branching if additionally each node has at most one parent.

When learning a probabilistic network from data it is customary to introduce a scoring function that
assigns each graph A a score f(A), which is a real number (or −∞), measuring how well A fits the data.
While there are plenty of alternative scoring functions, derived under different statistical paradigms and
assumptions [20, 21, 22, 12], the most popular ones share one important property: they are decomposable,
that is,

f(A) =
∑
v∈N

f(v,Av) ,

with some local scoring functions f(v,Av). The generic computational problem is to maximize the scoring
function over some appropriate class of graphs given the local scoring functions as input. Note that the
score f(v,Av) need not be a sum of any individual arc weights, and that the parent set Av may be empty.
Figure 1 shows a table representing local scoring functions, together with an optimal polytree.

We study this problem by constraining the output to a graph class that is a subclass of polytrees but a
superclass of branchings. We call a polytree A a k-branching if there exists a set of at most k arcs D ⊆ A
such that in A \D every node has at most one parent. Thus, for example, any branching is a 0-branching,
and any polytree is a k-branching for k = |N | − 1. Following Dasgupta [12], we reserve the term k-polytree
for polytrees where each node has at most k parents. The k-branching problem is to find a k-branching
A that maximizes f(A), given the values f(v,Av) for each node v and set Av in a collection of potential
parent sets for v:

k-Branching

Input: A set N of n nodes, collections Cv of potential parent sets (subsets of N \ {v}) for each
v ∈ N , real-valued local scores f(v,Av) for each v ∈ N and Av ∈ Cv, and a nonnegative
integer k. We make the convention that f(v,Av) = −∞ if Av 6∈ Cv.

Output: A k-branching A on N that maximizes f(A).
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The size of the input in this problem formulation is, in essence, determined by the total number of potential
parent sets. We will mostly be interested in cases where this number grows at most polynomially in the
number of nodes, which is true particularly when the in-degree of the graph is bounded by some constant.
Since any 2-polytree is a k-branching for some k < |N |, the NP-hardness of finding an optimal 2-polytree
[12, Theorem 6] implies the following (by simply setting k = |N | − 1 and removing all sets of cardinality
greater than 2 from all collections of parent sets Cv):

Theorem 1. The k-Branching problem is NP-hard.

We will also consider problem variants where we tighten or loosen the constraints on the sought polytree.
Because the constraints concern the output of the problem, we introduce the problem variants under modified
names. Specifically, in Section 4 we will introduce the k-Intree-Branching problem and the k-Node-
Branching problem.

We note that k-branchings generalize branchings in a different direction than the Tree-augmented Naive
Bayes classifier (TAN) due to Friedman [23]. Namely, in a TAN the in-degree of each node is at most two,
and there is a designated class node of in-degree zero, removing of which leaves a spanning tree; the tree is
undirected in the sense that the symmetric conditional mutual information is employed to score arcs.

3. An Algorithm for the k-Branching Problem

Throughout this section we consider a fixed instance of the k-Branching problem, that is, a node set N
and a scoring function f . Thus all arcs will refer to elements of N ×N . We will use the following additional
notation. If A is an arc set, then H(A) denotes the heads of the arcs in A, that is, the set { v : (u, v) ∈ A }.
If C is a set of edges, then N(C) denotes the induced node set {u, v : {u, v} ∈ C }.

We present an algorithm that finds an optimal k-branching by implementing the following approach.
First, we guess an arc set D of size at most k. Then we search for an optimal polytree A that contains D
such that in A \D every node has at most one parent; in other words, B = A \D is an optimal branching
with respect to an induced scoring function. Clearly, the set D must be acyclic. The challenge is in devising
an algorithm that finds an optimal branching B that is disjoint from D while guaranteeing that the arcs in
D will not create undirected cycles in the union B∪D. To this end, we will employ an appropriate weighted
matroid intersection formulation that extends the standard formulation for branchings.

We will need some basic facts about matroids. A matroid is a pair (E, I), where E is a set of elements,
called the ground set, and I is a collection of subsets of E, called the independent sets, such that

(M1) ∅ ∈ I;

(M2) if A ⊆ B and B ∈ I then A ∈ I; and

(M3) if A,B ∈ I and |A| < |B| then there exists an e ∈ B \A such that A ∪ {e} ∈ I.

The rank of a matroid is the cardinality of its maximal independent sets. Any subset of E that is not
independent is called dependent. Any minimal dependent set is called a circuit.

The power of matroid formulations is much due to the availability of efficient algorithms [24, 25, 26,
27, 28, 29] for the Weighted Matroid Intersection problem, defined as follows. Given two matroids
M1 = (E, I1) and M2 = (E, I2), and a weight function w : E → R, find an I ⊆ E that is independent
in both matroids and maximizes the total weight of I, that is, w(I) =

∑
e∈I w(e). The complexity of the

fastest algorithm for the Weighted Matroid Intersection problem that we are aware of is summarized
as follows:

Theorem 2 ([24]). The Weighted Matroid Intersection problem can be solved in O(mr(r+c+logm))
time, where m = |E|, r is the minimum of the ranks of M1 and M2, and c is the time needed for finding the
circuit of I ∪ {e} in both M1 and M2 where e ∈ E and I is independent in both M1 and M2.

We now proceed to the specification of two matroids, M1(S) = (N ×N, I1(S)) and M2(N ×N, I2(S)),
parametrized by an arbitrary arc set S such that S is acyclic:
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1. The in-degree matroid M1(S): Let I1(S) consist of all arc sets B such that no arc in B has a head in
H(S) and every node outside H(S) is the head of at most one arc in B.

2. The acyclicity matroid M2(S): Let I2(S) consist of all arc sets B such that B ∪ S is acyclic.

We observe that the standard matroid intersection formulation of branchings is obtained as the special case
of S = ∅: then an arc set is seen to be branching if and only if it is independent in both the in-degree
matroid and the acyclicity matroid.

The next two lemmas show that M1(S) and M2(S) are indeed matroids whenever S is acyclic.

Lemma 3. M1(S) is a matroid (whenever S is acyclic).

Proof. Fix the arc set S and denote I1(S) by I1 for short. Clearly, ∅ ∈ I1 and if A ⊆ B and B ∈ I1 then
also A ∈ I1. Consequently, M1(S) satisfies (M1) and (M2). To see that M1(S) satisfies (M3) let A,B ∈ I1
with |A| < |B|. Because of the definition of M1(S) the sets A and B contain at most one arc with head v,
for every v ∈ N \H(S). Because |A| < |B| there is a node v ∈ N \H(S) such that v is the head of an arc in
B but v is not the head of an arc in A. Let e ∈ B be the arc with head v. Then e ∈ B \A and A∪{e} ∈ I1.
Hence, M1(S) satisfies (M3).

Lemma 4. M2(S) is a matroid (whenever S is acyclic).

Proof. Fix the arc set S and denote I2(S) by I2 for short. Because the skeleton S is acyclic and acylicity is
a hereditary property (a graph property is called hereditary if it is closed under taking induced subgraphs)
it follows that ∅ ∈ I2 and if A ⊆ B and B ∈ I2 then also A ∈ I2. Consequently, M2(S) satisfies (M1)
and (M2). To see that M2(S) satisfies (M3) let A,B ∈ I2 with |A| < |B|. Consider the sets A′ = A ∪ S
and B′ = B ∪ S. Let C be a connected subset of A′. Because both A′ and B′ are acyclic, it follows
that the number of edges of B′ with both endpoints in N(C) is at most the number of edges of A′ with
both endpoints in N(C). Because every edge in A′ \ S corresponds to an arc in A and similarly every
edge in B′ \ S corresponds to an arc in B and |A| < |B|, it follows that there is an arc e ∈ B \ A whose
endpoints are contained in two distinct components of A′. Consequently, the set A′ ∪ {e} is acyclic and
hence A ∪ {e} ∈ I2.

We now relate the common independent sets of these two matroids to k-branchings. If A is a k-branching,
we call an arc set D a deletion set of A if D is a subset of A, contains at most k arcs, and in A \D every
node has at most one parent.

Lemma 5. Let A be an arc set and D a subset of A of size at most k such that no two arcs from D′ =
{ (u, v) ∈ A \D : v ∈ H(D) } have the same head and such that S is acyclic, where S = D ∪D′. We have
that A is a k-branching with deletion set D if and only if A \ S is independent in both M1(S) and M2(S).

Proof. (⇒) : Suppose A is a k-branching with deletion set D. Then A \D is a branching, which shows that
every node v outside H(S) has in-degree at most one in A \ S. Since by definition all arcs with a head in
H(S) are contained in S, no arc in A \ S has a head in H(S). Therefore, A \ S is independent in M1(S).
Since every k-branching is a polytree, (A \ S) ∪ S = A is acyclic, and therefore A \ S is independent in
M2(S).

(⇐) : Since A \ S is independent in M2(S), we have that (A \ S) ∪ S = A is acyclic. Thus, A is a
polytree. As A\S is independent in M1(S), every node outside H(S) has in-degree at most one in A\S and
every node from H(S) has in-degree zero in A \ S. Since the head of every arc from D′ is in H(S) and no
two arcs from D′ have a common head, (A \S)∪D′ = A \D has maximum in-degree at most one. Because
|D| ≤ k, we have that A is a k-branching with deletion set D.

The characterization of Lemma 5 enables the following algorithm for the k-Branching problem. Define
the weight function by letting w(u, v) = f(v, {u})− f(v, ∅) for all arcs (u, v). Guess the arc sets D and D′,
put S = D ∪D′, check that S is acyclic, find a maximum-weight set B that is independent in both M1(S)

5



1 2

3 4 5

6 7

1 2

3 4 5

6 7

Figure 2: Left: the two guessed arc sets D (dotted) and D′ (dashed). Right: the arc set A (solid) that is a heaviest common
independent set of the two matroids M1(S) and M2(S).

and M2(S); output a k-branching A = B ∪ S that yields the maximum weight over all guesses D and D′,
where the weight of A is obtained as

w(A) = w(B) +
∑

v∈H(S)

(
f(v, Sv)− f(v, ∅)

)
.

It is easy to verify that w(A) = f(A) −
∑

v∈N f(v, ∅), and thus maximizing the weight w(A) is equivalent
to maximizing the score f(A). Figure 2 illustrates the algorithm for the scoring function of Figure 1.

It remains to analyze the complexity of the algorithm. Denote by n the number of nodes. For a moment,
consider the arc set S fixed. To apply Theorem 2, we bound the associated key quantities: the size of the
ground set is O(n2); the rank of both matroids is clearly O(n); circuit detection can be performed in O(n)
time, by a depth-first search for M1(S) and by finding a node that has higher in-degree than it is allowed
to have in M2(S). Thus, by Theorem 2, a maximum-weight set that is independent in both matroids can
be found in O(n4) time. Then consider the number of possible choices for the set S = D ∪D′. There are
O(n2k) possibilities for choosing a set D of at most k arcs such that D is acyclic. For a fixed D, there are
O(nk) possibilities for choosing a subset D′ ⊆ N ×H(D) such that D ∪D′ is acyclic and no two arcs from
D′ have the same head. Thus there are O(n3k) relevant choices for the set S.

We have shown the following:

Theorem 6. The k-Branching problem can be solved in O(n3k+4) time.

4. Fixed-Parameter Tractability

Theorem 6 shows that the k-Branching problem can be solved in “non-uniform polynomial time” as
the order of the polynomial time bound depends on k. In this section we study the question of whether one
can get k “out of the exponent” and obtain a uniform polynomial-time algorithm.

The framework of Parameterized Complexity [19] offers the suitable tools and methods for such an
investigation, as it allows us to distinguish between uniform and non-uniform polynomial-time tractability
with respect to a parameter. An instance of a parameterized problem is a pair (I, k) where I is the
main part and k is the parameter ; the latter is usually a non-negative integer. A parameterized problem
is fixed-parameter tractable if there exist a computable function f and a constant c such that instances
(I, k) of size n can be solved in time O(f(k)nc). FPT is the class of all fixed-parameter tractable decision
problems. Fixed-parameter tractable problems are also called uniform polynomial-time tractable because if
k is considered constant, then instances with parameter k can be solved in polynomial time where the order
of the polynomial is independent of k (in contrast to non-uniform polynomial-time running times such as
nk).

Parameterized complexity offers a completeness theory similar to the theory of NP-completeness. One
uses parameterized reductions which are many-one reductions where the parameter for one problem maps into
the parameter for the other. More specifically, problem L reduces to problem L′ if there is a mapping R from
instances of L to instances of L′ such that (i) (I, k) is a yes-instance of L if and only if (I ′, k′) = R(I, k) is a
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yes-instance of L′, (ii) k′ ≤ g(k) for a computable function g, and (iii) R can be computed in time O(f(k)nc)
where f is a computable function, c is a constant, and n denotes the size of (I, k). The parameterized
complexity class W[1] is considered as the parameterized analog to NP. For example, the parameterized
Maximum Clique problem (given a graph G and a parameter k ≥ 0, does G contain a complete subgraph
on k vertices?) is W[1]-complete under parameterized reductions. Note that there exists a trivial non-
uniform polynomial-time nk algorithm for the Maximum Clique problems that checks all sets of k vertices.
FPT 6= W[1] is a widely accepted complexity theoretic assumption [19]. For example, FPT = W[1] implies
the (unlikely) existence of a 2o(n) algorithm for n-variable 3-Sat [30, 31]. A first parameterized analysis
of probabilistic network structure learning using structural parameters such as treewidth has recently been
carried out by Ordyniak and Szeider [32].

The algorithm from Theorem 6 considers O(n3k) relevant choices for the set S = D ∪D′, and for each
fixed choice of S the running time is polynomial. Thus, for variants of the problem for which the enumeration
of all relevant sets S is fixed-parameter tractable, one obtains an FPT algorithm. In one such variant we
require that S = D∪D′ is an in-tree, that is, a directed tree where every arc is directed towards a designated
root. We call a polytree a k-intree-branching if deleting such an arc set D leaves a branching.

k-Intree-Branching

Input: (N, f, k) as in k-Branching.

Output: A k-intree-branching A on N that maximizes f(A).

To obtain an FPT algorithm, we further restrict ourselves to inputs where each node has a bounded
number of potential parent sets:

Theorem 7. The k-Intree-Branching problem is fixed-parameter tractable if each node has a bounded
number of potential parent sets.

Proof. To compute a k-intree-branching A, the algorithm guesses its deletion set D and the set D′ =
{(u, v) ∈ A \D : v ∈ H(D)}. As A is a k-branching, |D| ≤ k and for every v ∈ H(D) there is at most one
arc in D′ with head v. The algorithm first guesses the root r for the in-tree S. Then it goes over all possible
choices for D and D′ as follows, until D has at least k arcs.

Guess a leaf ` of S (initially, r is the unique leaf of S), and guess a non-empty parent set P for ` in A. If
|D|+ |P |+ 1 > k, then backtrack. Otherwise, choose at most one arc (p, `) to add to D′, where p ∈ P , and
add all other arcs from a node from P to ` to D (if |P | = 1, no arc is added to D′). Now, check whether
the current choice for S = D ∪ D′ leads to a k-branching by checking whether S is acyclic and using the
matroids M1(S) and M2(S) as in Theorem 6.

There are at most n choices for r. The in-tree S is expanded in at most k steps, as each step adds at
least one arc to D. In each step, ` is chosen among at most k + 1 leaves, there is a constant number of
choices for its parent set P and at most k + 2 choices for adding (or not) an arc (p, `), with p ∈ P , to D′

(as |P | ≤ k + 1). The acyclicity check for S and the weighted matroid intersection can be computed in
time O(n4), leading to a total running time of O(k2kckn5), where c is such that every node has at most c
potential parent sets.

We remark that the intree-requirement may be replaced by other conditions requiring the connectivity
of D or a small distance between arcs from D, giving other fixed-parameter tractable variants of the k-
Branching problem.

The following theorem shows that a superpolynomial dependency on k or some other parameter is
necessary, since the k-Intree-Branching problem is NP-hard:

Theorem 8. The k-Intree-Branching problem is NP-hard even if each node has at most 3 potential
parent sets.

Proof. We devise a polynomial reduction from 3-Sat-2 a version of 3-Satisfiability where every literal
occurs at most in two clauses. 3-Sat-2 is well known to be NP-hard [33].
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Figure 3: An optimal k-intree-branching A for the formula Φ = C1 ∧ C2 ∧ C3 with C1 = x1 ∨ x2 ∨ x3, C2 = x1 ∨ x2 ∨ x3, and
C3 = x1 ∨ x2 ∨ x3 according to the construction in the proof of Theorem 8. The bold arcs are all the arcs in the set D ∪D′,
where D is any deletion set for A and D′ = {(u, v) ∈ A \D : v ∈ H(D)}.

Our reduction uses the same ideas as Dasgupta’s proof of a related result [12, Theorem 6]. Let Φ be
an instance of 3-Sat-2 with clauses C1, . . . , Cm and variables x1, . . . , xn. We define the set N of nodes as
follows. For every variable xi in Φ the set N contains the nodes pi, xi, x

1
i , x2i , x1i and x2i . Furthermore, for

every clause Cj the set N contains the nodes pn+j and Cj . Let 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l ≤ 2. We
set

• f(Cj , {xli}) = 1 if the clause Cj is the l-th clause that contains the literal xi;

• f(Cj , {xli}) = 1 if the clause Cj is the l-th clause that contains the literal xi;

• f(xi, {x1i , x2i }) = 1 and f(xi, {x1i , x2i }) = 1 for every i with 1 ≤ i ≤ n;

• f(p1, {x1}) = 1 and f(pi, {xi, pi−1}) = 1 for every i with 1 < i ≤ n;

• f(pn+j , {Cj , pn+j−1}) = 1 for every 1 ≤ j ≤ m.

Furthermore, we set f(v, P ) = 0 for all the remaining combinations of v ∈ N and P ⊆ N , and we set
k = 2n+m− 1.

This completes the construction of N , f , and k. Figure 3 shows an optimal k-branching A for a 3-Sat-2
formula. Observe that every node of N has at most 3 potential parent sets. It remains to prove the following
claim.

Claim: Φ is satisfiable if and only if there is a k-intree-branching A such that f(A) ≥ 2(m+ n).
(⇒) : Suppose that the formula Φ is satisfiable and let β be a satisfying assignment for Φ. Furthermore,

for every 1 ≤ j ≤ m let lj be a literal of Cj that is set to true by β. We construct a k-intree-branching
A as follows. For every 1 ≤ j ≤ m the digraph A contains an arc (xli, Cj) if lj = xi and Cj is the l-th
clause that contains xi and an arc (xli, Cj) if lj = xi and Cj is the l-th clause that contains xi for some
1 ≤ i ≤ n and 1 ≤ l ≤ 2. Furthermore, for every 1 ≤ i ≤ n the digraph A contains the arcs (x1i , xi)
and (x2i , xi) if β(xi) = false and the arcs (x1i , xi) and (x2i , xi) if β(xi) = true. Finally, A contains the arcs
(xi, pi), (Cj , pn+j) and (pl, pl+1) for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l < m + n. Figure 3 shows an
optimal k-intree-branching A for some 3-Sat-2 formula. It is easy to see that A is a k-intree-branching with
f(A) = 2(m+ n).

(⇐) : Suppose there is a k-intree-branching A such that f(A) ≥ 2(m+ n). Because f(A) ≥ 2(m+ n) it
follows that every node of N achieves its maximum score in A. Hence, A has to contain the arcs (xi, pi),
(Cj , pn+j), (pl, pl+1), for every 1 ≤ i ≤ n, 1 ≤ j ≤ m, and 1 ≤ l < m + n. For the same reasons A has to
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contain either the arcs (x1i , xi) and (x2i , xi) or the arcs (x1i , xi) and (x2i , xi) for every 1 ≤ i ≤ n. Furthermore,
for every 1 ≤ j ≤ m the k-intree-branching A has to contain one arc of the form (xli, Cj) or (xli, Cj) where
Cj is the l-th clause that contains xi or xi, respectively, for some 1 ≤ i ≤ n and 1 ≤ l ≤ 2. Let 1 ≤ i ≤ n,
1 ≤ j ≤ m, and 1 ≤ l ≤ 2. We first show that whenever A contains an arc (xli, xi), then A contains no arc
of the form (xli, Cj) and similarly if A contains an arc (xli, xi), then A contains no arc of the form (xi, Cj).
Suppose for a contradiction that A contains an arc (xli, xi) together with an arc (xli, Cj) or an arc (xli, xi)
together with an arc (xli, Cj). In the first case A contains the undirected cycle (xli, xi, pi, . . . , pn+j , Cj , x

l
i)

and in the second case A contains the cycle (xli, xi, pi, . . . , pn+j , Cj , x
l
i) contradicting our assumption that

A is a k-intree-branching. It now follows that the assignment β with β(xi) = true if A does not contain the
arcs (x1i , xi) and (x2i , xi) and β(xi) = false if A does not contain the arcs (x1i , xi) and (x2i , xi) is a satisfying
assignment for Φ.

So far we have measured the difference of a polytree to branchings in terms of the number of arcs to be
deleted. Next we investigate the consequences of measuring the difference by the number of nodes to be
deleted.

We use the following additional notation. If A is an arc set, we denote by N(A) its induced node set
{u, v : (u, v) ∈ A } and for a node set X we denote by A − X the set of arcs { (u, v) ∈ A : u, v /∈ X }.
We call a polytree A a k-node-branching if there exists a set of at most k nodes X ⊆ N(A) such that
A −X is a branching. Clearly every k-branching is a k-node-branching, but the reverse does not hold. In
other words, the class of k-node-branchings properly contains the class of k-branchings. This means that
the k-node-branching problem has the potential to produce higher quality networks than the k-branching
problem.

k-Node-Branching

Input: (N, f, k) as in k-Branching.

Output: A k-node-branching A on N that maximizes f(A).

We next show that the k-Node-Branching problem is hard for the parameterized complexity class
W[1]. This provides strong evidence that the problem is not fixed-parameter tractable.

Theorem 9. The k-Node-Branching problem is W[1]-hard for parameter k.

Proof. We devise a parameterized reduction from the following problem, called Partitioned Clique, which
is well-known to be W[1]-complete for parameter p [34].

Partitioned Clique

Instance: An integer p and an undirected graph G = (V,E) with a partition of V into p sets
V1, . . . , Vp of equal size.

Question: Are there p vertices v1 ∈ V1, . . . , vk ∈ Vp such that {vi, vj} ∈ E for all 1 ≤ i < j ≤ p?
(The graph K =

(
{v1, . . . , vp}, { {vi, vj} : 1 ≤ i < j ≤ p }

)
is a p-clique of G.)

Fix an arbitrary instance of Partitioned Clique. We construct an instance (N, f, k) of k-Node-
Branching, with k =

(
p
2

)
+ p, as follows.

For each i = 1, . . . , p we introduce a node ci. For each vertex v ∈ V we introduce p nodes v1, . . . , vp.
Furthermore, we introduce a node hij for each 1 ≤ i < j ≤ p. In summary, we set N = {c1, . . . , cp} ∪
{ v1, . . . , vp : v ∈ V } ∪H, where H = {hij : 1 ≤ i < j ≤ p }. For every i with 1 ≤ i ≤ p and w ∈ Vi, we
denote Hi = {hlp ∈ H : l = i or p = i } and V w

i = { v1, . . . , vp : v ∈ Vi and v 6= w }.
We define the scoring function f as follows. We set f(ci, Hi ∪ V w

i ) = 1 for every 1 ≤ i ≤ p and w ∈ Vi,
and f(hij , {uj , wi}) = 1 for every 1 ≤ i < j ≤ p, u ∈ Vi, w ∈ Vj , and {u,w} ∈ E(G). Furthermore, we set
f(v, P ) = 0 for all the remaining combinations of v and P .

Because this reduction can be computed in polynomial-time and k is polynomial in p, the given con-
struction is a parameterized reduction. It remains to prove the following claim.

Claim: G has a p-clique if and only if there is a k-node-branching A such that f(A) ≥ k.
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G A

Figure 4: A graph G with a partitioning of the vertices into p = 3 sets and a corresponding optimal k-node-branching A with
k =

(p
2

)
+ p and f(A) ≥ k, as constructed in the proof of Theorem 9.

(⇒) : Suppose that G has a p-clique K with vertices v1, . . . , vp. Let A be the directed graph on N such
that for every i with 1 ≤ i ≤ p, the node ci has parents Hi ∪ V vi

i and for every i and j with 1 ≤ i < j ≤ p

the node hij has parents vji and vij , and every other node of A has no parents. Figure 4 shows an optimal
k-node-branching A constructed from an example graph G. It is straightforward to verify that A is a DAG
and moreover A is a k-node-branching. Furthermore, because K is a p-clique of G, it follows that f(A) = k,
as required.

(⇐) : Suppose there is a k-node-branching A with f(A) ≥ k. It follows that every node of A achieves
its maximum score. In particular, for every 1 ≤ i ≤ p the nodes ci must have score 1 in A and hence there
is a node wi ∈ Vi such that ci is adjacent to all nodes in V wi

i ∪Hi. Furthermore, for every 1 ≤ i < j ≤ p

the node hij is adjacent to exactly one node vji in Vi and to exactly one node vij in Vj . Then, wi = vi and
wj = vj because otherwise the skeleton of A would contain the cycle (vi, hij , ci) or the cycle (vj , hij , cj).
Consequently, the edges represented by the parents of hij in A for all 1 ≤ i < j ≤ p form a p-clique of G.

5. Concluding Remarks

We have investigated a natural approach to extend the efficient optimization algorithms known for
branchings to classes of polytrees that differ from branchings by only a few extra arcs. Our main result is
a polynomial time algorithm for finding an optimal polytree that contains a constant number of extra arcs.
The algorithm allows us to efficiently find optimal probabilistic networks in a class that is more expressive
than the class based on branchings. Moreover, adjusting the number of extra arcs provides us with a trade-
off between the power of the model and the running time of the algorithm. Our algorithm also provides
better lower bounds on the score over polytrees or any other larger class networks, which bounds can be
used to guide the search for an optimal solution.

At first glance, one might expect that our result can be obtained by simply guessing the extra arcs
and solving the remaining problem for branchings. However, we do not know whether such a reduction is
possible in the strict sense. Indeed, we had to take a slight detour and modify the two matroids in a way
that guarantees a control for the interactions caused by the presence of high-in-degree nodes. As a result,
we obtained an algorithm that runs in time polynomial in the input size for any constant bound k on the
number of extra arcs. The running time bound O

(
n3k+4

)
is, in fact, less than cubic in the size of the input,

supposing the local scores are given explicitly for all possible parent sets—namely, each of the n nodes has(
n−1
k+1

)
relevant input values.

While our result answers one question in the affirmative, it also raises several further questions. First, our
complexity analysis relied on a result concerning the general weighted matroid intersection problem. Do our
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two specific matroids admit significantly faster specialized algorithms? One might expect such algorithms
exist, since the related problem for branchings can be solved in O(n2) time by Tarjan’s algorithm [11].
Second, even if we could solve the matroid intersection problem faster, our algorithm would remain practical
only for very small values of k. Can one find an optimal k-branching significantly faster, especially if allowing
every node to have at most two parents? As the current algorithm makes around n3k mutually overlapping
guesses, there might be a way to considerably reduce the time requirement. Specifically, we ask whether
the restricted problem is fixed-parameter tractable with respect to the parameter k, that is, solvable in
O(f(k)p(n)) time for some computable function f and polynomial p [19]. The fixed-parameter algorithm
given in Section 4 can be seen as a first step towards an answer to this question. Third, can our approach be
extended to k-node-branchings? That is, is there a polynomial time algorithm for the k-Node-Branching
problem for every fixed k?

Finally, it remains an open question, whether finding optimal polytrees is easier or harder than finding
optimal DAGs. In this light, it would be reasonable to also investigate DAGs that need not be polytrees
but that can be turned into branchings by deleting some k arcs.
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