
Feedback Vertex Sets in Tournaments

Serge Gaspers1 and Matthias Mnich2

1 CMM, Universidad de Chile, Santiago de Chile.
sgaspers@dim.uchile.cl

2 Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
m.mnich@tue.nl

Abstract. We study combinatorial and algorithmic questions around minimal
feedback vertex sets in tournament graphs.

On the combinatorial side, we derive strong upper and lower bounds on the
maximum number of minimal feedback vertex sets in an n-vertex tournament.
We prove that every tournament on n vertices has at most 1.6740n minimal
feedback vertex sets and that there is an infinite family of tournaments, all
having at least 1.5448n minimal feedback vertex sets. This improves and extends
the bounds of Moon (1971).

On the algorithmic side, we design the first polynomial space algorithm that
enumerates the minimal feedback vertex sets of a tournament with polynomial
delay. The combination of our results yields the fastest known algorithm for
finding a minimum size feedback vertex set in a tournament.

1 Introduction

A tournament T = (V,A) is a directed graph with exactly one arc between every
pair of vertices. A feedback vertex set (FVS) of T is a subset of its vertices whose
deletion makes T acyclic. A minimal FVS of T is a FVS of T that is minimal
with respect to vertex-inclusion. The complement of a minimal FVS F induces
a maximal acyclic subtournament whose unique vertex of in-degree zero is a
“Banks winner” [1]: identifying the vertices of T with candidates in a voting
scheme and arcs indicating preference of one candidate over another, the Banks
winner of T [V \F ] is the candidate collectively preferred to every other candidate
in V \ F . Banks winners play an important role in social choice theory.

Extremal Combinatorics. We denote the number of minimal FVSs in a tourna-
ment T by f(T ), and the maximum f(T ) over all n-vertex tournaments byM(n).
The letter “M” was chosen in honor of Moon who in 1971 proved [18] that

1.4757n ≤M(n) ≤ 1.7170n

for large n. Our combinatorial main result are the stronger bounds

1.5448n ≤M(n) ≤ 1.6740n .
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To prove our new lower bound on M(n), we construct an infinite family of
tournaments all having 21n/7 > 1.5448n minimal FVSs. To prove our new upper
bound on M(n), we bound the maximum of a convex function bounding M(n)
from above, and otherwise rely on case distinctions and recurrence relations.

For general directed graphs, no non-trivial upper bounds on the number of
minimal FVSs are known. For undirected graphs, Fomin et al. [8] show that
any undirected graph on n vertices contains at most 1.8638n minimal FVSs,
and that infinitely many graphs have 105n/10 > 1.5926n minimal FVSs. Lower
bounds of roughly log n on the size of a maximum-size acyclic subtournament
have been obtained by Reid and Parker [24] and Neumann-Lara [20]. Other
bounds on minimal or maximal sets with respect to vertex-inclusion have been
obtained for dominating sets [9], bicliques [12], separators [10], potential max-
imal cliques [11], bipartite graphs [4], r-regular subgraphs [13], and, of course,
independent sets [17, 19]. The increased interest in exponential time algorithms
over the last few years has given new importance to such bounds, as the enumer-
ation of the corresponding objects may be used in exponential time algorithms
to solve various problems; see, for example [2, 3, 6, 11, 16, 21].

Enumeration. An algorithm by Schwikowski and Speckenmeyer [25] lists the
minimal FVSs of a tournament T with polynomial delay, by traversing a hy-
pergraph whose vertices are bijectively mapped to minimal FVSs of T . Unfor-
tunately the Schwikowski-Speckenmeyer-algorithm may use exponential space,
and it is not known whether the minimal FVS problem allows a polynomial delay
enumeration algorithm with polynomially bounded space complexity in general
graphs. Our algorithmic main result provides such an enumeration algorithm for
the family of tournaments. Our algorithm is inspired from that by Tsukiyama et
al. for the (conceptually simpler) enumeration of maximal independent sets [26].
It is based on iterative compression, a technique for parameterized [23] and ex-
act algorithms [7]. We thereby positively answer Fomin et al.’s [7] question if
the technique could be applied to other algorithmic areas.

Exact Algorithms. In the third [29] in a series [27–29] of very influential sur-
veys on exact exponential time algorithms, Woeginger observes that Moon’s
upper bound on M(n) provides an upper bound on the overall running time
of the enumeration algorithm of Schwikowski and Speckenmeyer. He explicitly
asks for a faster algorithm finding a feedback vertex set of a tournament of
minimum size. Our new bound yields a time complexity of O(1.6740n). Un-
like upper bound proofs on other [4, 8–13, 17, 19] minimal or maximal sets with
respect to vertex inclusion, for minimal FVSs in tournaments no known (non
trivial) proof readily translates into a polynomial-space branching algorithm.
Due to its space complexity, which differs from its time complexity by only a
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polynomial factor, the Schwikowski-Speckenmeyer-algorithm has only limited
practicability [29]. With our new enumeration algorithm, we achieve however a
polynomial-space O(1.6740n)-time algorithm to find a minimum sized feedback
vertex set in tournaments, and to even enumerate all minimal ones. Dom et al.
[5] independently answered Woeginger’s question by constructing an iterative–
compression algorithm solving only the optimization version of the problem.
However, the running time of their algorithm grows at least with 1.708n and
hence their result is inherently weaker than ours.

Organization of the paper. Preliminaries are provided in Section 2. Section 3
proves the lower bound on M(n), and Section 4 gives the upper bound. We
conclude with the polynomial-space polynomial-delay enumeration algorithm
in Section 5. The main result of the paper is formulated in Corollary 4. Due to
limited space, many proofs have been moved to the appendix.

2 Preliminaries

Let T = (V,A) be a tournament. For a vertex subset V ′ ⊆ V , the tournament
T [V ′] induced by V ′ is called a subtournament of T . For each vertex v ∈ V , its in-
neighborhood and out-neighborhood are defined as N−(v) = {u ∈ V | (u, v) ∈ A}
and N+(v) = {u ∈ V | (v, u) ∈ A}, respectively. If there is an arc (u, v) ∈ A
then we say that u beats v and write u→ v. A tournament T is strong if there
exists a directed path between any two vertices. A non-strong tournament T has
a unique factorization T = S1 + . . .+Sr into strong subtournaments S1, . . . , Sr,
where every vertex u ∈ V (Sk) beats all vertices v ∈ V (S`), for 1 ≤ k < ` ≤ r.
For n ∈ N let Tn denote the set of tournaments with n vertices and let T ∗n
denote the set of strong tournaments on n vertices.

The score of a vertex v ∈ V is the size of its out-neighborhood, and denoted
by sv(T ) or sv for short. Consider a labeling 1, . . . , n of the vertices of T such
that their scores are non-decreasing, and associate with T the score sequence
s(T ) = (s1, . . . , sn). If T is strong then s(T ) satisfies the Landau inequalities [14,
15]:

k∑
v=1

sv ≥
(
k

2

)
+ 1 for all k = 1, . . . , n− 1, and (1)

n∑
v=1

sv =

(
n

2

)
(2)

For each score sequence s satisfying conditions (1)–(2) there exists a tournament
whose score sequence is s [15].
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Let L be a set of non-zero elements from the ring Zn of integers modulo n
such that for all i ∈ Zn exactly one of +i and −i belongs to L. The tournament
TL = (VL, AL) with VL = {1, . . . , n} and AL = {(i, j) ∈ VL×VL | (j−i) mod n ∈
L} is the circular n-tournament induced by L. A triangle is a tournament of
order 3. The cyclic triangle is denoted C3.

A FVS F of a tournament T = (V,A) is a subset of vertices, such that
T [V \ F ] has no directed cycle. It is minimal if it does not contain a FVS of
T as a proper subset. Let F(T ) be the collection of minimal FVSs of T ; its
cardinality is denoted by f(T ). A minimum FVS is a FVS with a minimum
number of vertices.

Acyclic tournaments are sometimes called transitive; the (up to isomorphism
unique) transitive tournament on n vertices is denoted TTn. Let τ be the unique
topological order of the vertices of TTn such that τ(u) < τ(v) if and only if u
beats v. For such an order τ and integer i ∈ {1, . . . , n} the subsequence of the
first i values of τ is denoted τi(V (TTn)) = (τ−1(1), . . . , τ−1(i)); call τ1(V (TTn))
the source of TTn. For a minimal FVS F of a tournament T the subtournament
T [V \ F ] is a maximal transitive subtournament of T and V \ F is a maximal
transitive vertex set.

3 Lower Bound on the Maximum Number of Minimal FVSs

We prove a lower bound of 21n/7 > 1.5448n on the maximum number of minimal
FVSs of tournaments with n vertices.

Formally, we will bound from below the values of the function M(n) mapping
integers n to maxT∈Tn f(T ). By convention, set M(0) = 1. Note that M is
monotonically non-decreasing on its domain: given any tournament T ∈ Tn and
any vertex v ∈ V (T ), for every minimal FVS F ∈ F(T [V (T ) \ {v}]) either
F ∈ F(T ) or F ∪ {v} ∈ F(T ). As T and v are arbitrarily it follows that
M(n) ≥M(n− 1).

We will now show that there is an infinite family of tournaments on n = 7k
vertices, for any k ∈ N, with 21n/7 > 1.5448n minimal FVSs, improving upon
Moon’s [18] bound of 1.4757n. Let us use the following observation.

Observation 1 ([18]). If T = S1 + . . . + Sr is the factorization of a tourna-
ment T into strong subtournaments S1, . . . , Sr, then f(T ) = f(S1) · . . . · f(Sr).

Let ST7 denote the Paley digraph of order 7, i.e. the circular 7-tournament
induced by the set L = {1, 2, 4} of quadratic residues modulo 7. All maximal
transitive subtournaments of ST7 are transitive triangles, of which there are
exactly 21, as each vertex is the source of 3 distinct transitive triangles. Thus,
all minimal FVSs for ST7 are minimum FVSs. We remark that ST7 is the unique
7-vertex tournament without any TT4 as subtournament [24].
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Lemma 1. There exists an infinite family of tournaments with 21n/7 minimal
FVSs.

Proof. Let k ∈ N and form the tournament T0 = ST7 + . . .+ ST7 from k copies
of ST7 ∈ T ∗7 . Then T0 ∈ Tn for n = 7k, and the number of minimal FVSs in T0
is f(T0) = f(ST7)

k = 21k = 21n/7. ut

4 Upper Bound on the Maximum Number of Minimal FVSs

We give an upper bound of βn, where β = 1.6740, on the maximum number
of minimal FVSs in any tournament T ∈ Tn, for any positive integer n. This
improves the bound of 1.7170n by Moon [18]. Instead of minimal FVSs we count
maximal transitive subtournaments, and with respect to Observation 1 we count
the maximal transitive subtournaments of strong tournaments.

We start with three properties of maximal transitive subtournaments. First,
for a strong tournament T = (V,A) with score sequence s = (s1, . . . , sn) the
following holds: if TTk = (V ′, A′) is a maximal transitive subtournament of T
with τ1(V

′) = (t) then T [V ′ \ {t}] is a maximal transitive subtournament of
T [N+(t)]. Hence f(T ) ≤

∑n
v=1M(sv), where sv ≤ n − 2 for all v ∈ V . This

allows us to effectively bound f(T ) via a recurrence relation.
Second, there cannot be too many vertices with large score.

Lemma 2. For n ≥ 8 and k ∈ {0, 1, 2}, any strong tournament T ∈ T ∗n has at
most 2(k + 1) vertices of score at least n− 2− k.

Proof. Fix some strong tournament T ∈ T ∗n and k ∈ {0, 1, 2}. Suppose for
contradiction that T contains 2k+ 3 vertices with score at least n−2−k. Then
the Landau inequalities (1) and (2) imply the contradiction

2

(
n

2

)
= 2

n−(2k+3)∑
v=1

sv +

n∑
v=n−(2k+2)

sv


≥ 2

((
n− (2k + 3)

2

)
+ 1 + (2k + 3)(n− 2− k)

)
= n2 − n+ 2.

ut

For n ≤ 7, we can explicitly list the strong n-vertex tournaments for which the
Lemma fails: the cyclic triangle for k = 0, the tournaments RT5, ST6 for k = 1
and ST7 for k = 2. RT5 is the regular tournament of order 5 and ST6 is the
tournament obtained by arbitrarily removing some vertex from ST7 (defined in
the previous section) and all incident arcs.
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Third, let T ′ be a tournament obtained from a tournament T by reversing
all arcs of T . Then, f(T ) = f(T ′), whereas the score sequence s(T ′) is the
reverse of s(T ). This implies that analyzing score sequences with maximum score
sn ≥ n − 1 − c for some constant c is symmetric to analyzing score sequences
with minimum score s1 ≤ c.

Our proof that any tournament on n vertices has at most βn maximal tran-
sitive subtournaments consists of several parts. We start by proving the bound
for tournaments with few vertices. The inductive part of the proof first consid-
ers tournaments with large maximum score (and symmetrically small minimum
score), and then all other tournaments.

We begin the proof by considering tournaments with up to 10 vertices. For
n ≤ 4 exact values for M(n) were known before [18]. For n = 5, . . . , 9 we
obtained exact values for M(n) with the help of a computer. For these values the
extremal tournaments obey the following structure: pick a strong tournament
T ′ ∈ T ∗n−2 and construct the strong tournament pq(T ′) ∈ T ∗n by attaching two
vertices to T ′ as in Fig. 1; namely add vertices p and q to T ′, and arcs q → p,
and p→ t, t→ q for each vertex t in T ′. Then f(pq(T ′)) = 2f(T ′) + 1.

p q

T ′

Fig. 1. A tournament pq(T ′) ∈ T ∗n with f(pq(T ′)) = 2f(T ′) + 1.

For n = 5, there are exactly two non-isomorphic strong tournaments QT5 ∼=
pq(C3), RT5 ∈ T ∗5 . For these, f(QT5) = f(RT5) = M(5) = 2 · 3 + 1 = 7. For
n = 6, ST6 is the unique tournament from T6 with f(ST6) = M(6) = 12 minimal
FVSs. For n = 7 the previous section showed f(ST7) = 21, and in fact ST7 is
the unique 7-vertex tournament with M(7) = 21 minimal FVSs. For n ∈ {8, 9},
STn ∼= pq(STn−2); then f(STn) = M(n). Table 1 summarizes that for n ≤ 9,
M(n) ≤ βn.

Next, we bound M(10) by means of M(n) for n ≤ 9. Let W be a maximal
transitive vertex set of T ∈ T ∗10. Then either s10 ∈ W or s10 /∈ W . There are
at most M(s10) ≤ M(9) maximal transitive vertex sets W such that s10 ∈ W
and at most M(9) such sets W for which s10 /∈ W . As (2M(9))1/10 = 861/10 <
1.5612, the proof follows for all tournaments with at most 10 vertices.

For the rest of this section we consider tournaments with n ≥ 11 vertices.
Let T = (V,A) be a strong tournament on n ≥ 11 vertices; we will show that
f(T ) ≤ βn. The proof considers four main cases and several subcases with
respect to the minimum and maximum score of the tournament. Due to space
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Table 1. Extremal tournaments of up to 9 vertices

n M(n) M(n)1/n ≈ T ∈ Tn : f(T ) = M(n)

1 1 1.00000 T ∈ T1
2 1 1.00000 T ∈ T2
3 3 1.44225 T ∈ T3 \ {TT3}
4 3 1.31607 T ∈ T4 \ {TT4}
5 7 1.47577 QT5

∼= pq(C3), RT5

6 12 1.51309 ST6
∼= ST7 − {1}

7 21 1.54486 ST7

8 25 1.49535 ST8
∼= pq(ST6)

9 43 1.51879 ST9
∼= pq(ST7)

constraints, we only give an outline of the proof and provide a full proof in the
appendix.

The idea of the proof is as follows. By W we denote a maximal transitive
vertex set of T . If there is a vertex v in T of large score at least n−3, then either
v is the source of W or only few other vertices can be the source of W . We can
then look at the subtournament induced by these few vertices, and branch on
their inclusion with respect to W . In this way, we fix the first few elements of
the acyclic ordering of W . Moreover, there cannot be too many vertices of large
score by Lemma 2. Suppose that in one branch, τk(W ) = (a1, a2, . . . , ak) and
for some i ∈ {1, . . . , k}, |N+(ai)\W | ≥ c, then we can upper bound the number
of such maximal transitive vertex sets W by M(ai− (k− i)− c). The case when
some vertex v in T has small score at most 2 is symmetric.

The tightest case of our proof is the following: sn = n− 3, sb1 = n− 3, sb2 =
n−4, where b1 → b2 are the two in-neighbors of n, and N−(b1) 6= N−(b2)\{b1}.
Denote c1 → c2 the in-neighbors of b1 and d1 → d2 the in-neighbors of b2.
We count the different maximal transitive vertex sets W depending on the
membership or non-membership of b1, b2, and n in W .

(1) If b1, b2 /∈ W , then n ∈ W by maximality of W and τ1(W ) = (n) as no
vertex in W beats n. There are at most M(sn) = M(n− 3) such W .

(2) If b1, n /∈ W and b2 ∈ W , then some in-neighbor of b2 is in W , otherwise
W were not maximal as W ∪ {n} would be a transitive vertex set. There are
at most M(sb2 − 1) = M(n − 5) possibilities for τ2(W ) = (d2, b2), at most
M(sd1−2) ≤M(n−5) for τ2(W ) = (d1, b2), and at most M(sd1−2) ≤M(n−5)
for τ3(W ) = (d1, d2, b2).

(3) If b1 /∈W and b2, n ∈W , then τ2(W ) = (b2, n). There are at most M(sb2 −
1) = M(n− 5) such W .
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(4) If n /∈ W and b1 ∈ W , then we consider two subcases. If N−(b1) ∩W 6= ∅,
then some in-neighbor of b1 is the source of W . There are at most M(sc2 −1) ≤
M(n− 4) possibilities for τ2(W ) = (c2, b1), at most M(sc1 − 2) ≤M(n− 5) for
τ3(W ) = (c1, c2, b1), and at most M(sc1 − 2) ≤ M(n − 5) for τ2(W ) = (c1, b1).
Otherwise, no in-neighbor of b1 is in W , and thus, τ1(W ) = (b1). Moreover,
b2 ∈ W and some in-neighbor of b2 is the source of T [W \ {b1}], otherwise n
could be added. This leaves us with a total of at most 3M(sb1−4) = 3M(n−7)
possibilities for which τ4(W ) = (b1, d1, d2, b2), τ3(W ) = (b1, d2, b2), or τ3(W ) =
(b1, d1, b2).

(5) If b2 /∈W and b1, n ∈W , then τ2(W ) = (b1, n). There are at most M(sb1 −
2) = M(n− 5) such W .

(6) If b1, b2, n ∈W , then τ3(W ) = (b1, b2, n). As at least one out-neighbor of b2
is an in-neighbor of b1, there are at most M(sb2 − 2) = M(n− 6) such W .

Altogether, in this case,

f(T ) ≤M(n− 3) + 3M(n− 5) +M(n− 5) + (M(n− 4) + 2M(n− 5)

+ 3M(n− 7)) +M(n− 5) +M(n− 6)

≤ 3βn−7 + βn−6 + 7βn−5 + βn−4 + βn−3 ,

which is at most βn because β ≥ 1.6740.
Now suppose that every vertex in T has score at least three and at most n−4.

In that case we define a linear function Gn mapping feasible score sequences
s = (s1, . . . , sn) to

∑n
v=1 β

sv for β = 1.6740. We then define special score
sequences σ(n) and show that these sequences maximize Gn, based on the strict
convexity of Gn. For example,

σ(17) = (3, 3, 3, 3, 3, 3, 4, 7, 8, 9, 12, 13, 13, 13, 13, 13, 13) .

The proof is completed by bounding f(n) in terms of G(σ(n)).

All cases taken together imply the following upper bound on the number of
maximal transitive subtournaments.

Theorem 1. Any strong tournament T ∈ T ∗n has at most 1.6740n maximal
transitive subtournaments.

Corollary 2. It holds 1.5448 ≤ limn→∞(M(n))1/n ≤ 1.6740.

We conjecture that the Paley digraph of order 7, ST7, plays the same role for
FVSs in tournaments as triangles play for independent sets in graphs, i.e. that
the tournaments T maximizing (f(T ))1/|V (T )| are exactly those whose factors
are copies of ST7.
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5 Polynomial-Delay Enumeration in Polynomial Space

In this section, we give a polynomial-space algorithm for the enumeration of the
minimal FVSs in a tournament with polynomial delay.

Let T = (V,A) be a tournament with V = {v1, . . . , vn}, and for each
i = 1, . . . , n let Ti = T [{v1, . . . , vi}]. For a vertex set X, we write χX(i) = 1 if
vi ∈ X and χX(i) = 0 otherwise. Let < denote the total order on V induced by
the labels of the vertices. For vertex sets X,Y ⊆ V , say that X is lexicograph-
ically smaller than Y and write X ≺ Y if for the minimum index i for which
χX(i) 6= χY (i) it holds that vi ∈ X. Because X and Y are totally ordered by
the restriction of < to X and Y , respectively, ≺ is also a total order and each
collection of subsets of V has a unique lexicographically smallest element.

The algorithm enumerates the maximal acyclic vertex sets of T . It performs
a depth-first search in a tree T with the maximal acyclic vertex sets of T as
leaves, whose forward and backward edges are constructed “on the fly”. The
depth of T is |V |, and we refer to the vertices of T as nodes. The algorithm
only needs to keep in memory the path from the root to the current node in
the tree and all the children of the nodes on this path. Each node at level j is
labeled by a maximal acyclic vertex set J of Tj . As for its children, there are
two cases. In case J ∪ {vj+1} is acyclic then J ’s only child is J ∪ {vj+1}. In
case J ∪ {vj+1} is not acyclic then J has at least one and at most bj/2c + 1
children. Let LJ = (v1, v2, . . . , v|J |) be a labeling of the vertices in J such that
(vr, vs) ∈ A for all 1 ≤ r < s ≤ j; we view LJ as a sequence of vertices. The
children of J are as follows. The first child J0 is a copy of J , and is always
present. The potential other children are, for 1 ≤ z ≤ |J |+ 1,

Jz = {vi ∈ J | i < z ∧ vi → vj+1} ∪ {vj+1} ∪ {vi ∈ J | i ≥ z ∧ vj+1 → vi}

where set Jz is a potential child of J only if Jz is a maximal acyclic vertex
set in Tj+1 (the maximality of Jz can clearly be checked in polynomial time).
Note how we try to insert vj+1 at every possible position in J . However, only at
most bj/2c + 1 positions make sense for vj+1: before v1 if vj+1 → v1, between
vi and vi+1 if vi → vj+1 → vi+1, where 1 ≤ i ≤ |J | − 1, and after v|J | if
v|J | → vj+1; all other positions do not give maximal acyclic vertex sets and
should not be generated in an actual implementation. Note that Jz may be a
potential child of several sets on the same level in T . Of all these sets, Jz is
made the child only of the lexicographically smallest such set. To determine
whether J is the lexicographically smallest such set, we compute by a greedy
algorithm the lexicographically smallest maximal acyclic vertex set H = H(Jz)
of Tj which contains Jz \ {vj+1} as a subset. That is, we iteratively build the
set H by setting

H0 = Jz \ {vj+1},
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Hi =

{
Hi−1 ∪ {vi}, if Hi−1 ∪ {vi} is acyclic,

Hi−1, otherwise,
i = 1, . . . , j,

H = Hj .

Then we make Jz a child of the node labeled J only if H = J . This completes
the description of the algorithm.

To show that the algorithm is correct, we prove that for every maximal
acyclic vertex set W of T there is exactly one leaf in T labeled with W . By
construction of the algorithm, it suffices to show that at least one leaf is labeled
by W . The proof is by induction on the number n = |V | of vertices in T . For
n = 1 the claim clearly holds, so suppose that n > 1 and that the claim is true
for all tournaments with fewer vertices. Then from the induction hypothesis we
can conclude that for the induced subtournament T ′ := Tn−1 there is a tree T ′
constructed by the above algorithm and a bijection f ′ from the maximal acyclic
vertex sets of T ′ to the leaves of T ′.

Let W be a maximal acyclic vertex set of T . If vn /∈ W then W is an
acyclic vertex set of T ′ as removing a vertex from a digraph does not introduce
cycles. In fact, W is a maximal acyclic vertex set of T ′: for any vertex v` ∈
V \ (W ∪ {vn}), T ′[W ∪ {v`}] has a cycle as W is a maximal acyclic vertex set
for T and T ′[W ∪ {v`}] = T [W ∪ {v`}]. Hence there exists a leaf f ′(W ) in T ′
labeled by W . Since W ∪ {vn} is not acyclic, by maximality of W for T , the
algorithm constructs the child W 0 of f ′(W ) labeled by W , and that child will
be a leaf in the final tree constructed by the algorithm.

If vn ∈W , then let W ′ = W \ {vn}. So, W ′ is an acyclic vertex set of T ′. In
caseW ′ is maximal for T ′, there is a leaf f ′(W ′) in T ′ that is labeled byW ′. Since
W ′ ∪ {vn} is acyclic, the algorithm will create a single child of f ′(W ′) labeled
by W ′ ∪{vn} = W , and that child will be a leaf in the final tree constructed by
the algorithm. In case W ′ is not maximal for T ′, let N be the lexicographically
smallest extension of W ′ to a maximal acyclic vertex set of T ′. Hence there
exists a leaf f ′(N) in the tree T ′ labeled by N . Observe that the sequence LW ′

is a subsequence of LN , and that N ∪ {vn} is not acyclic. Hence the algorithm
creates children N1, N2, . . ., one of which will be labeled by W .

To see that the algorithm runs with polynomial delay, note that the children
and parent of a given node in T can all be computed in polynomial time. It
follows that T can be traversed in a depth-first manner with polynomial delay
per step of the traversal, and thus the leaves of T can be output with only a
polynomial delay.

We show that the algorithm requires only polynomial space. We already
observed that each node in T at level j has at most bj/2c+ 1 children. For each
node we store the maximal acyclic vertex set by which it is labeled. Because we
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are traversing T in a depth-first-search manner, in each step of the algorithm
we only need to save data of O(n2) nodes: those of the O(n) nodes on the path
from the root to the currently active node labeled by J , and the O(n) children
for each node on this path.

Theorem 3. The described algorithm enumerates all FVSs of a tournament
with polynomial delay and uses polynomial space.

Corollary 4. In a tournament with n vertices a minimum directed feedback
vertex set can be found in O(1.6740n) time and polynomial space.

Acknowledgments. We thank Gerhard J. Woeginger for help with the pre-
sentation of the results.
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A Complete Proof of the Upper Bound

We provide a complete proof of the upper bound on the maximum number of
minimal feedback vertex set in tournaments.

Let T = (V,A) be a strong tournament on n ≥ 11 vertices and let s =
(s1, . . . , sn) be the score sequence of T . We will show that f(T ) ≤ βn. The
proof considers four main cases and several subcases with respect to the mini-
mum and maximum score of the tournament. To avoid a cumbersome nesting
of cases, whenever inside a given case we assume that none of the earlier cases
applies. By W we denote a maximal transitive vertex set of T .

Case 1: sn = n− 2. Let b be the unique vertex beating vertex n.
If b /∈W then τ1(W ) = (n); there are at most M(sn) = M(n− 2) such W .
If b ∈W and n ∈W , then τ1(W \ {b}) = (n) as no vertex except b beats n. So,
τ2(W ) = (b, n) and there are at most M(sb−1) such W . For the last possibility,
where b ∈ W and n /∈ W , note that W contains at least one in-neighbor of b,
otherwise W were not maximal as n could be added. We consider 4 subcases
depending on the score of b.

Case 1.1: sb = n− 2. Let c be the unique vertex beating b. As at most 2
vertices have score n − 2 by Lemma 2, sc ≤ n − 3. We have that c ∈
W , otherwise W would not be maximal as W ∪ {n} induces a transitive
subtournament of T . As b and its unique in-neighbor c are in W , τ2(W ) =
(c, b). There are at most M(sc − 1) ≤ M(n − 4) such W . In total, f(T ) ≤
M(n− 2) +M(n− 3) +M(n− 4) ≤ βn−4 + βn−3 + βn−2 which is at most
βn because β ≥ 1.4656.

In the three remaining subcases, all in-neighbors of b have score at most n−3: if
ci ∈ N−(b) had score n− 2, then Case 1.1 would apply with n := ci and b := n.

Case 1.2: sb = n− 3. Let N−(b) := {c1, c2} such that c1 → c2. Then either
τ1(W ) = (c1) or τ1(W ) = (c2); there are at most 2M(n−3) suchW . It follows
f(T ) ≤M(n− 2) +M(n− 4) + 2M(n− 3) ≤ βn−4 + 2βn−3 + βn−2 ≤ βn as
β ≥ 1.6181.

Case 1.3: sb = n− 4. Let N−(b) := {c1, c2, c3}. Observe that at most 2 ver-
tices among N−(b) have score n − 3, otherwise T is not strong as N−(b) ∪
{b, n} induce a strong component. Either τ1(W ) = (c1) or τ1(W ) = (c2)
or τ1(W ) = (c3); there are at most 2M(n − 3) + M(n − 4) such W . Thus,
f(T ) ≤ M(n − 2) + M(n − 5) + 2M(n − 3) + M(n − 4) ≤ βn−5 + βn−4 +
2βn−3 + βn−2 ≤ βn as β ≥ 1.6664.

Case 1.4: sb ≤ n− 5. Then there are at most M(n − 1) subtournaments not
containing n. It follows f(T ) ≤M(n− 2) +M(n− 6) +M(n− 1) ≤ βn−6 +
βn−2 + βn−1 ≤ βn as β ≥ 1.6737.
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Case 2: sn = n− 3. Let b1, b2 be the two vertices beating n such that b1 → b2.
The tree in Fig. 2 pictures our case distinction. Its leaves correspond to six
different cases, numbered (1)–(6), for membership or non-membership of n, b1
and b2 in some maximal transitive vertex set W of T . The cases corresponding
to leafs (2) and (4) will be considered later. Let us now bound the number of
possible W for the other cases (1), (3), (5) and (6).

b1

b2

(1) τ1(W )=(n)
M(n−3)

/∈ W

n

(2)

/∈ W

(3) τ2(W )=(b2,n)
M(sb2−1)

∈ W

∈ W

/∈ W

n

(4)

/∈ W

b2

(5) τ2(W )=(b1,n)
M(sb1−2)

/∈ W

(6) τ3(W )=(b1,b2,n)
M(sb1−2)

∈ W

∈ W

∈ W

Fig. 2. Different possibilities for a maximal transitive vertex set W .

Claim 1. Among all maximal transitive vertex sets W of T ,

(1) at most M(n− 3) are such that b1 /∈W and b2 /∈W ,
(3) at most M(sb2 − 1) are such that b1 /∈W , b2 ∈W and n ∈W ,
(5) at most M(sb1 − 2) are such that b1 ∈W , b2 /∈W and n ∈W , and
(6) at most M(sb1 − 2) are such that b1 ∈W , b2 ∈W and n ∈W .

Proof. If (1) b1 /∈W and b2 /∈W , then n ∈W by maximality of W and n is the
source of T [W ] as no vertex in W beats n. Thus, there are at most M(sn) =
M(n− 3) such W . If (3) b1 /∈W , b2 ∈W and n ∈W , then τ1(W \ {b2}) = (n).
Therefore, τ2(W ) = (b2, n) and there are at most M(sb2 − 1) such W . If (5)
b1 ∈ W , b2 /∈ W and n ∈ W , then τ2(W ) = (b1, n), and as b1 beats b2, there
are at most M(sb1 − 2) such W . If (6) b1 ∈ W , b2 ∈ W and n ∈ W , then
τ3(W ) = (b1, b2, n), and there are at most M(sb1 − 2) such W . ut

To bound the number of subtournaments corresponding to the conditions in
leafs (2) and (4), we will consider five subcases depending on the scores of b1
and b2. If b1 and b2 have low scores (Cases 2.4 and 2.5), there are few maximal
transitive subtournaments of T corresponding to the conditions in the leafs (3),
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(5) and (6). Then, it will be sufficient to group the cases (2) and (4) into one case
where n /∈W and to note that there are at most M(n−1) such subtournaments.
Otherwise, if the scores of b1 and b2 are high (Cases 2.1 – 2.3), we use that in (2),
some vertex of N−(b2) is the source of W . If this were not the case, W would
not be maximal as W ∪{n} would induce a transitive tournament. Similarly, in
(4) some vertex of N−(b1) is the source of W if b2 /∈W .

Let c1, . . . , c|N−(b1)| the in-neighbors of b1 such that ci → ci+1 for all i ∈
{1, . . . , |N−(b1)| − 1} (every tournament has a Hamiltonian path [22]) and let
d1, . . . , d|N−(b2)|−1 be the in-neighbors of b2 besides b1 such that di → di+1 for
all i ∈ {1, . . . , |N−(b2)| − 2}.

Let us first bound the number of subtournaments satisfying the conditions
of (2) depending on sb2 .

Claim 2. If sb2 = n−3, there are at most M(sd1−1) maximal transitive vertex
sets W such that b1 /∈W , b2 ∈W and n /∈W .

Proof. As mentioned above, some in-neighbor of b2 is the source of W . As
sb2 = n−3, N−(b2)\{b1} = {d1}. Thus, τ2(W ) = (d1, b2) and there are at most
M(sd1 − 1) such tournaments. ut

Claim 3. If sb2 = n − 4, there are at most M(n − 5) + 2M(sd1 − 2) maximal
transitive vertex sets W such that b1 /∈W , b2 ∈W and n /∈W .

Proof. If d1 /∈ W then τ2(W ) = (d2, b2) and there are at most M(sb2 − 1) =
M(n − 5) such W . Otherwise, d1 ∈ W and either d2 /∈ W in which case
τ2(W ) = (d1, b2), or d2 ∈ W in which case τ3(W ) = (d1, d2, b2). There are
at most 2M(sd1 − 2) such W . ut

The next step is to bound the number of subtournaments satisfying the
conditions of (4) depending on sb1 .

Claim 4. If sb1 = n− 3, the number of maximal transitive vertex sets W such
that b1 ∈W and n /∈W is at most 2M(n−5)+M(n−4) if b2 beats no vertex of
N−(b1), and otherwise at most 2M(n−5) +M(n−4) +M(n−6) if sb2 = n−3
and at most 2M(n− 5) +M(n− 4) + 3M(n− 7) if sb2 = n− 4.

Proof. If N−(b1) ∩W 6= ∅, then c1 or c2 is the source of W . The number of
subsets W such that c1 /∈W , and thus τ2(W ) = (c2, b1), is at most M(sc2−1) ≤
M(n − 4). The number of subsets W such that c1 ∈ W , and thus τ3(W ) =
(c1, c2, b1) or τ2(W ) = (c1, b1), is at most 2M(sc1 − 2) ≤ 2M(n − 5). If, on the
other hand, N−(b1) ∩W = ∅, then τ1(W ) = (b1) and some in-neighbor of b2
is the source of T [W \ {b1}], otherwise W is not maximal as n can be added.
Also note that b2 beats some vertex of N−(b1) (we have N−(b2) \N−(b1) 6= ∅
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as N−(b1) ∩W = ∅ but N−(b2) ∩W 6= ∅). If sb2 = n− 3, we upper bound the
number of such subsets W by M(sb1 − 3) = M(n − 6) as τ3(W ) = (b1, d1, b2).
If sb2 = n − 4, we have that τ4(W ) = (b1, d1, d2, b2), τ3(W ) = (b1, d2, b2) or
τ3(W ) = (b1, d1, b2). Thus, there are at most 3M(sb1 − 4) = 3M(n− 7) possible
W such that N−(b1) ∩W = ∅ if sb1 = n − 3 and sb2 = n − 4. Summarizing,
there are at most 2M(n − 5) + M(n − 4) subsets W if b2 beats no vertex of
N−(b1), and otherwise at most 2M(n− 5) + M(n− 4) + M(n− 6) subsets W
if sb2 = n − 3 and at most 2M(n − 5) + M(n − 4) + 3M(n − 7) subsets W if
sb2 = n− 4. ut

Claim 5. If sb1 = n − 4 and sb2 = n − 3, the number of maximal transitive
vertex sets W such that b1 ∈W and n /∈W is

– at most M(n− 7) +
∑

c∈N−(b1) 2M(sc − 2) if T [N−(b1)] is a directed cycle,
– at most max{M(n− 3) +M(n− 4) +M(n− 5);M(n− 5) + 6M(n− 6)} if
T [N−(b1)] is transitive and d1 ∈ N−(b1), and

– at most M(n−3)+M(n−4)+M(n−5)+M(n−7) if T [N−(b1)] is transitive
and d1 /∈ N−(b1).

Proof. If c3 → c1, then W intersects N−(b1) in at most 23−1 = 7 possible ways
(N−(b1) ⊆W would induce a cycle in T [W ]). In one of them, N−(b1)∩W = ∅,
which implies τ3(W ) = (b1, d1, b2); there are at most M(sb1−3) = M(n−7) such
W . For each c ∈ N−(b1), there are 2 possibilities where τ1(W ) = (c); one where
τ2(W ) = (c, b1) and one where τ3(W ) = (c, y, b1) where y is the out-neighbor of
c in N−(b1); there are 2M(sc − 2) such W for each choice of c. In total, there
are at most M(n− 7) +

∑
c∈N−(b1) 2M(sc − 2) possible W .

If, on the other hand, c1 → c3, first assume that sc1 ≤ n − 3, sc2 ≤ n − 4,
and sc3 ≤ n−5. Then either some vertex of N−(b1) is the source of W (at most
M(n−3)+M(n−4)+M(n−5) possibilities for W ), or τ3(W ) = (b1, d1, b2) (at
most M(n−7) possibilities for W ). Otherwise, it must be that sc1 ≤ n−3, sc2 ≤
n − 4, sc3 = n − 4 and that d1 = c3. Then, τ2(W ) = (c3, b1), τ2(W ) = (c2, b1),
τ3(W ) = (c2, c3, b1), τ2(W ) = (c1, b1), τ3(W ) = (c1, c2, b1), τ3(W ) = (c1, c3, b1),
or τ4(W ) = (c1, c2, c3, b1); there are at most M(n − 5) + 6M(n − 6) such W .
In total, if d1 ∈ N−(b1), the number of possible W can be upper bounded by
max{M(n−3)+M(n−4)+M(n−5);M(n−5)+6M(n−6)}, and if d1 /∈ N−(b1),
the number of possible W can be upper bounded by M(n − 3) + M(n − 4) +
M(n− 5) +M(n− 7). ut

Armed with Claims 2–5, we now analyze the five subcases of Case 2, depending
on the scores of b1 and b2.

Case 2.1: sb1 = n− 3, sb2 = n− 3. By Claim 2, the number of maximal transi-
tive vertex sets W such that b1, n /∈W and b2 ∈W (leaf (2) in Fig. 2) is at most
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M(n−4). By Claim 4, the number of maximal transitive vertex sets W such that
b1, n /∈W and b2 ∈W (leaf (4) in Fig. 2) is at most 2M(n−5)+M(n−4), at most
2M(n−5)+M(n−4)+M(n−6), or at most 2M(n−5)+M(n−4)+3M(n−7).
Combined with Claim 1,

f(T ) ≤ max



M(n− 3) +M(n− 4) +M(n− 4) + (2M(n− 5)

+M(n− 4)) +M(n− 5) +M(n− 5)

≤ 4βn−5 + 3βn−4 + βn−3 ≤ βn as β ≥ 1.6314 ,

M(n− 3) +M(n− 4) +M(n− 4) + (2M(n− 5)

+M(n− 4) +M(n− 6)) +M(n− 5) +M(n− 5)

≤ βn−6 + 4βn−5 + 3βn−4 + βn−3 ≤ βn as β ≥ 1.6516 ,

M(n− 3) +M(n− 4) +M(n− 4) + (2M(n− 5)

+M(n− 4) + 3M(n− 7)) +M(n− 5) +M(n− 5)

≤ 3βn−7 + 4βn−5 + 3βn−4 + βn−3 ≤ βn as β ≥ 1.6666 .

Case 2.2: sb1 = n − 3, sb2 = n − 4. If c1 → b2 and c2 → b2, then b1 /∈ W and
b2 ∈W implies that some in-neighbor c of b1 is in W , otherwise W ∪{b1} would
induce a transitive tournament. But then, n /∈ W , otherwise {c, b2, n} induces
a directed cycle. This means that no maximal transitive vertex set W satisfies
the conditions of leaf (3) in Fig. 2. We bound the possible W corresponding to
leafs (2)+(4) by M(n− 1) and obtain

f(T ) ≤M(n− 3) +M(n− 1) +M(n− 5) +M(n− 5)

≤ 2βn−5 + βn−3 + βn−1 ≤ βn as β ≥ 1.6440 .

Otherwise, there is some vertex c ∈ N−(b1) such that b2 → c. Then, the
number of W in leaf (6) of Fig. 2 is upper bounded by M(sb2 − 2) = M(n− 6),
and by Claims 3 and 4 those in leafs (2) and (4) are upper bounded by M(n−
5) + 2M(sd1 − 2) and 2M(n− 5) +M(n− 4) + 3M(n− 7), respectively. Thus,

f(T ) ≤M(n− 3) + (M(n− 5) + 2M(n− 5)) +M(n− 5) + (2M(n− 5)

+M(n− 4) + 3M(n− 7)) +M(n− 5) +M(n− 6)

≤ 3βn−7 + βn−6 + 7βn−5 + βn−4 + βn−3 ≤ βn as β ≥ 1.6740 .

Case 2.3: sb1 = n − 4, sb2 = n − 3. By Claim 2, at most M(n − 4) subsets
W correspond to leaf (2) in Fig. 2. If N−(b1) induces a directed cycle, Claim 5
upper bounds the number of subsets corresponding to leaf (4) by M(n − 7) +
2M(n− 6) + 4M(n− 5) as at most 2 vertices except b2 and n have score n− 3
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by Lemma 2. Together with Claim 1, this gives

f(T ) ≤M(n− 3) +M(n− 4) +M(n− 4) + (M(n− 7) + 2M(n− 6)

+ 4M(n− 5)) +M(n− 6) +M(n− 6)

≤ βn−7 + 4βn−6 + 4βn−5 + 2βn−4 + βn−3 ≤ βn as β ≥ 1.6670 .

Otherwise, c1 → c3. If d1 → b1, then Claim 5 upper bounds the number of
subsets corresponding to leaf (4) by M(n − 3) + M(n − 4) + M(n − 5) or
M(n− 5) + 6M(n− 6). Then,

f(T ) ≤ max



M(n− 3) +M(n− 4) +M(n− 4) + (M(n− 3)

+M(n− 4) +M(n− 5)) +M(n− 6) +M(n− 6)

≤ 2βn−6 + βn−5 + 3βn−4 + 2βn−3 ≤ βn as β ≥ 1.6632,

M(n− 3) +M(n− 4) +M(n− 4) + (M(n− 5)

+6M(n− 6)) +M(n− 6) +M(n− 6)

≤ 8βn−6 + βn−5 + 2βn−4 + βn−3 ≤ βn as β ≥ 1.6396 .

Otherwise, b1 → d1. For the possibleW with b1, b2, n ∈W , none ofN−(b1)∪{d1}
is in W as these vertices all create cycles with b1, b2, n. Thus, the number of
possible subsets W corresponding to leaf (6) is upper bounded by M(sb1 − 3) =
M(n− 7). Then, by Claims 1 and 5,

f(T ) ≤M(n− 3) +M(n− 4) +M(n− 4) + (M(n− 3) +M(n− 4)

+M(n− 5) +M(n− 7)) +M(n− 6) +M(n− 7)

≤ 2βn−7 + βn−6 + βn−5 + 3βn−4 + 2βn−3 ≤ βn as β ≥ 1.6672 .

Case 2.4: sb1 = n − 4, sb2 ≤ n − 4. By grouping leafs (2) and (4) into one
possibility where n /∈ W , Claim 1 upper bounds the number of such maximal
transitive vertex sets by

f(T ) ≤M(n− 3) +M(n− 1) +M(n− 5) +M(n− 6) +M(n− 6)

≤ 2βn−6 + βn−5 + βn−3 + βn−1 ≤ βn as β ≥ 1.6570 .

Case 2.5: sb1 ≤ n− 5. By grouping leafs (2) and (4) into one possibility where
n /∈ W , Claim 1 upper bounds the number of such maximal transitive vertex
sets by

f(T ) ≤M(n− 3) +M(n− 1) +M(n− 4) +M(n− 7) +M(n− 7)

≤ 2βn−7 + βn−4 + βn−3 + βn−1 ≤ βn as β ≥ 1.6679 .
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Case 3: sn ≤ n− 4. We may assume that the score sequence s = s(T ) satisfies

3 ≤ s1 ≤ . . . ≤ sn ≤ n− 4. (3)

Let Sn be the set of all score sequences that are feasible for (1)–(3). The set
Sn serves as domain of the linear map G : Sn → R+, s 7→

∑n
v=1 g(sv) with the

strictly convex terms g : c 7→ βc. Furthermore, for all n ≥ 11, we define a special
score sequence σ(n), whose membership in Sn is easy to verify:

σ(n) :=



(3, 3, 3, 3, 3, 5, 7, 7, 7, 7, 7) if n = 11 ,

(3, 3, 3, 3, 3, 3, 8, 8, 8, 8, 8, 8) if n = 12 ,

(3, 3, 3, 3, 3, 3, 6, 9, 9, 9, 9, 9, 9) if n = 13 , and

(3, 3, 3, 3, 3, 3, 4, 7, 8, . . . , n− 9, n− 8, n− 5,

n− 4, n− 4, n− 4, n− 4, n− 4, n− 4) if n ≥ 14 .

Lemma 3. For n ≥ 11, the sequence σ(n) maximizes the value of G over all
sequences in Sn: G(s) ≤ G(σ(n)) for all s ∈ Sn.

Once Lemma 3 is proved we can bound f(T ), for s = s(T ) ∈ Sn, from above
via

f(T ) ≤ G(s) ≤ G(σ(n)) =



5β3 + β5 + 5β7, if n = 11 ,

6β3 + 6β8, if n = 12 ,

6β3 + β6 + 6β9, if n = 13 ,

6β3 + β4 + βn−7−β7

β−1 + βn−5 + 6βn−4

≤ βn−7

β−1 + βn−5 + 6βn−4, if n ≥ 14 ,

(4)

which is at most βn as β ≥ 1.6259. To prove Lemma 3, we choose any sequence
s ∈ argmaxs′∈Sn

G(s′) and then show that s = σ(n). Recall that s1 ≥ 3 and
sn ≤ n− 4, and set s∗1 = 3, s∗n = n− 4.

Claim 6. If some score c appears more than once in s, then c ∈ {s∗1, s∗n}.

Proof. For contradiction, suppose that s∗1 < su = sv = c < s∗n for two vertices
u and v such that 1 ≤ u < v ≤ n. First, suppose there exists an integer
k ∈ {u, . . . , v − 1} satisfying (1) with equality:

k∑
v=1

sv =

(
k

2

)
+ 1 . (5)



20 Serge Gaspers and Matthias Mnich

Then (1), (2) and Lemma 2 imply 8 ≤ k ≤ n− 9, so k /∈ {s∗1, s∗n}. The choice of
k among vertices of equal score c now yields

sk+1 = sk =

k∑
v=1

sv −
k−1∑
v=1

sv ≤
(
k

2

)
+ 1−

(
k − 1

2

)
− 1 = k − 1 . (6)

This however contradicts (1):

k+1∑
v=1

sv ≤
(
k

2

)
+ 1 + (k − 1) =

(
k + 1

2

)
.

It is thus asserted that no vertex k with property (5) exists. The score sequence
s′ differing from s only in s′u = su − 1 = c − 1, s′v = sv + 1 = c + 1, therefore
belongs to Sn. So apply the function G to it, and use the strict convexity of g:

G(s′)−G(s) = (g(c+ 1)− g(c))− (g(c)− g(c− 1)) > 0 .

This contradicts the choice of s as a maximizer of G, and establishes Claim
6. ut

Claim 7. The values s∗1 = 3 and s∗n = n − 4 each appear between two and six
times as scores in the sequence s.

Proof. By Lemma 2, s∗n is the score of no more than 6 vertices. By symmetry,
s∗1 is the score of no more than 6 vertices. As a consequence of Claim 6, together
s∗1 and s∗n appear at least eight times in s. Hence there are at least two vertices
of score s∗1 and at least two vertices of score s∗n. ut

Claim 8. If n ≥ 12, each of s∗1 and s∗n is the score of exactly six of the vertices.

Proof. Assuming this were not the case for s∗1, by Claim 7 it would be the score of
two to five vertices. Hence there exists a vertex a ∈ {3, . . . , 6} with score sa > s∗1.
It holds s∗n = n − 4 > a + 1, which is obvious if n ≥ 13 and follows from (2) if
n = 12. So there must be two scores in s larger than sa, precisely sa < sa+1 <
sa+2. Observe that the sequence s′ = (s1, . . . , sa−1, sa−1, sa+1 +1, sa+2, . . . , sn)
is a member of Sn. The same argument on strict convexity of g as in Claim 6
gives

G(s′)−G(s) = (g(y + 1)− g(y))− (g(x)− (g(x− 1)) > 0

for x = sa < sa+1 = y, again contradicting the choice of s as a maximizer of G.
Consequently, the sequence s starts with six scores s∗1. By symmetry, the same
argumentation also applies for s∗n, proving the claim. ut

Claim 9. If n = 11, each of s∗1 and s∗n is the score of exactly five of the vertices.
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Proof. As all scores are between 3 and 7, at most 5 vertices have score 3 and at
most 5 vertices have score 7 by (2). Assume less than 5 vertices have score s∗1.
By Claim 7, s∗1 is the score of two to four vertices. Hence there exists a vertex
a ∈ {3, 4, 5} with score sa > s∗1. Thus, s∗n = 7 > a + 1. So there must be two
scores in s larger than sa, precisely sa < sa+1 < sa+2. To conclude we construct
a sequence s′ with G(s′) > G(s) exactly as in the proof of Claim 8. ut

Claim 10. It holds s = σ(n).

Proof. If n = 11, s has 5 vertices of score 3 and 5 vertices of score 7 by Claim 9.
As, σ(11) is the only such sequence not contradicting (2), the claim holds for
n = 11. Similarly, σ(n) is the only sequence not contradicting (1) and Claim 8
if 12 ≤ n ≤ 13. Suppose now that n ≥ 14. There are n− 12 elements of s being
different from both s∗1 and s∗n, which have a score equal to one of the n − 8
numbers in the range 4, . . . , n− 5. Symmetry of the map d 7→

(
n
d

)
around d = n

2
together with (2) means that only pairs {h1, n − 1 − h1} with 4 ≤ h1 <

n−1
2

and {h2, n − 1 − h2} with 5 ≤ h2 <
n−1
2 of scores are missing in s. Moreover,

(1) requires h1, h2 < 7, for otherwise k = 8 violates this relation. Since s was
chosen to be a maximizer of G, this leaves h1 = 5 and h2 = 6. Thus s = σ(n),
completing the proof of the claim and of Lemma 3. ut

All cases taken together imply the upper bound of 1.6740n on the number of
maximal transitive subtournaments in an n-vertex tournament. This completes
the proof of Theorem 1.


