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Abstract. We consider theNP-hard problem of finding a spanning tree with a maximum
number of internal vertices. This problem is a generalization of the famous Hamiltonian
Path problem. Our dynamic-programming algorithms for general and degree-bounded
graphs have running times of the form O∗(cn) with c ≤ 2. For graphs with bounded degree,
c < 2. The main result, however, is a branching algorithm for graphs with maximum degree
three. It only needs polynomial space and has a running time of O(1.8612n) when analyzed
with respect to the number of vertices. We also show that its running time is 2.1364knO(1)

when the goal is to find a spanning tree with at least k internal vertices. Both running
time bounds are obtained via a Measure & Conquer analysis, the latter one being a novel
use of this kind of analysis for parameterized algorithms.

1 Introduction

Motivation. We investigate the following problem:

Max Internal Spanning Tree (MIST)
Given: A graph G = (V,E) with n vertices and m edges.
Task: Find a spanning tree of G with a maximum number of internal vertices.

MIST is a generalization of the famous and well-studied Hamiltonian Path problem. Here,
one is asked to find a path in a graph such that every vertex is visited exactly once. Clearly,
such a path, if it exists, is also a spanning tree, namely one with a maximum number of inter-
nal vertices. Whereas the running time barrier of 2n has not been broken for general graphs,
Hamiltonian Path has faster algorithms for graphs of bounded degree. It is natural to ask if
for the generalization, MIST, this can also be obtained.

A second issue is whether we can find an algorithm for MIST with a running time of the
form O∗(cn) at all. 4 The very näıve approach gives only an upper bound of O∗(2m). A possible
application is the following scenario. Suppose you have a set of cities which should be connected
with water pipes. The cities and all possible connections between them can be represented by a
graph G. It suffices to compute a spanning tree T for G. In T we may have high degree vertices
that have to be implemented by branching pipes. These branching pipes cause turbulences and
therefore pressure may drop. To minimize the number of branching pipes one can equivalently

? This work was partially supported by a PPP grant between DAAD (Germany) and NFR (Norway).
The third author acknowledges partial support from the ERC, grant reference 239962. A preliminary
version of this paper appeared in the proceedings of WG 2009 [15].

4 Throughout the paper, we write f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some polynomial p(n).
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compute a spanning tree with the smallest number of leaves, leading to MIST. Vertices repre-
senting branching pipes should not be of arbitrarily high degree, motivating the investigation of
MIST on degree-restricted graphs. 5

Related Work. It is well-known that the more restricted problem, Hamiltonian Path, can
be solved in O(2nn2) steps and exponential space. This result has independently been obtained
by R. Bellman [2], and M. Held and R. M. Karp [27]. The Traveling Salesman problem
(TSP) is very closely related to Hamiltonian Path. Basically, the same algorithm solves this
problem, but there has not been any improvement on the running time since 1962. The space
requirements have, however, been improved and now there are O∗(2n) algorithms needing only
polynomial space: In 1977, S. Kohn et al. [31] gave an algorithm based on generating functions
with a running time of O(2nn3) and a space requirement of O(n2) and in 1982 R. M. Karp [29]
came up with an algorithm which improved storage requirements to O(n) and preserved this
running time by an inclusion-exclusion approach. Quite recently, A. Björklund [8] devised a
randomized (Monte Carlo) algorithm running in time O(1.657n), using polynomial space.

D. Eppstein [13] studied TSP on cubic graphs. He achieved a running time of O(1.260n) using
polynomial space. K. Iwama and T. Nakashima [28] improved this to O(1.251n). A. Björklund
et al. [7] considered TSP with respect to degree-bounded graphs. Their algorithm is a variant of
the classical 2n-algorithm and the space requirements are therefore exponential. Nevertheless,
they showed that for a graph with maximum degree d, there is a O∗((2 − εd)n)-algorithm. In
particular for d = 4, there is an O(1.8557n)-algorithm and for d = 5, an O(1.9320n)-algorithm.
Using an inclusion-exclusion approach, J. Nederlof [36] (see also [32]) developed (independently
and in parallel to the present paper and its conference version predecessor) an algorithm solving
MIST on general graphs in time O∗(2n) and polynomial-space. Based on a separation property,
Fomin et al. [23] recently used a divide & conquer approach to solve a generalization of MIST
in O(2n+o(n)) time.

MIST was also studied with respect to parameterized complexity. The (standard) parame-
terized version of the problem is parameterized by k, and asks whether G has a spanning tree
with at least k internal vertices. E. Prieto and C. Sloper [40, 39] proved a O(k3)-vertex kernel
for the problem showing FPT -membership. The same authors [41] improved the kernel size to
O(k2) and F. V. Fomin et al. [19] to 3k. Parameterized algorithms for MIST have been studied
in [12, 19, 41]. E. Prieto and C. Sloper [41] gave the first FPT -algorithm, with running time
24k log k · nO(1). This result was improved by N. Cohen et al. [12], who solve a more general
directed version of the problem in time 49.4k · nO(1). The currently fastest algorithm for MIST
has running time 8k · nO(1) [19] and the currently fastest algorithm for the directed version has
running time 16k+o(k) + nO(1) [23].

G. Salamon [45] studied the problem considering approximation. He achieved a 7
4 -approxima-

tion on graphs without pendant vertices. A 2(∆−3)-approximation for the node-weighted version
was a by-product. These results was further improved by M. Knauer and J. Spoerhase: In [30]
they showed that a version of Salamon’s algorithm leads to a 5

3 -approximation on general graphs
and proved a ratio of 3 + ε for the node-weighted version. Cubic and claw-free graphs were
considered by G. Salamon and G. Wiener [44]. They introduced algorithms with approximation
ratios 6

5 and 3
2 , respectively. Further variants of our problem are discussed in surveys [38, 46],

where more pointers to the literature can be found.

5 This motivation can be derived from documents like http://www.adpf.ae/images/Page-A.pdf:
“Pressure drop or head loss, occurs in all piping systems because of elevation changes, turbulence
caused by abrupt changes in direction, and friction within the pipe and fittings.” In the literature of
water management, for example, these types of pressure losses are usually qualified as minor, but this
is only meant in comparison with the major loss due to the lengths of the pipes. When the locations
are fixed, these lengths cannot be influenced any longer, so that the optimization of minor losses
becomes a crucial factor. We refer the reader to textbooks like [34].



3

Finally, let us make some remarks on the main methodology of this paper, Measure & Con-
quer (M&C), which is nowadays a standard approach for developing and analyzing (in most
cases, quite simple) exact exponential-time algorithms for computationally hard problems, in
particular graph problems; see [20] and [22] for an overview. It tries to balance worse and better
situations within the algorithm analysis via a potential-function analysis of the running time.
For example, Minimum Dominating Set can now be solved in time O(1.5012n) [37], while it
was believed for quite some time that the näıve enumerative algorithm that considers 2n cases
cannot be improved. 6 The M&C approach has even proved successful to design moderately ex-
ponential time algorithms for several non-local problems, where an element of the solution might
directly influence elements at an arbitrary distance (adding a vertex to a solution might create
cycles that involve very distant vertices in a graph, for example). Examples include algorithms
for Maximum Induced Forest [18], Maximum Leaf Spanning Tree [17, 21], and Full
Degree Spanning Tree [25].

A M&C analysis identifies local structures that make an instance easier to solve (e.g., vertices
of degree at most 2 might be easy to handle for a specific problem), and assigns a smaller measure
to instances that contain many such easy local structures. Typically, weights are associated to all
local structures that can occur in an instance, and the measure of an instance is the total weight
of the local structures of that specific instance (e.g., the measure of a graph might depend on the
number of vertices of certain degrees). Easy local structures naturally obtain a smaller weight
(e.g., vertices of degree at most 2 contribute less to the total measure). The advantage obtained
from a better branching on the easy local structures can be amortized over the steps that branch
on them and the steps that create or lead to these favorable situations (e.g., the analysis of a
branching step that decreases the degree of a vertex to 2 or less now takes that advantage
into account). The analysis of the worst-case running time amounts to go through the different
cases of the algorithm, and to lower bound the decrease of the measure in each branching step.
This leads to a system of constraints or recurrences that depend on the individual weights. The
solution of this system that minimizes the upper bound on the running time can be computed
efficiently, and with a certificate of optimality, by solving a convex program [26] (see also [24]).

In the field of exact exponential time algorithms, it is usually straightforward to upper bound
the measure by a function of the parameter of interest (e.g., the measure is upper bounded by
the number of vertices if each vertex may contribute at most 1 to the measure). However, if the
parameter is not directly related to the instance size, applying M&C becomes much less obvious.
We counter this obstacle by defining measures that start out equal to the parameter k, but that
we decrease by a certain value for each easy local structure of the instance. The advantages
of the M&C approach are kept: the resulting measure is obviously upper bounded by k, the
measure is smaller for instances with many easy local structures, and the optimal weights can
still be determined efficiently by convex programming. However, this approach immediately
creates several serious issues, that are often trivial if the parameter of interest is related to the
size of the instance, but that need special consideration for a parameterized M&C analysis.

(1) The measure of an instance with many easy local structures might be 0 or less. In this case,
a solution needs to be found in polynomial or subexponential time. When k is related to
the solution, this may be achieved by considering how a solution can intersect the simple
local configurations. For example, if u is a vertex of degree 2 of a graph G, then there is a
spanning tree of G in which at least 2 vertices of N [u] are internal. However, there may not
exist a spanning tree that shares two internal vertices with the closed neighborhood of every
degree-2 vertex (a spanning tree of a cycle has two adjacent leaves, for example). Moreover,
this local configuration, N [u], might overlap with other local configurations for which we
decrease the measure. In the proof of Lemma 11 we greedily complete the partial spanning
tree that has been constructed, perform some local modifications, and prove, by a potential

6 At least, no better algorithm was known for this natural graph-theoretic problem before 2004, in
contrast to the Maximum Independent Set problem (see [35, 43] for early references).
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function argument, that the resulting spanning tree has at least k internal vertices if the
measure of the instance was at most 0. In order to get the biggest advantage out of the
M&C analysis, one needs to identify the loosest constraints on the measure which make it
possible to solve the problem for instances with measure at most 0, so that we have as small
a restriction as possible when it comes to decreasing the measure due to a favorable local
configuration.

(2) Given an arbitrary instance, the exhaustive application of the reduction rules must not
increase the measure of an instance. In our algorithm, applying the DoubleEdge reduction
rule might in fact increase the measure temporarily, but in this case, other reduction rules
are triggered, with a net increase of the measure of at most 0 (see Lemma 12).

The novelty in our approach is that our measure is not related to the instance size (as opposed
to [33], for example) and is yet able to capture all easy local configurations of an instance (as
opposed to Wahlström’s analysis of a 3-Hitting Set algorithm [47], for example).

Our Results. We obtain the following main results:

(a) In Section 2, we present a dynamic-programming algorithm, combined with a fast subset
convolution evaluation, solving MIST in time O∗(2n). We extend this algorithm and show
that for any degree-bounded graph a running time of O∗((2−ε)n) with ε > 0 can be achieved.

(b) A branching algorithm solving the problem for maximum degree 3 graphs in time O(1.8612n)
is presented in Section 3 to which we also refer as our main algorithm. Its space requirements
are polynomial. For that algorithm, we provide a graph family proving a lower bound of
Ω( 4
√

2
n
) on the running time.

(c) We also analyze the same branching algorithm from a parameterized point of view, achieving
a running time of 2.1364knO(1) to find a spanning tree with at least k internal vertices (if
the graph admits such a spanning tree). The latter analysis is novel in a sense that we
use Measure & Conquer in a way that, to our knowledge, is much less restrictive than
any previous analysis for parameterized algorithms that were based on M&C; also see the
discussion above.

Notation and Definitions. Given a set S, we denote by S1 ]S2 = S a partition of S into two
subsets S1 and S2 (disjoint union). Instead of S \ {v}, we sometimes write S − v for an element
v of S.

With one particular exception that we will explicitly describe below (where we allow double
edges), we consider only simple undirected graphs G = (V,E). The neighborhood of a vertex v ∈
V in G is NG(v) := {u | {u, v} ∈ E} and its degree is dG(v) := |NG(v)|. The closed neighborhood
of v is NG[v] := NG(v) ∪ {v} and for a set V ′ ⊆ V we let NG(V ′) :=

(⋃
u∈V ′ NG(u)

)
\ V ′. We

omit the subscripts of NG(·), dG(·), and NG[·] when the graph is clear from the context. For a
subset of edges E′ ⊆ E we also write NE′(·), dE′(·), and NE′ [·] instead of N(V,E′)(·), d(V,E′)(·),
and N(V,E′)[·]. A subcubic graph has maximum degree at most three.7

A path in a graph G = (V,E) is a sequence of distinct vertices x0x1 . . . xk such that
{xi, xi+1} ∈ E, 0 ≤ i ≤ k − 1. A path x0x1 . . . xk is a cycle if {x0, xk} ∈ E and k ≥ 2 or
k = 1 and a double edge connects x0 and x1. A connected component in a graph is an inclusion-
maximal set C of vertices with the property that there exists a path between any two vertices
x, y ∈ C. A bridge is an edge whose deletion increases the number of connected components. A
graph is connected if it consists of only one connected component. A graph is acyclic or a forest
if it contains no cycle. A connected acyclic graph is also called a tree.

If G = (V,E) is a graph, then we sometimes refer to its vertex set V as V (G), and to its edge
set as E(G). Any graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G) is called a subgraph of G.
7 In the already mentioned exceptional case of a graph with double edges, subcubicity rather means

that for each vertex v, there are at most three edges incident to v.
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If G′ happens to be a tree, we refer to it as a subtree. Slightly abusing notation, we will write
V (E′) to denote the set of vertices that occur in edges of the edge set E′, i.e., V (E′) =

⋃
e∈E′ e.

If E′ is a subset of edges of G = (V,E), then G[E′] = (V (E′), E′) is the subgraph induced by E′.
So, we will sometimes specify subgraphs by edge sets and therefore, slightly abusing notations,
view subtrees as edge sets.

In a tree T , vertices of degree 1 are called leaves and vertices of degree at least two are
called internal vertices. Let ı(T ) denote the number of internal vertices and `(T ) the number of
leaves of T . A d-vertex u is a vertex with dT (u) = d with respect to some subtree T of G. The
tree-degree of some u ∈ V (T ) is dT (u). We also speak of the T -degree dT (v) when we refer to a
specific subtree. A Hamiltonian path of a graph G = (V,E) is a path on |V | vertices. A triangle
in a graph is a subgraph of the form ({a, b, c}, {{a, b}, {b, c}, {a, c}}). A spanning tree of G is a
subtree of G on |V | vertices.

2 Max Internal Spanning Tree on General Graphs

To decide the existence of a Hamiltonian path, Held and Karp used a dynamic programming
recurrence equation [27]. This well-known technique is a very natural approach to attack the
Maximum Internal Spanning Tree problem. In this section, we start by giving a Dynamic Pro-
gramming based algorithm to compute a spanning tree with a maximum number of internal
nodes in O∗(3n) time and O∗(2n) space. Our approach is different from the one given in [16]
which requires O∗(3n) space. In Subsection 2.2 we show how to speed up the running time to
O∗(2n) by using a fast evaluation algorithm for the subset convolution from [6]. We present the
results for degree-bounded graphs in Subsection 2.3.

2.1 A dynamic programming approach

For the sake of simplicity, rather than computing a MIST of a given graph G = (V,E), our
algorithm computes the minimum number of leaves in a spanning tree of G. By standard back-
tracking techniques, it is easy to modify the algorithm so that it indeed returns a spanning tree
with this number of leaves.

For instance, we will employ the notion of constrained spanning tree: given a graph G =
(V,E), a vertex v and a spanning tree T of G, we say that T is a (vL)-constrained spanning
tree (shortly, (vL)-cst) if v is a leaf in T . The notion of (vI)-constrained spanning tree, denoted
(vI)-cst, is defined similarly by requiring that v is an internal node in the spanning tree. A
(vL)-cst ((vI)-cst) T of G with a minimum number of leaves (or a maximum number of internal
vertices) is a spanning tree of G which has a minimum number of leaves subject to the constraint
that v is a leaf (an internal vertex) in T .

For every subset S ⊆ V on at least two vertices and any vertex v ∈ S we define OptL[S, v]
(OptI [S, v], respectively) as the minimum number of leaves in a spanning tree of G[S] in which
v is a leaf (in which v is an internal node, respectively), if one exists. In other words, OptL[S, v]
(OptI [S, v], respectively) is the minimum number of leaves in any (vL)-cst (in any (vI)-cst,
respectively) of G[S], if such a spanning tree exists. If there is no such spanning tree, then the
value of OptL[S, v] (of OptI [S, v], respectively) is set to ∞.

For the base case, consider any 2-vertex set S = {u, v} ⊆ V . Clearly, if u and v are adjacent,
then OptL[S, u] = OptL[S, v] = 2 and OptI [S, u] = OptI [S, v] = ∞. Otherwise, OptL[S, u] =
OptL[S, v] = OptI [S, u] = OptI [S, v] = ∞ since G[{u, v}] is disconnected and has no spanning
tree.

Then the algorithm considers the subsets S ⊆ V with |S| ≥ 3 by increasing cardinality. For
any v ∈ S, the values of OptL[S, v] and OptI [S, v] are computed using the following dynamic
programming recurrence equations.
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– If G[S] is connected, then

OptL[S, v] = min
u∈N(v)∩S

{
OptL[S − v, u],OptI [S − v, u] + 1

}
OptI [S, v] = min

(S1−v)](S2−v)=S−v
v∈S1,v∈S2
|S1|,|S2|≥2


OptI [S1, v] + OptI [S2, v],
OptI [S1, v] + OptL[S2, v]− 1,
OptL[S1, v] + OptL[S2, v]− 2

– Otherwise, OptL[S, v] =∞ and OptI [S, v] =∞.

Consider a vertex u ∈ V . Clearly, any optimum solution T of the MIST problem is either a
(uL)-cst or a (uI)-cst with a minimum number of leaves. Thus, to obtain the minimum number
of leaves in any spanning tree of a given graph G = (V,E), it is sufficient to compute the value
of OptL[V, v] and OptI [V, v] for some vertex v ∈ V . It remains to show that the formulae used
by the dynamic programming approach are correct.

Lemma 1. Let G = (V,E) be a connected graph and let v ∈ V such that G has a (vL)-cst. There
is a (vL)-cst T+ of G with a minimum number of leaves such that T = T+ − v is a spanning
tree of G− v with a minimum number of leaves. In addition, denoting by u the neighbor of v in
T+, if T is a (uL)-cst then `(T+) = `(T ) and if T is a (uI)-cst then `(T+) = `(T ) + 1.

Proof. For the sake of contradiction, suppose that for every (vL)-cst of G with a minimum
number of leaves, the removal of v gives a spanning tree of G − v which does not have a
minimum number of leaves. Let T ′ be a (vL)-cst of G with a minimum number of leaves, and
suppose there exists a spanning tree T1 of G − v such that `(T1) < `(T ′ − v). Let u be the
neighbor of v in T ′. Construct the (vL)-cst T ∗ of G obtained from T1 by adding the edge {u, v}.
Now, T ∗ is a (vL)-cst of G with a minimum number of leaves because `(T ∗) ≤ `(T1)+1 ≤ `(T ′),
and T ∗ − v = T1 is a spanning tree of G− v with a minimum number of leaves, a contradiction.

Additionally, if u is a leaf (resp. an internal node) of T , by adding v and the edge {u, v} to
T , we obtain the tree T+ and the relation `(T+) = `(T ) holds since u becomes internal in T+

and v is a leaf of T+ (resp. `(T+) = `(T ) + 1 since u is internal in T and in T+). ut

Lemma 2. Let G = (V,E) be a connected graph and let v ∈ V such that G has a (vI)-cst. There
exists a (vI)-cst tree T+ with a minimum number of leaves and a partition (V1 − v) ] (V2 − v)
of V − v where v ∈ V1, V2 such that T1 = T+[V1] and T2 = T+[V2] are spanning trees of G[V1]
and G[V2] with a minimum number of leaves. In addition, if v is a leaf in both T1 and T2, then
`(T+) = `(T1)+`(T2)−2, if v is a leaf in precisely one of T1 and T2, then `(T+) = `(T1)+`(T2)−1,
and if v is internal in both T1 and T2, then `(T+) = `(T1) + `(T2).

Proof. For the sake of contradiction, suppose that for every (vI)-cst T of G with a minimum
number of leaves, T [V1] is not a spanning tree with a minimum number of leaves of G[V1] or
T [V2] is not a spanning tree with a minimum number of leaves of G[V2], where V1− v and V2− v
are vertex sets of one or more connected components of T−v that partition V −v and v ∈ V1, V2.
Let T ′ be a (vI)-cst of G with a minimum number of leaves, and suppose there exists a spanning
tree T1 of G[V1] such that `(T1) < `(T ′[V1]), where V1 contains v and the vertex set of one or
more (but not all) connected components of T ′ − v. Let V2 = (V \ V1) ∪ {v}. Construct the
(vI)-cst T ∗ of G obtained by setting T ∗ = T1 ∪ T ′[V2]. We have `(T ∗) ≤ `(T ′) and T ∗ is such
that T ∗[V1] has a minimum number of leaves. By using the same argument for V2, we obtain a
contradiction.

In addition, by identifying the vertex v in both trees T1 and T2 and merging the two trees
at node v we obtain the tree T+. This spanning tree T+ has `(T+) = `(T2) + `(T2) − i leaves
where i ∈ {0, 1, 2} is the number of trees among T1 and T2 in which v is a leaf (since v becomes
an internal node in T+). ut
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We are now ready to establish the running time of our algorithm.

Theorem 1. The given algorithm correctly computes a spanning tree with a minimum number
of leaves in time O∗(3n) and space O∗(2n).

Proof. By Lemmata 1 and 2, the dynamic programming recurrence equations are correct. To ob-
tain a spanning tree of a given graph G = (V,E) with a minimum number of leaves, it is sufficient
to pick an arbitrary vertex v of V and to return the tree with fewest leaves among a (vI)-cst and
a (vL)-cst of G with a minimum number of leaves. Thus the value min{OptL[V, v],OptI [V, v]} is
the minimum number of leaves of any spanning tree of G.

The running time of the algorithm is O∗(3n) as the algorithm goes through all partitions of
V into V \S, S1−v, S2−v, {v}. Since the values of OptL and OptI are stored for every possible
subset S ⊆ V and every vertex v ∈ V , it follows that the needed space is O∗(2n). ut

2.2 Speed-up by subset convolution

Motivated by Held’s and Karp’s algorithm for Hamiltonian Path [27], the problem of solving the
MIST problem in time O∗(2n) is an intriguing question. This question was settled by Nederlof
in [36] who provides an Inclusion-Exclusion based algorithm working in O∗(2n) time. In this
section we also provide an O∗(2n) time algorithm using fast subset convolution. Whereas the
approach of Nederlof needs only polynomial space, subset convolution takes exponential space.
However, our approach extends to degree-bounded graphs for which a faster running time is
obtained in Subsection 2.3. Neither the approach of Nederlof [36] nor the approach of Fomin et
al. [23] seem to be able to beat a running time of O∗(2n) for degree-bounded graphs.

In [6], Björklund et al. give a fast algorithm for the subset convolution problem. Given two
functions f and g, their subset convolution f ∗ g is defined for all S ⊆ V by (f ∗ g)(S) =∑
T⊆S f(T )g(S \ T ). They show that via Möbius transform and inversion, the subset con-

volution can be computed in O∗(2n) time, improving on the trivial O∗(3n)-time algorithm.
They exemplify the technique by speeding-up the Dreyfus-Wagner Steiner tree algorithm to
O∗(2kn2M + nm logM) where k is the number of terminals and M the maximum weight over
all edges.

Following Björklund et al. [6] (see also Chapter 7 in [22]), a fast evaluation of the convolution
f ∗ g can be done in time O∗(2n) using the following algorithm. Here we assume that U is a
ground set of size n and the functions f , g and h are from the subsets of U to the set of integers
{−M, . . . ,M} where M ≤ 2n

O(1)
.

First we define the ranked zeta transforms of f and g by

fζ(k, S) =
∑
W⊆S
|W |=k

f(W ) and gζ(k, S) =
∑
W⊆S
|W |=k

g(W ). (1)

By using dynamic programming, these ranked zeta transforms of f and g can be computed in
O∗(2n)-time, for all subset S ⊆ U . We omit the details of the dynamic programming algorithm
that can be found in [6, 22]. Second, the ranked convolution of the zeta transforms, defined as

(fζ ~ gζ)(k, S) =
k∑
j=0

fζ(j, S) · gζ(k − j, S), (2)

is computed by using the values of the ranked zeta transforms. (Note that the ranked convolution
is done over the parameter k.)
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Finally, the obtained result is inverted via the Möbius transform where, given a function h,
its Möbius transform hµ is defined as

hµ(S) =
∑
X⊆S

(−1)|S\X|h(X). (3)

Again, the Möbius transform can be computed in O∗(2n) by dynamic programming [6, 22]. The
correctness of the approach is shown by the following formula which is proved in [6, 22]:

(f ∗ g)(S) =
∑
X⊆S

(−1)|S\X|(fζ ~ gζ)(|S|, X). (4)

Let us explain how subset convolution can be used to speed-up the evaluation of the recursion
of the previous section. We apply the fast subset convolution over the min-sum semiring:

(f ∗ g)(S) = min
T⊆S
{f(T ) + g(S \ T )}.

It is shown in [6] that the approach for computing a convolution over the integer sum-product
ring can be extended to the integer min-sum semiring by, still working over the sum-product
ring, but eventually scaling the functions f and g.

We are now ready to explain how the fast convolution is used to compute the recurrences of
the dynamic programming approach given in Section 2.1. For such recurrences the computation
has to be done in a level-wise manner. In our case, the computation of OptI [S, v] requires the
values of the already computed OptI [X, v] for all sets X ⊂ S of size at least 2 containing v.

At each level l, 3 ≤ l ≤ n, assume that OptL[X,x] and OptI [X,x] have already been computed
for all X ⊆ V with 2 ≤ |X| ≤ l − 1 and x ∈ X. At level l, we compute the values of OptI [X,x]
and the values of OptL[X,x] for all X ⊆ V and x ∈ X with |X| = l. Recall that the computation
of OptL[X,x] and OptI [X,x] for all |X| ≤ 2 can be done in O(n2) time (see Section 2.1).

Assume that X ⊆ V , |X| = l ≥ 3, x ∈ X, and that all values of OptL and OptI have already
been computed for all previous levels. Note that, for each X and x, the values of OptL[X,x] can
be computed in polynomial time using the recurrence of the previous subsection. To compute
OptI [X,x] we define the functions fx(Y, l) and gx(Y, l) for all subsets Y of X.

fx(Y, l) =

{
OptL[Y ∪ {x}, x] if 1 ≤ |Y | ≤ l − 2, and
∞ otherwise.

gx(Y, l) =

{
OptI [Y ∪ {x}, x] if 1 ≤ |Y | ≤ l − 2, and
∞ otherwise.

Then we define the three functions:

hIIx (X, l) = (gx ∗ gx)(X − x, l),
hILx (X, l) = (fx ∗ gx)(X − x, l),
hLLx (X, l) = (fx ∗ fx)(X − x, l).

These functions can be evaluated for each level l via subset convolution over the min-sum
semiring in total time O∗(2n) (see Theorem 3 in [6]). Note that these functions were derived from
the recurrence established in Subsection 2.1 to compute OptI [X,x]. In particular, to compute
OptI [X,x] we need to look at each partition (X1−x)](X2−x) = (X−x) such that x ∈ X1∩X2

and |X1|, |X2| ≥ 2. Thus at level l, only the values of fx(Y, l) and gx(Y, l) with |Y | < l − 1 are
of interest (and the ones with |Y | = l− 1 are set to ∞). Finally the value of OptI [X,x] is set to
min{hIIx (X, l), hILx (X, l)− 1, hLLx (X, l)− 2}.
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Theorem 2. The algorithm computes a spanning tree with a minimum number of leaves in time
and space O∗(2n).

2.3 A consequence for graphs of bounded degree

In this section, we speed up the algorithm of the previous subsection for bounded-degree graphs.
In [7], Björklund et al. show that the number of connected vertex sets is smaller than 2n in
graphs with bounded degree.8

Lemma 3 (Lemma 3 in [7]). An n-vertex graph with maximum vertex degree ∆ has at most
βn∆ + n connected vertex sets with β∆ = (2∆+1 − 1)1/(∆+1).

These connected vertex sets can then be enumerated with a polynomial-delay enumeration
algorithm, where the delay of an enumeration algorithm is the maximum time elapsed between
any two consecutive outputs, and from the start of the algorithm to the first output.

Theorem 3 ([1]). There is a O(n+m)-space algorithm enumerating all connected vertex sets
of any input graph G with delay O(nm), where n is the number of vertices and m is the number
of edges of G.

This makes it possible to combine the bound provided by Lemma 3 to speed up the algorithm
described in Section 2.2 on graphs of bounded degree. The idea is to go only though the connected
vertex sets of a graph, which are produced by the algorithm of Theorem 3, while applying the
convolution algorithm.

Lemma 4. To compute a spanning tree with a minimum number of leaves, the fast subset con-
volution algorithm of Section 2.2 need only consider subsets that are connected vertex subsets.

Proof. Let G = (V,E) be a connected graph and let C be the set of connected vertex subsets of
G. To compute a minimum leaf spanning tree, fast subset convolution is used by our algorithm to
compute the values OptI [S, v] for all S ⊆ V and v ∈ S. Whenever S is not connected, the value of
OptI [S, v] is (by definition) set to ∞ as G[S] has no spanning tree. As recalled in Section 2.2, to
compute the convolution of two functions as given by Equation (4), the fast subset convolution
algorithm works in three steps (see also [6, 22]):

1. Compute (by dynamic programming) the ranked zeta transforms of f and g (see (1));
2. Compute the ranked convolution of the zeta transforms fζ and gζ (see (2));
3. Invert the obtained result by computing (by dynamic programming) the Möbius transform

(see (3)).

The convolution formula (4) is of interest only for sets S where S ∈ C, since otherwise OptI [S, v] =
∞. Thus, whenever the third step of the convolution algorithm is applied, the sum of (3) is done
over all subsets X ⊆ S where S ∈ C. We claim that only sets X ∈ C are of interest. Assume
that X /∈ C and |X| ≤ |S| − 2. (The case |X| = |S| − 1 will be considered later, and the case
|X| = |S| implies that X = S and thus X is connected.) Then the ranked convolution given
by Equation (2) is done for all j from 0 up to |S|. When j = |X|, the ranked zeta transform
of Equation (1) applied on f requires that W = X and thus f(W ) = ∞ whereas, at the same
time, the ranked zeta transform applied on g needs to consider all subsets X of size |S| − j = 2.
Since X is not connected, there are two vertices a, b ∈ X such that there is no path between a
and b. It follows that at some point when computing the ranked convolution of g, Equation (2)
considers the set W = {a, b} (of size |S|−j = 2), and thus gζ(2, X) is equal to∞. Consequently,
the value of the ranked convolution is ∞. Suppose now that X /∈ C and |X| = |S| − 1. Then
8 As a historical aside, let us mention that such kind of estimates for degree-bounded graphs were first

used in the area of exact exponential-time algorithms in [43] and then further exploited in [9].
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∆ 3 4 5 6

running times O(1.9680n) O(1.9874n) O(1.9948n) O(1.9978n)

Table 1. Running time of the algorithm of Theorem 4 according to the maximum degree ∆.

again, for j = |S| − 1, fζ(j,X) is equal to ∞ since f(W ) = ∞ for W = X, and at the same
time gζ(|S| − j,X) = gζ(1, X) = ∞ by definition since |W | = 1. Thus, whenever a set X /∈ C
is considered in (3), the result of (2) is ∞. Assume now that X ∈ C in Equation (3). Then
the ranked convolution requires to compute the ranked zeta transform. Again, in (1), only sets
W ∈ C are of interest, since otherwise fζ(j,X) is ∞.

As a consequence, both in (3) and in (1) the only sets that need to be considered are the
ones corresponding to a connected vertex set of G. ut

The following Theorem is a consequence of Lemmata 3 and 4 and Theorem 3.

Theorem 4. For any graph with maximum degree ∆, a spanning tree with a minimum number
of leaves can be computed in time O∗(βn∆) with β∆ = (2∆+1 − 1)1/(∆+1) and exponential space.

Some concrete figures for the corresponding bases of the exponential functions are listed in
Table 1.

3 Subcubic Maximum Internal Spanning Tree

In this section, we focus on graphs with maximum degree at most three. This main section of
the paper is structured as follows: In Subsection 3.1, we collect some useful observations. Then,
in Subsection 3.2, we give some reduction rules that our algorithm will apply in polynomial
time to simplify the graph instance. We also prove the correctness of these rules. Subsection 3.3
describes our algorithm, which is a branching (search tree) algorithm which exhaustively applies
the already mentioned reduction rules before a recursive branch. Subsection 3.4 gives details of
a Measure & Conquer analysis of our algorithm. Subsection 3.5 shows an example of a graph
family where our algorithm needs exponential time. Finally, in Subsection 3.6, a parameter-
ized algorithm analysis is given and we establish an O(2.1364knO(1)) running time thanks to a
Measure & Conquer approach.

3.1 Observations

For a spanning tree T , let tTi denote the number of vertices u such that dT (u) = i. The following
proposition can be proved by induction on nT := |V (T )|.

Proposition 1. In any spanning tree T , 2 +
∑
i≥3(i− 2) · tTi = tT1 .

Due to Proposition 1, MIST on subcubic graphs boils down to finding a spanning tree T such
that tT2 is maximum. Every internal vertex of higher degree would also introduce additional
leaves.

Lemma 5 ([40]). An optimal solution To to Max Internal Spanning Tree is a Hamiltonian
path or the leaves of To are independent.

The proof of Lemma 5 shows that if To is not a Hamiltonian path and there are two adjacent
leaves, then the number of internal vertices can be increased. In the rest of the paper we assume
that To is not a Hamiltonian path due to the next lemma.

Lemma 6. Hamiltonian Path can be solved in time O(1.251n) on subcubic graphs.
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Proof. Let G = (V,E) be a subcubic graph. First, guess (by considering all the possibilities) the
start and end vertices u and v, together with the start and end edges e and f of a Hamiltonian
path in G, if any exists at all. Then remove all the edges incident to u and v but e and f ,
add a dummy edge {u, v}, and run the algorithm of [28] to find a Hamiltonian cycle in this
new graph Ge,f . If it succeeds, G clearly also has a Hamiltonian path. If G has a Hamiltonian
path, then some guess will yield a graph Ge,f with a Hamiltonian cycle. This algorithm runs in
O∗(2(31/96)n) ⊆ O∗(1.2509n) steps. ut

At this point we prove an auxiliary lemma used for the analysis of the forthcoming algorithm
by an exchange-type argument.

Lemma 7. Let G = (V,E) be a graph and let T be a spanning tree and u, v ∈ V (T ) two adjacent
vertices with dT (u) = dT (v) = 3 such that {u, v} is not a bridge in G. Then there is a spanning
tree T ′ ⊃ (T \ {{u, v}}) with ı(T ′) ≥ ı(T ) and dT ′(u) = dT ′(v) = 2.

Proof. By removing {u, v}, T is separated into two connected components T1 and T2. The vertices
u and v become 2-vertices. As {u, v} is not a bridge, there is another edge e ∈ E \ T connecting
T1 and T2. By adding e we lose at most two 2-vertices. Then let T ′ := (T \ {{u, v}}) ∪ {e} and
it follows that ı(T ′) ≥ ı(T ). ut

3.2 Reduction Rules

Let E′ ⊆ E. Then, ∂E′ := {{u, v} ∈ E \ E′ | u ∈ V (E′)} are the edges outside E′ that have
a common end point with an edge in E′ and ∂V E

′ := V (∂E′) ∩ V (E′) are the vertices that
have at least one incident edge in E′ and another incident edge not in E′. In the course of the
algorithm we will maintain an acyclic subset of edges F (i.e., a forest) which will be part of the
final solution. A pending tree edge, or pt-edge for short, {x, v} ∈ F is an edge with one end point
x of degree one (in G) and the other end point v /∈ V (T ), see Fig. 1(i) where {p, v} is a pt-edge.

The following invariant will always be true:

(1) G[F ] consists of a tree T and a set P of pt-edges.
(2) G[F ] has 1 + |P | connected components.
(3) G is connected.

The invariant holds by induction. Occasionally, double edges (i.e., two edges connecting the same
pair of vertices) will appear during the execution of the algorithm. However, they are instantly
removed by a reduction rule (rule DoubleEdge below), so that we may otherwise assume that
G is a simple graph; see Remark 1. For item 3 of the invariant to remain true, we think of edge-
induced subgraphs when removing edges from the graph. Thus, isolated vertices are implicitly
removed from an instance.

Next we present a sequence of reduction rules (see also Fig. 1). Note that the order in which
they are applied is crucial. We assume that before a rule is applied the preceding ones were
carried out exhaustively.

Bridge: If there is a bridge e ∈ ∂E(T ), then add e to T .

DoubleEdge: If there is a double edge, then delete one of the two edges that is not in F .

Cycle: Delete any edge e ∈ E such that T ∪ {e} has a cycle.

Deg1: If there is a vertex u ∈ V \ V (F ) with dG(u) = 1, then add its incident edge to P .

Pending: If there is a vertex v with dG(v) ≥ 2 that is incident to dG(v) − 1 pt-edges, then
remove its incident pt-edges.

ConsDeg2: If there are edges {v, w}, {w, z} ∈ E \T such that dG(w) = dG(z) = 2, then delete
{v, w}, {w, z} from G and add the edge {v, z} to G.
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(a) Bridge (b) Double-
Edge

e

(c) Cycle

u

u

(d) Deg1

v

v

(e) Pending
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(f) ConsDeg2

u v

(g) Deg2
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u v z u v z u v z

(h) Attach

u v z

p
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p

(i) Attach2

u v w
z

u v w
z

(j) Special

Fig. 1. Local configurations to which the different reduction rules apply. The following drawing conven-
tions apply to all figures of this article. Dashed edges are in F , solid edges are in E \ F . Edges incident
to oblongs are pt-edges and the oblong represents the vertex of degree one in this case.

Deg2: If there is an edge {u, v} ∈ ∂E(T ) such that u ∈ V (T ) and dG(u) = 2, then add {u, v}
to F .

Attach: If there are edges {u, v}, {v, z} ∈ ∂E(T ) such that u, z ∈ V (T ), dT (u) = 2, 1 ≤
dT (z) ≤ 2, then delete {u, v}.

Attach2: If there is a vertex u ∈ ∂V E(T ) with dT (u) = 2 and {u, v} ∈ E \ T such that v is
incident to a pt-edge, then delete {u, v}.

Special: If there are two edges {u, v}, {v, w} ∈ E \ F with dT (u) ≥ 1, dG(v) = 2, and w is
incident to a pt-edge, then add {u, v} to T .

Remark 1. We mention that ConsDeg2 is the only redution rule which can create double edges.
In this case, DoubleEdge will delete one of them which is not in F . It will be assured by the
reduction rules and the forthcoming algorithm that at most one can be part of F .

Example 1. Let us illustrate the effect of the reduction rules with a small example. Assume we
are dealing with an instance (G,F ) where G = (V,E) is a simple graph and F = T ] P , such
that the vertex sequence v0v1v2v3 defines a path and d(v0) = 3, d(v1) = d(v2) = 2, and d(v3) = 1
(see Figure 2). Moreover, assume that {v0, v1, v2, v3} ∩ V (T ) = ∅. Let us concentrate on this
part of the graph.
Now, check rule Bridge. Clearly, G contains bridges, namely {vi, vi+1} for 0 ≤ i < 3. However,
since {v0, v1, v2, v3}∩V (T ) = ∅, none of these edges is in ∂E(T ). Hence, Bridge does not apply
to this part of the graph.
By assumption, there are no double edges.
If Cycle applied, it would not delete any of the edges {vi, vi+1} for 0 ≤ i < 3. Moreover, V (T )
would not be affected, so that the situation we are considering would prevail.
However, Deg1 applies and puts {v2, v3} into P .
We would then restart testing the applicability of each rule. Now, the first applicable rule is
Pending: v2 is incident to only one edge from E \ P . This rule removes the edge {v2, v3}.
The next search of an applicable rule finds Deg1, since v2 is now of degree one, and puts {v1, v2}
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v0 v1 v2 v3 v0 v1 v2 v3

v4

v5

Fig. 2. The graphs from Example 1 illustrating the reduction rules.

into P ; this edge is also deleted by Pending. Finally, the edge {v0, v1} is put into P by Deg1.
Since d(v0) = 3, Pending does not trigger.

Assume now that the original graph G is modified by adding a triangle and identifying v3

with one of its vertices, i.e., we add two extra vertices v4 and v5 and the edges {v3, v4}, {v4, v5},
and {v3, v5}. Now, the first rule that can be applied is ConsDeg2; actually there are two places
to be considered. The algorithm might first discover that v1 and v2 are two consecutive vertices
of degree two. Hence, it adds the edge {v0, v2} and deletes the edges {v0, v1} and {v1, v2}.
Similarly, v4 and v5 are two consecutive vertices of degree two. Hence, an edge {v3, v5} is added
and {v3, v4} and {v4, v5} are deleted. This creates a double edge that is turned into a single
edge by DoubleEdge. So, we are left with a graph that is completely isomorphic to the graph
G that we already considered above, since v0v2v3v5 forms a path.

Theorem 5. The reduction rules stated above are correct and can be exhaustively carried out
in polynomial time.

Proof. Notice that an instance of our algorithm is a subcubic graph G = (V,E) together with
an edge set F = T ] P satisfying the stated invariant. We first argue for the correctness of the
rules. Since each reduction rule can be viewed as a transformation G 7→ G′ and F 7→ F ′, this
means the following things:

– If T ′o is a spanning tree of G′ with a maximum number of internal vertices subject to the
condition that T ′o extends F ′, i.e., T ′o ⊇ F ′, then we can derive from T ′o a spanning tree
To ⊇ F of G with a maximum number of internal vertices.

– The stated invariant ist maintained.
– If G is subcubic, then G′ is subcubic.
– Remark 1 is ensured.

Regarding connectivity of the graph (item 3 of the invariant), notice that the graph G′ resulting
from G is always described via edge modifications. Hence, we actually describe an edge set E′

and then define G′ = (V (E′), E′); i.e., isolated vertices are removed.
Consider a subcubic graph G = (V,E) together with an edge set F = T ] P satisfying the

stated invariant. The invariant implies that in the case that G contains a double edge, at most
one of the involved edges can be in F . As DoubleEdge deletes one of the two edges that is not
in F , all later reduction rules consider only simple graphs. Also notice that the preservation of
subcubicity becomes only an issue if edges are added to G. Let To ⊃ F be a spanning tree of G
with a maximum number of internal vertices.

Bridge Consider a bridge e ∈ ∂E(T ). Since To is connected, e ∈ To is enforced. The invariant
is maintained, since e is added to T . Notice that e is not in a double edge.

DoubleEdge Since To is acyclic, at most one of the two edges between, say, u and v, can be in
To.

Cycle Since To is acyclic, no edge e ∈ E such that T ∪ {e} has a cycle can belong to To.

Deg1 Let u ∈ V \ V (F ) with d(u) = 1. Since To is spanning, it contains an edge incident to u.
Since d(u) = 1, the unique edge e incident to u is in To. Hence, we can safely add e to F ,
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i.e., F ′ = F ∪ {e}. Because u ∈ V \ V (F ), F ′ 6= F , and since we would have added e to T
already if e ∈ ∂E(T ) due to the Bridge rule, we add e in fact to P , hence mantaining the
invariant.

Pending Consider the only non-pt-edge e = {u, v} incident to v. Obviously, e is a bridge and
needs to be in any spanning tree of G. Moreover, all pt-edges incident to v are in F due to
a previous application of the Deg1 rule. Being incident to pt-edges means v /∈ V (T ). Yet, v
must be reached in To from u. Removing all pt-edges incident to v will render v a vertex of
degree one in G′. Hence, the Deg1 rule will trigger when applying the reduction rules again.
This ensures that v will be reached via u, so that in the neighborhood of v, all pt-edges can
be safely removed (from P ). Observe that the invariant is maintained.

ConsDeg2 Let G′ be the graph obtained from G by one application of ConsDeg2. We assume,
without loss of generality, that {w, z} ∈ To. If {w, z} /∈ To then {v, w} ∈ To and we can
simply exchange the two edges giving a solution T̃o with {w, z} ∈ T̃o and tTo

2 ≤ tT̃o
2 . (As in

Subsec. 3.1, tSi denotes the number of vertices u such that dS(u) = i for some tree S.) By
contracting the edge {w, z}, we receive a solution T ′o such that ı(T ′o) = ı(To)− 1.
Now suppose T ′o is a spanning tree for G′. If {v, z} ∈ T ′o then let To = T ′o \ {{v, z}} ∪
{{v, w}, {w, z}}. To is a spanning tree for G and we have ı(To) = ı(T ′o) + 1. If {v, z} 6∈ T ′o,
then by connectivity dT ′o(z) = 1. Let To = T ′o ∪ {{v, w}}; then ı(To) = ı(T ′o) + 1.
Since the vertex w is a neighbor of v and z in G and is missing in G′, adding the edge {v, z}
to G′ preserves subcubicity. This edge addition might create a double-edge (in case v and
z were neighbors in G), but the new edge is not in F , so that Remark 1 is maintained by
induction.

Deg2 Consider an edge {u, v} ∈ ∂E(T ) such that u ∈ V (T ) and dG(u) = 2. Since the preceding
reduction rules do not apply, we have dG(v) = 3. Assume {u, v} /∈ To. There is exactly
one edge incident to v, say e = {v, z}, z 6= u, that is contained in the unique cycle in
To ∪ {{u, v}}. Clearly, being part of a cycle means that e is not pending. Define another
spanning tree T̃o ⊃ F by setting T̃o = (To ∪ {{u, v}}) \ {v, z}. Since ı(To) ≤ ı(T̃o), T̃o is also
optimal. So, without loss of generality, we can assume that {u, v} ∈ To.

Attach If {u, v} ∈ To then {v, z} 6∈ To due to the acyclicity of To and as T is connected. Then
by exchanging {u, v} and {v, z} we obtain a solution T̃o with at least as many 2-vertices.

Attach2 Suppose {u, v} ∈ To. Let {v, p} be the pt-edge and {v, z} the third edge incident
to v (that must exist and is not pending, since Pending did not apply). Since Bridge
did not apply, {u, v} is not a bridge. First, suppose {v, z} ∈ To. Due to Lemma 7, there
is also an optimal solution T̃o ⊃ F with {u, v} /∈ T̃o. Second, assume {v, z} /∈ To. Then
T̃o = (To − {u, v}) ∪ {{v, z}} is also optimal as u has become a 2-vertex.

Special Suppose {u, v} 6∈ To. Then {v, w}, {w, z} ∈ To where {w, z} is the third edge incident
to w. Clearly, {w, z} and {v, w} are on the cycle that is contained in G[To∪{{u, v}}]. Hence,
T̃o := (To − {v, w}) ∪ {{u, v}} is also a spanning tree that extends F . In T̃o, w is a 2-vertex
and hence T̃o is also optimal.

It is clear that the applicability of each rule can be tested in polynomial time when using
appropriate data structures. If triggered, the required operations will also use polynomial time.
Finally, since the reduction rules always make the instance smaller in some sense (either by
reducing the number of edges or by by reducing the number of edges not in F ), the number of
successive executions of reduction operations is also limited by a polynomial. ut

Remark 2. It is interesting to observe how the optimum value ı(To) for the instance (G,F ) relates
to the value ı(T ′o) for the instance (G′, F ′) obtained by applying any of the reduction rules once.
Reconsidering the previous proof, one easily derives that only two situations occur: ı(To) = ı(T ′o)
for all rules apart from Pending and from ConsDeg2 where we have ı(To) = ı(T ′o) + 1.
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An instance to which none of the reduction rules applies is called reduced.

Lemma 8. A reduced instance (G,F ) with F = T ] P has the following properties: (1) for all
v ∈ ∂V E(T ), dG(v) = 3 and (2) for all u ∈ V , dP (u) ≤ 1.

Proof. Assume that for some v ∈ ∂V E(T ), dG(v) = 2; then ConsDeg2 or Deg2 would apply,
contradicting that (G,F ) is reduced. If there is a v ∈ ∂V E(T ) with dG(v) = 1, then Bridge
or Deg1 would apply, again contradicting that (G,F ) is reduced. The second property follows
from the invariant. ut

3.3 The Algorithm

The algorithm we describe here is recursive. It constructs a set F of edges which are selected to
be in every spanning tree considered in the current recursive step. The algorithm chooses edges
and considers all relevant choices for adding them to F or removing them from G. It selects
these edges based on priorities chosen to optimize the running time analysis. Moreover, the set
F of edges will always be the union of a tree T and a set of edges P that are not incident to
the tree and have one end point of degree 1 in G (pt-edges). We do not explicitly write in the
algorithm that edges move from P to T whenever an edge is added to F that is incident to both
an edge of T and an edge of P . To maintain the connectivity of T , the algorithm explores edges
in the set ∂E(T ) to grow T .

In the initial phase, we select any vertex v and go over all subtrees of G on 3 vertices
containing v. These are our initial choices for T . As every vertex has degree at most 3, there
are at most 3 trees on 3 vertices with both edges incident to v, and there are at most 3 · 2 trees
on 3 vertices with only one edge incident to v. For each such choice of T , we grow T with our
recursive algorithm, which proceeds as follows.

1. Carry out each reduction rule exhaustively in the given order (until no rule applies).
2. If ∂E(T ) = ∅ and V 6= V (T ), then G is not connected and does not admit a spanning tree.

Ignore this branch.
3. If ∂E(T ) = ∅ and V = V (T ), then return T .
4. Select {a, b} ∈ ∂E(T ) with a ∈ V (T ) according to the following priorities (if such an edge

exists):
a) there is an edge {b, c} ∈ ∂E(T ),
b) dG(b) = 2,
c) b is incident to a pt-edge, or
d) dT (a) = 1.
Recursively solve the two instances where {a, b} is added to F or removed from G respec-
tively, and return the spanning tree with most internal vertices.

5. Otherwise, select {a, b} ∈ ∂E(T ) with a ∈ V (T ). Let c, x be the other two neighbors of b.
Recursively solve three instances where
(i) {a, b} is removed from G,
(ii) {a, b} and {b, c} are added to F and {b, x} is removed from G, and

(iii) {a, b} and {b, x} are added to F and {b, c} is removed from G.
Return the spanning tree with most internal vertices.

3.4 An Exact Analysis of the Algorithm

By a Measure & Conquer analysis taking into account the degrees of the vertices, their number
of incident edges that are in F , and to some extent the degrees of their neighbors, we obtain the
following result.

Theorem 6. MIST can be solved in time O(1.8612n) on subcubic graphs.
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Fig. 3. How much a vertex v contributes to the measure µ.

Let

– D2 := {v ∈ V | dG(v) = 2, dF (v) = 0} denote the vertices of degree 2 with no incident edge
in F ,

– D`
3 := {v ∈ V | dG(v) = 3, dF (v) = `} denote the vertices of degree 3 with ` incident edges

in F , and
– D2∗

3 := {v ∈ D2
3 | NG(v) \NF (v) = {u} and dG(u) = 2} denote the vertices of degree 3 with

2 incident edges in F and whose neighbor in V \ V (T ) has degree 2.

Let Vout = V \ (D2 ∪D0
3 ∪D1

3 ∪D2
3) denote the vertices that do not contribute to the measure;

their weights already dropped to zero. Then the measure we use for our running time bound is

µ(G,F ) = ω2 · |D2|+ |D0
3|+ ω1

3 · |D1
3|+ ω2

3 · |D2
3 \D2∗

3 |+ ω2∗
3 · |D2∗

3 |

with the weights ω2 = 0.2981, ω1
3 = 0.6617, ω2

3 = 0.31295 and ω2∗
3 = 0.4794. Figure 3 is meant

to serve as a reference to quickly determine the weight of a vertex.
In the very beginning, F = ∅, so that V = D2 ] D0

3. Hence, µ(G,F ) ≤ n. Our algorithm
makes progress by growing F and by reducing the degree of vertices. This is reflected by reducing
the weights of vertices within the neighborhood of F . The special role of vertices of degree two
is mirrored in the sets D2 and D2∗

3 .
Let ∆0

3 := ∆0∗
3 := 1 − ω1

3 , ∆1
3 := ω1

3 − ω2
3 , ∆1∗

3 := ω1
3 − ω2∗

3 , ∆2
3 := ω2

3 , ∆2∗
3 := ω2∗

3

and ∆2 = 1 − ω2. We define ∆̃i
3 := min{∆i

3, ∆
i∗
3 } for 1 ≤ i ≤ 2, ∆`

m = min0≤j≤`{∆j
3}, and

∆̃`
m = min0≤j≤`{∆̃j

3}. The proof of the theorem uses the following result.

Lemma 9. None of the reduction rules increase µ for the given weights.

Proof. Bridge, Deg1, Deg2 and Special add edges to F . Due to the definitions of D`
3 and

D2∗
3 and the choice of the weights it can be seen that the addition of an edge to F can only

decrease µ. Notice that the deletion of edges {u, v} with dT (u) ≥ 1 is safe with respect to u:
the weight of u can only decrease due to this, since before the deletion, u ∈ D`

3 with ` ≥ 1
or u ∈ Vout and afterwards, u ∈ Vout. Nevertheless, the rules which delete edges might cause
that a v ∈ D2

3 \ D2∗
3 will be in D2∗

3 afterwards. Thus, we have to prove that in this case the
overall reduction is enough. A vertex v ∈ D2

3 \D2∗
3 moves to D2∗

3 through the deletion of an edge
{x, y} if x (or y) has degree 3, x /∈ ∂V (T ) and {v, x} ∈ E \ F . If x were in ∂V (T ), the reduction
rule Cycle would remove the edge {v, x} and the weight of v would drop to 0. Thus, only the
appearance of a degree-2 vertex x with x /∈ ∂V (T ) may cause a vertex to move from D2

3 \D2∗
3

to D2∗
3 . The next reduction rule which may create vertices of degree 2 is Attach when d(v) = 3

(where v is as in the rule definition). If dT (z) = 2, then z moves from D2
3 \D2∗

3 to D2∗
3 through

the deletion of the edge {u, v}. However, the total reduction of µ through the application of this
reduction rule is at least ω2

3 + ∆2 − (ω2∗
3 − ω2

3) > 0. It can be checked that no other reduction
rule creates degree-2 vertices not already contained in ∂V (T ). ut

Proof. (of Theorem 6) As the algorithm deletes edges or moves edges from E \ F to F , cases
1–3 do not contribute to the exponential function in the running time of the algorithm. It
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remains to analyze Cases 4 and 5, which we do now. Note that after applying the reduction
rules exhaustively, Lemma 8 applies.

By lower bounding the measure decrease in each recursive call, we obtain branching vectors
(a1, a2, . . . , a`), where ai is the lower bound of the decrease of the measure in the ith recursive
call. If in each case the algorithm considers,

∑`
i=1 c

−ai ≤ 1 for a positive real number c, we
obtain that the algorithm has running time O∗(cn) by well-known methods described in [24], for
example, because the measure is upper bounded by n and the reduction rules do not increase
the measure.

We consider Cases 4 and 5 and lower bound the decrease of the measure in each branch
(recursive call).

4.(a) Obviously, {a, b}, {b, c} ∈ E \ T , and there is a vertex d such that {c, d} ∈ T ; see Fig. 4(a).
We have dT (a) = dT (c) = 1 due to the reduction rule Attach. We consider three cases.
dG(b) = 2. When {a, b} is added to F , Cycle deletes {b, c}. The measure decreases by
ω2 + ω1

3 , as b moves from D2 to Vout and c moves from D1
3 to Vout. Also, a is removed

from D1
3 and added to D2

3 which amounts to a decrease of the measure of at least ∆̃1
3.

In total, the measure decreases by at least ω2 + ω1
3 + ∆̃1

3 when {a, b} is added to F .
When {a, b} is deleted, {b, c} is added to T (by reduction rule Bridge). The vertex a
now has degree 2 and one incident edge in F (this vertex will trigger reduction rule
Deg2, but we do not necessarily need to take into account the effect of this reduction
rule, as reduction rules do not increase µ by Lemma 9), so a moves from D1

3 to Vout for
a measure decrease of ω1

3 . The vertex b moves from D2 to Vout for a measure decrease
of ω2 and c moves from D1

3 to D2
3 for a measure decrease of ∆̃1

3. Thus, the measure
decreases by at least ω2 + ω1

3 + ∆̃1
3 in the second branch, as well. In total, this yields a

(ω2 + ω1
3 + ∆̃1

3, ω2 + ω1
3 + ∆̃1

3)-branch.
dG(b) = 3 and there is one pt-edge incident to b. Adding {a, b} to F decreases the measure

by ∆̃1
3 (from a) and 2ω1

3 (from b and c, as Cycle deletes {b, c}). By deleting {a, b}, µ
decreases by 2ω1

3 (from a and b) and by ∆̃1
3 (from c, as Bridge adds {b, c} to F ). This

amounts to a (2ω1
3 + ∆̃1

3, 2ω
1
3 + ∆̃1

3)-branch.
dG(b) = 3 and no pt-edge is incident to b. Let {b, z} be the third edge incident to b. In the

first branch, the measure drops by at least ω1
3 + ∆̃1

3 + 1, namely ω1
3 from c as Cycle

removes {b, c}, ∆̃1
3 from a, and 1 from b. In the second branch, we get a measure decrease

of ω1
3 from a and ∆2 from b. This results in a (ω1

3 + ∆̃1
3 + 1, ω1

3 +∆2)-branch.
Note that from this point on, for all u, v ∈ V (T ), there is no z ∈ V \V (T ) with {u, z}, {z, v} ∈
E \ T .

4.(b) As the previous case does not apply, the other neighbor c of b has dT (c) = 0. Moreover,
dG(c) ≥ 3 due to Pending and ConsDeg2, and dP (c) = 0 due to Special. See Fig. 4(b).
We consider two subcases.
dT (a) = 1. When {a, b} is added to F , then {b, c} is also added by Deg2. The measure

decreases by at least ∆̃1
3 from a, ω2 from b and ∆0

3 from c. When {a, b} is deleted, {b, c}
becomes a pt-edge by Deg1. There is {a, z} ∈ E \ T with z 6= b, which is subject to a
Deg2 reduction rule. The measure decreases by ω1

3 from a, ω2 from b, ∆0
3 from c and

min{ω2, ∆̃
1
m} from z. This is a (∆̃1

3 + ω2 +∆0
3, ω

1
3 + ω2 +∆0

3 + min{ω2, ∆̃
1
m})-branch.

dT (a) = 2. In both branches, the measure decreases by ω2∗
3 from a, by ω2 from b, and ∆0

3

from c. This is a (ω2∗
3 + ω2 +∆0

3, ω
2∗
3 + ω2 +∆0

3)-branch.
4.(c) In this case, dG(b) = 3 and there is one pt-edge attached to b, see Fig. 4(c). Note that

dT (a) = 2 can be ruled out due to Attach2. Thus, dT (a) = 1. Let z 6= b be such that
{a, z} ∈ E \ T . We have that dG(z) = 3, as Case 4.(b) would have applied otherwise. We
distinguish between the cases depending on the degree of c, the other neighbor of b, and
whether c is incident to a pt-edge or not.
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dG(c) = 2. We distinguish whether z has an incident pt-edge. If dP (z) = 1, Attach2 is
triggered when {a, b} is added to F . This removes the edge {a, z}. The measure decrease
is ω1

3 from a, ∆1∗
3 from b, and ω1

3 from z. When {a, b} is removed from G, Deg2 adds
{a, z} to F and Bridge adds c’s incident edges to F . The measure decrease is ω1

3 from
a, ω1

3 from b, ω2 from c, ∆̃1
3 from z, and ∆̃2

m from c’s other neighbor. This gives the
branching vector (2ω1

3 +∆1∗
3 , 2ω

1
3 + ω2 + ∆̃1

3 + ∆̃2
m).

If dP (z) = 0, the analysis is similar, except that Attach2 is not triggered in the first
branch and the measure decrease incurred by z is ∆0

3 in the second branch. This gives a
(∆1

3 +∆1∗
3 , 2ω

1
3 + ω2 +∆0

3 + ∆̃2
m)-branch.

dG(c) = 3 and dP (c) = 0. Adding {a, b} to F decreases the measure by 2∆1
3 (as z and c

have degree 3). Deleting {a, b}, we observe a measure decrease by of 2ω1
3 from a and b. As

{a, z} is added to F by Deg2, µ(G) decreases additionally by at least ∆̃1
m as the state

of z changes. Due to Pending and Deg1, {b, c} is added to F and we get a measure
decrease of ∆0

3 from c. This gives a (2∆1
3, 2ω

1
3 + ∆̃1

m +∆0
3)-branch.

dG(c) = 3 and dP (c) = 1. Let d 6= b be the other neighbor of c that does not have degree 1.
When {a, b} is added to F , {b, c} is deleted by Attach2 and {c, d} becomes a pt-edge
(Pending and Deg1). The changes on a incur a measure decrease of ∆1∗

3 and those
on b, c a measure decrease of 2ω1

3 . When {a, b} is deleted, {a, z} is added to F (Deg2)
and {c, d} becomes a pt-edge by two applications of the Pending and Deg1 rules.
Thus, the decrease of the measure is at least 3ω1

3 in this branch. In total, we have a
(∆1∗

3 + 2ω1
3 , 3ω

1
3)-branch here.

4.(d) In this case, dG(b) = 3, b is not incident to a pt-edge, and dT (a) = 1. See Fig. 4(d). There
is also some {a, z} ∈ E \ T such that z 6= b. Note that dG(z) = 3 and dF (z) = 0. Otherwise,
either Cycle or Cases 4.(b) or 4.(c) would have been triggered. From the addition of {a, b}
to F we get a measure decrease of ∆1

3 +∆0
3 and from its deletion ω1

3 (from a via Deg2), ∆2

(from b) and at least ∆0
3 from z. This gives the branching vector (∆1

3 +∆0
3, ω

1
3 +∆2 +∆0

3).
5. See Fig. 4(e). The algorithm branches in the following way:

1) Delete {a, b} from G,
2) add {a, b}, {b, c} to F , and delete {b, x} from G, and
3) add {a, b}, {b, x} to F , and delete {b, c} from G.

Observe that these cases are sufficient to find an optimal solution. Due to Deg2, we can
disregard the case when b is a leaf. Due to Lemma 7, we also disregard the case when b is
a 3-vertex as {a, b} is not a bridge. Thus this branching strategy finds at least one optimal
solution.
The measure decrease in the first branch is at least ω2

3 + ∆2 from a and b. We get an
additional amount of ω2 if d(x) = 2 or d(c) = 2 from ConsDeg2. In the second branch, we
distinguish between three situations for h ∈ {c, x}. These are
α) dG(h) = 2,
β) dG(h) = 3, dP (h) = 0, and
γ) dG(h) = 3, dP (h) = 1.
We first get a measure decrease of ω2

3 + 1 from a and b. Deleting {b, x} incurs a measure
decrease in the three situations by α) ω2 + ∆̃2

m by Deg1 and Pending, β) ∆2, and γ)
ω1

3 + ∆̃2
m by Pending and Deg1. Next we examine the amount by which µ decreases by

adding {b, c} to F . The measure decrease in the different situations is: α) ω2 + ∆̃2
m by

Deg2, β) ∆0
3, and γ) ∆̃1

3. The analysis of the third branch is symmetric. For h ∈ {c, x} and
σ ∈ {α, β, γ} let 1hσ be the indicator function whose value is one if we have situation σ at
vertex h. Otherwise, its value is zero. Now, the branching vector can be stated the following
way:(
ω2

3 +∆2 + (1xα + 1cα) · ω2,

ω2
3 + 1 + 1xα · (ω2 + ∆̃2

m) + 1xβ ·∆2 + 1xγ · (ω1
3 + ∆̃2

m) + 1cα · (ω2 + ∆̃2
m) + 1cβ ·∆0

3 + 1cγ · ∆̃1
3,

ω2
3 + 1 + 1cα · (ω2 + ∆̃2

m) + 1cβ ·∆2 + 1cγ · (ω1
3 + ∆̃2

m) + 1xα · (ω2 + ∆̃2
m) + 1xβ ·∆0

3 + 1xγ · ∆̃1
3

)
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d
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dz

(a) Local configurations in Case 4.(a),

a b c

z

a b c

(b) Case 4.(b),

a b c

z

a b c

z

a b c

z

d
(c) Case 4.(c),

a b

z

(d) Case 4.(d), and

a b c

x

(e) Case 5.

Fig. 4. Local configurations corresponding to the different cases of the algorithm where a branching
occurs.

The amount of (1xα + 1cα) · ω2 in the first branch comes from the applications of ConsDeg2
if c and x have degree 2.

After checking that
∑`
i=1 1.8612−ai ≤ 1 for every branching vector (a1, a2, . . . , a`), we conclude

that MIST can be solved in time O∗(1.8612n) on subcubic graphs. ut

We conclude this analysis with mentioning the tight cases for the branching: Case 4.(b) with
dT (a) = 1 and d(z) = 3, Case 4.(b) with dT (a) = 2, Case 4.(d), Case 5 with 1xβ = 1 and 1cγ = 1,
Case 5 with 1xγ = 1 and 1cβ = 1, and Case 5 with 1xγ = 1 and 1cγ = 1. As there are quite some
tight cases, it seems to be hard to improve on the running time upper bound by a more detailed
analysis of one or two cases.

3.5 Lower Bound

To complete the running time analysis – with respect to the number of vertices – of this algorithm,
we provide a lower bound here, i.e., we exhibit an infinite family of graphs for which the algorithm
requires Ω(cn) steps, where c = 4

√
2 > 1.1892 and n is the number of vertices in the input graph.

Theorem 7. There is an infinite family of graphs for which our algorithm for MIST needs
Ω( 4
√

2
n
) time.

a b c

d e f

Fig. 5. Graph used to lower bound the running time of our MIST algorithm.

Proof. Instead of giving a formal description of the graph family, consider Fig. 5.
Assume that the bold edges are already in F . Then the dark gray vertices are in ∂V (T )

and all non-bold edges connecting two black vertices have been removed from the graph. Step
4.(d) of the algorithm selects an edge connecting one of the dark gray vertices with one of the
light gray vertices. W.l.o.g., the algorithm selects the edge {a, b}. In the branch where {a, b} is
added to F , reduction rules Cycle and Deg2 remove {d, b} and {a, e} from the graph and add
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{{d, e}, {b, c}, {e, f}} to F . In the branch where {a, b} is removed from G, reduction rules Cycle
and Deg2 remove {d, e} from the graph and add {{a, e}, {d, b}, {b, c}, {e, f}} to F . In either
branch, 4 more vertices have become internal, the number of leaves has remained unchanged,
and we arrive at a situation that is basically the same as the one we started with, so that the
argument repeats. Hence, when we start with a graph with n = 4h+ 4 vertices, then there will
be a branching scenario that creates a binary search tree of height h. ut

3.6 A Parameterized Analysis of the Algorithm

In this section, we are going to provide another analysis of our algorithm, this time from the
viewpoint of parameterized complexity, where the parameter k is a lower bound on the size of
the sought solution, i.e., we look for a spanning tree with at least k internal nodes. Notice that
also the worst-case example from Theorem 7 carries over, but the according lower bound of
Ω( 4
√

2
k
) is less interesting.

Let us first investigate the possibility of running our algorithm on a linear vertex kernel, which
offers the simplest way of using Measure & Conquer in parameterized algorithms. For general
graphs, the smallest known kernel has at most 3k vertices [19]. This can be easily improved to
2k for subcubic graphs.

Lemma 10. MIST on subcubic graphs has a kernel with at most 2k vertices.

Proof. Compute an arbitrary spanning tree T . If it has at least k internal vertices, answer
Yes (in other words, output a small trivial Yes-instance). Otherwise, tT3 + tT2 < k. Then, by
Proposition 1, tT1 < k + 2. Thus, |V | ≤ 2k. ut

Applying the algorithm of Theorem 6 on this kernel for subcubic graphs shows the following
result.

Corollary 1. Deciding whether a subcubic graph has a spanning tree with at least k internal
vertices can be done in time 3.4641knO(1).

However, we can achieve a faster parameterized running time by applying a Measure & Conquer
analysis which is customized to the parameter k. We would like to put forward that our use
of the technique of Measure & Conquer for a parameterized algorithm analysis goes beyond
previous work as our measure is not restricted to differ from the parameter k by just a constant,
a strategy exhibited by Wahlström in his thesis [47]. We first demonstrate our idea with a simple
analysis. In this analysis, we subtract one from the measure when all incident edges of a vertex
u of degree at least two are in the partial spanning tree: u becomes internal and the algorithm
will not branch on u any more. Moreover, we subtract ω, a constant smaller than one, from the
measure when 2 incident edges of a vertex v of degree 3 are in the partial spanning tree: v is
internal, but the algorithm still needs to branch on v.

Theorem 8. Deciding whether a subcubic graph has a spanning tree with at least k internal
vertices can be done in time 2.7321knO(1).

Proof. Note that the assumption that G has no Hamiltonian path can still be made due to the
2k-kernel of Lemma 10: the running time of the Hamiltonian path algorithm of Lemma 6 is
1.2512knO(1) = 1.5651knO(1). The running time analysis of our algorithm relies on the following
measure:

κsimple := κsimple(G,F, k) := k − ω · |X| − |Y | − k̃,

where X := {v ∈ V | dG(v) = 3, dT (v) = 2}, Y := {v ∈ V | dG(v) = dT (v) ≥ 2} and 0 ≤ ω ≤ 1.
Let U := V \ (X ∪ Y ) and note that k in the definition of κsimple never changes in any recursive
call of the algorithm, so neither through branching nor through the reduction rules. The variable
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k̃ counts how many times the reduction rules ConsDeg2 and Pending have been applied upon
reaching the current node of the search tree. Note that an application of ConsDeg2 increases
the number of internal vertices by one. If Pending is applied, a vertex v ∈ Y is moved to U
in the evolving instance G′ even though v is internal in the original instance G. This would
increase κsimple if k̃ would not balance this. Note that a vertex which has already been decided
to be internal, but that still has an incident edge in E \ T , contributes a weight of 1− ω to the
measure. Or equivalently, such a vertex has been only counted by ω. Consider the algorithm
described earlier, with the only modification that the algorithm keeps track of κsimple and that
the algorithm stops and answers Yes whenever κsimple ≤ 0. None of the reduction and branching
rules increases κsimple. The explicit proof for this will skipped as it is subsumed by Lemma 12
which deals with a refined measure. We have that 0 ≤ κsimple ≤ k at any time of the execution
of the algorithm. In Case 4, whenever the algorithm branches on an edge {a, b} such that
dT (a) = 1 (w.l.o.g., we assume that a ∈ V (T )), the measure decreases by at least ω in one
branch, and by at least 1 in the other branch. To see this, it suffices to look at vertex a. Due
to Deg2, dG(a) = 3. When {a, b} is added to F , vertex a moves from the set U to the set X.
When {a, b} is removed from G, a subsequent application of the Deg2 rule adds the other edge
incident to a to F , and thus, a moves from U to Y .

Still in Case 4, let us consider the case where dT (a) = 2. Then condition (b) (dG(b) = 2) of
Case 4 must hold, due to the preference of the reduction and branching rules: condition (a) is
excluded due to reduction rule Attach, (c) is excluded due to Attach2 and (d) is excluded due
to its condition that dT (a) = 1. When {a, b} is added to F , the other edge incident to b is also
added to F by a subsequent Deg2 rule. Thus, a moves from X to Y and b from U to Y for a
measure decrease of (1− ω) + 1 = 2− ω. When {a, b} is removed from G, a moves from X to Y
for a measure decrease of 1− ω. Thus, we have a (2− ω, 1− ω)-branch.

In Case 5, dT (a) = 2, dG(b) = 3, and dF (b) = 0. Vertex a moves from X to Y in each branch
and b moves from U to Y in the two latter branches. In total we have a (1 − ω, 2 − ω, 2 − ω)-
branch. By setting ω = 0.45346 and evaluating the branching factors, the proof follows. ut

This analysis can be improved by also measuring vertices of degree 2 and vertices incident
to pt-edges differently. A vertex of degree at least two that is incident to a pt-edge is necessarily
internal in any spanning tree, and for a vertex u of degree 2 at least one vertex of N [u] is
internal in any spanning tree; we analyze in more details how the internal vertices of spanning
trees intersect these local structures in the proof of Lemma 11.

Theorem 9. Deciding whether a subcubic graph has a spanning tree with at least k internal
vertices can be done in time 2.1364knO(1).

The proof of this theorem follows the same lines as the previous one, except that we consider
a more detailed measure:

κ := κ(G,F, k) := k − ω1 · |X| − |Y | − ω2|Z| − ω3|W | − k̃, where

– X := {v ∈ V | dG(v) = 3, dT (v) = 2} is the set of vertices of degree 3 that are incident to
exactly 2 edges of T ,

– Y := {v ∈ V | dG(v) = dT (v) ≥ 2} is the set of vertices of degree at least 2 that are incident
to only edges of T ,

– W := {v ∈ V \ (X ∪ Y ) | dG(v) ≥ 2,∃u ∈ N(v) st. dG(u) = dF (u) = 1} is the set of vertices
of degree at least 2 that have an incident pt-edge, and

– Z := {v ∈ V \W | dG(v) = 2, N [v]∩ (X ∪ Y ) = ∅} is the set of degree 2 vertices that do not
have a vertex of X ∪ Y in their closed neighborhood, and are not incident to a pt-edge.

We immediately set ω1 := 0.5485, ω2 := 0.4189 and ω3 := 0.7712. Let U := V \ (X ∪Y ∪Z ∪W ).
We first show that the algorithm can be stopped whenever the measure drops to 0 or less.
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Lemma 11. Let G = (V,E) be a connected graph, k be an integer and F ⊆ E be a set of edges
that can be partitioned into a tree T and a set of pending tree edges P . If none of the reduction
rules applies to this instance and κ(G,F, k) ≤ 0, then G has a spanning tree T ∗ ⊇ F with at
least k − k̃ internal nodes.

Proof. As each vertex of X ∪ Y is incident to at least two edges of F , the vertices in X ∪ Y
are internal in every spanning tree containing F . We will show that there exists a spanning tree
T ∗ ⊇ F that has at least ω2|Z| + ω3|W | more internal vertices than F . Thus, T ∗ has at least
ω2|Z|+ ω3|W |+ |Y |+ |X| ≥ k − k̃ internal vertices.

The spanning tree T ∗ is constructed as follows. Greedily add some subset of edges A ⊆ E \F
to F to obtain a spanning tree T ′ of G. While there exists v ∈ Z with neighbors u1 and u2 such
that dT ′(v) = dT ′(u1) = 1 and dT ′(u2) = 3, set T ′ := (T ′ − {v, u2}) ∪ {{u1, v}}. This procedure
finishes in polynomial time as the number of internal vertices increases each time such a vertex
is found. Call the resulting spanning tree T ∗.

By connectivity of a spanning tree, we have:

Fact 1 If v ∈W , then v is internal in T ∗.

Note that F ⊆ T ∗ as no vertex of Z is incident to an edge of F . By the construction of T ∗, we
have the following.

Fact 2 If u, v are two adjacent vertices in G but not in T ∗, such that v ∈ Z and u, v are leaves
in T ∗, then v’s other neighbor has T ∗-degree 2.

Let Z` ⊆ Z be the subset of vertices of Z that are leaves in T ∗ and let Zi := Z \ Z`. As
F ⊆ T ∗ and by Fact 1, all vertices of X ∪Y ∪W ∪Zi are internal in T ∗. Let Q denote the subset
of vertices of N(Z`) that are internal in T ∗. As Q might intersect with W and for u, v ∈ Z`,
N(u) and N(v) might intersect (but u 6∈ N(v) because of ConsDeg2), we assign an initial
potential of 1 to vertices of Q. By definition, Q ∩ (X ∪ Y ) = ∅. Thus the number of internal
vertices in T ∗ is at least |X| + |Y | + |Zi| + |Q ∪W |. To finish the proof of the claim, we show
that |Q ∪W | ≥ ω2|Zl|+ ω3|W |.

Decrease the potential of each vertex in Q∩W by ω3. Then, for each vertex v ∈ Z`, decrease
the potential of each vertex in Qv = N(v) ∩Q by ω2/|Qv|. We show that the potential of each
vertex in Q remains positive. Let u ∈ Q and v1 ∈ Z` be a neighbor of u. Note that dT∗(v1) = 1.
We distinguish two cases based on u’s tree-degree in T ∗.

dT∗(u) = 2
u ∈ W : Then by connectivity {u, v1} 6∈ T ∗ and u is incident to only one vertex out of Z`,

namely v1. Again by connectivity h ∈ N(v1)−u is an internal vertex. Thus, the potential
is 1− ω3 − ω2/2 ≥ 0.

u 6∈ W : u is incident to at most 2 vertices of Z` (by connectivity of T ∗), its potential
remains thus positive as 1− 2ω2 ≥ 0.

dT∗(u) = 3
u ∈ W : Because u ∈ W is incident to a pt-edge, it has one neighbor in Z` (by the connec-

tivity of T ∗), which has only internal neighbors (by Fact 2). The potential of u is thus
1− ω3 − ω2/2 ≥ 0.

u 6∈ W : u has at most two neighbors in Z`, and both of them have only inner neighbors
due to Fact 2. As 1− 2ω2/2 ≥ 0, u’s potential remains positive. ut

Now, a spanning tree with at least k internal nodes of the original graph can be obtained by
reversing the k̃ ConsDeg2 and Pending operations.

We also show that reducing an instance does not increase its measure.

Lemma 12. Let (G′, F ′, k) be an instance resulting from the exhaustive application of the re-
duction rules to an instance (G,F, k). Then, κ(G′, F ′, k) ≤ κ(G,F, k).
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Proof. Cycle: If the reduction rule Cycle is applied to (G,F, k), then an edge in ∂E(T ) is
removed from the graph. Then, the parameter k stays the same, and either each vertex
remains in the same set among X,Y, Z,W,U , or one or two vertices move from X to Y ,
which we denote shortly by the status change of a vertex u: {X} → {Y } (ω1− 1). The value
of this status change (denoted in parentheses) is (−1)−(−ω1) ≤ 0. As the value of the status
change is non-positive, it does not increase the measure.

DoubleEdge: Suppose between u and v is a double edge. Then as mentioned before at most
one of them belongs to T . The possible transitions for u (and v) are {X} → {Y } (ω1 − 1) if
dT (u) = 2 and dG(u) = 3, {U} → {U} (0) if dT (u) = 1 and dG(u) = 3, {Z} → {U} (ω2) if
dG(u) = 2 and dT (u) = 0. Now in the last case, which has a positive status change value, we
must have dG(v) = 3 and dT (v) = 0 or dG(v) = 3 and dT (v) = 1. Thus, in the first case the
combined status change is {Z,U} → {U,Z} (0). In the second case Bridge will be applied
and the status change is {Z,U} → {U, Y } (ω2 − 1).

Bridge: If Bridge is applied, then let e = {u, v} with u ∈ ∂V E(T ). Vertex u is either in U
or in X, and v ∈ U ∪ Z ∪W . If v ∈ U , then v ∈ U after the application of Bridge, as v is
not incident to an edge of T (otherwise, reduction rule Cycle would have applied). In this
case, it is sufficient to check how the status of u can change, which is {U} → {Y } (−1) if u
has degree 2, {U} → {X} (−ω1) if dG(u) = 3 and dT (u) = 1, and {X} → {Y } (ω1 − 1) if
dG(u) = 3 and dT (u) = 2. If v ∈ Z, then v moves to U as u necessarily ends up in X ∪ Y .
The possible status changes are {U,Z} → {Y, U} (ω2 − 1) if dG(u) = 2, {U,Z} → {X,U}
(ω2 − ω1), if dG(u) = 3 and dT (u) = 1, and {X,Z} → {Y,U} (ω1 + ω2 − 1) if dG(u) = 3
and dT (u) = 2. If v ∈ W , v ends up in X or Y , depending on whether it is incident to
one or two pt-edges. The possible status changes are then {U,W} → {Y,X} (ω3 − 1− ω1),
{U,W} → {Y, Y } (ω3− 2), {U,W} → {X,X} (ω3− 2 ·ω1), {U,W} → {X,Y } (ω3−ω1− 1),
{X,W} → {Y,X} (ω3 − 1), and {X,W} → {Y, Y } (ω1 + ω3 − 2).

Deg1: If Deg1 applies, the possible status changes are {U} → {W} (−ω3) and {Z} → {W}
(ω2 − ω3). Note that Bridge is applied before.

Pending: In Pending, the status change {W} → {U} (ω3) has positive value, but the measure
κ still decreases as k̃ also increases by 1.

ConsDeg2: Similarly, in ConsDeg2, a vertex in Z ∪ U disappears, but k̃ increases by 1.
Deg2: In Deg2, the possible status changes are {U} → {Y } (−1), {U,Z} → {Y,U} (ω2 − 1),

and {U,W} → {Y,X} (ω3 − 1− ω1).
Attach: In Attach, u moves from X to Y . Thus the status change for u is {X} → {Y } (ω1−1).

Taking into account the status of v ∈ NV \T (u) another status change is {X,U} → {Y,Z}
(ω1− 1−ω2) in case dG(v) = 3 and dF (v) = 0. Observe that v ∈ Z is not possible as u ∈ X.

Attach2: The only status change happens for u: {X} → {Y } (ω1 − 1).
Special: In Special, the possible status changes are {U,Z} → {X,U} (ω2 − ω1) and {X} →
{Y } (ω1 − 1). ut

Proof. (of Theorem 9) Table 2 outlines how vertices a, b, and their neighbors move between
U , X, Y , Z, and W in the branches where an edge is added to F or deleted from G in the
different cases of the algorithm. For each case, the scenario giving the worst branching tuple is
described. ut

The tight branching numbers are found for Cases 4.(b) with dT (a) = 2, 4.(c), 4.(d), and 5.
with all of b’s neighbors having degree 3. The respective branching vectors are (2−ω1 −ω2, 1−
ω1 − ω2 + ω3), (2ω1 − ω3, 2), (ω1, 1 + ω2), and (1− ω1 + ω2, 2− ω1 + ω2, 2− ω1 + ω2). They all
yield the same basis 2.1364 of the exponential term in the running time estimate.

4 Conclusion & Future Research

We have shown that Max Internal Spanning Tree can be solved in time O∗(2n) or even
faster if the input graph has bounded degree. In a preliminary version of this paper we asked
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add delete branching tuple

Case 4.(a), dG(b) = 2

a b c

a : U → X a : U → Y
b : Z → U b : Z → U (1 + ω1 − ω2, 1 + ω1 − ω2)
c : U → Y c : U → X

Case 4.(a), dG(b) = 3, b is incident to a pt-edge

a b c

a : U → X a : U → Y
b : W → Y b : W → Y (2 + ω1 − ω3, 2 + ω1 − ω3)
c : U → Y c : U → X

Case 4.(a), dG(b) = 3, b is not incident to a pt-edge

a b c

a : U → X a : U → Y
(2 + ω1, 1 + ω2)b : U → Y b : U → Z

c : U → Y

Case 4.(b), dT (a) = 1

a b c

a : U → X a : U → Y
(1 + ω1 − ω2, 1 + ω3 − ω2)b : Z → Y b : Z → U

c : U →W

Case 4.(b), dT (a) = 2

a b c

a : X → Y a : X → Y
(2− ω1 − ω2, 1− ω1 − ω2 + ω3)b : Z → Y b : Z → U

c : U →W

Case 4.(c), dG(c) = 2

a b c

a : U → X a : U → Y
(2ω1 − ω3, 3− ω3)b : W → X b : W → Y

c : U → Y

Case 4.(c), dG(c) = 3 and dP (c) = 1

a b c

a : U → X a : U → Y
(2ω1 − ω3, 3− ω3)b : W → X b : W → Y

c : U → Y

Case 4.(c), dG(c) = 3 and dP (c) = 0

a b c

a : U → X a : U → Y
(2ω1 − ω3, 2)b : W → X b : W → Y

c : U →W

Case 4.(d)

a b c

a : U → X a : U → Y
(ω1, 1 + ω2)b : U → Z

Case 5, dG(x) = dG(c) = 3 and there is a q ∈ (X ∩ (N(x) ∪N(c)), w.l.o.g., q ∈ N(c)

a b c

x a : X → Y a : X → Y
(2− ω1, 3− 2ω1, 1− ω1 + ω2)b : U → Y b : U → Z

(2nd branch)
q : X → Y

Case 5, dG(x) = dG(c) = 3

a b c

x a : X → Y a : X → Y
(2− ω1 + ω2, 2− ω1 + ω2, 1− ω1 + ω2)b : U → Y b : U → Z

c/x : U → Z
There are 3 branches; 2 of them are symmetric.

Case 5, dG(x) = 2 or dG(c) = 2, w.l.o.g., dG(c) = 2

a b c

x a : X → Y a : X → Y
(2− ω1, 2− ω1, 2− ω1)b : U → Y b : U → Z

When {a, b} is deleted, ConsDeg2 additionally increases k̃ by 1
and removes a vertex of Z.

Table 2. Analysis of the branching for the running time of Theorem 9
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whether MIST can be solved in time O∗(2n) and also expressed our interest in polynomial space
algorithms for MIST. These questions were settled by Nederlof [36] by providing an O∗(2n)
polynomial-space algorithm for MIST which is based on the principle of Inclusion-Exclusion
and on a new concept called “branching walks”.

We focused on algorithms for MIST that work for the degree-bounded case, in particular, for
subcubic graphs. The main novelty is a Measure & Conquer approach to analyze our algorithm
from a parameterized perspective (parameterized by the number of internal vertices). We are
not aware of many examples where this was successfully done without cashing the obtained gain
at an early stage, see M. Wahlström [47]. More examples in this direction would be interesting
to see.9 Further improvements on the running times of our algorithms pose another natural
challenge.

A related problem worth investigating is the analogous question for directed graphs: Find
a directed (spanning) tree (usually called a (spanning) arborescence) which consist of directed
paths from the root to the leaves with as many internal vertices as possible. Which results can
be carried over to the directed case?

Finally, the celebrated paper of A. Björklund [8] raises several natural questions for future
research:

– Is there a Monte Carlo algorithm that allows to yield further improved running time bounds
for algorithms for MIST on general graphs?

– A second result of A. Björklund in the same paper [8] was a Monte Carlo algorithm for
Hamiltonian Path that runs in time 2n−i · nO(1), where i is the size of some (available)
independent set in the graph. Using Gallai’s identity and some parameterized algorithm
for vertex cover as described, for instance, in [10, 11], as a preprocessing, this implies a
Monte Carlo algorithm for Hamiltonian Path that runs in time 2vc · nO(1), where vc is
the vertex cover number of the input graph. This raises two further questions in the spirit of
“parameter ecology” that became popular within parameterized algorithmics [14] in recent
years:
• Is there a deterministic algorithm solving Hamiltonian Path in time cvc · nO(1) for a

constant c not much larger than 2?
• Is there a Monte Carlo or even a deterministic algorithm solving MIST in time cvc ·nO(1)

for a constant c not much larger than 2?
– Can we work out the previous ideas more sucessfully for degree-bounded cases?

Acknowledgment We thank Alexey A. Stepanov for useful discussions in the initial phase of
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