
Exact exponential-time algorithms for finding

bicliques in a graph

Henning Fernau a Serge Gaspers b Dieter Kratsch c

Mathieu Liedloff d,∗ Daniel Raible a

aUniversität Trier, FB 4—Abteilung Informatik, D-54286 Trier, Germany
bLIRMM – University of Montpellier 2, CNRS, 34392 Montpellier, France

cLITA, Université Paul Verlaine - Metz, 57045 Metz Cedex 01, France
dLIFO, Université d’Orléans, 45067 Orléans Cedex 2, France

Key words: graph, exact exponential-time algorithm, NP-hard problem, biclique

1 Introduction

Throughout the paper all graphs G = (V,E) are undirected and simple. An
induced biclique of G is a complete bipartite induced subgraph of G. A non-
induced biclique is a complete bipartite (not necessarily induced) subgraph of
G. Equivalently, the pair (X, Y) of disjoint vertex subsets X ⊆ V and Y ⊆ V
is a non-induced biclique of G if {x, y} ∈ E for all x ∈ X and y ∈ Y . If,
additionally, X and Y are independent sets, then (X, Y) is also an induced
biclique of G. Let the pair (X, Y) be an induced or non-induced biclique. We
call it a (k1, k2) biclique if |X| = k1 and |Y | = k2. Its cardinality is |X|+ |Y |.

The literature dealing with bicliques is rich and diverse. There are applications
of bicliques (induced or non-induced on bipartite graphs or general graphs) in
various different areas such as data mining, automata and language theory, ar-
tificial intelligence and biology, see e.g. [1]. Therefore bicliques and algorithmic
problems about bicliques have been studied extensively.

∗ Corresponding author.
Email addresses: fernau@uni-trier.de (Henning Fernau), gaspers@lirmm.fr

(Serge Gaspers), kratsch@univ-metz.fr (Dieter Kratsch),
liedloff@univ-orleans.fr (Mathieu Liedloff), raible@uni-trier.de (Daniel
Raible).

Preprint submitted to CTW 2009 23 February 2009

Known results. Already in [3], the complexity of finding certain bicliques
has been considered. For example, deciding whether a bipartite graph has
a balanced biclique of size (at least) k is NP-complete ([GT24] in [3]). A
maximum cardinality induced biclique can be computed in polynomial time on
bipartite graphs [2], wheras this problem is NP-complete for general graphs [7].
Another related problem that asks to compute a non-induced biclique with a
maximum number of edges is also known to be NP-hard [6].

The above-mentioned NP-completeness of the balanced biclique problem on
bipartite graphs implies the NP-completeness of the following two problems
about the existence of induced and non-induced bicliques, respectively.

Induced (k1,k2) Biclique
Input: An undirected graph G = (V,E), positive integers k1 and k2.
Question: Does G have an induced (k1, k2) biclique (X, Y)?

Non-Induced (k1,k2) Biclique
Input: An undirected graph G = (V,E), positive integers k1 and k2.
Question: Does G have a non-induced (k1, k2) biclique (X, Y)?

There is a trivial O∗(3n) algorithm for finding and also for enumerating all
induced and non-induced (k1, k2) bicliques, respectively. 1 It considers all par-
titions of the vertex set into X, Y and V \(X∪Y) and verifies for each whether
(X, Y) fulfils all conditions.

Our results. For generating all non-induced (k1, k2) bicliques, note that
there is no hope in obtaining a faster algorithm than the above-described
O∗(3n) algorithm, as a complete graph on n vertices has 3npoly(n) non-induced
(bn/3c, bn/3c) bicliques. For solving the Non-Induced (k1,k2) Biclique
problem, however, we give a polynomial-space O(1.8899n) algorithm and an
exponential-space O(1.8458n) algorithm.

There is also an O∗(3n/3) time algorithm to solve Induced (k1,k2) Biclique.
This algorithm is based on enumerating all maximal induced bicliques of the
graph with a polynomial delay algorithm and on the fact that an n-vertex
graph has O∗(3n/3) maximal induced bicliques [4].

2 Polynomial-space algorithms for finding a non-induced biclique

We start by describing two simple O∗(2n) time algorithms for the Non-
Induced (k1,k2) Biclique problem. We will use these algorithms as sub-

1 Throughout the paper we write f(n) = O∗(g(n)) if f(n) ≤ p(n) · g(n) for some
polynomial p(n).

2

routines in our third algorithm with running-time O(1.8899n) and polynomial
space usage.

The first algorithm, NIB1, verifies all sets Xc ⊆ V with |Xc| = k1 as candidates
for being the setX in the pair (X, Y). It computes for eachXc the setB(Xc) :=
{v ∈ V \ Xc | ∀x ∈ Xc : v ∈ N(x)}. If |B(Xc)| < k2 then the algorithm
rejects the candidate Xc. Otherwise it picks an arbitrary set Yc ⊆ B(Xc) with
|Yc| = k2, and clearly (Xc, Yc) is a non-induced (k1, k2) biclique. The only
exponential part is the enumeration step and thus the running-time is O∗(2n).

The second algorithm, NIB2, verifies all sets U ⊆ V with |U | = k1 + k2

and checks for each whether there is a non-induced biclique (X, Y) such that
|X| = k1 and |Y | = k2. This can be done in polynomial time by computing
the connected components of the complement of G[U]. If s1, s2, . . . , st are the
sizes of those components, then there is a non-induced biclique as described
above iff there is an I ⊆ {1, 2, . . . , t} such that

∑
i∈I si = k1. Such a Subset

Sum problem can be solved in time O(nW) by dynamic programming, where
W = maxi si. The only exponential part is the enumeration step and thus the
running-time is O∗(2n).

For the third algorithm, NIB3, suppose w.l.o.g. that k1 ≤ k2. If k1 ≤ bn/3c,
then run NIB1, otherwise run NIB2. Thus, the running-time of NIB3 is at
most O∗

((
n
n/3

))
= O(1.8899n) if NIB1 is executed and at most O∗

((
n

2n/3

))
=

O(1.8899n) if NIB2 is executed.

Theorem 2.1 Algorithm NIB3 solves the Non-Induced (k1,k2) Biclique
problem in time O(1.8899n) and polynomial space.

3 Exponential-space algorithm for finding a non-induced biclique

In this section we provide an exponential-space algorithm for the the Non-
Induced (k1,k2) Biclique problem in time O(1.8458n). The algorithm relies
on a preprocessing involving a dynamic programming approach. It is described
by the forthcoming three steps called Partitioning, Preprocessing and Com-
puting.

3.1 Description of the algorithm

Partitioning Step. Let α be a constant to be determined. Given the graph
G = (V,E), compute an arbitrary partition of the vertex set into two subsets
L and R such that |R| = dαne and |L| = b(1− α)nc.

3

Preprocessing Step. This step focuses on the vertices of R. For any two
(not necessarily disjoint) subsets X, Y ⊆ R and any two integers i and j,
0 ≤ i, j ≤ |R|, we compute the value of the boolean R-biclique[X, i, Y, j] which
is true iff there exist two subsets X ′ ⊆ X and Y ′ ⊆ Y such that (X ′, Y ′) is a
non-induced (i, j) biclique. To compute the values of R-biclique, the sets X, Y
and the integers i, j are considered by increasing cardinality and order.

For any X, Y ⊆ R and i, j, such that 0 ≤ i, j ≤ |R|, R-biclique[X, 0, Y, 0] is
clearly true. Obviously R-biclique[∅, i, Y, j] is true iff i = 0 and R-biclique[X, i, ∅,
j] is true iff j = 0. For any other value, R-biclique[X, i, Y, j] is true iff∨

v∈X

(
R-biclique[X \ {v}, i, Y, j] ∨ R-biclique[X \ {v}, i− 1, N(v) ∩ Y, j]

)
∨∨

v∈Y

(
R-biclique[X, i, Y \ {v}, j] ∨ R-biclique[N(v) ∩X, i, Y \ {v}, j − 1]

)
.

Computing step. If the graph admits a non-induced (k1, k2) biclique, then
it is found during this final step. For every two disjoint subsets XL, YL ⊆ L
for which (XL, YL) is a non-induced biclique with |XL| ≤ k1, |YL| ≤ k2, let
X ′R = {v ∈ R : v is adjacent to every vertex of YL} and Y ′R = {v ∈ R : v is
adjacent to every vertex of XL}; if R-biclique[X ′R, k1 − |XL|, Y ′R, k2 − |YL|] is
true then the graph has a non-induced (k1, k2) biclique and “Yes” is returned.

If the algorithm was not able to find any XL, YL such that R-biclique[X ′R, k1−
|XL|, Y ′R, k2−|YL|] is true, then the graph has no non-induced (k1, k2) biclique
and it returns “No”. The correctness of the algorithm is shown in the next
section. Note that instead of returning “Yes” or “No”, our algorithm can
easily be modified (by standard backtracking techniques) to indeed return a
non-induced (k1, k2) biclique if one exists.

3.2 Correctness of the algorithm

Assume that G has a non-induced (k1, k2) biclique and let (X, Y) be such
a biclique. Since (L,R) is a partition of V , it holds that X = XL ∪ XR and
Y = YL∪YR whereXL = X∩L,XR = X∩R, YL = Y ∩L and YR = Y ∩R. Since
(X, Y) is a biclique, note that XR ⊆ X ′R and YR ⊆ Y ′R where X ′R = {v ∈ R : v
is adjacent to every vertex of YL} and Y ′R = {v ∈ R : v is adjacent to every
vertex of XL}. Moreover |XR| = k1 − |XL| and |YR| = k2 − |YL|.

Thus, assuming that XL and YL are given, by definition of R-biclique it is suf-
ficient to know whether R-biclique[X ′R, k1 − |XL|, Y ′R, k2 − |YL|] is true. Since
the Computing step goes through all possible choices for XL and YL, it re-
mains to show that the formula of the Preprocessing step is correct. Clearly,
the base cases are correct. Let us consider the inductive step. The value
R-biclique[X, i, Y, j] is true iff there exists a vertex v ∈ X (the same argu-
ment can be used if v is a vertex of Y) such that R-biclique[X \ {v}, i, Y, j] is

4

true (i.e. v does not belong to the (i, j)-biclique and thus it is removed from
X) or R-biclique[X \ {v}, i − 1, N(v) ∩ Y, j] is true (i.e. v is a vertex of the
(i, j)-biclique and thus it remains to find a (i−1, j)-biclique from X \{v} and
{u ∈ Y \ {v} : {u, v} ∈ E}).

3.3 Analysis of the running-time

The Partitioning step can clearly be done in polynomial time. During the
Preprocessing step we need to compute R-biclique[X, i, Y, j] for any (not nec-
essarily disjoint) subsets X, Y ⊆ R and any integers i and j, 0 ≤ i, j ≤ |R|. For
each such 4-tuple, R-biclique can be evaluated in polynomial time: go through
all vertices of X ∪ Y and use the previously computed values of R-biclique –
recall that X and Y are considered by increasing cardinality. Thus, to enu-
merate all X and Y , the algorithm needs O∗(4αn) time. The Computing step
needs to consider all disjoint subsets XL, YL ⊆ L and then to look for already
computed values of R-biclique. Consequently, it needs O∗(3(1−α)n) time. Finally
the value of α is choosen to balance the running-time of the last two steps.
By setting α = log(3)/(2 + log(3)) ≈ 0.44211..., our main theorem follows.

Theorem 3.1 The described algorithm solves the Non-Induced (k1,k2) Bi-
clique problem in time O(1.8458n) and exponential space.

References

[1] J. Amilhastre, M.C. Vilarem, P. Janssen, Complexity of minimum biclique cover
and minimum biclique decomposition for bipartite dominofree graphs. Discrete
Appl. Math. 86, pp. 125–144 (1998).

[2] M. Dawande, J. Swaminathan, P. Keskinocak, S. Tayur, On bipartite and
multipartite clique problems. J. Algorithms 41, pp. 388–403 (2001).

[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A guide to the Theory
of NP-completeness. Freeman, New York, 1979.

[4] S. Gaspers, D. Kratsch, M. Liedloff, On Independent Sets and Bicliques in
Graphs, Proceedings of WG 2008, Springer, LNCS 5344, pp. 171-182.

[5] D.S. Hochbaum, Approximating clique and biclique problems, J. Algorithms
29, pp. 174–200 (1998).

[6] R. Peeters, The maximum edge biclique problem is NP-complete, Discrete Appl.
Math. 131, pp. 651–654 (2003).

[7] M. Yannakakis, Node and edge deletion NP-complete problems, Proceedings of
STOC 78, ACM, pp. 253-264 (1978).

5

