The Parameterized Complexity of
Local Consistency™

Serge Gaspers and Stefan Szeider

Institute of Information Systems, Vienna University of Technology, Vienna, Austria.
gaspers@kr.tuwien.ac.at, stefan@szeider.net

Abstract. We investigate the parameterized complexity of deciding
whether a constraint network is k-consistent. We show that, parame-
terized by k, the problem is complete for the complexity class co-W/[2].
As secondary parameters we consider the maximum domain size d and
the maximum number ¢ of constraints in which a variable occurs. We
show that parameterized by k& + d, the problem drops down one com-
plexity level and becomes co-W[1]-complete. Parameterized by k+d + £
the problem drops down one more level and becomes fixed-parameter
tractable. We further show that the same complexity classification ap-
plies to strong k-consistency, directional k-consistency, and strong direc-
tional k-consistency.

Our results establish a super-polynomial separation between input size
and time complexity. Thus we strengthen the known lower bounds on
time complexity of k-consistency that are based on input size.

1 Introduction

Local consistency is one of the oldest and most fundamental concepts of con-
straint solving and can be traced back to Montanari’s 1974 paper [26]. If a
constraint network is locally consistent, then consistent instantiations to a small
number of variables can be consistently extended to an additional variable.
Hence local consistency avoids certain dead-ends in the search tree, in some
cases it even guarantees backtrack-free search [1,20]. The simplest and most
widely used form of local consistency is arc-consistency, introduced by Mack-
worth [25], and later generalized to k-consistency by Freuder [19]. A constraint
network is k-consistent if each consistent assignment to k£ — 1 variables can be
consistently extended to any additional k" variable.

Consider a constraint network of input size s where the constraints are given
as relations. It is easy to see that k-consistency can be checked by brute force in
time O(s*) [10]. Hence, if k is a fixed constant, the check is polynomial. However,
the algorithm runs in “nonuniform” polynomial time in the sense that the order
of the polynomial depends on k, hence the running time scales poorly in k£ and
becomes impractical already for k > 3. Also more sophisticated algorithms for
k-consistency achieve only a nonuniform polynomial running time [8].

* This research was funded by the ERC (COMPLEX REASON, 239962).

In this paper we investigate the possibility of a uniform polynomial-time al-
gorithm for k-consistency, i.e., an algorithm of running time O(f(k)s®) where
f is an arbitrary function and c is a constant independent of k. We carry out
our investigations in the theoretical framework of parameterized complezity [15,
17,27] which allows to distinguish between uniform and nonuniform polyno-
mial time. Problems that can be solved in uniform polynomial time are called
fized-parameter tractable (FPT), problems that can be solved in nonuniform
polynomial time are further classified within a hierarchy of parameterized com-
plexity classes forming the chain FPT C W[1] C W[2] C W3] C .-, where all
inclusions are believed to be strict.

Results. We pinpoint the exact complexity of k-consistency decision in general
and under restrictions on the given constraint network in terms of domain size d
and the maximum number ¢ of constraints in which a variable occurs.

We show that deciding k-consistency is co-W/[2]-complete for parameter k,
co-W[1]-complete for parameter k+ d, and fixed-parameter tractable for param-
eter k+d+/¢. Hence, subject to complexity theoretic assumptions, k-consistency
cannot be decided in uniform polynomial-time in general, but admits a uniform
polynomial-time solution if domain size and variable occurrence are bounded.
The hardness results imply a super-polynomial separation between input size
and running time for k-consistency algorithms.

We further show that all three complexity results also hold for deciding strong
k-consistency, for deciding directional k-consistency, and for deciding strong di-
rectional k-consistency. A constraint network is strongly k-consistent if it is
j-consistent for all 1 < j < k. Directional local consistency takes a fixed order-
ing of the variables into account, the variable to which a local instantiation is
extended is ordered higher than the previously instantiated variables [12].

Known Lower Bounds. In previous research, lower bounds on the running time
of k-consistency algorithms have been obtained [8,10]. These lower bounds are
based on instances of large input size, and the observation that any k-consistency
algorithm needs to read the entire input. For instance, to decide whether a given
constraint network on n variables is k-consistent one needs to check each con-
straint of arity r < k at least once (the arity of a constraint is the number of

") such con-

variables that occur in the constraint). Since there can be Zle ("
straints, £2(n*) provides a lower bound on the running time of any k-consistency
algorithm. Taking the domain size d into account, this lower bound can be im-
proved to £2((dn)*) [10]. However, the constraint networks to which this lower
bound applies are of size s = £2((dn)*). Therefore the known lower bounds do

not provide a separation between input size and running time.

2 Preliminaries

2.1 Constraint Networks and Local Consistency Problems

A constraint network (or CSP instance) N is a triple (X, D,C'), where X is a
finite set of variables, D is a finite set of values, and C is a finite set of constraints.

Each constraint ¢ € C is a pair (S, R), where S = var(C), the constraint scope,
is a finite sequence of distinct variables from X, and R, the constraint relation,
is a relation over D whose arity matches the length of S, i.e., R C D" where 7 is
the length of S. The size of N is s = [N| = | X[+ [D| + 32 (g gyec |S]- (1 + [R]).

Let N = (X, D,C) be a constraint network. A partial instantiation of N
is a mapping o : X’ — D defined on some subset var(a) = X’ C X. We
say that « satisfies a constraint ¢ = ((z1,...,2.),R) € C if var(c) C var(«a)
and (a(x1),...,a(z,)) € R. If a satisfies all constraints of N then it is a
solution of N; in this case, N is satisfiable. We say that « is consistent with
a constraint ¢ € C' if either var(c) is not a subset of var(a) or « satisfies c¢. If
« is consistent with all constraints of N we call it consistent. The restriction
of a partial assignment « to a set of variables Y is denoted «|y. It has scope
var(a) NY and aly (z) = a(x) for all x € var(aly).

Let k& > 0 be an integer. A constraint network N = (X, D, C) is k-consistent
if for all consistent partial instantiations « of N with |var(a)| = k — 1 and
all variables € X \ var(«) there is a consistent partial instantiation o’ such
that var(a’) = var(a) U {z}, and &|,4r(a) = @ In such a case we say that o
consistently ertends o to . A constraint network is strongly k-consistent if it is
j-consistent for all j =1,... k.

For further background on local consistency we refer to other sources [2, 11].

We consider the following decision problem.

k-CONSISTENCY
Input: A constraint network N = (X, D, C) and an integer k£ > 0.
Question: Is N k-consistent?

The problem STRONG k-CONSISTENCY is defined analogously, asking whether
N is strongly k-consistent.

It is easy to see that k-CONSISTENCY is co-NP-hard if £ is unbounded. Take
an arbitrary constraint network N = (X, D,C) and form a new network N’
from N by adding a new variable z, and |X| 4+ 1 new constraints with empty
relations, namely the constraint whose scope contains all variables, and all pos-
sible constraints of arity |X| having « in their scope. Let k& = |X| + 1. Now
N’ is k-consistent if and only if N is not satisfiable. Since k is large this reduc-
tion seems somehow unnatural and breaks down for bounded k. This suggests
to “deconstruct” this hardness proof (in the sense of [24]) and to parameterize
by k.

The constraint network N is directionally k-consistent with respect to a total
order < on its variables if every consistent partial instantiation « of k—1 variables
of N can be consistently extended to every variable that is higher in the order
< than any variable of var(a). The corresponding decision problem is defined
as follows.

DIRECTIONAL k-CONSISTENCY

Input: A constraint network N = (X, D, C), a total order < on X, and
an integer k > 0.

Question: Is N directionally k-consistent with respect to <7

A constraint network is strongly directionally k-consistent if and only if it is
directionally j-consistent for all j = 1,..., k. The strong counterpart of the Di1-
RECTIONAL k-CONSISTENCY problem is called STRONG DIRECTIONAL k-CON-
SISTENCY.

We will consider parameterizations of these four problems by k, by k+d, and
by k 4+ d + ¢, where d = |D| and ¢ denotes the maximum number of constraints
in which a variable occurs.

2.2 Parameterized Complexity

We define the basic notions of Parameterized Complexity and refer to other
sources [15,17] for an in-depth treatment. A parameterized problem can be con-
sidered as a set of pairs (I, k), the instances, where I is the main part and k is the
parameter. The parameter is usually a non-negative integer. A parameterized
problem is fized-parameter tractable if there exists an algorithm that solves any
instance (I, k) of size n in time f(k)n®1), where f is a computable function.
FPT denotes the class of all fixed-parameter tractable decision problems.

Parameterized complexity offers a completeness theory, similar to the theory
of NP-completeness, that allows the accumulation of strong theoretical evidence
that some parameterized problems are not fixed-parameter tractable. This the-
ory is based on a hierarchy of complexity classes

FPT C W[1] C W[2] CW[3] C - - .

where all inclusions are believed to be strict. A W[i+1]-complete problem is con-
sidered harder than a W/[i]-complete problem similar to a classical problem that
is complete for the ¢+ 1-th level of the Polynomial Hierarchy is considered harder
than one that is complete for the i-th level. Hence it is of significance to identify
the exact location of a parameterized problem within the W-hierarchy. FEach
class W[i] contains all parameterized decision problems that can be reduced to
a canonical parameterized satisfiability problem P; under parameterized reduc-
tions. These are many-to-one reductions where the parameter for one problem
maps into the parameter for the other. More specifically, a parameterized prob-
lem L reduces to a parameterized problem L’ if there is a mapping R from
instances of L to instances of L’ such that (i) (I,k) is a YEs-instance of L if
and only if (I',k") = R(I, k) is a YEs-instance of L', (ii) there is a computable
function g such that &’ < g(k), and (iii) there is a computable function f and a
constant ¢ such that R can be computed in time O(f(k) - n¢), where n denotes
the size of (I, k).

A parameterized problem is in co-W[i], i € N, if its complement is in W][i],
where the complement of a parameterized problem is the parameterized problem
resulting from reversing the YEs and No answers. If any co-W/[i]-complete prob-
lem is fixed-parameter tractable, then co-W[i] = FPT = co-FPT = W[i] follows,
which causes the Exponential Time Hypothesis to fail [17]. Hence co-W[i]-
completeness provides strong theoretical evidence that a problem is not fixed-
parameter tractable.

2.3 Tries, Turing Machines, and Gaifman Graphs

Tries. A trie [9,18] is a tree for storing strings in which there is one node for
every prefix of a string. Let T be a trie that stores a set S of strings on an
alphabet X. At a given node v of T', corresponding to the prefix p(v), there is an
array with one entry for every character ¢ of X. If p(v).c is a prefix of a string
of S, the entry corresponding to ¢ has a pointer to the node corresponding to
the prefix p(v).c (the dot denotes a concatenation). If p(v).c is not a prefix of
a string of .S, the entry corresponding to ¢ has a null pointer. Thus, a trie uses
space O(|S] - %), while inserting or searching a string s can be done in time
O(]s|) using the ordinal values for characters as array indices.

Turing Machines. A nondeterministic Turing Machine (NTM) [4,17] with ¢
tapes is an 8-tuple M = (Q, I, 3,$, X, 8, qo, F'), where

— (@ is a finite set of states,

— the tape alphabet I' is a finite set of symbols,

— B € I is the blank symbol, the only symbol allowed to occur on the tape(s)
infinitely often,

— $ € I' is a delimiter marking the (left) end of a tape,

— X C I is the set of input symbols,

— qo € Q is the initial state,

— F C (@ is the set of final states,

— 0o CQ\FxI'xQxIt*x{L,N, R}t is the transition relation. A transition
(q,(a1,...,a1),q,(a},...,a}),(d1,...,dt)) € o allows the machine, when it
is in state ¢ and the head of each tape T; is positioned on a cell containing the
symbol a;, to transition in one computation step into the state ¢’, writing the
symbol @ into the cell on which the head of each tape T; is positioned, and
shifting this head one position to the left if d; = L, one position to the right
if d; = R, or not at all if d; = N. On each tape, $ cannot be overwritten
and allows only right transitions, which is formally achieved by imposing
that whenever (g, (a1,...,at),q,(a},...,a;),(dy,...,d¢)) € o, then for all
i1 €{1,...,t} we have a; = $ if and only if a; = $, and a; = $ implies d; = R.

Initially, the first tape contains $wfB43..., where w € X* is the input word, all
other tapes contain $343 ..., M is in state qg, and all heads are positioned on the
first cell to the right of the $ symbol. We speak of a single-tape NTM if t = 1
and of a multi-tape NTM if ¢ > 1. M accepts the input word w in k steps if
there exists a transition path that takes M with input word w to a final state
in k computation steps.

Graphs. The Gaifman graph G(N) of a constraint network N = (X, D, C) has
the vertex set V(G(IV)) := X and its edge set E(G(N)) contains an edge {u, v} if
u and v occur together in the scope of a constraint of C. In a graph G = (V, E),
the (open) neighborhood of a vertex v is the subset of vertices sharing an edge
with v and is denoted I'(v), its closed neighborhood is I'[v] := I'(v) U {v}, and
the degree of v is d(v) := |I'(v)|. The maximum vertex degree of G is denoted
A(G). For a vertex set S, I'[S] := (J,cg I'[v]. S is independent in G if no two
vertices of S are adjacent in G. S is dominating in G if I'[S] =V.

3 k-Consistency Parameterized by k

In this section, we consider the most natural parameterization of k-CONSIS-
TENCY. Theorem 1 shows that the problem is co-W[2]-hard, parameterized by k,
and Theorem 2 shows that it is in co-W/[2]. These results are also extended to the
strong and directional versions of the problem, resulting in Corollary 1, which
says that all four problems are co-W/[2]-complete when parameterized by k.

Theorem 1. Parameterized by k, the following problems are co-W|2]-hard: k-
CONSISTENCY, STRONG k-CONSISTENCY, DIRECTIONAL k-CONSISTENCY, and
STRONG DIRECTIONAL k-CONSISTENCY.

Proof. We show a parameterized reduction from INDEPENDENT DOMINATING
SET to the complement of k-CONSISTENCY. The INDEPENDENT DOMINATING
SET problem was shown to be W[2]-hard by Downey and Fellows [13] (see also [7]
where W/[2]-completeness is established).

INDEPENDENT DOMINATING SET

Input: A graph G = (V, E) and an integer k& > 0.

Parameter: k.

Question: Is there a set S C V of size k that is independent and domi-
nating in G?

Let G = (V, E) and k > 0 be an instance of INDEPENDENT DOMINATING SET.
We construct a constraint network N = (X, D, C) as follows. We take k + 1
variables and put X = {z1,...,2541}. For 1 <i < k+1 we put D(x;) = V.
The set C contains (*}') constraints ¢;; = ((24,2;),Rg), 1 <i < j < k+1,
where Rp = { (v,u) € VXV | u# v, {u,v} ¢ E}. This completes the definition

of the constraint network V.

Claim 1. G has an independent dominating set of size k if and only if N is not
(k + 1)-consistent.

We refer to [23] for the proof of Claim 1, which has been omitted here due to
space restrictions.

Evidently N can be obtained from G in polynomial time. Thus we have
established a parameterized reduction from INDEPENDENT DOMINATING SET to
the complement of k-CONSISTENCY. The co-W/[2]-hardness of k-CONSISTENCY,
parameterized by k, now follows from the W[2]-hardness of INDEPENDENT DoO-
MINATING SET.

The co-W[2]-hardness of STRONG k-CONSISTENCY, parameterized by k, is
proved analogously by reducing from the variant of INDEPENDENT DOMINA-
TING SET which asks for an independent dominating set of size at most k. This
variant is also W[2]-hard, as shown by Downey et al. [16].

To show that the directional versions of the problem are co-W[2]-hard, pa-
rameterized by k, we use the same reductions and additionally specify a total
ordering of the vertices. We use the total order by increasing indices of the
variables, and observe that the variable to which the partial order a cannot

be extended is the last variable in this order in both directions of the proof of
Claim 1. Thus, this modification of the reductions shows that DIRECTIONAL
k-CONSISTENCY and STRONG DIRECTIONAL k-CONSISTENCY are also co-W/[2]-
hard parameterized by k.

The reductions of Theorem 1 actually show somewhat stronger results, namely
that the four problems are co-W[2]-hard when parameterized by k + ¢. This
follows from the observation that the number of variables in the target problems
is k+1. From Theorem 2, the co-W[2]-membership of this parameterization will
follow. Thus, the problems are co-W|2]-complete when parameterized by k + £.

For the co-W[2]-membership proof, we build a multi-tape nondeterministic
Turing machine that reaches a final state in f(k) steps, for some function f, if
and only if N is not k-consistent. As this reduction needs to be a parameterized
reduction, we need avoid that the size of the Turing machine (and the time
needed to compute it) depends on O(|X|*¥) or O(d¥) terms, which would have
been very handy to model constraint scopes and constraint relations. We counter
this issue via organizing the states of the NTM in tries. There is a first level
of tries to determine whether a certain subset of variables is the scope of some
constraint. There is a second level of tries to find out whether a certain partial
instantiation is allowed by a constraint relation. A second issue that needs
particular attention is the size of the transition table. The number of tapes of
the NTM is d + 4, and we cannot afford a transition for each combination of
characters that the head of each tape might be positioned on. We use Cesati’s
information hiding trick [4] to avoid this issue, which means that the machine
does the computations in such a way that in each state, it knows for most tapes
(i.e., all, except a constant number of tapes) which characters are in the cell on
which the corresponding head is positioned.

Theorem 2. Parameterized by k, the following problems are in co-W|2]: k-
CONSISTENCY, STRONG k-CONSISTENCY, DIRECTIONAL k-CONSISTENCY, and
STRONG DIRECTIONAL k-CONSISTENCY.

Proof. Cesati [4] showed that the following parameterized problem is in W[2].

SHORT MULTI-TAPE NTM COMPUTATION

Input: A multi-tape NTM M, a word w on the input alphabet of M,
and an integer k > 0.

Parameter: k.

Question: Does M accept w in at most k steps?

We reduce the complement of k-CONSISTENCY to SHORT MULTI-TAPE NTM
COMPUTATION. Let (N = (X,D,C),k) be an instance for k-CONSISTENCY.
We will construct an instance (M, w,k’) which is a YEs-instance for SHORT
MuLTI-TAPE NTM COMPUTATION if and only if (IV,k) is a No-instance for
k-CONSISTENCY.

Let us describe how M = (Q, I, 3,9, X, qo, F, 0) operates. M has d+4 tapes,
named Gz, Gd,Gxy, S,d1, .. .,d4, and the input word w is empty. Thus, all the

information about N is encoded in the states and transitions of M. The tape
alphabet of M is I' = {3,$} UX UDU{T, F,1,0}.

In the initialization phase, M writes a "I” symbol on the tapes dy,...,dg and
it positions the head of each tape on the first blank symbol of this tape. This
can be done in one computation step.

In the guess phase, M nondeterministically guesses z(1),...,z(k) € X such
that () < x(i+1) foralli € {1,...,k — 2}, and it guesses d(1), ...,d(k—1) € D.
Here, < is an arbitrary order on the variables, and a < b means a < b and a # b.
It appends x(1),...,z(k — 1) to the tape Gz, it appends d(1),...,d(k — 1) to
the tape Gd, and it appends z(k) to the tape Gzy. The goal is to make M halt
in a final state after a number of steps only depending on k if and only if the
partial instantiation «, with a(z(:)) = d(i),1 < i < k — 1, is consistent, but «
cannot be consistently extended to z(k). See Figure 1 for a typical content of
the tapes during the execution of M.

The remaining states of M are partitioned into | X| parts, one part for each
choice of x(k). M reads xz(k) on the tape Gz and moves to the initial state in
the part corresponding to x(k).

Gz: $ z(1) z(2) z(3) z(k—1

Gd: $ d(1) d(2) d(3) d(k—1)
Gxy: $ z(k)

S: $ 0 0 1 0

di: $ T F F

da: $ T

ds: $ T F

dq: $ T F F

Fig.1. A typical content of the tapes during an execution of M (blank symbols are
omitted).

On the S tape, M now enumerates all binary 0/1 strings of length k — 1.
The strings in {0, 1}* ™" represent subsets of {z(1),...,z(k — 1)}, i.e., all possible
scopes of the constraints that could be violated by the partial instantiation a.
For each such binary string, representing a subset X’ of {z(1),...,x(k — 1)},
M moves to a state representing X' if there is a constraint with scope X',
otherwise it moves to a state calculating the next subset X’. This is achieved
by a trie of states; each node of this trie represents a subset X’ of X which
is the subset of the first few variables of the scope of some constraint (i.e., X"
represents the prefix of a constraint scope, if we imagine all constraint scopes
to be strings of increasing variable names). Thus, the size of this trie does not
exceed O(|C|-|X|), and the node corresponding to X’ (or the evidence that there
is no node corresponding to X’) is found in O(|X’|) = O(k) steps. Without loss

of generality, we may assume that for each subset of X, there is at most one
constraint with that scope; otherwise merge constraints with the same scope. If
there is a node representing X', there is a constraint ¢ with scope X’. A trie
of states starting at this node represents all tuples that belong to the constraint
relation R of c¢. This trie has size O(|R| - |X'|). Moreover, M can determine
in time O(|X’|) whether the tuple ¢, setting x(i) to d(i) for each ¢ such that
x(i) € X', is in R. If so, it moves to a state representing ¢, otherwise it moves to
a non-accepting state where is loops forever (as the selected partial instantiation
« is not consistent). At the state representing ¢, it appends *F’ to all tapes d;
such that there exists a constraint with scope X’ U {z(k)} and its constraint
relation does not contain the tuple setting x(i) to d(i) for each z(i) € X’ and
setting x(k) to d;. Then, it moves to the state computing the next set X’. The
machine can only move to a final state if the last symbol on each d;-tape is "F”,
meaning that the calculated partial instantiation a(z(i)) = d(i),1 <i < k-1
is consistent (otherwise the machine loops forever in a non-accepting state), but
cannot be consistently extended to (k) (otherwise some d;-tape does not end
in "F’), which certifies that (IV, k) is a No-instance for k-CONSISTENCY.

The number of states of M is clearly polynomial in |N| + k. The transition
relation has also polynomial size as we use Cesati’s information hiding trick [4],
and place the head of the tapes di,...,ds always on the first blank symbol, ex-
cept for the final check of whether M moves into a final state. If the machine can
reach a final state, it can reach one in a number of steps which is a function of k
only. This proves the co-W][2]-membership of k-CONSISTENCY, parameterized
by k.

Checking whether a network is a NO-instance for STRONG k-CONSISTENCY
can be done by checking whether it is a NoO-instance for j-CONSISTENCY for
some j € {1,...,k}. Thus, it is sufficient to build k¥ NTMs as we described,
one for each value of j € {1,...,k}, nondeterministically guess the integer j for
which /V is not j-consistent in case N is a No-instance, and move to the initial
state of the j** NTM checking whether N is a No-instance for j-CONSISTENCY.
Thus, STRONG k-CONSISTENCY parameterized by k is in co-W[2].

For the directional variants of the problem, the order < is the one given in
the input. It is sufficient to additionally require z(k) to represent a variable that
is higher in the order < than all variables x(1),...,z(k—1). Thus, our condition
that (i) < z(i+ 1) for all ¢ € {1,...,k — 2} is extended to i € {1,...,k—1}.
We conclude that the parameterizations of DIRECTIONAL k-CONSISTENCY and
STRONG DIRECTIONAL k-CONSISTENCY by k are in co-W/2] as well.

From Theorems 1 and 2, we obtain the following corollary.

Corollary 1. Parameterized by k, the following problems are co-W|[2]-complete:
k-CONSISTENCY, STRONG k-CONSISTENCY, DIRECTIONAL k-CONSISTENCY, and
STRONG DIRECTIONAL k-CONSISTENCY.

As mentioned before, the corollary also holds for the parameterization by k + /.

4 k-Consistency Parameterized by k + d

In our quest to find parameterizations that make local consistency problems
tractable, we augment the parameter by the domain size d. We find that, with
this parameterization, the problems become co-W[l]-complete. The co-W][1]-
hardness follows from a parameterized reduction from INDEPENDENT SET.

Theorem 3. Parameterized by k+d, the following problems are hard for co-W{1]:
k-CONSISTENCY, STRONG k-CONSISTENCY, DIRECTIONAL k-CONSISTENCY, and
STRONG DIRECTIONAL k-CONSISTENCY.

Proof. To show that the complement of k-CONSISTENCY is W[1]-hard, we reduce
from INDEPENDENT SET, which is well-known to be W[1]-hard [14].

INDEPENDENT SET

Input: A graph G = (V, E) and an integer k£ > 0.
Parameter: k.

Question: Is there an independent set of size k in G?

Let G = (V,E) with V = {v1,...,v,} and k > 0 be an instance of INDEPENDENT
SET. We construct a constraint network N = (X, D, C) as follows.

The set of variables is X = {xi,...,2,,¢}. The set of values is D =
{0,...,k}. The constraint set C' contains the constraints

(a) ((xi,zj),{(a,b) :a,b€{0,...,k} and (a =0or b=0)}), for all v;v; € E,
constraining at least one of x; and z; to take the value 0 if v;v; € E,

() ((zi,¢),{(a,b):a,b€{0,...,k} and (a=0o0r a#b)}), foralli € {1,...,n},
constraining ¢ to be set to a value different from j if any z; is set to j > 0,
and

(¢) ((¢),{(1),...,(k)}), restricting the domain of ¢ to {1,...,k}.

This completes the definition of the constraint network N. See Figure 2 for an
illustration of N.

Claim 2. G has an independent set of size k if and only if N is not (k + 1)-
consistent.

To show the (=)-direction, suppose S = {03(1)7 . ,vs(k)} is an independent set
in G. Consider the partial instantiation a such that a(zy;)) =4, 4 =1,...,k.
This partial instantiation is consistent, but cannot be consistently extended to c.

To show the («=)-direction, suppose « is a consistent partial instantiation of k&
variables and z is a variable such that « cannot be consistently extended to .
As the only constraint preventing a variable to be set to 0 is the constraint (c¢)
restricting the domain of ¢ to {1,. .., k}, we have that £ = ¢. Now, that ¢ cannot
take any of the values in {1,...,k} is achieved by the constraints of type (b) by
having a bijectively map k variables x(1y, ..., 24 to the set {1,...,k} without
violating any constraint. As two distinct vertices can only be assigned values
different from 0 each if they are not adjacent, by the constraints of type (a), we

have that {a:s(l), e ,xs(k)} is an independent set of size k. Hence Claim 2 is
shown true.

Evidently N can be obtained from G in polynomial time. Thus we have es-
tablished a parameterized reduction from INDEPENDENT SET to the complement
of k-CONSISTENCY with d = k + 1. The co-W/[1]-hardness of k-CONSISTENCY,
parameterized by k + d, now follows from the W[1]-hardness of INDEPENDENT
SET.

For the co-W/[1]-hardness of STRONG k-CONSISTENCY, parameterized by k+
d, just observe that any partial instantiation of fewer than k variables can be
extended to any other variable. Thus, G has an independent set of size k if
and only if N is not strongly k-consistent, and the co-W/[1]-hardness of STRONG
k-CONSISTENCY, parameterized by k + d, follows analogously.

For the directional versions of the problem, we use the same reduction and
define the ordering in the target problem to be some ordering which has c as its
last element. Observing that c is the variable to which the partial instantiation
a cannot be extended in both directions of the proof of Claim 2, the co-W[1]-
hardness of DIRECTIONAL k-CONSISTENCY and STRONG DIRECTIONAL k-CON-
SISTENCY, parameterized by k + d, follows.

It remains to show co-W/[1]-membership, which easily follows from the parame-
terized reduction from Theorem 2 (we designed the proof of Theorem 2 in such a
way that the same parameterized reduction shows co-W/[1]-membership for the
parameterization by k + d).

Theorem 4. Parameterized by k+d, the following problems are in co-W][1]: k-
CONSISTENCY, STRONG k-CONSISTENCY, DIRECTIONAL k-CONSISTENCY, and
STRONG DIRECTIONAL k-CONSISTENCY.

Proof. Cesati and Di Ianni [6] showed that the following parameterized problem
is in W[1] (see also [3] where W[1]-completeness is established for the single-tape
version of the problem).

’U,"UjEE:>
$i:0V$j:0

{0,...,k}

O,

Fig. 2. The target constraint network in the parameterized reduction from INDEPEN-
DENT SET.

SHORT BOUNDED-TAPE NTM COMPUTATION

Input: A t-tape NTM M, a word w on the input alphabet of M, and an
integer k£ > 0.

Parameter: k +t.

Question: Does M accept w in at most k steps?

Now, the proof follows from the proof of Theorem 2, which gives a parameterized
reduction from the four problems to SHORT MULTI-TAPE NTM COMPUTATION
where the number of tapes is bounded by d + 4.

From Theorems 3 and 4, we obtain the following corollary.

Corollary 2. Parameterized by k + d, the following problems are co-W[1]-com-
plete: k-CONSISTENCY, STRONG k-CONSISTENCY, DIRECTIONAL k-CONSISTENCY,
and STRONG DIRECTIONAL k-CONSISTENCY.

5 k-Consistency Parameterized by k + d + £

We further augment the parameter by ¢, the maximum number of constraints in
which a variable occurs. For this parameterization, we are able to show that the
considered problems are fixed-parameter tractable. Bounding both d and £ is a
reasonable restriction, as it still admits constraint networks whose satisfiability is
NP-complete. For instance, determining whether a graph with maximum degree
4 is 3-colorable is an NP-complete problem [22] that can be naturally expressed
as a constraint network with d = 3 and ¢ = 4.

For checking whether there is a partial assignment that cannot be extended
to a variable x, our FPT algorithm uses the fact that the number of constraints
involving « is bounded by a function of the parameter. As constraints with a
scope on more than k variables are irrelevant, it follows that the number of vari-
ables whose instantiation could prevent x from taking some value can also be
bounded by a function of the parameter. For strong k-consistency, these obser-
vations are already sufficient to obtain an FPT algorithm as all instantiations
of subsets of size at most k — 1 of the relevant variables can be enumerated.
For (non-strong) k-consistency, the algorithm tries to select some independent
variables to complete the consistent partial assignment, which must be of size
exactly £ — 1. If such a set of independent variables does not exist, the size
of the considered constraint network is actually bounded by a function of the
parameter and can be solved by a brute-force algorithm.

Theorem 5. Parameterized by k + d + £, the following problems are fized-pa-
rameter tractable: k-CONSISTENCY, STRONG k-CONSISTENCY, DIRECTIONAL
k-CONSISTENCY, and STRONG DIRECTIONAL k-CONSISTENCY.

Proof. Consider an input instance N = (X, D, C) for k-CONSISTENCY. In a first
step, discard all constraints ¢ with |var(c)| > k, as they cannot influence whether
N is k-consistent. The algorithm goes over all | X| possibilities for choosing the
vertex x to which a consistent partial instantiation o on k& — 1 variables cannot

be extended. If | X| < k- (1 + & - £), then the number of constraints is at most
|X|- ¢ <k-(1+Fk-¥¢) - ¢ and each constraint has size at most k - (1 + d¥). Tt
follows that

IN|<k-(1+k-O)+d+(1+k-£)-k*-£-(14d").

Thus, N is a kernel, i.e., its size is a function of the parameter, and any algorithm
solving k-CONSISTENCY for N (brute-force search or Cooper’s algorithm [8]) has
a running time that can be bounded by a function of the parameter only.

Therefore, suppose | X| > k- (1+k-£). Let G := G(N) be the Gaifman graph
of N. The algorithm chooses a set S of k — 1 variables for the scope of a. To do
this, it goes over all 6 =0, ...,k — 1, where ¢ represents the number of variables
in SNI'(z). The number of possibilities for choosing these § variables is at most
(k(f) as d(x) < k- £. The remaining k — 1 — § variables of S need to be chosen
from V' \ I'[S U {z}]. Note that these variables do not influence whether a can
be extended to x as they do not occur in a constraint with z. So, it suffices to
choose them such that o remains consistent if | p(,) was consistent. To do this,
the algorithm chooses an independent set of size k — 1 — § in G\ I'[S U {z}],
which exists and can be obtained greedily due to the lower bound on |X| and
because every variable has degree at most k - £. This terminates the selection
of the k — 1 variables for the scope of a. The algorithm then goes over all
d*~' partial instantiations with scope S. For each such partial instantiation
«, check in polynomial time whether it is consistent, and if so, whether it can
be consistently extended to z. If any such check finds that a is consistent,
but cannot be consistently extended to x, answer NO, otherwise answer YES.
This part of the algorithm takes time 2 . d*=1 . |N|9(M. We conclude that
k-CONSISTENCY, parameterized by k + d + ¢, is fixed-parameter tractable.

The algorithm for the STRONG k-CONSISTENCY problem is simpler. After
having chosen z, there is no need to consider variables that do not occur in a
constraint with 2. To choose S, it goes over all subsets of I'(x) of size at most
k — 1, and proceeds as described above.

To solve the DIRECTIONAL k-CONSISTENCY and STRONG DIRECTIONAL k-
CONSISTENCY problems, after having chosen z, the algorithm deletes all vari-
ables from N that occur after z in the ordering <, and it also removes the
constraints whose scope contains at least one of the deleted variables. Then, the
algorithm proceeds as above.

Using Frick and Grohe’s meta-theorem [21], we can extend this result and
show that k-CONSISTENCY parameterized by k + d is fixed-parameter tractable
for constraint networks whose Gaifman graph (obtained after discarding all con-
straints on more than k variables) belongs to a graph class of locally bounded
treewidth. In contrast, if we bound the average number { of constraints in which
a variable occurs, then k-CONSISTENCY parameterized by k + d is co-W[1]-
complete, as we can use Theorem 3 and bound i by a padding argument.

Once a local inconsistency in a constraint network is detected, one can add a
new (redundant) constraint to the network that excludes this local inconsistency.

More specifically, if we detect that a constraint network N = (X, D, () is not
k-consistent because some partial instantiation « to a set S = {x1,...,25_1} of
variables cannot be extended to some variable x, we add the redundant constraint
(21, 2x-1), D* 1\ {(a(z1),...,(x_1))}) to the network. We repeat this
process until we end up with a network N* that is k-consistent. One says that
N* is obtained from N by enforcing k-consistency [2]. Similar notions can be
defined for strong/directional k-consistency.

It is obvious that the computational task of enforcing k-consistency is at
least as hard as deciding k-consistency. Hence, by Theorems 1 and 3, enforcing
(strong/directional) k-consistency is co-W[1]-hard when parameterized by k + d
and co-W[2]-hard when parameterized by k.

The fixed-parameter tractability result of Theorem 5 does not directly ap-
ply to enforcing, since one can construct instances with small d and ¢ that re-
quire the addition of a large number of redundant constraints that exceeds any
fixed-parameter bound. However, we can obtain fixed-parameter tractability by
restricting the enforced network N*. Let ¢* denote the maximum number of
constraints in which a variable occurs after k-consistency is enforced. The proof
of Theorem 5 shows that enforcing k-consistency is fixed-parameter tractable
when parameterized by k + d + £*.

6 Conclusion

In recent years numerous computational problems from various areas of com-
puter science have been identified as fixed-parameter tractable or complete for a
parameterized complexity class W[i] or co-W/[i]. The list includes fundamental
problems from combinatorial optimization, logic, and reasoning (see, e.g., Ce-
sati’s compendium [5]). Our results place fundamental problems of constraint
satisfaction within this complexity hierarchy.

It is perhaps not surprising that the general local consistency problems are
fixed-parameter intractable. The drop in complexity from co-W[2] to co-W][1]
when we include the domain size as a parameter shows that domain size is of
significance for the complexity of local consistency. Somewhat surprising to us is
Theorem 5 which shows that under reasonable assumptions there is still hope for
fixed-parameter tractability. This result suggests to look for other less restricted
cases for which local consistency checking or even enforcing is fixed-parameter
tractable.

References

1. A. Atserias, A. A. Bulatov, and V. Dalmau. On the power of k-consistency. In
ICALP 2007, LNCS 4596, pages 279-290. Springer Verlag, 2007.

2. C. Bessiere. Constraint propagation. In F. Rossi, P. van Beek, and T. Walsh,
editors, Handbook of Constraint Programming, chapter 3. Elsevier, 2006.

3. L. Cai, J. Chen, R. G. Downey, and M. R. Fellows. On the parameterized com-
plexity of short computation and factorization. Archive for Mathematical Logic,
36(4-5):321-337, 1997.

10.

11.
12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

25.

26.

27.

M. Cesati. The Turing way to parameterized complexity. Journal of Computer
and System Sciences, 67:654—685, 2003.

M. Cesati. Compendium of parameterized problems. http://bravo.ce.uniroma2.it/
home/cesati/research/compendium.pdf, Sept. 2006.

M. Cesati and M. D. Ianni. Computation models for parameterized complexity.
Mathematical Logic Quarterly, 43:179-202, 1997.

Y. Chen and J. Flum. The parameterized complexity of maximality and minimality
problems. Annals of Pure and Applied Logic, 151(1):22-61, 2008.

M. C. Cooper. An optimal k-consistency algorithm. Artificial Intelligence,
41(1):89-95, 1989.

R. De La Briandais. File searching using variable length keys. In IRE-AIEE-ACM
59 (Western), pages 295-298, New York, NY, USA, 1959. ACM.

R. Dechter. From local to global consistency. Artificial Intelligence, 55(1):87-107,
1992.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

R. Dechter and J. Pearl. Network-based heuristics for constraint-satisfaction prob-
lems. Artificial Intelligence, 34(1):1-38, 1987.

R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness.
In Proceedings of the Twenty-first Manitoba Conference on Numerical Mathematics
and Computing (Winnipeg, MB, 1991), volume 87, pages 161-178, 1992.

R. G. Downey and M. R. Fellows. Fixed-parameter tractability and completeness.
II. On completeness for W[1]. Theoretical Computer Science, 141(1-2):109-131,
1995.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Monographs in
Computer Science. Springer Verlag, New York, 1999.

R. G. Downey, M. R. Fellows, and C. McCartin. Parameterized approximation
problems. In IWPEC 2006, LNCS 4169, pages 121-129. Springer Verlag, 2007.

J. Flum and M. Grohe. Parameterized Complexity Theory, volume XIV of Tezts in
Theoretical Computer Science. An EATCS Series. Springer Verlag, Berlin, 2006.
E. Fredkin. Trie memory. Communications of the ACM, 3:490-499, 1960.

E. C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21(11):958-966, 1978.

E. C. Freuder. A sufficient condition for backtrack-bounded search. Journal of the
ACM, 32(4):755-761, 1985.

M. Frick and M. Grohe. Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM, 48(6):1184-1206, 2001.

M. R. Garey and D. R. Johnson. Computers and Intractability. W. H. Freeman
and Company, New York, San Francisco, 1979.

S. Gaspers and S. Szeider. The parameterized complexity of local consistency.
Electronic Colloquium on Computational Complexity (ECCC), Technical Report
TR11-071, 2011.

C. Komusiewicz, R. Niedermeier, and J. Uhlmann. Deconstructing intractability
- a multivariate complexity analysis of interval constrained coloring. Journal of
Discrete Algorithms, 9(1):137-151, 2011.

A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99-118, 1977.

U. Montanari. Networks of constraints: fundamental properties and applications
to picture processing. Information Sciences, 7:95-132, 1974.

R. Niedermeier. Invitation to Fized-Parameter Algorithms. Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, Oxford, 2006.

