
Improved Exact Algorithms for Counting 3- and
4-Colorings

Fedor V. Fomin1, Serge Gaspers1 and Saket Saurabh1,2

1 Department of Informatics, University of Bergen,
N-5020 Bergen, Norway.

{fomin|serge|saket}@ii.uib.no
2 The Institute of Mathematical Sciences,

Chennai 600 113, India.
saket@imsc.res.in

Abstract. We introduce a generic algorithmic technique and apply it on de-
cision and counting versions of graph coloring. Our approach is based on the
following idea: either a graph has nice (from the algorithmic point of view)
properties which allow a simple recursive procedure to find the solution fast,
or the pathwidth of the graph is small, which in turn can be used to find the
solution by dynamic programming. By making use of this technique we obtain
the fastest known exact algorithms
– running in time O(1.7272n) for deciding if a graph is 4-colorable and
– running in time O(1.6262n) and O(1.9464n) for counting the number of

k-colorings for k = 3 and 4 respectively.

1 Introduction

The graph coloring problem is one of the oldest and most intensively stud-
ied problems in Combinatorics and Algorithms. The problem is to color the
vertices of a graph such that no two adjacent vertices are assigned the same
color. The smallest number of colors needed to color a graph G is called the
chromatic number, χ(G), of G. The corresponding decision version of the col-
oring problem is k-Coloring, where for a given graph G and an integer k we
are asked if χ(G) ≤ k. The k-Coloring problem is one of the classical NP-
complete problems [12]. In fact it is known to be NP complete for every k ≥ 3.
A lot of effort was also put in designing efficient approximation algorithms for
the optimization version of the problem, namely, given a k-colorable graph to
try to color it with as few colors as possible. Unfortunately, it has been shown
that if certain reasonable complexity conjectures hold then k-Coloring is
hard to approximate within n1−ε for any ε > 0 [10, 13].

The history of exponential time algorithms for graph coloring is rich.
Christofides obtained the first non-trivial algorithm computing the chromatic
number of a graph on n vertices running in time n!nO(1) in 1971 [6]. In 1976,
Lawler [15] devised an algorithm with running time O∗(2.4423n) based on
dynamic programming over subsets and enumeration of maximal indepen-
dent sets. Eppstein [7] reduced the bound to O(2.4151n) and Byskov [5] to

2 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

O(2.4023n). In two breakthrough papers last year, Björklund & Husfeldt [3]
and Koivisto [14] independently devised 2nnO(1) algorithms based on a com-
bination of inclusion-exclusion and dynamic programming.

Apart from the general chromatic number problem, the problem of k-
Coloring for small values of k like 3, 4 has also attracted a lot of attention.
The fastest algorithm deciding if a the chromatic number of a graph is at most
3 runs in time O(1.3289n) and is due to Beigel & Eppstein [2]. For 4-Coloring
Byskov [5] designed the fastest algorithm, running in time O(1.7504n).

The counting version of the k-Coloring problem, #k-Coloring, is to
count the number of all possible k-colorings of a given graph. #k-Coloring
(and its generalization known as Chromatic Polynomial) are among the oldest
counting problem. Recently Björklund & Husfeldt [3] and Koivisto [14] have
shown that the chromatic polynomial of a graph can be computed in time
2nnO(1).

For small k, #k-Coloring was also studied in the literature. Angelsmark
et al. [1] provide an algorithm for #3-Coloring with running time O(1.788n).
Fürer and Kashiviswanathan [11] show how to solve #3-Coloring with run-
ning time O(1.770n). No algorithm faster than 2nnO(1) for #4-Coloring was
known in the literature [1, 3, 11, 14].

Our results. In this paper we introduce a generic technique to obtain exact
algorithms for coloring problems and its different variants. This technique can
be seen as a generalization of the technique introduced in [8] for a different
problem. The technique is based on the following combinatorial property which
is proved algorithmically and which is interesting in its own: Either a graph G
has a nice “algorithmic” property which (very sloppily) means that when we
apply branching or a recursive procedure to solve a problem then the branching
procedure on subproblems of a smaller size works efficiently, or (if branching
is not efficient) the pathwidth of the graph is small. This type of technique can
be used for a variety of problems (not only coloring and its variants) where
sizes of the subproblems on which the algorithm is called recursively decrease
significantly by branching on vertices of high degrees.

In this paper we use this technique to obtain exact algorithms for differ-
ent coloring problems. We show that #3-Coloring and #4-Coloring can
be solved in time O(1.6262n) and O(1.9464n) respectively. We also solve 4-
Coloring in time O(1.7272n). These improve the best known results for each
of the problems.

2 Preliminaries

In this paper we consider simple undirected graphs. Let G = (V,E) be a graph
and let n denote the number of vertices and m the number of edges of G. We
denote by ∆(G) the maximum vertex degree in G. For a subset V ′ ⊆ V , G[V ′]

Improved Exact Algorithms for Counting 3- and 4-Colorings 3

is the graph induced by V ′, and G − V ′ = G[V \ V ′]. For a vertex v ∈ V
we denote the set of its neighbors by N(v) and its closed neighborhood by
N [v] = N(v)∪{v}. Similarly, for a subset D ⊆ V , we define N [D] = ∪v∈DN [v].
An independent set in G is a subset of pair-wise non-adjacent vertices. A subset
of vertices S ⊆ V is a vertex cover in G if for every edge e of G at least one
endpoint of e is in S.

Major tools of our paper are tree and path decompositions of graphs. A
tree decomposition of G is a pair ({Xi : i ∈ I}, T) where each Xi, i ∈ I, is a
subset of V , called a bag and T is a tree with elements of I as nodes such that
we have the following properties :

1. ∪i∈IXi = V ;
2. for all {u, v} ∈ E, there exists i ∈ I such that {u, v} ⊆ Xi;
3. for all i, j, k ∈ I, if j is on the path from i to k in T then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition is equal to maxi∈I |Xi|−1. The treewidth
of a graph G is the minimum width over all its tree decompositions and it is
denoted by tw(G). We speak of a path decomposition when the tree T in the
definition of a tree decomposition is restricted to be a path. The pathwidth of
G is defined similarly to its treewidth and is denoted by pw(G).

We need the following bound on the pathwidth of graphs with small vertex
degrees.

Proposition 1 ([8]). For any ε > 0, there exists an integer nε such that for
every graph G with n > nε vertices,

pw(G) ≤ 1
6
n3 +

1
3
n4 +

13
30

n5 +
23
45

n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6,≥ 7}.
Moreover, a path decomposition of the corresponding width can be constructed
in polynomial time.

In our algorithms we also use the following results.

Proposition 2 ([7]). The number of maximal independent sets of size k in
a graph on n vertices is at most 34k−n4n−3k and can be enumerated with poly-
nomial time delay.

Our O∗ notation suppresses polynomial terms. Thus we write O∗(T (x)) for
a time complexity of the form O(T (x)·|x|O(1)) where T (x) grows exponentially
with |x|, the input size.

4 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

3 Framework for combining enumeration and pathwidth
arguments

Let us assume that we have a graph problem for which

(a) we know how to solve it by enumerating independent sets, or maximal
independent sets, of the input graph (for an example to check whether a
graph G is 3-colorable, one can enumerate all independent sets I of G and
for each independent set I can check whether G− I is bipartite), and

(b) we also know how to solve the problem using dynamic programming over
the path decomposition of the input graph.

For some instances, the first approach might be faster and for other instances,
the path decomposition algorithm might be preferable. One method to get
the best of both algorithms would be to compute a path decomposition of
the graph using Proposition 1, and choose one of the two algorithms based
on the width of this path decomposition. Unfortunately, this method is not
very helpful in obtaining better worst case bounds on the running time of the
algorithm.

Here in our technique we start by enumerating (maximal) independent sets
and based on the knowledge we gain on the graph by this enumeration step,
we prove that either the enumeration algorithm is fast, or the pathwidth of the
graph is small. This means that either the input graph has a good algorithmic
property, or it has a good graph-theoretic property.

To enumerate (maximal) independent sets of the input graph G, we use
a very standard approach. Two sets I and C are constructed by a recursive
procedure, where I is the set of vertices in the independent set and C the set
of vertices not in the independent set. Let v be a vertex of maximum degree
in G− I −C, the algorithm makes one recursive call where it adds v to I and
all its neighbors to C and another recursive call where it adds v to C. This
branching into two subproblems decreases the number of vertices in G− I−C
according to the following recurrence

T (n) ≤ T (n− d(v)− 1) + T (n− 1).

From this recurrence, we see that the running time of the algorithm depends
on how often it branches on a vertex of high degree. This algorithmic property
is reflected by the size of C: frequent branchings on vertices of high degree
imply that |C| grows fast (in one branch).

On the other hand we can exploit a graph-theoretic property if C is small
and there are no vertices of high degree in G − I − C. Based on the work
of Monien and Preis on the bisection width of 3-regular graphs [16], small
upper bounds on the pathwidth of the input graph G depending on their
maximum degree have been obtained [8, 9] (also see Proposition 1). If a path

Improved Exact Algorithms for Counting 3- and 4-Colorings 5

Input: A graph G, an independent set I of G and a set of vertices C such that
N(I) ⊆ C ⊆ V (G)− I.

Output: An optimal solution which has the problem-dependent properties.

if (∆(G− I − C) ≥ a) or
(∆(G− I − C) = a− 1 and |C| > αa−1|V (G)|) or
(∆(G− I − C) = a− 2 and |C| > αa−2|V (G)|) or
· · · or
(∆(G− I − C) = 3 and |C| > α3|V (G)|)

then
choose a vertex v ∈ V (G)− I − C of maximum degree in G− I − C
S1 ← enumISPw(G, I ∪ {v}, C ∪N(v)) R1
S2 ← enumISPw(G, I, C ∪ {v}) R2
return combine(S1, S2)

else if ∆(G− I − C) = 2 and |C| > α2|V (G)| then
return enumIS(G, I, C)

else
Stop this algorithm and run Pw(G, I, C) instead.

Fig. 1. Algorithm enumISPw(G, I, C)

decomposition of G− I − C of size βd|V (G)− I − C| can be computed, then
a path decomposition of G of size βd|V (G) − I − C| + |C| can be computed
easily. Here βd is a constant strictly less than 1 depending on the maximum
degree of the graph. If it turns out that a path decomposition of small width
can be computed, the algorithm enumerating (maximal) independent sets is
completely stopped without any further backtracking and an algorithm based
on this path decomposition is executed on the original input graph.

In the rest of this section, we give a general framework combining

– algorithms based on the enumeration of maximal independent sets, and
– algorithms based on path decompositions of small width,

and discuss the running time of the algorithms based on this framework. This
framework is not problem-dependent and it relies on two black boxes that have
to be replaced by appropriate procedures to solve a specific problem.

Algorithm enumISPw(G, I, C) in Figure 1 is invoked with the parame-
ters (G, ∅, ∅), where G is the input graph, and the algorithms enumIS and
Pw are problem-dependent subroutines. The function combine takes polyno-
mial time and is also problem-dependent. The values for a, αa, · · · , and α2

(0 = αa ≤ αa−1 ≤ · · ·α2 < 1) are carefully chosen constants to balance the
time complexities of enumeration and path decomposition based algorithms
and to optimize the overall running time of the combined algorithm.

Algorithm enumIS(G, I, C) is problem-dependent and returns an optimal
solution respecting the choice for I, the independent set, and C, the set of the
vertices not belonging to the independent set (a vertex cover of G[I ∪C]). The

6 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

sets I and C are supposed to be completed into a (maximal) independent set
and a (minimal) vertex cover for G by enumerating (maximal) independent
sets of G− I − C, before the problem-specific treatment is done.

Algorithm Pw(G, I, C) first computes a path decomposition based on G, I
and C and the maximum degree of G−I−C. It then calls a problem-dependent
algorithm based on this path decomposition of G.

Let n denote the number of vertices of G, T (n) the running time of Algo-
rithm enumISPw on G, Te(n, i, c) the running time of Algorithm enumIS and
Tp(n, i, c) the running time of Algorithm Pw with parameters G, I, C where
i = |I| and c = |C|. Also, suppose that for any graph with n vertices and max-
imum degree d, a path decomposition of width at most βdn can be computed.
The following lemma is used by Algorithm Pw to compute a path decomposi-
tion of G of small width.

Lemma 1. Suppose that given a graph H with ∆(H) ≤ d, a path decom-
position of width at most βd|H| can be computed where βd < 1 is a con-
stant depending on d alone. Then a path decomposition of width at most
βd|V (G) − I − C| + |C| can be computed for a graph G if I is an indepen-
dent set in G, N(I) ⊆ C ⊆ V (G) and ∆(G− I − C) ≤ d.

Proof. As I is an independent set in G and C separates I from G−I−C, every
vertex in I has degree 0 in G − C. Thus, a path decomposition of G − C of
size at most βd|V (G)− I −C| can be computed. Adding C to each bag of this
path decomposition gives a path decomposition of width at most βd|V (G) −
I − C|+ |C| of G. ut

Given the conditions under which Pw is executed, the following lemma upper
bounds its running time.

Lemma 2. If the considered problem can be solved on G in time O∗(t`pw),
given a path decomposition of width ` of G, then

Tp(n, i, c) = O∗
(

max
d∈{2,3,··· ,a−1}

(
t(βd+(1−βd)αd)n
pw

))
.

Proof. The lemma follows from Lemma 1 and the conditions on |C| and ∆(G−
I − C) under which Algorithm Pw is executed. ut

To estimate the size of the search tree we assume that Algorithm Pw is not
executed. Let tn, ti and tc be constants such that Te(n, i, c) = O∗(tnntiit

c
c).

Lemma 3. If Algorithm Pw is not executed, then

T (n) = O∗

(
tnntα2n

c

a∏
d=3

t∆αdn
d

)

Improved Exact Algorithms for Counting 3- and 4-Colorings 7

where td = (1 + rd) and rd is the minimum positive root of

(1 + r)−(d−1) · r−1 · ti − 1.

Proof. We divide T (n) into Td(n, i, c) for d ∈ {2, 3, · · · , a} where d corresponds
to the maximum degree of G − I − C if d < a and Ta(n, 0, 0) = T (n) if
Algorithm Pw is not executed. Clearly, T2(n, i, c) = Te(n, i, c). Let us now
express Td(n, i, c) in terms of Td−1(·, ·, ·) for d ∈ {3, · · · , a}. Consider the part
of the search tree with branchings on vertices of degree d (or at least d if d = a).
Observe that |C| increases in the worst case by at most (αd−1 −αd)n = ∆αdn
in this part of the search tree. In each branch of the type R1, |C| increases by
d and in each branch of the type R2, |C| increases by 1. Let r ∈ [0,∆αdn/d] be
the number of times the algorithm branches according to R1, then it branches
∆αdn− dr times according to R2. We get that

Td(n, i, c) = O∗

∆αdn/d∑
r=0

(
∆αdn− (d− 1)r

r

)
Td−1(n, i + r, c + ∆αdn)

 .

To prove the lemma, it is sufficient to expand Ta(n, 0, 0) and to prove that∑∆αdn/d
r=0

(
∆αdn−(d−1)r

r

)
tri ≤ t∆αdn

d .
The sum over binomial coefficients

∑∆αdn/d
r=0

(
∆αdn−(d−1)r

r

)
tri is bounded by

(∆αdn/d)B where B is the maximum term in this sum. Let us assume that
B =

(
∆αdn−(d−1)j

j

)
tji for some j ∈ {0, 1, . . . ,∆αdn/d}.

B =
(

∆αdn− (d− 1)j
j

)
tji ≤

(1 + ri)∆αdn−(d−1)j

rj
i

tji .

Here we use the well known fact that for any x > 0 and 0 ≤ k ≤ n,(
n

k

)
≤ (1 + x)n

xk
.

By choosing ri to be the minimum positive root of (1+r)−(d−1)

r ti − 1, we arrive
at B < (1 + ri)∆αdn = t∆αdn

d . ut

The following theorem combines Lemmas 2 and 3 to upper bound the
overall running time of the algorithms resulting from this framework.

Theorem 1. The running time of Algorithm enumISPw on a graph on n ver-
tices is

T (n) = O∗

(
tnntα2n

c

a∏
d=3

t∆αdn
d + max

d∈{2,3,··· ,a−1}

(
t(βd+(1−βd)αd)n
pw

))

8 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

where td = (1 + rd) and rd is the minimum positive root of

(1 + r)−(d−1) · r−1 · ti − 1.

The current best values for βd, d = {2, · · · , 6} are obtained from Proposi-
tion 1.

4 Applications

In this section we use the framework of the previous section to derive improved
algorithms for #3-Coloring, #4-Coloring and 4-Coloring.

4.1 Counting 3-Colorings

We first describe the problem-dependent subroutines we need to use in our
Algorithm enumISPw to solve #3-Coloring in time O(1.6262n).

Algorithm enumISPw returns here an integer, I corresponds to the color
class C1 and C to the remaining two color classes C2 and C3. Algorithm enumIS
with parameters G, I, C enumerates all independent sets of G− I −C and for
each, adds this independent set to I, then checks if G− I is bipartite. If G− I
is bipartite, then a counter counting the independent sets is incremented. This
takes time Te(n, i, c) = 2n−i−c. Thus, tn = 2, ti = 1/2 and tc = 1/2.

The function combine corresponds in this case to the plus-operation. The
running time of Algorithm Pw is based on the following lemma.

Lemma 4. Given a graph G = (V,E) with a path decomposition of G of width
`, #k-Coloring can be solved in time O(k`nO(1)).

Now we use Theorem 1 and Proposition 1 to evaluate the overall complexity
of our #3-Coloring algorithm.

Theorem 2. The #3-Coloring problem can be solved in time O(1.6262n)
for a graph on n vertices.

Proof. We use Theorem 1 and Lemma 1 with a = 5, α2 = 0.44258, α3 =
0.33093 and α4 = 0.16387. The pathwidth part of the algorithm takes time

O∗
(
max

(
3α2n, 3(1+5α3)n/6, 3(1+2α4)n/3

))
= O(1.62617n).

The branching part of the algorithm takes time

O∗
(
2n · (1/2)α2n · 1.29716(α2−α3)n · 1.25373(α3−α4)n · 1.22329α4n

)
= O(1.62617n).

ut

Improved Exact Algorithms for Counting 3- and 4-Colorings 9

4.2 Counting 4-Colorings

To solve #4-Coloring, Algorithm enumIS with parameters G, I, C enumer-
ates all independent sets of G − I − C and for each, adds this indepen-
dent set to I, then counts the number of 3-colorings of G − I using the
previous algorithm. This takes time Te(n, i, c) =

∑n−i−c
`=0 1.62617`+c. Thus,

tn = 2.62617, ti = 1/2.62617 and tc = 1.62617/2.62617. We evaluate the run-
ning time as previously.

Theorem 3. The #4-Coloring problem can be solved in time O(1.9464n)
for a graph on n vertices.

Proof. We use Theorem 1 and Lemma 1 with a = 6, α2 = 0.480402, α3 =
0.376482, α4 = 0.220602 and α5 = 0.083061. The pathwidth part of the algo-
rithm takes time

O∗
(
max

(
4α2n, 4(1+5α3)n/6, 4(1+2α4)n/34(13+17α5)n/30

))
= O(1.9464n).

The branching part of the algorithm takes time

O∗(2.62617n · (1.62617/2.62617)α2n · 1.24548(α2−α3)n · 1.21324(α3−α4)n ·
1.18993(α4−α5)n · 1.17212α5n

)
= O(1.9464n).

ut

4.3 4-Coloring

A well known technique [15] to check if a graph is k-colorable is to check
for all maximal independent sets I of size at least dn/ke whether G − I is
(k − 1)-colorable. In the analysis, we use Proposition 2 to bound the number
of maximal independent sets of a given size.

We also need the current best algorithm deciding 3-Coloring.

Theorem 4 ([2]). The 3-Coloring problem can be solved in time O(1.3289n)
for a graph on n vertices.

In Algorithm enumISPw, which returns here a boolean, I corresponds to
the color class C1 and C to the remaining three color classes C2, C3 and C4.
Algorithm enumIS with parameters G, I, C enumerates all maximal indepen-
dent sets of G − I − C of size at least dn/ke − |I| and for each, adds this
independent set to I, then checks if G − I is 3-colorable using Theorem 4. If
yes, then G is 4-colorable. This takes time

Te(n, i, c) =
n−i−c∑

`=dn/4e−i

34`−n+c+i4n−c−i−3`1.3289n−i−`.

10 Fedor V. Fomin, Serge Gaspers and Saket Saurabh

As
∑b3n/4c−c

`=0 34`4−3`1.3289−` is upper bounded by a constant, tn = 41/41.32893/4,
ti = 42/33 and tc = 3/4.

Theorem 5. The 4-Coloring problem can be solved in time O(1.7272n) for
a graph on n vertices.

Proof. We use Theorem 1 and Lemma 1 with a = 5, α2 = 0.39418, α3 =
0.27302 and α4 = 0.09127, and the pathwidth algorithm of Lemma 4. ut

References

1. O. Angelsmark and P. Jonsson. Improved Algorithms for Counting Solutions in
Constraint Satisfaction Problems. In the Proceedings of CP 2003. LNCS 2833: 81-95
(2003).

2. R. Beigel and D. Eppstein. 3-coloring in time O(1.3289n). Journal of Algorithms 54
(2): 168-204 (2005).

3. A. Björklund and T. Husfeldt. Inclusion–Exclusion Algorithms for Counting Set
Partitions. In the Proceedings of FOCS 2006: 575-582 (2006).

4. J. M. Byskov. Exact Algorithms for Graph Colouring and Exact Satisfiability. PhD
Dissertation, (2004).

5. J. M. Byskov. Enumerating Maximal Independent Sets with Applications to Graph
Colouring. Operations Research Letters 32(6): 547-556 (2004).

6. N. Christofides. An algorithm for the chromatic number of a graph. Computer J., 14:
38-39, 1971.

7. D. Eppstein. Small Maximal Independent Sets and Faster Exact Graph Coloring. J.
Graph Algorithms Appl. 7(2): 131-140 (2003).

8. F. V. Fomin, S. Gaspers, S. Saurabh and A. A. Stepanov. On Two Techniques of
Combining Branching and Treewidth. Report No 337, December 2006, Department of
Informatics, University of Bergen, Norway.

9. F. V. Fomin and K. Høie. Pathwidth of cubic graphs and exact algorithms. Information
Processing Letters 97(5): 191-196 (2006).

10. U. Feige and J. Kilian. Zero Knowledge and the Chromatic Number. Journal of
Computer and System Sciences 57(2): 187-199 (1998).

11. M. Fürer and S. P. Kasiviswanathan. Algorithms for counting 2-SAT solutions and
colorings with applications. In ECCC 33, 2005.

12. M. R. Garey and D. S. Johnson. Computer and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, San Francisco, CA., (1979).

13. S. Khot, A. K. Ponnuswami. Better Inapproximability Results for MaxClique, Chro-
matic Number and Min-3Lin-Deletion. In the proceedings of ICALP 2006. LNCS 4051:
226-237 (2006).

14. M. Koivisto. An O(2n) algorithm for graph coloring and other partitioning problems
via inclusion-exclusion. In Proceedings of FOCS 2006: 583-590 (2006).

15. E. L. Lawler. A Note on the Complexity of the Chromatic Number. Information Pro-
cessing Letters 5 (3): 66-67 (1976).

16. B. Monien and R. Preis. Upper bounds on the bisection width of 3- and 4-regular
graphs. J. Discrete Algorithms 4(3): 475-498 (2006).

