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René van Bevern1, Michael R. Fellows2,
Serge Gaspers3, and Frances A. Rosamond2

1 Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany
rene.vanbevern@tu-berlin.de

2 School of Engineering and IT, Charles Darwin University, Darwin, Australia
{michael.fellows,frances.rosamond}@cdu.edu.au

3 The University of New South Wales and NICTA, Sydney, Australia,
sergeg@cse.unsw.edu.au

Abstract. We introduce a method of applying Myhill-Nerode methods
from formal language theory to hypergraphs and show how this method
can be used to obtain the following parameterized complexity results.

– Hypergraph Cutwidth (deciding whether a hypergraph on n ver-
tices has cutwidth at most k) is linear-time solvable for constant k.

– For hypergraphs of constant incidence treewidth (treewidth of the
incidence graph), Hypertree Width and variants cannot be solved
by simple finite tree automata. The proof leads us to conjecture that
Hypertree Width is W[1]-hard for this parameter.

1 Introduction

This work extends the graph-theoretic analog [7] of the Myhill-Nerode charac-
terization of regular languages to colored graphs and hypergraphs. Thus, we
provide a method to derive linear-time algorithms (or to obtain evidence for
intractability) for hypergraph problems on instances with bounded incidence
treewidth (treewidth of the incidence graph). From a parameterized complexity
point of view [6], incidence treewidth is an interesting parameter, since it can be
bounded from above by canonical hypergraph width measures, like the treewidth
of the primal graph [15] and the treewidth of the dual graph [19].

Applying Myhill-Nerode methods to hypergraphs, we obtain various param-
eterized complexity results, which we summarize in the following. Besides these
results for hypergraph problems, our extension of the Myhill-Nerode theorem
to colored graphs likely applies to other problems, since colored or annotated
graphs allow for more realism in problem modeling and often arise as subprob-
lems when solving pure graph problems. It is also straightforward to use our
methods for annotated hypergraphs.

Hypergraph Cutwidth. We first apply our Myhill-Nerode approach to Hyper-
graph Cutwidth (see Section 3 for a formal definition)—a natural general-
ization of the NP-complete [10] and fixed-parameter tractable [6] Graph Cut-
width problem, for which several fixed-parameter algorithms are known [1, 3,



8, 9, 20]. Cahoon and Sahni [4] designed algorithms for Hypergraph Cut-
width with k ≤ 2, with running time O(n) for k = 1 and running time O(n3)
for k = 2, where n is the number of vertices. For arbitrary k, Miller and Sud-
borough [17] designed an algorithm with running time O(nk

2+3k+3). We suspect
that the framework of Nagamochi [18] applies to Hypergraph Cutwidth, giv-
ing an nO(k) time algorithm. The algorithm we present here has running time
O(n + m) for constant k, thus showing Hypergraph Cutwidth to be fixed-
parameter linear for the parameter k.

In the context of VLSI design, the Hypergraph Cutwidth problem is
known as Board Permutation, and it is related to the gate matrix layout
problem and several graph problems; see [17] and references therein. We arrived
at the Hypergraph Cutwidth problem when studying the Trellis Width
problem, which plays a central role in the maximum likelihood decoding for linear
block codes [14, 21]. Kashyap [14] observed that Trellis Width is equivalent
to Matroid Pathwidth. The class of matroids with pathwidth at most k is
closed under taking matroid minors [14], has bounded branchwidth, and mem-
bership in a minor-closed matroid family can be tested in cubic time for matroids
with bounded branchwidth [13]. This asserts that, for every constant k, there
exists a cubic-time algorithm for Trellis Width. 4 However, the proof that a
nonuniform fixed-parameter tractable algorithm (there is a different algorithm
for each k) [6] exists is nonconstructive: for each constant k, we only know that
an O(n3)-time algorithm exists, but it is unknown what it is, and how its run-
ning time depends on k. Using our result for Hypergraph Cutwidth, one
can show that Trellis Width is fixed-parameter linear parameterized by the
code rank; however, this result is outperformed by a relatively simple linear-time
kernelization algorithm.

Hypertree Width. The original Myhill-Nerode theorem can be used both posi-
tively and negatively: to show that a language is regular, and to show that a lan-
guage is not regular. Using our hypergraph Myhill-Nerode analog negatively, we
obtain evidence that the problems Hypertree Width, Generalized Hyper-
tree Width, and Fractional Hypertree Width are not fixed-parameter
tractable with respect to the parameter incidence treewidth t, that is, we con-
jecture that there are no algorithms for these problems running in time f(t) ·nc,
where n is the input size, c is a constant, and f is a computable function. It is
already known that these problems are unlikely to be fixed-parameter tractable
for their standard parameterizations [11, 12, 16]. Our result hints that even if
the incidence width is constant, these other width measures cannot be computed
efficiently.

Due to space constraints, we defer the proofs to the appendix.

Preliminaries. We use the standard graph-theoretic notions of Diestel [5].

4 This has also been observed by Navin Kashyap [private communication].
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Graph Decompositions. A tree decomposition of a graph G = (V,E) is a
pair ({Xi : i ∈ I}, T ) where Xi ⊆ V , i ∈ I, are called bags and T is a tree with
elements of I as nodes such that:

– for each edge {u, v} ∈ E, there is an i ∈ I such that {u, v} ⊆ Xi, and
– for each vertex v ∈ V , T [{i ∈ I : v ∈ Xi}] is a non-empty connected tree.

The width of a tree decomposition is maxi∈I |Xi| − 1. The treewidth of G is the
minimum width taken over all tree decompositions of G. The notions of path
decomposition and pathwidth of G are defined the same way, except that T is
restricted to be a path.

Hypergraphs. A hypergraph H is a pair (V,E), where V is a set of vertices
and E a multiset of hyperedges such that e ⊆ V for each e ∈ E. Let H = (V,E)
be a hypergraph. The primal graph of H, denoted G(H), is the graph with vertex
set V that has an edge {u, v} if there exists a hyperedge in H incident to both u
and v. It is sometimes called the Gaifman graph of H. The incidence graph of
H, denoted I(H), is the bipartite graph (V ′, E′) with vertex set V ′ = V ∪ E
and for v ∈ V and e ∈ E, there is an edge {v, e} ∈ E′ if v ∈ e.

Hypergraph decompositions. Let H be a hypergraph. Generalized hypertree
width is defined with respect to tree decompositions of G(H), however, the width
of the tree decompositions is measured differently. Suppose H has no isolated
vertices (otherwise, remove them). A cover of a bag is a set of hyperedges such
that each vertex in the bag is contained in at least one of these hyperedges. The
cover width of a bag is the minimum number of hyperedges covering it. The
cover width of a tree decomposition is the maximum cover width of any bag in
the decomposition. The generalized hypertree width of H is the minimum cover
width over all tree decompositions of G(H).

The hypertree width of H is defined in a similar way, except that, additionally,
the tree of the decomposition is rooted and a hyperedge e can only be used in
the cover of a bag Xi if Xi contains all vertices of e that occur in bags of the
subtree rooted at the node i.

The fractional hypertree width of H is defined in a similar way as the gen-
eralized hypertree width, except that it uses fractional covers: in a fractional
cover of a bag, each hyperedge is assigned a non-negative weight, and for each
vertex in the bag, the sum of the weights of the hyperedges incident to it is at
least 1. The fractional cover width of the bag is the minimum total sum of all
hyperedges of a fractional cover.

2 Myhill-Nerode for Colored Graphs and Hypergraphs

The aim of this section is first to generalize the Myhill-Nerode analog for graphs [7]
to colored graphs. From this, we obtain a Myhill-Nerode analog for hypergraphs,
since every hypergraph can be represented as its incidence graph with two vertex
types: those representing hyperedges and those representing hypergraph-vertices.
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(a) A 2-colored 3-boundaried graph G.

1 2

3

(b) A 2-colored 3-boundaried graph H.

1 2

3

(c) The glued graph G⊕c H.

Fig. 1. Two color-compatible 3-boundaried graphs G and H and their glued graph,
where the boundary vertices are marked by their label.

In the last part of the section, we finally describe how our Myhill-Nerode
analog yields linear-time algorithms for hypergraph problems. We follow and
adapt the notation used by Downey and Fellows [6, Section 6.4].

2.1 Colored Graphs

We now develop an analog of the Myhill-Nerode theorem for colored graphs. The
original Myhill-Nerode theorem is stated for languages in terms of concatenations
of words. Hence, we clarify what concatenating colored graphs means.

Definition 1. A t-boundaried graph G is a graph with t distinguished vertices
that are labeled from 1 to t. These labeled vertices are called boundary vertices.
The boundary, ∂(G), denotes the set of boundary vertices of G.

Let G1 and G2 be t-boundaried graphs whose vertices are colored with colors
from {1, . . . , cmax}. We say that G1 and G2 are color-compatible if the vertices
with the same labels in ∂(G1) and ∂(G2) have the same color.

For two color-compatible t-boundaried graphs, we denote by G1⊕cG2 the
colored graph obtained by taking the disjoint union of G1 and G2 and identifying
each vertex of ∂(G1) with the vertex of ∂(G2) with the same label, wherein vertex
colors are inherited from G1 and G2.

Let U large
t,cmax

be the universe of {1, . . . , cmax}-colored t-boundaried graphs and

F ⊆ U large
t,cmax

. We define the canonical right congruence ∼F for F as follows: for

G1, G2 ∈ U large
t,cmax

, G1 ∼F G2 if and only if G1 and G2 are color-compatible and

for all color-compatible H ∈ U large
t,cmax

, G1⊕cH ∈ F ⇐⇒ G2⊕cH ∈ F .

The index of ∼F is its number of equivalence classes.

4



Definition 1 is illustrated in Figure 1. Before we can state our analog of the
Myhill-Nerode theorem for colored graphs, we show that every {1, . . . , cmax}-
colored graph of treewidth at most t can be generated using a constant number
of graph operations. To this end, we use the following set of operators. For gen-
erating graphs of only one color, the given operators coincide with those given
by Downey and Fellows [6, Section 6.4].

Definition 2. The size-(t+1) parsing operators for {1, . . . , cmax}-colored graphs
are:

i) {∅n1,...,ncmax
:
∑cmax

i=1 ni = t+1} is a family of nullary operators that creates
boundary vertices 1, . . . , t+ 1, of which the first n1 vertices get color 1, the
next n2 vertices get color 2, and so on.

ii) γ is a unary operator that cyclically shifts the boundary. That is, γ moves
label j to the vertex with label j + 1 (mod t+ 1).

iii) i is a unary operator that assigns the label 1 to the vertex currently labeled
2 and label 2 to the vertex with label 1.

iv) e is a unary operator that adds an edge between the vertices labeled 1 and 2.
v) {u` : 1 ≤ ` ≤ cmax} is a family of unary operators that add a new vertex of

color ` and label it 1, unlabeling the vertex previously labeled 1.
vi) ⊕c is our gluing operator from Definition 1.

For a constant number of colors cmax, the set of size-(t+ 1) parsing operators is
finite. Adapting the proof of Downey and Fellows [6, Theorem 6.72], we verify
that the graphs generated by the operators in Definition 2 have treewidth at
most t. The same proof shows how, from a width-t tree decomposition of a
colored graph G with at least t+1 vertices, a linear-size parse tree over the above
operators can be obtained in linear time that generates a graph isomorphic to G.

Definition 3. The set U small
t,cmax

is the set of {1, . . . , cmax}-colored t-boundaried
graphs that can be generated by the operators in Definition 2.

Theorem 1. Let F ⊆ Usmall
t,cmax

be a family of graphs. The following statements
are equivalent:

i) The parse trees corresponding to graphs in F are recognizable by a finite tree
automaton.

ii) The canonical right congruence ∼F has finite index over Usmall
t,cmax

.

2.2 Lifting to Hypergraphs

To make the method accessible to hypergraph problems, we lift the Myhill-
Nerode theorem for colored graphs of the previous subsection to hypergraphs.

Definition 4. A t-boundaried hypergraph G has t distinguished vertices and
hyperedges labeled from 1 to t. Two t-boundaried hypergraphs are gluable if no
vertex of one hypergraph has the label of a hyperedge of the other hypergraph.
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(a) A 3-boundaried hypergraph H(G).

1 2

3

(b) A 3-boundaried hypergraph H(H).

1 2

3

(c) The glued hypergraph H(G)⊕hH(H) = H(G⊕c H).

Fig. 2. The two hypergraphs represented by the well-colored 3-boundaried graphs G
and H in Figure 1 and the glued hypergraph H(G)⊕hH(H) = H(G⊕c H).

Let G1 and G2 be gluable t-boundaried hypergraphs. We denote by G1⊕hG2

the t-boundaried hypergraph obtained by taking the disjoint union of G1 and G2,
identifying each labeled vertex of G1 with the vertex of G2 with the same label,
and replacing the hyperedges with label ` by the union of these hyperedges.

Let Hlarge
t be the universe of t-boundaried hypergraphs and F ⊆ Hlarge

t .
We define the canonical right congruence ∼F for F as follows: for two gluable
G1, G2 ∈ Hlarge

t , G1 ∼F G2 if and only if for all H ∈ Hlarge
t that are gluable

to G1 and G2, G1⊕hH ∈ F ⇐⇒ G2⊕hH ∈ F .

To prove a Myhill-Nerode theorem for hypergraphs, we still need a way to create
hypergraphs from parsing operators, as we did using the operators from Defi-
nition 2 for colored graphs. To this end, we indeed simply use the operators
from Definition 2, observing that every bipartite graph can be interpreted as the
incidence graph of a hypergraph. Moreover, if the two disjoint independent sets
of a two-colored bipartite graph have distinct colors, then we can interpret this
bipartite graph as a hypergraph in a unique way.

Definition 5. A well-colored t-boundaried graph is a {1, 2}-colored t-boundaried
graph G = (U ]W,E), where the vertices in U have color 1, the vertices in W
have color 2, and where U and W are independent sets.

For a well-colored t-boundaried graph G = (U ]W,E), we denote by H(G)
the t-boundaried hypergraph with the vertex set U and the edge set {N(w) :
w ∈ W}. Moreover, vertices of H(G) inherit their label from G and edges e =

N(w), w ∈ W of H(G) inherit the label of w. For a set U ⊆ U large
t,2 , we denote

H(U) := {H ∈ Hlarge
t | H = H(G), G ∈ U}.

The incidence graph of H(G) is G and the incidence treewidth of H(G) is the
treewidth of G.

Obviously, every H ∈ Hlarge
t is H(G) for some G ∈ U large

t,2 . Also, every set F ⊆
Hlarge

t is F = H(F ) for some F ⊆ U large
t,2 . Figure 2 illustrates Definitions 4 and 5.
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Theorem 2. Let F ⊆ Usmall
t,2 be a set of well-colored t-boundaried graphs. The

following statements are equivalent:

i) The parse trees corresponding to graphs in F are recognizable by a finite tree
automaton.

ii) The canonical right congruence ∼H(F ) has finite index over H(Usmall
t,2 ).

We can use Theorem 2 to constructively derive algorithms for deciding prop-
erties of hypergraphs of incidence treewidth at most t: assume that we have
a family of t-boundaried hypergraphs F ⊆ Hlarge

t with incidence treewidth at

most t such that ∼F has finite index over Hlarge
t . There is a set F ⊆ U large

t,2 for
which F = H(F ).

We can decide in linear time whether a given hypergraph H ∈ Hlarge
t is

isomorphic to a hypergraph in F : compute the incidence graph G of H, that is,
H(G) = H. Since the graph G has treewidth at most t, we can compute a tree
decomposition for G in linear time [2]. In the same way as shown by Downey
and Fellows [6, Theorem 6.72], this tree decomposition can be converted in linear
time into a parse tree T over the operators in Definition 2 that generates a graph
isomorphic to G. By Theorem 2, a finite tree automaton can check whether T
generates a graph G′ isomorphic to a graph in F , which is the case if and only
if H(G′) is isomorphic to some graph in F . The finite tree automaton can be
constructed from the equivalence classes of ∼F in constant time, since each
equivalence class has a constant-size representative.

3 Hypergraph Cutwidth is fixed-parameter tractable

In this section we show that Hypergraph Cutwidth is fixed-parameter linear.
We first formally define the problem.

Let H = (V,E) be a hypergraph. A linear layout of H is an injective
map l : V → R of vertices onto the real line. The cut at position i ∈ R with
respect to l, denoted θl,H(i), is the set of hyperedges that contain at least
two vertices v, w such that l(v) < i < l(w). The cutwidth of the layout l is
maxi∈R |θl,H(i)|. The cutwidth of the hypergraph H is the minimum cutwidth
over all the linear layouts of H. The Hypergraph Cutwidth problem is then
defined as follows.

Hypergraph Cutwidth
Input: A hypergraph H = (V,E) and a natural number k.
Question: Does H have cutwidth at most k?

Now, to solve Hypergraph Cutwidth using our Myhill-Nerode analog, let
k-HCW denote the class of all hypergraphs with cutwidth at most k. We will
use Theorem 2 to show that the parse trees for graphs in k-HCW can be recog-
nized by a finite tree automaton. To make Theorem 2 applicable, we first show
that, for the hypergraphs in k-HCW, we can find a constant upper bound t on
their incidence treewidth. This implies that isomorphic graphs can be generated
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by linear-size parse trees over the operator set in Definition 2 or, in terms of
Theorem 2, that the graphs in k-HCW are isomorphic to the graphs in a subset
of H(U small

t,2 ).

Lemma 1. Let H = (V,E) be a hypergraph. If H has cutwidth at most k, then
H has incidence treewidth at most max{k, 1}.

It remains to prove that the canonical right congruence ∼k-HCW of k-HCW has
finite index. This finally shows that k-HCW can be recognized in linear time
and, therefore, that Hypergraph Cutwidth is fixed-parameter linear.

To show that ∼k-HCW has finite index, we show that, given a t-boundaried
hypergraph G, only a finite number of bits of information about a t-boundaried
hypergraph H is needed in order to decide whether G⊕hH ∈ k-HCW. To this
end, we employ the Method of Test Sets [6]: let T be a set of objects called tests
(for the moment, it is not important what exactly a test is). A t-boundaried
graph can pass a test. For t-boundaried hypergraphs G1 and G2, let G1 ∼T G2

if and only if G1 and G2 pass the same subset of tests in T . Obviously, ∼T
is an equivalence relation. Our aim is to find a set T of tests such that ∼T
refines ∼k-HCW (that is, if G1 ∼T G2, then G1∼k-HCWG2). This will imply
that, if ∼T has finite index, so has ∼k-HCW. To show that ∼T has finite index,
we show that we can find a finite set T such that ∼T refines ∼k-HCW.

Intuitively, in our case, a hypergraph G will pass a test T if it has a restricted
linear layout, where each of its boundary vertices gets mapped to predefined
integer values and each of the remaining vertices “lands” within one of a set of
given “landing zones” between the integer values of the real line. This restricted
linear layout will impose the same restrictions on an optimal cutwidth layout
for G that are also imposed by an optimal cutwidth layout of G⊕hH for some
hypergraph H that corresponds to T .

Definition 6. Let G and H be t-boundaried hypergraphs such that G⊕hH ∈
k-HCW. Let vi denote the vertex that is mapped to position i in an optimal
cutwidth layout that maps to integer values.

A landing zone is a tuple in {0, . . . , k} × 2{1,...,t}. A size-n test T = (π, S)
consists of a map π : {1, . . . , t} → {1, . . . , n} and a sequence S = (S0, S1, . . . , Sn)
of landing zones.

We define an H-test T = (π, S) as follows: for each vertex vi ∈ ∂(H), set
π(`) := i, where ` is the label of vi. For i ∈ {0, . . . , n}, Si := (wi, Ei), where

1. wi is the number of hyperedges in H that contain vertices in {v1, . . . , vi} ∩
V (H) and {vi+1, . . . , vn} ∩ V (H).

2. Ei is the set of labels of hyperedges in H containing vertices in {v1, . . . , vi}∩
V (H) and {vi+1, . . . , vn} ∩ V (H).

Figure 3 illustrates this definition. We now formally define what it means to pass
a test. Intuitively, if a graph G passes an H-test, then G⊕hH ∈ k-HCW.
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Vertices of H(G) Vertices of H(H)

S0

0

∅

S1

0

∅

S2

0

∅

S3

0

∅

S4

0

∅

S5

0

∅

S6

0

∅

S7

1

∅

S8

1

∅

S9

2

∅

S10

1

∅

S11

2

{3}

S12

0

∅

wi

Ei

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12

3

Fig. 3. Construction of the H-test illustrated using the glued hypergraph
H(G)⊕hH(H) from Figure 2.

Definition 7. Let G = (V,E) be a t-boundaried hypergraph and T = (π, S) be
an H-test for some t-boundaried hypergraph H, where S = (S0, . . . , Sn) and
Si = (wi, Ei).

A T -compatible layout for G is an injective function f : V → R such that each
vertex v ∈ ∂(G) with label ` is mapped to π(`) and such that every vertex v ∈
V \ ∂(G) is mapped into some open interval (i, i+ 1) for 0 ≤ i ≤ n.

The weighted cutwidth of f is maxi∈R(|θf (i)| + wbic), where θf (i) is the set
of hyperedges containing two vertices v and w with f(v) < i < f(w) and that
do not have a label in Ebic.

Finally, G passes the test T if there is a T -compatible layout f for G whose
weighted cutwidth is at most k.

Lemma 2. For T being the set of all tests, the equivalence relation ∼T re-
fines ∼k-HCW.

Proof (Sketch). We show that if two t-boundaried hypergraphs G1, G2 pass the
same subset of tests of T , then, for all t-boundaried hypergraphs H, G1⊕hH ∈
k-HCW if and only if G2⊕hH ∈ k-HCW. We exploit the following two claims.

1. If G1⊕hH ∈ k-HCW, then G1 passes the H-test.
2. If G2 passes the H-test, then G2⊕hH ∈ k-HCW.

Let H be a t-boundaried hypergraph such that G1⊕hH ∈ k-HCW, and let T
be an H-test. By (1), G1 passes T . Since G1 and G2 pass the same tests, also
G2 passes T . By (2), it follows that G2⊕hH ∈ k-HCW. The reverse direction is
proved symmetrically. See the appendix for the proofs of Claims (1) and (2). ut

Lemma 2 shows a set of tests T such that ∼T refines ∼k-HCW. However, the
set T is infinite and, therefore, does not yet yield that ∼k-HCW has finite index.
However, we can obtain a finite set of tests using the following lemma.

Lemma 3. Let G and H be t-boundaried hypergraphs. For every H-test T1, there
is a test T2 of size 2t(2k + 2) such that G passes T1 if and only if it passes T2.
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Now the following theorem is easy to prove.

Theorem 3. Hypergraph Cutwidth is fixed-parameter linear.

4 Hypertree Width and Variants

In this section we sketch a negative application of our hypergraph Myhill-Nerode
analog to Generalized Hypertree Width [12]. The problem is, given a hy-
pergraph H and an integer k as input, to decide whether H has generalized
hypertree width at most k. Since Generalized Hypertree Width is NP-
hard for k = 3 [12], it would be nice to find parameters for which the problem is
fixed-parameter tractable. However, we can show that Generalized Hyper-
tree Width does not have finite index.

Theorem 4. Let k ≥ 0. Let k-GHTW be the family of all incidence graphs G
such that H(G) has generalized hypertree width at most k. The canonical right
congruence ∼H(k-GHTW) does not have finite index over H(Usmall

t,2 ).

Moreover, the construction we use in the proof leads us to conjecture the problem
to be W[1]-hard with respect to the parameter incidence treewidth. The proof
also applies to the problem variants Hypertree Width and Fractional Hy-
pertree Width, which are unlikely to be fixed-parameter tractable with re-
spect to their standard parameterization [11, 16].

Conjecture 1. Hypertree Width is W[1]-hard with respect to the parameter
incidence treewidth.

5 Conclusion

We have extended the graph analog of the Myhill-Nerode theorem to colored
graphs and hypergraphs, making the methodology more widely applicable. Our
positive application shows that Hypergraph Cutwidth is fixed-parameter
linear. As a negative application, we showed that Hypertree Width, Gen-
eralized Hypertree Width, and Fractional Hypertree Width do not
have finite index, and therefore the parse trees associated to Yes-instances of
bounded incidence treewidth cannot be recognized by finite tree automata.
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A Proofs of Section 2

A.1 Proof of Theorem 1

Two colored t-boundaried graphs G1 and G2 are isomorphic and we write G1
∼=

G2 if there is a graph isomorphism for the underlying (ordinary) graphs mapping
each vertex to a vertex with the same color.

Our proof of Theorem 1 adapts the proof of Downey and Fellows [6, The-
orem 6.77]. To this end, we only need to show that our operators satisfy the
Parsing Replacement Property.

Definition 8. (Parsing Replacement Property). An n-ary operator ⊗ has the
Parsing Replacement Property if, for the arguments H1, . . . ,Hn ∈ U small

t,cmax
of ⊗

and each i, there is a graph G ∈ U small
t,cmax

such that H1 ⊗ · · · ⊗Hn
∼= Hi⊕cG.

Lemma 4. The size-(t+ 1) parsing operators in Definition 2 have the Parsing
Replacement Property.

Proof. Let H ∈ U small
t,cmax

and let ∅∗H denote the graph that contains only t + 1

boundary vertices, no edges, and that is color-compatible with H. Finally, let ∅`H
denote the graph that contains t+1 boundary vertices and one additional vertex
with color ` and that is color-compatible with H. Note that ∅`H , ∅∗H ∈ U small

t,cmax
: we

can generate them using the operators in Definition 2 because ∅∗H and ∅`H have
at least t + 1 vertices and treewidth at most t. Now, the lemma immediately
follows, noting that for each graph H ∈ U small

t,cmax
,

γH ∼= iH ∼= H ⊕c ∅∗H , since ∼= ignores boundary labels,

eH ∼= H ⊕c e(∅∗H),

u`H ∼= H ⊕c ∅`H ,

and that ⊕c and ∅n1,...,ncmax
trivially have the Parsing Replacement Property.

ut

Having proven Lemma 4, the proof of [6, Theorem 6.77] also proves Theorem 1
and we have a handy tool to generalize the Myhill-Nerode theorem to hyper-
graphs.

A.2 Proof of Theorem 2

Theorem 2. Let F ⊆ U small
t,2 be a set of well-colored t-boundaried graphs. The

following statements are equivalent:

i) The parse trees corresponding to graphs in F are recognizable by a finite
tree automaton.

ii) The canonical right congruence ∼H(F ) has finite index over H(U small
t,2 ).
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Proof. Let F̄ := {G ∈ U small
t,2 : H(G) ∈ H(F )}, that is, for each G ∈ F ,

the set F̄ contains additionally all t-boundaried graphs G′ ∈ U small
t,2 for which

H(G) = H(G′). Clearly, every such G′ is isomorphic to G, that is, F̄ contains F
and t-boundaried graphs isomorphic to graphs in F . Hence, the parse trees cor-
responding to t-boundaried graphs in F are the same as those corresponding
to F̄ . Moreover, H(F ) = H(F̄ ). Hence, it remains to show that ∼H(F̄ ) has finite

index over H(U small
t,2 ) if and only if ∼F̄ has finite index over U small

t,2 .

Assume that ∼F̄ has infinite index over U small
t,2 . Then there is a family G1, G2,

G3, . . . of graphs in U small
t,2 that are pairwise inequivalent under ∼F̄ . Since there

are only a finite number of possibilities to assign two colors to t boundary ver-
tices, there are an infinite number of color-compatible graphs among G1, G2, . . . .
Moreover, notice that all Gi that are not well-colored t-boundaried graphs are
equivalent under ∼F̄ (they cannot be completed to graphs in F̄ by gluing
any graph onto them). Therefore, without loss of generality, we assume that
G1, G2, . . . are pairwise color-compatible well-colored t-boundaried graphs. Now,
for each pair Gi, Gj , there is a graph Hi,j ∈ U small

t,2 such that Gi⊕cHi,j ∈
F̄ but Gj ⊕cHi,j /∈ F̄ . From Gi⊕cHi,j ∈ F̄ , it follows that Hi,j is a well-
colored t-boundaried graph that is color-compatible with Gi. Now, we have
H(Gi)⊕hH(Hi,j) = H(Gi⊕cHi,j) ∈ H(F̄ ). Moreover, H(Gj)⊕hH(Hi,j) =
H(Gj ⊕cHi,j) /∈ H(F̄ ). That is, H(Gi) �H(F̄ ) H(Gj) and therefore ∼H(F̄ ) has
infinite index.

Assume that ∼H(F̄ ) has infinite index over H(U small
t,2 ). Then, there is a fam-

ily H(G1),H(G2), H(G3), . . . of hypergraphs in H(U small
t,2 ) that are pairwise

inequivalent under ∼F̄ . Since there are only a finite number of partitions of
t labels into hyperedge-labels and vertex-labels, there is an infinite number
of pairwise gluable hypergraphs among H(G1),H(G2), . . . . Therefore, without
loss of generality, assume that all these hypergraphs are pairwise gluable. Now,
for each pair H(Gi), H(Gj), there is a hypergraph H(Hi,j) ∈ H(U small

t,2 ) such

that H(Gi)⊕hH(Hi,j) ∈ H(F̄ ) but H(Gj)⊕hH(Hi,j) /∈ H(F̄ ). Hence, since
H(Gi)⊕hH(Hi,j) = H(Gi⊕cHi,j), we have Gi⊕cHi,j ∈ F̄ . However, with the
same reasoning, Gj ⊕cHi,j /∈ F̄ . Hence, ∼F̄ has infinite index over F̄ . ut

B Proofs of Section 3

B.1 Proof of Lemma 1

Lemma 1. Let H = (V,E) be a hypergraph. If H has cutwidth at most k, then
H has incidence treewidth at most max{k, 1}.

Proof. Suppose H has cutwidth at most k. Let H ′ = (V,E′) denote the hyper-
graph obtained from H by removing all hyperedges of size at most 1. Consider a
linear layout l of cutwidth at most k of the vertices of H ′. Without loss of general-
ity, assume that l maps to the natural numbers 1 to n and let V = {v1, . . . , vn}
be such that l(vi) = i. We construct a path decomposition for the incidence
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graph I(H ′) with the bags L1, R1, L2, R2, . . . , Ln−1, Rn−1 and a path connect-
ing the bags in this order. For every i, 1 ≤ i ≤ n − 1, let Li := θl,H′(i) ∪ {vi}
and Ri := θl,H′(i) ∪ {vi+1}, recalling that θl,H′(i) is the set of hyperedges that
cross position i.

We now prove that this is a path decomposition for I(H ′). Let {vi, e} be
any edge in the incidence graph of H ′ with vi ∈ V and e ∈ E′. Since |e| ≥ 2,
we have that either e ∈ θl,H′(i − 1) or e ∈ θl,H′(i). Therefore, either e ∈ Ri−1

or e ∈ Li. But vi ∈ Ri−1 ∩ Li. Thus, vi and e occur together in at least one
bag. Next, consider the vertex vi ∈ V . It occurs in the two bags Ri−1 and Li,
which are consecutive and thus induce a connected path. Finally, consider a
hyperedge e ∈ E′. It occurs in all bags Li, Ri, . . . , Lj , Rj where vi is the first
vertex in the layout l occurring in e and vj is the last vertex in l occurring in e.
But these bags are all consecutive on the path and thus induce a connected path.

The width of this path decomposition is max1≤i≤n−1{|θH′,l(i)|} ≤ k by con-
struction. To obtain a tree decomposition for H from this path decomposition
for H ′, we only need to take care of hyperedges of size at most 1. For every hyper-
edge e ∈ E of size 1, add a new bag {e, v}, where v is the unique vertex contained
in e, and make it adjacent to an arbitrary bag containing v. For every hyper-
edge e ∈ E of size 0, add a new bag {e}, and make it adjacent to an arbitrary bag.
In this way, we obtain a tree decomposition for the incidence graph of H of width
at most max{k, 1}. Thus, H has incidence treewidth at most max{k, 1}. ut

B.2 Proof of Lemma 2

Lemma 2. For T being the set of all tests, the equivalence relation ∼T re-
fines ∼k-HCW.

Proof. We show that if two t-boundaried hypergraphs G1, G2 pass the same sub-
set of tests of T , then, for all t-boundaried hypergraphs H, G1⊕hH ∈ k-HCW
if and only if G2⊕hH ∈ k-HCW. The proof is based on the following two claims
that are proved afterwards.

i) If G1⊕hH ∈ k-HCW, then G1 passes the H-test.
ii) If G2 passes the H-test, then G2⊕hH ∈ k-HCW.

Let H be a t-boundaried hypergraph such that G1⊕hH ∈ k-HCW, and let T
be an H-test. By (i), G1 passes T . Since G1 and G2 pass the same tests, also
G2 passes T . By (ii), it follows that G2⊕hH ∈ k-HCW. The reverse direction
is proved symmetrically. It only remains to prove (i) and (ii).

(i) Let l be a layout of G1⊕hH with cutwidth at most k that only maps
boundary vertices to integral positions and let T be the H-test. The restriction f
of l to the vertex set of G1 is then clearly T -compatible. Moreover, f has weighted
cutwidth at most k: to this end, for an arbitrary i ∈ N, we show that |θf (i)|+wbic
from Definition 7 is at most k. Consider the set A of hyperedges of G1⊕hH that
contain two vertices v, w with f(v) < i < f(w). Obviously, |A| ≤ k. We show
|θf (i)|+wbic = |A|. The set A can be partitioned as A = AH ]AG1 ]A∗, where
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AH are hyperedges in H, AG1 are hyperedges in G1 and A∗ are hyperedges that
are neither in H nor in G1. The hyperedges in A∗ are labeled edges that are the
result of taking the unions of equally-labeled hyperedges from G1 and H. We
further partition A∗ = A+]A− such that A+ is the set of hyperedges with labels
in Ebic. Now, by definition, we have wbic = |AH |+|A+| and |θf (i)| = |AG1 |+|A−|.
Therefore, |θf (i)|+ wbic = |A| ≤ k.

Note here, that, if we were to define θf (i) in Definition 7 to contain all
edges that contain vertices left and right of i (rather than only those with no
label in Ebic), then we would obtain |θf (i)| = |AG1 |+ |A+|+ |A−| here, that is,
|θf (i)|+ wbic would count the edges in A+ twice.

(ii) The H-test T was obtained from a linear layout l of cutwidth k for
G1⊕hH. Moreover, there is a T -compatible layout f for G2. First note that l
and f agree on the layout of vertices in ∂(G2) and ∂(H) and that, apart from
these, f lays out vertices at non-integral positions, whereas l lays out vertices
at integral positions. Because of this, in a layout g for G2⊕hH that lays out
vertices v of H at position l(v) and vertices v of G2 at position f(v), every two
vertices in G2⊕hH are laid out at distinct positions by g. Hence, g is injective
and, therefore, a layout.

Now it is easy to observe that g is a layout of cutwidth at most k for G2⊕hH:
to this end, for a position i ∈ R, consider the set A of hyperedges of G2⊕hH
containing vertices v, w with g(v) < i < g(w) and let it be partitioned A = AH ]
AG2]A+]A− in the same way as above. Again, we have wbic = |AH |+ |A+| and
|θf (i)| = |AG2 |+ |A−|, yielding |A| = |AG2 |+ |AH |+ |A+|+ |A−| = θf (i) +wbic.
Since G2 passes the H-test, this is at most k. ut

B.3 Proof of Lemma 3

Lemma 3. Let G and H be t-boundaried hypergraphs. For every H-test T1,
there is a test T2 of size 2t(2k+2) such that G passes T1 if and only if it passes T2.

Proof. Let the sequence S of landing zones of T1 be S0 = (E0, w0), . . . , (En, wn) =
Sn. For E ⊆ {1, . . . , t}, we call a maximal subsequence (Ei, wi), . . . , (Ej , wj) of S
with Ei = · · · = Ej a strait. We first show that there are at most 2t straits, and
then show that we can shorten each strait to a length of 2k + 2 by removing
some landing zones without changing the satisfiability of the test.

For ` ⊆ {1, . . . , t}, let I` := {i ≤ n : ` ∈ Ei}. Observe that I` is a consecutive
subset of {0, . . . , n}: this is by the construction of the Ei in Definition 7 from
an optimal layout for some t-boundaried graph G′⊕hH. That is, each I` for
some ` ∈ {1, . . . , t} is an interval of the natural numbers with a minimum element
and a maximum element, which we both call events. Hence, the I` for all ` ∈
{1, . . . , t} in total have at most 2t events. Since straits can only start at an event,
and since only one strait can start at a fixed event, it follows that S is partitioned
into at most 2t straits.

It remains to shorten the straits. Let (Ei, wi), . . . , (Ej , wj) be a strait. We
apply the data reduction rules (R1–R3) from the proof of Theorem 6.82 by
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Downey and Fellows [6], which are based on the following observations: deleting
from S one of two consecutive landing zones (Ei, wi), (Ei+1, wi+1) with Ei =
Ei+1 and wi = wi+1 yields an equivalent test, as does adding such landing
zones. Moreover, if we replace a landing zone (Ei, wi) by a landing zone (Ei, w

′
i)

with w′i ≤ wi, we obtain a test that is easier to pass.

Since the wi are, by construction of T1, bounded from above by k, we can
transform T1 into T2 by these data reduction rules so that each of the 2t straits
has length at most (2k + 2) [6, Theorem 6.83]. ut

B.4 Proof of Theorem 3

Theorem 3. Hypergraph Cutwidth is fixed-parameter linear.

Proof. Lemma 1 shows that graphs in k-HCW have constant treewidth at
most t, and therefore, that all such hypergraphs can be linear-time transformed
into linear-size parse trees for t-boundaried hypergraphs. Using Theorem 2, we
show that parse trees corresponding to hypergraphs in k-HCW are recognizable
by a finite tree automaton: let T be the set of all tests and T ′ be the set of all
tests of size 2t(2k + 2). Lemma 3 shows that ∼T ′ refines ∼T . Lemma 2 shows
that ∼T refines ∼k-HCW. Therefore, ∼k-HCW has at most as many equivalence
classes as ∼T ′ . Since k and t are constant, T ′ is finite, implying finite index for
∼T ′ and, consequently, for ∼k-HCW. ut

C Proofs of Section 4

C.1 Proof of Theorem 4

Theorem 4. Let k ≥ 0. Let k-GHTW be the family of all incidence graphs G
such that H(G) has generalized hypertree width at most k. The canonical right
congruence ∼H(k-GHTW) does not have finite index over H(U small

t,2 ).

We give a construction of a t-boundaried hypergraph Hn with bounded incidence
treewidth, for every n ≥ 1. Then we show that Hn⊕hHm has generalized hyper-
tree width 4 if and only if n = m. This implies an infinite number of equivalence
classes for the canonical right congruence ∼H(4-GHTW).

For every n ≥ 1, we construct a t-boundaried hypergraph Hn with t = 28,
generalized hypertree width 4, and incidence treewidth at most 12. The vertex
set of Hn is V = A∪B ∪C ∪D ∪ S ∪ T ∪X, where A = {a, y}, B = {b, z}, C =
{c, y}, D = {d, z}, S = {s1, . . . , s8}, T = {t1, . . . , t8} and X = {x1, . . . , x6n}. The
hyperedge set of Hn is E = {A,B,C,D} ∪BS ∪ {Sc, Sd, Sy, Sz} ∪BT ∪ {Ta, Tb,
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Ty, Tz} ∪ {E3i, E3i+1 : 1 ≤ i < 2n} ∪ {Ei,i+1 : 1 ≤ i < 6n}, where

BS is the set of all possible binary hyperedges on S,

Sc = {c, s1, s2}, Sd = {d, s3, s4},
Sy = {y, s5, s6}, Sz = {z, s7, s8}
BT is the set of all possible binary hyperedges on T ,

Ta = {a, t1, t2}, Tb = {b, t3, t4},
Ty = {y, t5, t6}, Tz = {z, t7, t8}
E1 = {s8, x1},
E3i = {a, c, y, x3i} for 1 ≤ i < 2n,

E3i+1 = {b, d, z, x3i+1} for 1 ≤ i < 2n,

E6n = {x6n, t1},
E6i+1,6i+2 = {a, b, x6i+1, x6i+2} for 0 ≤ i < n,

E6i+4,6i+5 = {c, d, x6i+4, x6i+5} for 0 ≤ i < n, and

E3i,3i+1 = {x3i, x3i+1} for 1 ≤ i < 2n.

The set of boundary hyperedges is {A,B,C,D, Sc, Sd, Sy, Sz, Ta, Tb, Ty, Tz}. The
set of boundary vertices is S∪T . They are labeled from 1 to 28 in this order and
by increasing indices. See Figure 4 for an illustration of H2 induced on V \(S∪T ).

In the construction of Hn, the vertices in S and T and the hyperedges con-
taining them are only used to make sure that every tree decomposition of Hn

with (generalized, fractional) hypertree width 4 contains a bag B−1 with the
vertices S ∪ {c, d, y} and a bag B6n+1 with the vertices T ∪ {b, y, z}. Since the
sets S ∪{c, d, y, z} and T ∪{a, b, y, z} can also be covered by 4 hyperedges, all of
which are boundary hyperedges, let D = ({Xi : i ∈ I}, T ) be a tree decomposi-
tion for Hn with the bags B−1 = S ∪{c, d, y, z} and B6n+1 = T ∪{a, b, y, z}. We
observe that all other vertices of Hn occur in bags that are in the same connected
component of the forest obtained from D by removing these two bags.

Claim 1. The tree decomposition D contains a bag Bi, 0 ≤ i ≤ 6n, with {s8, x1,
c, d, y, z} ⊆ B0, {t1, x6n, a, b, y, z} ⊆ B6n, and {a, b, c, d, y, z, xi, xi+1} ⊆ Bi, for
every i, 1 ≤ i < 6n.

Proof. The primal graph G(Hn) contains the cliques {s8, x1}, {a, b, x1, x2}, {a, b,
x2, x3}, {a, c, y, x3}, {x3, x4}, {x4, b, d, z}, {c, d, x4, x5}, {c, d, x5, x6}, {a, c, y, x6},
{x6, x7}, {b, d, z, x7}, {a, b, x7, x8}, . . . , {x6n, t1}, and every two consecutive
cliques in this list intersect in at least one vertex. In particular, we observe
the path (s8, x1, x2, . . . , x6n, t1) in G(Hn). Thus, D contains bags B0 ⊇ {s8, x1},
B6n ⊇ {t1, x6n}, and Bi ⊇ {xi, xi+1}, 1 ≤ i < 6n. Moreover, each Bi, 0 ≤ i < 6n,
contains c, d, y, z since B−1 contains c, d, y, z, B6n−1 contains c, d, B6n+1 contains
y, z, and without loss of generality, we can assume the Bi, 0 ≤ i ≤ 6n, were cho-
sen such that they are on the path from B−1 to B6n+1 in T . Similarly, each Bi,
1 ≤ i ≤ 6n, contains a, b. ut
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Fig. 4. The incidence graph of H2 induced on V \ (S∪T ). Boxes represent hyperedges.

A tree decomposition for Hn is a good tree decomposition if it contains the bags
B−1 = S ∪ {c, d, y, z} and B6n+1 = T ∪ {a, b, y, z} and every bag except B−1

and B6n+1 can be covered with at most 3 hyperedges, and in case such a bag is
covered with exactly 3 hyperedges, two of these hyperedges are in the boundary.
A good cover for a good tree decomposition is a cover for each bag according to
the specifications of a good tree decomposition.

Claim 2. If D is a good tree decomposition for Hn, then, for every i, −1 ≤ i ≤
6n, there is a path from the bag Bi to the bag Bi+1 that avoids all the bags Bj ,
j ∈ {−1, . . . , 6n+ 1} \ {i, i+ 1}.

Proof. Suppose the path from Bi to Bi+1 passes through Bj with j ∈ {−1, . . . ,
6n+1}\{i, i+1}. Since every bag on the path from Bi to Bi+1 contains Bi∩Bi+1,
we have that xi+1 ∈ Bj . But then {s8, x1, c, d, y, z, xi+1} ⊆ Bj (if j = 0) or
{t1, x6n, a, b, y, z, xi+1} ⊆ Bj (if j = 6n) or {a, b, c, d, y, z, xj , xj+1, xi+1} ⊆ Bj
(otherwise), implying that Bj cannot be covered by two hyperedges and it cannot
be covered by three hyperedges of which two are in the boundary. ut
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Claim 3. In every good cover, B0 is covered by {E1, C,D}, B6n is covered by
{E6n, A,B}, and for every i, 1 ≤ i < 6n,

Bi is covered by



{Ei,i+1, C,D} if i ≡ 1 (mod 6),

{Ei,i+1, C,D} if i ≡ 2 (mod 6),

{Ei, Ei+1} if i ≡ 3 (mod 6),

{Ei,i+1, A,B} if i ≡ 4 (mod 6),

{Ei,i+1, A,B} if i ≡ 5 (mod 6), and

{Ei, Ei+1} if i ≡ 0 (mod 6).

Proof. The claim easily follows from Claim 1. ut

Suppose D is a good tree decomposition for Hn. The backbone of D is the path
P in T starting at the bag B−1 and ending at the bag B6n+1. By Claim 2, P
visits B0,B1, . . . ,B6n in this order. Let Pi,j denote the subpath of P starting at
Bi and ending at Bj .

Claim 4. For every i ∈ {0, 6, 12, · · · , 6n − 6}, no bag on Pi,i+3 is covered by a
set of hyperedges Q with A,B ∈ Q in a good cover.

Proof. Consider a bag B on Pi,i+3 and let Q ⊇ {A,B} be a cover for B. The
bag B contains the intersection of two bags that are consecutive in the list
Bi,Bi+1,Bi+1,Bi+3. Therefore, at least one of xi+1, xi+2, xi+3 is in B. We also
have that c, d ∈ B since c, d ∈ Bi∩Bi+3. However, no hyperedge contains xi+1, c, d
or xi+2, c, d or xi+3, c, d. Thus, |Q| ≥ 4, and therefore Q is not part of a good
cover. ut

Claim 5. For every i ∈ {3, 9, 15, · · · , 6n − 3}, no bag on Pi,i+3 is covered by a
set of hyperedges Q with C,D ∈ Q in a good cover.

Proof. The proof is symmetric to the proof of Claim 4. ut

Consider a good cover of D. A switch is an inclusion-wise minimal subpath
(Yi, . . . , Yj) of the backbone of D where Yi is covered by Qi with C,D ∈ Qi and
Yj is covered by Qj with A,B ∈ Qj . The signature of a good cover of D is its
number of switches.

Claim 6. Each good cover of each good tree decomposition of Hn has signa-
ture n.

Proof. The claim follows from Claims 3, 4, and 5. ut

Due to Claim 6, we can speak of the signature of Hn and the signature of a
good tree decomposition of Hn as the signature of some good cover of such a
tree decomposition.

Let H = Hn and H ′ = Hm. Consider a tree decomposition D = ({Xi : i ∈
I}, T ) of H ⊕hH

′ with generalized hypertree width 4. Without loss of generality,
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suppose the bags B−1 = S ∪ {c, d, y, z} and B6n+1 = T ∪ {a, b, y, z} are leafs of
this decomposition and their neighboring bags contain both copies of x1 and
x6n, respectively. Let D|H denote the restriction of D to H, i.e., it has the same
tree, but each bag is restricted to the vertices of H.

Claim 7. D|H is a good tree decomposition for H.

Proof. Consider a bag B of D besides B−1 and B6n+1. The bag B contains a
copy of some xi from H ′. This vertex is covered by some hyperedge from H ′

that does not belong to the boundary. Therefore, B|H is covered by at most 3
hyperedges. Suppose B|H is covered by exactly 3 hyperedges. Then, the cover of
B|H′ contains at most one hyperedge that does not belong to the boundary. But,
since each such hyperedge covers at most 2 vertices among {a, b, c, d}, the cover
of B contains at least 2 boundary hyperedges. This proves the claim. ut

Symmetrically, D|H′ is a good tree decomposition for H ′. Since D|H and
D|H′ have the same signature, we conclude that n = m due to Claim 6. This
proves that the canonical right congruence∼H(4-GHTW) does not have finite index

over H(U small
t,2 ).

Let k-HTW be the family of all incidence graphs G such that H(G) has
hypertree width at most k. Let k-FHTW be the family of all incidence graphs
G such that H(G) has fractional hypertree width at most k. To see that the
proof of Theorem 4 applies to ∼H(4-HTW), observe that in our construction every
hyperedge covering a bag is a subset of that bag. To see that it extends to
∼H(4-FHTW), observe that for every bag Bi, 0 ≤ i ≤ 6n, an optimal fractional
cover is integral, and Claim 4 can be extended to A,B ∈ Q with weight 1—
similarly for Claim 5. This completes the proof of Theorem 4.

C.2 Arguments in favour of Conjecture 1

The number of equivalence classes observed in the proof of Theorem 4 entails a
lower bound on the amount of information that needs to be maintained by an
algorithm when it decides whether a given hypergraph has (generalized, frac-
tional) hypertree width k using a tree decomposition of the incidence graph:
typical such algorithms implicitly remember for each bag of the tree decomposi-
tion which equivalence classes of the bag under consideration can complete into
a graph with generalized hypertree width k.

However, restricting the construction in the proof of Theorem 4 to at most
n vertices, the proof of Theorem 4 exhibits a class C of t-boundaried hyper-
graphs on at most n vertices with constant incidence treewidth and constant t
for which the canonical right congruence has Ω(n) equivalence classes. Now, con-
sider a class C′ of O(k)-boundaried hypergraphs where each hypergraph contains
k copies of hypergraphs from C and has at most n′ vertices. Then, the number of
equivalence classes of the canonical right congruence is Ω((n′/k)k) for C′. Hence,
we conjecture that an algorithm with running time f(k) ·nc for a constant c and
a computable function f does not exist.
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