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Abstract

The bandwidth of a graph G on n vertices is the minimum b such that the vertices of G can
be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most b.

In this paper, we present a 2-approximation algorithm for the Bandwidth problem that takes
worst-case O(1.9797n) = O(30.6217n) time and uses polynomial space. This improves both the
previous best 2- and 3-approximation algorithms of Cygan et al. which have O∗(3n) and O∗(2n)
worst-case running time bounds, respectively. Our algorithm is based on constructing bucket
decompositions of the input graph. A bucket decomposition partitions the vertex set of a graph
into ordered sets (called buckets) of (almost) equal sizes such that all edges are either incident
to vertices in the same bucket or to vertices in two consecutive buckets. The idea is to find
the smallest bucket size for which there exists a bucket decomposition. The algorithm uses a
divide-and-conquer strategy along with dynamic programming to achieve the improved time
bound.

Keywords: exponential time algorithm; approximation algorithm; graph bandwidth; bucket
decomposition

1 Introduction

The bandwidth of a graph G on n vertices is the minimum integer b such that the vertices of G
can be labeled from 1 to n such that the labels of every pair of adjacent vertices differ by at most
b. The Bandwidth problem has as input a graph G and an integer b and the question is whether
G has bandwidth at most b. The problem is a special case of Subgraph Isomorphism, as it can be
formulated as follows: Is G isomorphic to a subgraph of P b

n? Here, P b
n denotes the graph obtained

from Pn (the path on n vertices) by adding an edge between every pair of vertices at distance at
most b in Pn.

A typical scenario in which the Bandwidth problem arises is that of minimizing the bandwidth
of a symmetric matrix M to allow for more efficient storing and manipulating procedures [22].
The bandwidth of M is b if all its non-zero entries are at distance at most b from the diagonal.
Applying permutations on the rows and columns to reduce the bandwidth of M corresponds then
to reordering the vertices of a graph whose adjacency matrix corresponds to M by replacing all
non-zero entries by 1.
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The Bandwidth problem is NP-hard [39], even for trees of maximum degree at most three [25],
caterpillars with hair length at most three [37], and convex trees [41]. Even worse, approximating
the bandwidth within a constant factor is NP-hard, even for caterpillars of degree three [43].
Further, it is known that the standard parameterization of the problem is hard for every fixed level
of the W-hierarchy [5] and unlikely to be solvable in f(b)no(b) time [12].

Faced with this immense intractability, several approaches have been proposed in the literature
for the Bandwidth problem.

Polynomial time approximation algorithms. The first (polynomial time) approximation algo-
rithm with a polylogarithmic approximation factor was provided by Feige [21]. Later, Dunagan and
Vempala gave an O(log3 n

√
log logn)-approximation algorithm. The current best approximation

algorithm achieves an O(log3 n(log log n)1/4)-approximation factor [31]. For large b, the best ap-
proximation algorithm is the probabilistic algorithm of Blum et al. [4] which has an O(

√
n/b log n)-

approximation factor.
Super-polynomial time approximation algorithms. Super-polynomial time approximation algo-

rithms for the Bandwidth problem have also been widely investigated [13, 16, 19, 23]. Feige and Tal-
war [23], and Cygan and Pilipczuk [16] provided subexponential time approximation schemes for ap-
proximating the bandwidth of graphs with small treewidth. For general graphs, a 2-approximation
algorithm with running time O∗(3n)1 is easily obtained by combining ideas from [22] and [23] (as
noted in [13]). Further, Cygan et al. [13] provide a 3-approximation algorithm with running time
O∗(2n), which they generalize to a (4r − 1)-approximation algorithm (for any positive integer r)
with running time O∗(2n/r).

Exact exponential time algorithms. Concerning exact exponential time algorithms, the first
non-trivial algorithm was the elegant polynomial space O∗(10n) time algorithm of Feige [22]. This
bound has been improved in a sequence of algorithms by Cygan and Pilipczuk; their O(9.363n)
time algorithm uses polynomial space [14], their O∗(5n) time algorithm uses O∗(2n) space [15],
their O(4.83n) time algorithm uses O∗(4n) space [15], and their O(4.473n) time algorithm uses
O(4.473n) space [16]. The Bandwidth problem can also be solved exactly in O(nb) time using
dynamic programming [26, 38].

Graph classes. Polynomial time algorithms for Bandwidth are only known for a small number
of restricted graph classes. These are caterpillars of hair length at most 2 [2], chain graphs [34],
cographs [45], interval graphs [32, 35, 42], and bipartite permutation graphs [27]. Polynomial
time, constant factor approximation algorithms are known for AT-free graphs [33], convex bipartite
graphs [41], and 2-directional orthogonal ray graphs [41].

Hybrid algorithms. Another recent approach to cope with the intractability of Bandwidth is
through the concept of hybrid algorithms, introduced by Vassilevska et al. [44]. They gave an
algorithm that after a polynomial time test, either computes the minimum bandwidth of a graph
in O∗(4n+o(n)) time, or computes an O(γ(n) log2 n log log n)-approximation in polynomial time, for
any unbounded constructible function γ(n). This result was improved by Amini et al. [1] who give
an algorithm which, after a polynomial time test, either computes the minimum bandwidth of a
graph in O∗(4n) time, or provides an O(log3/2 n)-approximation in polynomial time.

The concept of designing approximation algorithms with better performance ratios at the ex-
pense of super-polynomial running times is quite natural and has been used in the study of several
other problems (see for example [3, 6, 7, 8, 9, 17, 20, 28, 30, 40]). A similar concept is parameterized

1O∗(f(n)) denotes nO(1) · f(n).
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approximation, which was introduced in three independent papers [10, 11, 18]; see the survey by
Marx [36].

Our Results. Our main result is a 2-approximation algorithm for the Bandwidth problem that
takes worst-case O(1.9797n) time (Theorem 3.8). This improves the O∗(3n) time bound achieved
by Cygan et al. [13] for the same approximation ratio. Also, the previous best 3-approximation
algorithm of Cygan and Pilipczuk [16] has an O∗(2n) time bound. Therefore, our 2-approximation
algorithm is also faster than the previous best 3-approximation algorithm.

Our algorithm is based on constructing bucket decompositions of the input graph. A bucket
decomposition partitions the vertex set of a graph into ordered sets (called buckets) of (almost)
equal sizes such that all edges are either incident to vertices in the same bucket or to vertices in
two consecutive buckets. The idea is to find the smallest bucket size for which there exists a bucket
decomposition. This gives a 2-approximation for the Bandwidth problem (Lemmas 3.1 and 3.2).
The algorithm uses a simple divide-and-conquer strategy along with dynamic programming to
achieve this improved time bound.

2 Preliminaries

Let G = (V,E) be a graph on n vertices. A linear arrangement of G is a bijective function
L : V → [n] = {1, . . . , n}, that is a numbering of its vertices from 1 to n. The stretch of an edge
uv is the absolute difference between the numbers assigned to its endpoints |L(u) − L(v)|. The
bandwidth of a linear arrangement of G is the maximum stretch over all the edges of G and the
bandwidth of G is the minimum bandwidth over all linear arrangements of G.

A bucket arrangement of G is a placement of its vertices into buckets such that for each edge, its
endpoints are either in the same bucket or in two consecutive buckets [23]. The buckets are linearly
ordered and numbered from left to right. A capacity vector C is a vector of positive integers. The
length of a capacity vector C = (C[1], . . . , C[k]) is k and its size is

∑k
i=1 C[i]. Given a capacity vector

C of size n, a C-bucket arrangement of G is a bucket arrangement in which exactly C[i] vertices
are placed in bucket i, for each i. For integers n and ` with ` < n/2, an (n, `)-capacity vector is a
capacity vector

(a, `, `, . . . , `,︸ ︷︷ ︸
dn` e−2 times

b)

of size n such that a, b ≤ `. We say that an (n, `)-capacity vector is left-packed if a = ` and balanced
if |a− b| ≤ 1.

Let X ⊆ V be a subset of the vertices of G. We denote by G[X] the subgraph of G induced
on X, and by G \X the subgraph of G induced by V \X. The open neighborhood of a vertex v is
denoted by NG(v) and the open neighborhood of X is NG(X) := (

⋃
v∈X NG(v)) \X.

3 Exponential Time Algorithms for Approximating Bandwidth

We first establish two simple lemmas that show that constructing a bucket arrangement can ap-
proximate the bandwidth of a graph.

Lemma 3.1. Let G be a graph on n vertices, and let C be an (n, `)-capacity vector. If there exists
a C-bucket arrangement for G then the bandwidth of G is at most 2`− 1.
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Proof. Given a C-bucket arrangement for G, create a linear arrangement L respecting the bucket
arrangement (if u appears in a smaller numbered bucket than v, then L(u) < L(v)), where vertices
in the same bucket are numbered in an arbitrary order. As the capacity of each bucket is at most
` and each edge spans at most two consecutive buckets, the maximum edge stretch in L is at most
2`− 1.

Lemma 3.2. Let G be a graph on n vertices, and let C be an (n, `)-capacity vector. If there exists
no C-bucket arrangement for G then the bandwidth of G is at least `+ 1.

Proof. Suppose there exists a linear arrangement L of G of bandwidth at most `. Construct a
bucket arrangement placing the first C[1] vertices of L into the first bucket, the next C[2] vertices
of L into the second bucket, and so on. In the resulting bucket arrangement, no edge spans more
than two consecutive buckets. Therefore, a C-bucket arrangement exists for G, a contradiction.

We will use the previous fastest 2-approximation algorithm of Cygan et al. [13] as a subroutine.
For completeness, we describe this simple algorithm here.

Proposition 3.3 ([13]). There is a polynomial space 2-approximation algorithm for the Bandwidth
problem that takes O∗(3n) time on connected graphs with n vertices.

Proof. Let G be a connected graph on n vertices. For ` increasing from 1 to dn/2e, the algorithm
does the following. Let C be an (n, `)-capacity vector. The algorithm goes over all the k =

⌈
n
`

⌉
choices for assigning the first vertex to some bucket in a C-bucket arrangement. The algorithm then
chooses an unassigned vertex u which has at least one neighbor that has already been assigned to
some bucket. Assume that a neighbor of u is assigned to the bucket i. Now there are at most three
choices of buckets (i− 1, i, and i+ 1) for assigning vertex u. Some of these choices may be invalid
either because of the capacity constraints of the bucket or because of the previous assignments
of (other) neighbors of u. If the choice is valid, the algorithm recurses by assigning u to that
bucket. Let `′ be the smallest integer for which the algorithm succeeds, in some branch, to place
all vertices of G into buckets in this way. Then, by Lemma 3.1, G has bandwidth at most 2`′ − 1
and by Lemma 3.2, G has bandwidth at least `′. Thus, the algorithm outputs 2`′ − 1, which is a
2-approximation for the bandwidth of G. As the algorithm branches into at most 3 cases for each
of the n vertices (except the first one), and all other computations only contribute polynomially
to the running time of the algorithm, this algorithm runs in worst-case O∗(3n) time using only
polynomial space.

We now show another simple algorithm based on a divide-and-conquer strategy that given an
(n, `)-capacity vector C, decides whether a C-bucket arrangement exists for a connected graph G.

Proposition 3.4. There is an algorithm that has as input a connected graph G on n vertices and
an (n, `)-capacity vector C with ` < n/2 and decides whether G has a C-bucket arrangement in

O∗
((

n
`

)
·
(n/2

`

)
· 24` · 3n/4

)
time.

Proof. Let k =
⌈
n
`

⌉
be the number of buckets in a C-bucket arrangement. Number the buckets from

1 to k from left to right according to the bucket arrangement. We solve a slightly more general
problem where some subset Q1 of vertices is restricted to bucket 1 and some subset Qk of vertices
is restricted to bucket k. If |Q1| > ` or |Qk| > `, then answer No. Select a bucket index i such
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that the sum of the capacities of the buckets numbered strictly smaller than i and the one for the
buckets numbered strictly larger than i are both at most n/2.

The algorithm goes over all possible
(n−|Q1∪Qk|

`

)
choices for filling bucket i with ` vertices from

V \(Q1∪Qk). Let X be a set of ` vertices assigned to the bucket i. Given a connected component of
G\X, note that all the vertices of this connected component must be placed either only in buckets
1 to i − 1 or buckets i + 1 to k. Note that each connected component of G \X contains at least
one vertex that is adjacent to a vertex in X (as G is connected). Therefore, for each connected
component of G \X, at least one vertex is placed into the bucket i − 1 or i + 1. As the capacity
of each bucket is at most `, G \ X has at most 2` connected components, otherwise there is no
C-bucket arrangement where X is assigned to the bucket i. Thus, there are at most 22` choices for
assigning connected components of G \X to the buckets 1 to i − 1 and i + 1 to k. Some of these
assignments might be invalid as they might violate the capacity constraints of the buckets or assign
vertices from Q1 to the buckets i + 1 to k or vertices from Qk to buckets 1 to i − 1. We discard
these invalid assignments.

For each choice of X and each valid assignment of the connected components of G \X to the
left or right of bucket i, we have now obtained two independent subproblems: one subproblem for
the buckets {1, . . . , i−1} and one subproblem for the buckets {i+ 1, . . . , k}. The instances of these
subproblems have at most n/2 vertices. Consider the subproblem for the buckets {1, . . . , i−1} (the
other one is symmetric) and let Y be the set of vertices associated to these buckets. Let Z ⊆ Y be
the set of vertices in Y that have at least one neighbor in X. Now, restrict Z to bucket i− 1 and
add edges to the subgraph G[Y ] such that Z becomes a clique. This does not change the problem,
as all the vertices in Z must be assigned to the bucket i − 1, and G[Y ] becomes connected. This
subproblem can be solved recursively.

The algorithm performs the above recursion until it reaches subproblems of size at most n/4,
which corresponds to two levels in the corresponding search tree. On instances of size at most n/4,
the algorithm invokes the algorithm of Proposition 3.3, which can easily be generalized to take into
account that buckets are already partially filled and takes worst-case O∗(3n/4) time.

Let T (n) be the running time needed for the above procedure to check whether a graph with n
vertices has a bucket arrangement for an (n, `)-capacity vector. Then,

T (n) ≤
(
n

`

)
· 22` ·

(
n/2

`

)
· 22` · 3n/4 · nO(1) = O∗

((
n

`

)
·
(
n/2

`

)
· 24` · 3n/4

)
.

This completes the proof of the proposition.

Combining Proposition 3.4 with Lemmas 3.1 and 3.2, we have the following corollary for 2-
approximating the bandwidth of a graph.

Corollary 3.5. There is an algorithm that, for a connected graph G on n vertices and an integer ` ≤
n, decides whether the bandwidth of G is at least `+1 or at most 2`−1 in O∗

((
n
`

)
·
(n/2

`

)
· 24` · 3n/4

)
time.

Proof. If ` ≥ n/2, the bandwidth of G is at most 2` − 1. Otherwise, use Proposition 3.4 with G
and some (n, `)-capacity vector C to decide if there exists a C-bucket arrangement for G. If so, then
the bandwidth of G is at most 2` − 1 by Lemma 3.1. If not, then the bandwidth of G is at least
`+ 1 by Lemma 3.2.
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The running time of the algorithm of Corollary 3.5 is interesting for small values of `. Namely, if ` ≤
n/26, the running time is O(1.9737n). In the remainder of this section, we improve Proposition 3.4.
We now concentrate on the cases where k = dn/`e ≤ 26.

Let C be an (n, `)-capacity vector. A partial C-bucket arrangement of an induced subgraph G′

of G is a placement of vertices of G′ into buckets such that: (a) each vertex in G′ is assigned to
a bucket or to the union of two consecutive buckets (i.e., the vertex is restricted to belong to one
of these buckets, but it is not fixed to which one of these two buckets the vertex belongs), and
each vertex that is assigned to the union of two consecutive buckets can be assigned to one of
these two buckets such that (b) the endpoints of each edge in G′ are either in the same bucket
or in two consecutive buckets, and (c) at most C[i] vertices are placed in each bucket i. A vertex
that is assigned to a bucket is not assigned to the union of two buckets, and vice-versa. Let B be
a partial C-bucket arrangement of an induced subgraph G′. We say that a bucket i is full in B
if the number of vertices that have been assigned to it equals its capacity C[i]. We say that two
consecutive buckets i and i+ 1 are jointly full in B if a vertex subset Y of cardinality equal to the
sum of the capacities of i and i+ 1 has been assigned to the union of these two buckets. We always
maintain the condition that if a bucket is full then no vertex has been assigned to the union of this
bucket and some other bucket, and if two consecutive buckets are jointly full then no vertex has
been assigned to any one of these two buckets individually. We say that a bucket is empty in B if
no vertex has been assigned to it nor to the union of this bucket and a neighboring bucket.

Proposition 3.6. Let G be a graph on n vertices and C be a capacity vector of size n and length k,
where k is an integer constant. Let B be a partial C-bucket arrangement of some induced subgraph
G′ of G such that in B some buckets are full, some pairs of consecutive buckets are jointly full, and
all other buckets are empty. If in B no 3 consecutive buckets are empty, then it can be decided if B
can be extended to a C-bucket arrangement in polynomial time.

Proof. Let G = (V,E) and G′ = (V ′, E′). Let r′ be the number of connected components of
G \ V ′ (the graph induced by V \ V ′), and let V ′` represent the set of vertices in the `th connected
component of G \ V ′.

If the bucket i is full in B, let Xi denote the set of vertices assigned to it. If the buckets i and
i+ 1 are jointly full in B, let Xi,i+1 denote the set of vertices assigned to the union of buckets i and
i+ 1.

We use dynamic programming to start from a partial bucket arrangement satisfying the above
conditions to construct a C-bucket arrangement. During its execution, the algorithm assigns vertices
to the buckets which are empty in B. A vertex is always assigned to the union of two consecutive
empty buckets or to a single empty bucket. It can only be assigned to a single empty bucket if
that bucket has no neighboring empty bucket. The idea is to iteratively assign the vertices in V ′`
to empty buckets and to maintain only a count of the number of vertices constrained to buckets in
various ways.

Note that if V ′`1 and V ′`2 have a common neighbor in Xi,i+1, then V ′`1 and V ′`2 need to be assigned
to the same bucket(s). On the other hand, in order to determine how many vertices from Xi,i+1

are constrained to bucket i, we cannot treat V ′`1 and V ′`2 separately. Obtain V = {V1, . . . , Vr} from
V ′ = {V ′1 , . . . , V ′r′} by repeatedly merging V ′`1 , V

′
`2
∈ V ′ if they have a common neighbor in two

consecutive buckets that are jointly full.
The dynamic programming algorithm constructs a table T , which has the following indices.

• An index p, representing the subproblem constrained to V1, . . . , Vp.

6



• For every empty bucket i in B such that neither the bucket i−1 nor the bucket i+1 is empty,
it has an index si, representing the number of vertices assigned to the bucket i.

• For every two consecutive empty buckets i and i+ 1 in B, it has indices ti,i+1, xi, and xi+1.
The index ti,i+1 represents the total number of vertices assigned to the buckets i and i + 1.
The index xi represents the number of vertices assigned to the buckets i and i+ 1 that have
at least one neighbor in the bucket i−1 (this includes the case where this neighbor is assigned
to the pair of jointly full buckets i − 2 and i − 1). The index xi+1 represents the number of
vertices assigned to the buckets i and i+1 that have at least one neighbor in the bucket i+2.

• For every two consecutive buckets i, i+1 which are jointly full in B, it has indices fi and fi+1

representing the number of vertices assigned to these buckets that have at least one neighbor
in the bucket i− 1 (fi) or in the bucket i+ 2 (fi+1).

The table T is initialized to false everywhere, except for the entry corresponding to all-zero indices,
which is initialized to true. The rest of the table is built by increasing values of p as described below.
Here, we only write those indices that differ in the looked-up table entries and the computed table
entry (i.e., indices in the table that play no role in a given recursion are omitted). We also ignore
the explicit checking of the invalid indices in the following description. The algorithm looks at the
vertices which are neighbors (in G) of the vertices in Vp and have already been assigned.

If NG(Vp) contains a vertex from each of the full buckets i − 1 and i + 1, no vertex from any
other bucket, and bucket i is empty in B, then

T [p, si, . . .] = T [p− 1, si − |Vp|, . . .].

If NG(Vp) contains a vertex from the full buckets i− 1 and i+ 2, no vertex from any other bucket,
and the buckets i and i+ 1 are both empty in B, then

T [p, ti,i+1, xi, xi+1, . . .] =
false if NG(Xi−1) ∩NG(Xi+2) 6= ∅,
T [p− 1, ti,i+1 − |Vp|, xi − |Vp ∩NG(Xi−1)|,
xi+1 − |Vp ∩NG(Xi+2)|, . . .] otherwise.

If NG(Vp) contains a vertex from the jointly full buckets i−2 and i−1 and a vertex from the jointly
full buckets i+ 1 and i+ 2, but no vertex from any other bucket, and bucket i is empty in B, then

T [p, si, fi−1, fi+1, . . . ] = T [p− 1, si − |Vp|, fi−1 − |NG(Vp) ∩Xi−2,i−1|,
fi+1 − |NG(Vp) ∩Xi+1,i+2|, . . . ].

In the above recursion, observe that, by the definition of V, no Vq ∈ V \Vp has a common neighbor
with Vp in G. Therefore, the vertices counted towards fi−1 and fi+1 will not be recounted towards
fi−1 and fi+1 for any p′ > p.

The recursion for the other possibilities where Vp has neighbors in (at least) two distinct buckets
are similar and can easily be deduced. We now consider the cases where Vp has only neighbors
in one bucket. Again, we only describe some key-cases, from which all other cases can easily be
deduced.
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If the vertices in Vp have only neighbors in the full bucket i− 1, and the buckets i− 2 and i are
both empty in B, but the buckets i− 3 and i+ 1 are either full or non-existing, then

T [p, si−2, si, . . .] = T [p− 1, si−2 − |Vp|, si, . . .] ∨ T [p− 1, si−2, si − |Vp|, . . .].

If the vertices in Vp have only neighbors in the full bucket i− 1, and the buckets i− 3, i− 2, i, and
i+ 1 are all empty in B, then

T [p, ti−3,i−2, xi−2, ti,i+1, xi, . . .] =

T [p− 1, ti−3,i−2 − |Vp|, xi−2 − |Vp ∩NG(Xi−1)|, ti,i+1, xi, . . .]

∨ T [p− 1, ti−3,i−2, xi−2, ti,i+1 − |Vp|, xi − |Vp ∩NG(Xi−1)|, . . .].

If the vertices in Vp have only neighbors in the jointly full buckets i and i+ 1, and the buckets i− 1
and i+ 2 are both empty in B, but the buckets i− 2 and i+ 3 are either full in B or non-existing,
then

T [p, si−1, si+2, fi, fi+1, . . .] =

T [p− 1, si−1 − |Vp|, si+2, fi − |NG(Vp) ∩Xi,i+1|, fi+1, . . .]

∨ T [p− 1, si−1, si+2 − |Vp|, fi, fi+1 − |NG(Vp) ∩Xi,i+1|, . . .].

Again, recall that no Vq ∈ V \ Vp has a common neighbor with Vp in G. Therefore, the vertices
counted towards fi and fi+1 will not be counted towards fi and fi+1 again for any p′ > p. The
final answer (true or false) produced by the algorithm is a disjunction over all table entries whose
indices are as follows: p = r, si = C[i] for every index si, ti,i+1 = C[i] + C[i + 1] for every index
ti,i+1, xi ≤ C[i] for every index xi, and fi ≤ C[i] for every index fi.

Since the number of relevant table entries is O(n3k/2+1) and each entry can be computed in
linear time, the running time of this algorithm is polynomial in n for a constant k.

Remark: The dynamic programming algorithm in Proposition 3.6 can easily be modified to con-
struct a C-bucket arrangement (from any partial bucket arrangement B satisfying the stated con-
ditions), if one exists.

If the number of buckets is a constant, the following proposition will be crucial in speeding up
the procedure for assigning connected components to the right or the left of a bucket filled with a
vertex set X. Denote by sc(G) the set of all connected components of G with at most

√
n vertices

and by lc(G) the set of all connected components of G with more than
√
n vertices. Let V (sc(G))

and V (lc(G)) denote the set of all vertices which are in the connected components belonging to
sc(G) and lc(G), respectively. We now make use of the fact that if there are many small components
in G \X, several of the assignments of the vertices in V (sc(G \X)) to the buckets are equivalent.

A partial C-bucket arrangement is pure if it does not assign a vertex to the union of two
consecutive buckets. Let C be a capacity vector of size n (i.e.,

∑
i C[i] = n) and let B be a pure

partial C-bucket arrangement of an induced subgraph G′ of G. We say that B produces the capacity
vector C′ if C′ is obtained from C by decreasing the capacity C[i] of each bucket i by the number of
vertices assigned to the bucket i in B.

Proposition 3.7. Let G = (V,E) be a graph on n vertices. Let C be a capacity vector of size n
and length k, where k is an integer constant. Let j be a bucket and X ⊆ V be a subset of C[j]
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vertices. Consider all capacity vectors that are produced by the pure partial C-bucket arrangements
of G[V (sc(G \X)) ∪X] in which the vertices in X are assigned to the bucket j. Then, there exists
an algorithm which runs in O∗(3

√
n) time and takes polynomial space, and enumerates all (distinct)

capacity vectors produced by these pure partial C-bucket arrangements.

Proof. Let Vl be the vertex set of the lth connected component in sc(G\X). Let Lp denote the list
of all capacity vectors produced by the pure partial C-bucket arrangements of G[

⋃
1≤l≤p Vl ∪X] in

which the vertices in X are assigned to the bucket j. Note that the number of distinct vectors in
Lp is O(nk). Then, L1 can be obtained by executing the algorithm of Proposition 3.3 on the graph
G[V1] with a capacity vector C′ which is the same as C except that C′[i] = 0. In general, Lp can
be obtained from Lp−1 by executing the algorithm of Proposition 3.3 on the graph G[Vp] for every
capacity vector in Lp−1. As the size of each connected component in sc(G \X) is at most

√
n, the

resulting running time is O∗(3
√
n).

3.1 Exponential Time 2-Approximation Algorithm for Bandwidth

Let G = (V,E) be the input graph. Our algorithm tests all bucket sizes ` from 1 to dn/2e until
it finds an (n, `)-capacity vector C such that G has a C-bucket arrangement. For a given `, let
k =

⌈
n
`

⌉
denote the number of buckets. Our algorithm uses various strategies depending on the

value of k. The case of k = 1 is trivial. If ` = dn/2e, we have at most two buckets and any partition
of the vertex set of G into sets of sizes ` and n − ` is a valid C-bucket arrangement. If k ≥ 27,
Corollary 3.5 gives a running time of O(1.9737n). For all other values of k, we will obtain running
times in O(1.9797n).

Let Ik be the set of all integers lying between n/k and n/(k − 1). We have that ` ∈ Ik. The
basic idea (as illustrated in Proposition 3.4) is quite simple. The algorithm tries all possible ways
of assigning vertices to the middle bucket. Once the vertex set X assigned to the middle bucket
is fixed and the algorithm has decided for each connected component of G \ X if the connected
component is to be assigned to the buckets to the left or to the right of the middle bucket, the
problem breaks into two independent subproblems on buckets which are to the left and to the
right of the middle bucket. To get the claimed running time, we build upon this idea to design
individualized techniques for different ks (between 3 and 26). For each case, if G has at least one
C-bucket arrangement for an (n, `)-capacity vector C, then one such arrangement is constructed. We
know that if G has no C-bucket arrangement for an (n, `)-capacity vector C then the bandwidth of
G is at least `+1 (Lemma 3.2), and if it has one then its bandwidth is at most 2`−1 (Lemma 3.1).
If k = 8, 10, or 12, the algorithm uses a left-packed (n, `)-capacity vector C, and otherwise, the
algorithm uses a balanced (n, `)-capacity vector C.

k = 3. The algorithm goes over all subsets X ⊆ V of cardinality |X| = C[3] ≤ d(n − `)/2e. X is
assigned to the bucket 3. If the remaining vertices can be assigned to the buckets 1 and 2 in a way
such that all vertices which are neighbors of the vertices in X (in G) are assigned to the bucket 2,
then G has a C-bucket arrangement where C has length 3. The worst-case running time for this
case is max `∈I3 O∗(

(
n
|X|
)
).

k = 4 or k = 5. The algorithm goes over all subsets X ⊆ V with |X| = `. X is assigned to the
bucket 3. Then, we can conclude using the dynamic programming algorithm from Proposition 3.6
(see also the remark following it). The worst-case running time for these cases are max `∈Ik O∗(

(
n
`

)
).
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k = 6. If k = 6, the algorithm goes through all subsets X ⊆ V with |X| = 2`. X is assigned to
the union of buckets 3 and 4 (i.e., some non-specified ` vertices from X are assigned to the bucket 3,
and the remaining vertices of X are assigned to the bucket 4). Then, we can again conclude by the
algorithm from Proposition 3.6. The worst-case running time for this case is max `∈I6 O∗

((
n
2`

))
.

k = 7. The algorithm goes through all subsets X ⊆ V with |X| = `. X is assigned to the bucket 4.
For each such X, the algorithm uses Proposition 3.7 to enumerate all possible capacity vectors
produced by the pure partial C-bucket arrangements of G[V (sc(G \X)) ∪X] (with X assigned to
the bucket 4). This step can be done in O∗(3

√
n) time. There are only polynomially many such

(distinct) capacity vectors. For each such capacity vector C′, the algorithm goes through all choices
of assigning each connected component in lc(G \X) to the buckets 1 to 3 or to the buckets 5 to 7.
Thus, we obtain two independent subproblems on the buckets 1 to 3 and on the buckets 5 to 7. As
the number of components in lc(G \X) is at most

√
n (as each connected component has at least√

n vertices), going through all possible ways of assigning each connected component in lc(G \X)
to the buckets numbered smaller or larger than 4 takes O∗(2

√
n) time. Some of these assignments

may turn out to be invalid. For each valid assignment, let V1 denote the vertex set assigned to
the buckets 1 to 3. Then, the vertices of V1 are assigned to the buckets 1 to 3 as described in the
case with 3 buckets with the capacity vector (C′[1], C′[2], C′[3]) and with the additional restriction
that all vertices in V1 which are neighbors of the vertices in X need to be assigned to the bucket 3.
The number of vertices in V1 is at most d(n− `)/2e (as C is balanced). Now the size of bucket 1 is
C′[1] ≤ d(n− 5`)/2e. Let n1 = d(n− `)/2e and `1 = d(n− 5`)/2e. Since n1 ≥ 2`1, there are at most(
n1

`1

)
choices to assign a subset of V1 to bucket 1. If V1 has at least one valid bucket arrangement

into 3 buckets (with vertices in V1 neighboring the vertices in X assigned to the bucket 3), then the
above step will construct one in worst-case O∗(

(
n1

`1

)
) time. The algorithm uses a similar approach

for V2 = V \ (V1 ∪X) with the buckets 5 to 7. Since, the algorithm tries out every subset X for
bucket 4, the worst-case running time for this case is

max
`∈I7
O∗
((

n

`

)
·
(

3
√
n + 2

√
n ·
(
n1
`1

)))
= max

`∈I7
O∗
((

n

`

)
· 2O(

√
n) ·
(
n1
`1

))
.

k = 8. The algorithm uses a left-packed (n, `)-capacity vector C for this case. The algorithm
goes through all subsets X ⊆ V with |X| = `. X is assigned to the bucket 4. The remaining
analysis is similar to the case with 7 buckets. case with 3 buckets with the new capacity vector
(C′[1], . . . , C′[3]) and the additional restriction that all vertices in V1 which are neighbors of the
vertices in X need to be assigned to bucket 3. The vertices in V2 are assigned to buckets 5 to 8
as in the case with 4 buckets with the capacity vector (C′[5], . . . , C′[8]) and the restriction that the
vertices in V2 neighboring the vertices in X are assigned to bucket 5. The algorithm considers each
capacity vector C′ produced by the pure partial C-bucket arrangements of G[V (sc(G \ X)) ∪ X],
where X is assigned to the bucket 4, and each valid choice of assigning the components in lc(G\X)
to the left or the right of the bucket 4. Let V1 denote the vertex set assigned to the buckets 1 to 3.
Buckets 1 to 3 have a joint capacity of 3` (as C is left-packed), and there are at most

(
3`
`

)
choices

to assign a subset of V1 of size C′[1] to bucket 1. Buckets 5 to 8 have a joint capacity of n− 4`, and
there are at most

(
n−4`

`

)
choices to assign a subset of V \ (V1 ∪X) of size C′[7] to bucket 7. The

worst-case running time for this case is

max
`∈I8
O∗
((

n

`

)
· 2O(

√
n) ·max

{(
3`

`

)
,

(
n− 4`

`

)})
.
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k Running time Expression

k ≤ 2 poly(n)

k = 3 O(1.8899n) max
`∈I3

{(
n

n−`
2

)}
=

(
n
n
3

)
k = 4 O(1.8899n) max

`∈I4

{(
n

`

)}
=

(
n
n
3

)
k = 5 O(1.7548n) max

`∈I5

{(
n

`

)}
=

(
n
n
4

)
k = 6 O(1.9602n) max

`∈I6

{(
n

2`

)}
=

(
n
2n
5

)
k = 7 O(1.9797n) max

`∈I7

{(
n

`

)
· 2O(

√
n) ·
( (n−`)

2
(n−5`)

2

)}
=

(
n
n
7

)
·
( 3n

7
n
7

)
· 2O(

√
n)

k = 8 O(1.9797n) max
`∈I8

{(
n

`

)
· 2O(

√
n) ·max

{(
3`

`

)
,

(
n− 4`

`

)}}
=

(
n
n
7

)
·
( 3n

7
n
7

)
· 2O(

√
n)

k = 9 O(1.8937n) max
`∈I9

{(
n

`

)
· 2O(

√
n) ·
( (n−`)

2

`

)}
=

(
n
n
8

)
·
( 7n

18
n
8

)
· 2O(

√
n)

k = 10 O(1.8199n) max
`∈I10

{(
n

`

)
· 2O(

√
n) ·max

{(
4`

`

)
,

(
n− 5`

`

)}}
=

(
n
n
9

)
·
( 4n

9
n
9

)
· 2O(

√
n)

k = 11 O(1.7568n) max
`∈I11

{(
n

`

)
· 2O(

√
n) ·
( (n−`)

2

`

)}
=

(
n
n
10

)
·
( 9n

20
n
10

)
· 2O(

√
n)

k = 12 O(1.8415n) max
`∈I12

{(
n

`

)
· 2O(

√
n) ·max

{(
5`

`

)
,

(
n− 6`

2`

)}}
=

(
n
n
11

)
·
( 5n

11
2n
11

)
· 2O(

√
n)

13 ≤ k ≤ 23 O(1.9567n) max
`∈Ik

{(
n

`

)
·
(
n/2

`

)
·
(
n/4

`

)
· 2O(

√
n)

}
=

(
n
n
12

)
·
( n

2
n
12

)
·
( n

4
n
12

)
· 2O(

√
n)

24 ≤ k ≤ 26 O(1.6869n) max
`∈Ik

{(
n

`

)
·
(
n/2

`

)
·
(
n/4

`

)
·
(
n/8

`

)
· 2O(

√
n)

}
= 2O(

√
n) ·

3∏
i=0

( n
2i
n
23

)
k ≥ 27 O(1.9737n) max

`∈Ik

{(
n

`

)
·
(
n/2

`

)
· 24` · 3n

4

}
=

(
n
n
26

)
·
( n

2
n
26

)
· 2 2n

13 · 3n
4

Table 1: Running time of the 2-approximation algorithm for Bandwidth according to the number
of buckets k = dn/`e. Ik is the set of all integers lying between n/(k − 1) and n/k. The final
running time is dominated by the cases of k = 7 and k = 8 (when ` is close to n/7).
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k = 9 or k = 11. The algorithm goes through all subsets X ⊆ V with |X| = `. X is assigned to
the bucket dk/2e. As in the previous two cases, Proposition 3.7 is invoked for G[V (sc(G \X))∪X]
(with X assigned to the bucket dk/2e). For each capacity vector generated by Proposition 3.7,
the algorithm considers every possible way of assigning each connected component in lc(G \X) to
the buckets 1 to dk/2e − 1 or to the buckets dk/2e + 1 to k. Each assignment gives rise to two
independent subproblems — one on vertices V1 assigned to the buckets 1 to (k − 1)/2, and one
on vertices V2 assigned to the buckets (k + 3)/2 to k (with vertices in V1 and V2 neighboring the
vertices in X assigned to the buckets (k − 1)/2 and (k + 3)/2, respectively). The algorithm solves
these subproblems recursively as in the cases with 4 or 5 buckets. Let n1 = d(n− `)/2e. Then, the
worst-case running times are max `∈Ik O∗(

(
n
`

)
· 2O(

√
n) ·
(
n1

`

)
).

k = 10 or k = 12. The algorithm uses a left-packed (n, `)-capacity vector C for these cases.
The algorithm goes through all subsets X ⊆ V with |X| = `. X is assigned to the bucket k/2.
The remaining analysis is similar to the previous cases. In the two independent subproblems,
generated for each capacity vector C′ and assignment of the connected components in lc(G \ X)
to the left or right of bucket k/2, the algorithm fills the buckets 3 and 8 if k = 10, and the
bucket 3 and the union of the buckets 9 and 10 if k = 12. For k = 10, the worst-case running
time is max `∈I10 O∗(

(
n
`

)
· 2O(

√
n) · max{

(
4`
`

)
,
(
n−5`

`

)
}). For k = 12, the worst-case running time is

max `∈I12 O∗(
(
n
`

)
· 2O(

√
n) ·max{

(
5`
`

)
,
(
n−6`
2`

)
}).

13 ≤ k ≤ 26. The algorithm enumerates all subsets X ⊆ V with |X| = `. X is assigned to the
bucket dk/2e. As in the previous cases, Proposition 3.7 is invoked for G[V (sc(G \ X)) ∪ X]. For
each capacity vector generated by Proposition 3.7, the algorithm looks at every possible way of
assigning each connected component in lc(G \X) to the buckets 1 to dk/2e − 1 or to the buckets
dk/2e + 1 to k. Each assignment gives rise to two independent subproblems. For each of these
two subproblems, the algorithm proceeds recursively until reaching subproblems with at most 2
consecutive empty buckets, which can be solved by Proposition 3.6 in polynomial time. If k ≤ 23,
this recursion has depth 3, giving a running time of

max
`∈Ik
O∗
((

n

`

)
· 2O(

√
n) ·
(
n/2

`

)
· 2O(

√
n) ·
(
n/4

`

)
· 2O(

√
n)

)
.

If 24 ≤ k ≤ 26, the recursion has depth 4, giving a running time of

max
`∈Ik
O∗
((

n

`

)
· 2O(

√
n) ·
(
n/2

`

)
· 2O(

√
n) ·
(
n/4

`

)
· 2O(

√
n) ·
(
n/8

`

)
· 2O(

√
n)

)
.

k ≥ 27. By Proposition 3.4 the running time of the algorithm is bounded in this case by

max
`∈Ik
O∗
((

n

`

)
·
(
n/2

`

)
· 24` · 3n/4

)
.

Main Result. Putting together all the above arguments and using the numerical values from
Table 1 we obtain our main result (Theorem 3.8). The running time is dominated by the cases
where k = 7 and k = 8. The algorithm outputs 2`− 1, where ` is the smallest integer such that G
has a bucket arrangement with an (n, `)-capacity vector. The algorithm requires only polynomial
space.
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IfG is disconnected, the algorithm finds for each connected componentGi = (Vi, Ei) the smallest
`i such that Gi has a bucket arrangement corresponding to a (|Vi|, `i)-capacity vector and outputs
2`m − 1, where `m = maxi{`i}.

Theorem 3.8 (Main Theorem). There is a polynomial space 2-approximation algorithm for the
Bandwidth problem that takes O(1.9797n) time on graphs with n vertices.

4 Conclusion

For finding exact solutions, it is known that many problems (by subexponential time preserving
reductions) do not admit subexponential time algorithms under the Exponential Time Hypoth-
esis [29]. The Exponential Time Hypothesis postulates that there is a constant c > 0 such that
3-Sat cannot be solved in time O(2cn), where n is the number of variables of the input formula. We
conjecture that the Bandwidth problem has no subexponential time 2-approximation algorithm,
unless the Exponential Time Hypothesis fails.
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