
Exponential Time Algorithms:
Structures, Measures, and

Bounds

Serge Gaspers

In Partial Fulfillment of the Requirements for the Degree of
Philosophiae Doctor (PhD)

Department of Informatics

University of Bergen

Bergen, Norway
October 6, 2008

2

Abstract

This thesis studies exponential time algorithms, more precisely, algorithms ex-
actly solving problems for which no polynomial time algorithm is known and
likely to exist. Interested in worst–case upper bounds on the running times,
several known techniques to design and analyze such algorithms are surveyed.
A detailed presentation of the design and especially the analysis of branching
algorithms is given. Then, the branching paradigm is used to design faster al-
gorithms for various problems, including the Feedback Vertex Set problem,
#Maximal Independent Sets, Max 2-Sat, Max 2-CSP, and mixed in-
stances of the latter two problems. The analysis of these algorithms heavily relies
on problem–specific measures of the instances. These measures capture the struc-
ture of the instances, not merely their size. This makes them more appropriate
to quantify the progress an algorithm makes in the process of solving a problem
for an instance.

Upper bounds on mathematical objects are also proved in this thesis. A bound
on the maximum number of minimal feedback vertex sets is derived via the same
methodology as the one used to upper bound the running time of branching
algorithms. For the maximum number of maximal bicliques, a simple reduction
is used to bound it in terms of the maximum number of maximal independent
sets in a graph. Finally, bounds for the treewidth of a graph are proved using
inductive and geometric arguments.

Expanding the methodology to design exponential time algorithms, new tech-
niques are presented. Two of them combine treewidth based algorithms with
branching or enumeration algorithms. Another one is the well known technique
of Iterative Compression, prominent in the design of parameterized algorithms,
and adapted here to the design of exponential time algorithms.

4

Preface

This thesis is partly based on the following papers in refereed conference proceed-
ings or journals, which are either published, accepted for publication, or in the
review process.

[FGK+08] Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff,
and Saket Saurabh, Iterative compression and exact algorithms, Proceed-
ings of the 33rd International Symposium on Mathematical Foundations of
Computer Science (MFCS 2008), Lecture Notes in Computer Science, vol.
5162, Springer, Berlin, 2008, pp. 335–346.

[FGP06] Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin, Finding a
minimum feedback vertex set in time O(1.7548n), Proceedings of the 2nd
International Workshop on Parameterized and Exact Computation (IW-
PEC 2006), Lecture Notes in Computer Science, vol. 4169, Springer, Berlin,
2006, pp. 184–191.

[FGPR08] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Raz-
gon, On the minimum feedback vertex set problem: Exact and enumeration
algorithms, Algorithmica 52 (2008), no. 2, 293–307.

[FGS07] Fedor V. Fomin, Serge Gaspers, and Saket Saurabh, Improved exact
algorithms for counting 3- and 4-colorings, Proceedings of the 13th An-
nual International Computing and Combinatorics Conference (COCOON
2007), Lecture Notes in Computer Science, vol. 4598, Springer, Berlin,
2007, pp. 65–74.

[FGS06] Fedor V. Fomin, Serge Gaspers, and Saket Saurabh, Branching and
treewidth based exact algorithms, Proceedings of the 17th Annual Interna-
tional Symposium on Algorithms and Computation (ISAAC 2006), Lecture
Notes in Computer Science, vol. 4288, Springer, Berlin, 2006, pp. 16–25
(received the best Student Paper Award of ISAAC 2006).

6

[FGSS] Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A. Stepanov,
On two techniques of combining branching and treewidth, Algorithmica, to
appear.

[GKL06] Serge Gaspers, Dieter Kratsch, and Mathieu Liedloff, Exponential
time algorithms for the minimum dominating set problem on some graph
classes, Proceedings of the 10th Scandinavian Workshop on Algorithm The-
ory (SWAT 2006), Lecture Notes in Computer Science, vol. 4059, Springer,
Berlin, 2006, pp. 148–159.

[GKL08] Serge Gaspers, Dieter Kratsch, and Mathieu Liedloff, On independent
sets and bicliques in graphs, Proceedings of the 34th International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2008), Lecture
Notes in Computer Science, Springer, Berlin, 2008, to appear.

[GKLT] Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Ioan Todinca,
Exponential time algorithms for the minimum dominating set problem on
some graph classes, submitted.

[GS09] Serge Gaspers and Gregory Sorkin, A universally fastest algorithm for
Max 2-Sat, Max 2-CSP, and everything in between, Proceedings of the
20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2009),
ACM and SIAM, 2009, to appear.

Acknowledgments

First and foremost, I would like to express my gratitude to my supervisor Fedor V.
Fomin. His guidance, insight, and knowledge were of great help for my intellectual
advancement. Ideas were always much clearer when leaving his office than they
were before.

I would also like to sincerely thank my co–supervisor Pinar Heggernes for being
a great teacher, an instructive researcher and a welcoming person. Already in
advance, I would like to thank the members of my PhD committee, Dag Haugland,
Thore Husfeldt, and Ryan Williams. My deepest thanks go to my Master thesis
supervisor, Dieter Kratsch, whom I owe my interest in algorithms, who inspired
me, taught me, and introduced me to the area of exponential time algorithms.

Many thanks for collaboration and inspiring ideas go to my co–authors Math-
ieu Liedloff, Margaret-Ellen Messinger, Richard J. Nowakowski, Pawe l Pra lat,
Artem V. Pyatkin, Igor Razgon, Saket Saurabh, Gregory B. Sorkin, Alexey A.
Stepanov, and Ioan Todinca. On this behalf, I would also like to thank all
other people with whom I collaborated: Henning Fernau, Stephen Finbow, Mar-
tin Fürer, Shiva P. Kasiviswanathan, Elena Losievskaja, Paul Ottaway, Daniel
Raible, Yngve Villanger, Magnus Wahlström, David Wolfe, and Norbert Zeh.
For interesting discussions or teaching me valuable things, I would like to thank
Binh-Minh Bui-Xuan, Frederic Dorn, Michael R. Fellows, Fabrizio Grandoni, Jan
Kratochv́ıl, Daniel Lokshtanov, Daniel Meister, my office mate Rodica Mihai,
Frances A. Rosamond, Jan Arne Telle, and David R. Wood. I am also grateful to
Benôıt Martin, Baruch Schieber, Alex Scott, Paul Yans, all current and former
members of the Algorithms group, and the members of the administration.

For financial support, I would like to thank the Norwegian Research Council,
the L. Meltzers Høyskolefond and the University of Bergen.

On the personal side, I would first like to thank my family, and especially my
parents Esther and Guy, my brother Sven, and my grandmother Mathilde, who
sadly died in the beginning of this year and to whom I dedicate this thesis.

For all her love, support and great company I would like to thank my girlfriend
Nancy — I love you. Further I would like to thank all my friends and travel bud-

dies from Badminton Kayldall, BSI Frisbee, BSI Badminton, Djerv Badminton,
Flying Red Rockx Kayl, the Norwegian course, my former classmates and the
people I lived with.

Fir méng Bomi.

10

Contents

List of Figures 15

List of Tables 17

1 Introduction 19

1.1 Negative Results . 22

1.2 Overview of Techniques . 23

1.3 On Space and on Time . 32

1.4 Outline of Thesis . 34

2 Branching Algorithms 37

2.1 Simple Analysis . 39

2.2 Lower Bounds on the Running Time of an Algorithm 41

2.3 Measure Based Analysis . 43

2.4 Optimizing the Measure . 47

2.5 Search Trees . 50

2.6 Branching Numbers and their Properties 51

2.7 Exponential Time Subroutines . 52

2.8 Towards a Tighter Analysis . 53

2.9 Conclusion . 56

3 Feedback Vertex Sets 57

3.1 Motivation and Previous Work . 57

3.2 Discussion of Results . 58

3.3 Preliminaries . 59

3.4 Computing a Minimum Feedback Vertex Set 61

3.5 On the Number of Minimal Feedback Vertex Sets 65

3.6 Conclusion . 70

12 CONTENTS

4 On Bicliques in Graphs 73
4.1 Introduction . 73
4.2 Polynomial Time Reductions . 75
4.3 Improving Prisner’s Bound . 76
4.4 Counting Algorithms . 77
4.5 Conclusion . 86

5 Max 2-Sat, Max 2-CSP, and everything in between 89
5.1 Introduction . 90
5.2 Definitions . 93
5.3 Algorithm and Outline of Analysis 94
5.4 Some Initial Constraints . 102
5.5 Simplification Rules and their Weight Constraints 103
5.6 Some Useful Tools . 109
5.7 Branching Reductions and Preference Order 114
5.8 Cubic Instances . 115
5.9 Instances of Degree 4 . 121
5.10 Instances of Degree 5 . 126
5.11 Instances of Degree 6 . 130
5.12 Tuning the Bounds . 131
5.13 Conclusion . 132

6 Treewidth Bounds 135
6.1 Bounds on the Pathwidth of Sparse Graphs 136
6.2 Bound on the Treewidth of Circle Graphs 140
6.3 Conclusion . 149

7 Domination on Graph Classes 151
7.1 Previous Work . 151
7.2 Our Results . 152
7.3 General Framework . 153
7.4 Dense Graphs . 157
7.5 Chordal Graphs . 159
7.6 Circle Graphs, 4-chordal Graphs, and Weakly Chordal Graphs . . 161
7.7 Conclusion . 162

8 Enumeration and Pathwidth 163
8.1 Considered Problems . 163
8.2 Our Results . 165
8.3 Framework Combining Enumeration and Pathwidth 165
8.4 Applications . 170
8.5 Conclusion . 173

CONTENTS 13

9 Iterative Compression and Exact Algorithms 175
9.1 Background . 175
9.2 Maximum Independent Set . 177
9.3 #k-Hitting Set . 179
9.4 Maximum Induced Cluster Subgraph 184
9.5 Conclusion . 188

10 Conclusion 189

Glossary 191

Problem Definitions 195

Bibliography 199

A Detailed running time analysis of Algorithm #MaximalIS 223

B Convex Program for the 2-CSP Algorithm 231

Index 237

14 CONTENTS

List of Figures

1.1 Illustration of the main phase of Liedloff’s algorithm for Domi-
nating Set in bipartite graphs 27

2.1 Algorithm mis(G), computing the size of a maximum independent
set of any input graph G . 39

2.2 Graph P 2
n used to lower bound the running time of Algorithm mis 42

2.3 Additional simplification rule for Algorithm mis 43

2.4 Mathematical program in AMPL modelling the constraints for the
analysis of Algorithm mis . 48

2.5 Illustration of a search tree . 50

2.6 First levels of the search tree for the execution of Algorithm mis
on the instance P 2

n . 50

2.7 Modified branching rule for Algorithm mis 53

2.8 A state graph . 55

3.1 Generating graph C5 � P2 used to lower bound the number of
maximal induced forests in a graph 69

4.1 Algorithm #MaximalIS counting all maximal independent sets . . 79

4.2 Graph Gl used to lower bound the running time of Algorithm
#MaximalIS . 85

4.3 A part of the search tree of the execution of Algorithm #MaximalIS

on the graph Gl . 85

5.1 Outline of Algorithm max2csp and its analysis 95

5.2 Procedure Simplify . 95

5.3 Illustration of a 3-cut, reduction 5.8.1 117

5.4 Illustration for reduction 5.8.2, on a vertex with independent neigh-
bors . 117

16 LIST OF FIGURES

5.5 Illustration of reduction on a vertex with one edge in its neighbor-
hood, Case 5.8.3 . 119

5.6 2-cut rule creates a heavy edge 120
5.7 2-cut rule avoids creating a heavy edge 121
5.8 The case p′3 = 2 may lead to just one good degree reduction outside

N [u] . 124
5.9 The case p′3 = 3 (P ′

3 = {v1, v2, v3}) may lead to just two good
degree reductions . 124

5.10 Plot of we, wh, and (1− p)we + pwh 132

6.1 A circle model and the corresponding circle graph 141
6.2 Examples of parallel and non parallel sets of chords 142
6.3 Algorithm TriangCircle computing a triangulation of weight at

most 4∆(G) of any circle graph G 144
6.4 Procedure ScanChord producing a set of scanlines triangulating

the polygon defined by the neighboring scanpoints of a vertex chord144
6.5 Illustration of ScanChord(S, v = [a, b]) 144
6.6 Procedure ParaCuts computing a triangulation of weight at most

4∆(G) of the polygon defined by the scanpoints of the circle model 145
6.7 Illustration of ParaCuts(S) . 145
6.8 Procedure TriangOuter computing a set of scanlines triangulat-

ing an outer polygon where every vertex chord in this polygon
crosses the delimiting scanline of the outer polygon 146

6.9 Illustration of TriangOuter(S, s̃ = 〈ã, b̃〉) 146
6.10 Procedure TriangInner computing a set of scanlines triangulating

an inner polygon . 147
6.11 Illustration of TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉) 148
6.12 Procedure OuterParaCuts computing a set of scanlines triangu-

lating an outer polygon where not necessarily every vertex chord
in this polygon crosses the delimiting scanline of the outer polygon 149

7.1 Algorithm for computing the domination number of any graph be-
longing to a hereditary graph class such that a tree decomposition
of width at most c ·∆(G) of every graph G in this graph class can
be computed in polynomial time for some constant c 155

8.1 Algorithm enumISPw(G, I, C) combining the approach of enu-
merating independent sets and of dynamic programming over a
path decomposition of the graph to solve various problems 167

8.2 Maple code for obtaining optimal values for the constants α2 to α5

of Algorithm enumISPw for solving the #3-Coloring problem 171

List of Tables

1.1 Maximum size of n for different running times for a given amount
of time under the assumption that 230 operations can be performed
in one second . 33

2.1 Positive real roots of cd(x) . 41
2.2 An assignment of the weights for the measure µ(G) =

∑5
i=1 wini

for the analysis of Algorithm mis 47
2.3 An optimal assignment of the weights for the measure µ(G) =∑5

i=1 wini for the analysis of Algorithm mis 49
2.4 An optimal assignment of the weights for the measure µ(G) =∑5

i=1 wini for the analysis of Algorithm mis modified according to
Figure 2.7 . 54

5.1 A historical overview of algorithms for Max 2-Sat and Max 2-CSP 90
5.2 Values of we, wh and w := pwh+(1−p)we according to the fraction

p of heavy edges and the maximum degree ∆(F) of a formula F . 100

6.1 Bounds on the pathwidth of sparse graphs according to the number
of vertices of each degree . 139

7.1 Running time of our algorithms for Minimum Dominating Set
on some graph classes . 153

7.2 Running time of the algorithm in Corollary 7.5 for some values of c 156

9.1 Running times of the algorithms for #Minimum k-Hitting Set
and Minimum k-Hitting Set 184

18 LIST OF TABLES

Chapter 1
Introduction

One does not fear the perebor1 but rather uses
it reasonably via a realistic estimation of the
dimensions of the disaster it may imply.

Adel’son-Vel’skii et al. [AVAD76]
(translated by Trakhtenbrot [Tra84])

“Eureka - You Shrink!” shouted out 28-year old Jack Edmonds in 1963 when
he discovered new insights into the Matching problem, says a legend.2 These
insights were fundamental for his polynomial time Matching algorithm. In the
paper [Edm65] presenting this algorithm he distinguished good algorithms from
bad algorithms, that is those requiring only polynomial computation time in the
length of the input from those that are subject to the ‘curse of exponentiality’.
Before this time, researchers were mainly distinguishing between finite and infinite
computation — no wonder, because one of the only so far implemented algorithms
for combinatorial optimization problems was the Simplex algorithm which has
worst case exponential running time, but it worked well in practice nevertheless.

As computing devices became more popular, more and more people experi-
enced that good algorithms were indeed fast and that exponential time algorithms
were slow on large inputs.

By the end of the ’60s it became ever more clear that there were problems
resisting good algorithms to solve them. This led Stephen A. Cook to define
the class NP , of problems for which a solution (a certificate) can be checked in
time polynomial in the instance size. It is clear that the class P , of problems
that can be solved in polynomial time, is a subset of NP , but whether or not

1Russian for “brute force” or “exhaustive search”, but more accurately refers here to any
exponential time search procedure

2Edmonds confirmed this at the Aussois 2001 workshop [JRR03], except that instead of
‘Eureka’, it maybe was some less dignified word

20 Introduction

it is a proper subset of NP is not known until today. The famous P vs. NP
question is nowadays one of the most important open questions in science. In
his influential paper [Coo71] introducing the class NP , Cook also proves that
the Sat problem belongs to the class of NP–complete problems, the subset of
the hardest problems in NP . A polynomial time solution to one NP–complete
problem would imply that P = NP . Leonid A. Levin established the same
result independently [Lev73]. In the year following the publication of Cook’s
NP–completeness theorem, Richard M. Karp [Kar72] proposed a general method
for proving the NP–completeness of other problems by reductions to problems
already known to be NP–complete, and proves NP–completeness for another 21
well known problems. At the end of the ’70s, Garey and Johnson [GJ79] published
the first book on NP–completeness which still serves as a reference to many
researchers. Besides presenting NP–completeness results for many problems,
the book also raises the question of how to cope with intractable problems.

As defined above, many problems, like Maximum Independent Set, are
not in NP unless P = NP . Given a graph G and an independent set of G, it
cannot be checked in polynomial time whether this is a maximum independent
set for G unless P = NP . The crux is here that the class NP has been designed
namely for decision problems, such as the following: given a graph G and a
constant k, does G admit an independent set of size at least k? This problem can
be shown to be NP–complete [Kar72]. For optimization versions of the problems
one usually speaks of NP–hard problems if the corresponding decision version
is NP–complete. More formally, a problem P1 is NP–hard if an algorithm (or
oracle) solving P1 in polynomial time makes it possible to solve an NP–complete
problem P2 in polynomial time, that is P2 can be reduced to P1 in polynomial
time. Other kinds of problems often considered are counting problems, where
one is asked to count all objects respecting certain criteria, and enumeration
problems where one is asked to list all objects respecting certain criteria. Several
complexity classes were introduced to capture the hardness of these problems:
NPO for optimization problems [ACG+99], #P for counting problems [Val79],
and ENP and several subclasses for enumeration problems [Fuk96].

Various methods have, since the history of NP–completeness, been studied
to confront NP–hard problems, such as heuristics, approximation algorithms,
randomized algorithms, average case complexity, fixed parameter tractability,
the restriction of the problems instances to classes of polynomial time solvable
instances, hybrid algorithms (see [VWW06]), or the design of exponential time
algorithms for moderate instance sizes.

This thesis is about one such strategy to deal withNP–hard problems, namely
exponential time algorithms. In this area of algorithm research, we try to design
algorithms that solve hard problems exactly3 and whose worst case running time

3in contrast to heuristics or approximation algorithms

21

is dominated by a “small”4 exponential function of the input size. The main
point is that a reasonable amount of exponentiality is the price we have to pay
to obtain exact solutions to combinatorial hard problems, unless P = NP .

In the literature, many games and puzzles (or variants of them) have been
shown to be NP–complete, such as FreeCell, Mahjong, Mastermind, Mineswee-
per, Sudoku and Tetris; see [KPS08] for a recent survey. Nevertheless, they are
routinely solved by humans and experienced players even crack the hardest in-
stances in a reasonable amount of time. Even if there is no known polynomial
time algorithm for these games and puzzles, humans can still solve them if the in-
stances are not too large. The same is true for computer programs: on moderately
sized instances, even exponential time algorithms perform fast.

As customary, for input instances that are graphs, formulas or sets, we denote
by n the number of vertices, variables or elements of the input and by m the num-
ber of edges, clauses or sets of the input. Unless specified in the problem definition
list on page 195 or otherwise, we denote by n the length of the input for all other
types of input instances. As we are mainly interested in the exponential part of
the running time of algorithms, let us also use a modified “big-Oh” notation that
suppresses polynomially bounded terms. For an exponential function f ,

O∗(f(n)) := f(n) · nO(1).

Quite early, researchers in theoretical computer science realized that some
NP–hard problems can be solved provably faster than with a trivial brute–force
search through the space of all candidate solutions. Early examples of exponential
time algorithms include

• an O∗(2n) algorithm for the Travelling Salesman problem by Held and
Karp [HK62], which is still the fastest known algorithm for this problem,

• an O∗(2n/2) algorithm for the Binary Knapsack problem by Horowitz
and Sahni [HS74],

• an O(2.4423n) algorithm for the Chromatic Number problem and a
O(1.4423n) algorithm for the 3-Coloring problem by Lawler [Law76],

• an O(1.2599n) algorithm for the Maximum Independent Set problem
by Tarjan and Trojanowski [TT77],

• an O∗(2n/2) algorithm for Binary Knapsack and other problems by
Schroeppel and Shamir [SS81], which uses less space (O∗(2n/4)) than the
one by Horowitz and Sahni,

4here, small is relative to the considered problem; for some problems, a running time of the
form O(cn) for any constant c would be a great achievement, and for other problems running
times of, say O(1.4n), are easily obtained

22 Introduction

• anO∗(2n) polynomial space algorithm for the Hamiltonian Path problem
by Karp [Kar82]

• an O(1.6181n) algorithm for the 3-Sat problem by Monien and Specken-
meyer [MS85], and

• O(1.2346n) and O(1.2109n) algorithms for the Maximum Independent
Set problem by Jian [Jia86] and Robson [Rob86]

Only scattered results (for example [ST90, GSB95, BE95, Zha96, Kul99,
Bei99]) in the area of exponential time algorithms appeared in the literature in
the ’90s. Probably due to a DIMACS Workshop on “Faster Exact Solutions for
NP Hard Problems” in the year 2000 and a seminal survey on exponential time
algorithms by Woeginger [Woe03], the area of exponential time algorithms gained
more and more interest in the theoretical computer science community. Several
PhD theses [Bys04b, Gra04, Ang05, Rie06, Bjö07, Dor07, Lie07, Wah07, Wil07]
have been completely or partly devoted to the topic of exponential time al-
gorithms and many surveys [DHIV01, Woe03, Iwa04, Woe04, FGK05b, Sch05,
Woe08] on exponential time algorithms appeared since then.

In the next section we survey some negative results that show limits of what we
can reasonably hope to achieve in terms of running times of algorithms for NP–
hard problems. In Section 1.2 we give an overview of some important techniques
used to design exponential time algorithms. Section 1.3 is a rather informal
discussion on time and space complexities of algorithms. Finally, Section 1.4
gives an overview of the remaining chapters in this thesis.

1.1 Negative Results

In this section, a few negative results are given. Some of these motivate the
study of exponential time algorithms, others give reasonable limits of what can
be achieved by exponential time algorithms.

Unless P = NP , there exists no polynomial time algorithm for NP–hard
problems. Moreover it is now widely believed that P 6= NP [Gas02], which
means that superpolynomial time algorithms are the best we can hope to achieve
to solve NP–hard problems.

Even if no polynomial time algorithm can exist for a NP–hard problem unless
P = NP , this does not imply that there exists no subexponential time algorithm
for some hard problems even if P 6= NP . Here, subexponential time means
time O(2o(n)). In his thesis, Dorn [Dor07] studies several problems for which
he exhibits subexponential time algorithms. These problems are often restricted
to planar graphs, graphs with bounded genus or graphs excluding other graphs
as minors. However, it is widely believed (see [Woe03]) that many NP–hard

1.2 Overview of Techniques 23

problems are not solvable in subexponential time. More precisely, the Exponential
Time Hypothesis, by Impagliazzo and Paturi [IP99], states the following.

Conjecture (Exponential Time Hypothesis [IP99]). There is no subexponential
time algorithm for 3-Sat.

By reductions preserving subexponential time complexities, Impagliazzo et al.
[IPZ01] proved that under the Exponential Time Hypothesis, several other prob-
lems, like 3-Coloring, Hamiltonian Cycle and Maximum Independent
Set do not have a subexponential time algorithm. Johnson and Szegedy [JS99]
even strengthen the result for Maximum Independent Set showing that the
problem does not admit a subexponential time algorithm under the Exponential
Time Hypothesis when restricted to graphs of maximum degree 3. For a num-
ber of other problems, it has been proved that there is no subexponential time
algorithm for them unless the Exponential Time Hypothesis is false.

Further, Pudlák and Impagliazzo [PI00] prove that for every k ≥ 3 there exists
a constant ck > 0, where ck → 0 as k → ∞, such that every DLL algorithm for
k-Sat has running time Ω(2n·(1−ck)). Here, a DLL algorithm is an algorithm that
selects a variable v at each step, and recursively solves subproblems where v is set
to true and false respectively, unless some clause is falsified, in which case it stops.
Similarly, Traxler [Tra08] gives some evidence that no O(cn) algorithm exists for
(d, 2)-CSP, namely that under the Exponential Time Hypothesis, any algorithm
for (d, 2)-CSP has running time Ω(dc·n) for some constant c > 0 independent of
d.

Showing the limits of approximation algorithms, many NP–hard problems
have been shown to be hard to approximate in polynomial time. For example,
it is NP–hard to approximate Maximum Independent Set within a factor of
n1−ε for any ε > 0 [Zuc07].

1.2 Overview of Techniques

In this section, we describe some of the known techniques for designing and ana-
lyzing exponential time algorithms and give examples for some of the techniques.
We focus on deterministic algorithms here.

1.2.1 Brute Force

Every problem in NP can be solved by exhaustive search over all candidate
solutions. The search space, that is the set of all candidate solutions, has size

• O(2n) for subset problems,

• Bn = O(cn log n) for a constant c > 1 for partitioning problems where Bn

denotes the nth Bell number, and

24 Introduction

• O(n!) for permutation problems,

where the ground set has size n. As for every problem inNP , a candidate solution
can be checked in polynomial time, the running time of a brute force algorithm
is within a polynomial factor of the size of the search space.

Whereas for many hard problems, better running time bounds have been
achieved,

• for subset problems like Sat5, Minimum Hitting Set, and Minimum
Set Cover, no algorithm of time complexity O(1.9999n) is known,

• for partitioning problems like CSP and Graph Homomorphism no known
algorithm has time complexity O(cn) for a constant c, and

• for permutation problems like Quadratic Assignment and Subgraph
Isomorphism, no known algorithm has time complexity o(n!).

1.2.2 Bounds on Mathematical Objects

A very natural question in graph theory is: how many minimal (maximal) vertex
subsets satisfying a given property can be contained in a graph on n vertices?

The trivial bound is O
((

n
n/2

))
, which is O(2n/

√
n) by Stirling’s approximation.

Only for few problems better bounds, that is bounds of the form O(cn) for c < 2,
are known. One example of such a bound is the celebrated Moon and Moser
[MM65] theorem, basically stating that every graph on n vertices has at most
3n/3 maximal cliques (independent sets). Another example is the result from
[FGPS05], where it is shown that the number of minimal dominating sets is at
most 1.7170n.

Besides their combinatorial interest, such bounds often have algorithmic con-
sequences. Worst–case upper bounds on the (total) running time of enumeration
algorithms can be proved using these bounds. For example, the Moon and Moser
theorem implies an overall running time of O∗(3n/3) = O(1.4423n) for the poly-
nomial delay algorithm of Johnson et al. [JYP88] for enumerating all maximal
independent sets of a graph on n vertices.

More indirect consequences are worst case upper bounds on the running time
of algorithms using an enumeration algorithm as a subroutine, such as many
Coloring algorithms [Law76, Epp03, Bys04a, Bys04b, BH06a] or algorithms
for other problems that enumerate maximal independent sets [RSS07].

The simplest such example is probably Lawler’s algorithm [Law76] for the
NP–hard problem to decide whether a graph G is 3-colorable. The algorithm

5The currently fastest deterministic algorithm for Sat has running time

O∗
(

2
n·

“
1− 1

ln(m/n)+O(ln ln m)

”)
[DHW06].

1.2 Overview of Techniques 25

works as follows: for each maximal independent set I of G, check if G \ I is
bipartite. If for at least one maximal independent set I, G \ I is bipartite then
G can be colored with 3 colors. As deciding if a graph is bipartite is polynomial,
the algorithm has time complexity O∗(3n/3).

Upper bounds of O(1.6181n) for the number of minimal separators and
O(1.7549n) for the number of potential maximal cliques in a graph have been
proved and used by Fomin and Villanger [FV08] to design the currently fastest
algorithms for the Treewidth problem, running in time O(1.7549n) and expo-
nential space, or O(2.6151n) and polynomial space.

In Chapter 3, an upper bound of 1.8638n on the number of minimal feedback
vertex sets is presented and in Chapter 4 we show an upper bound of n · 3n/3 on
the number of maximal bicliques, which is tight up to a linear factor.

1.2.3 Dynamic Programming Across Subsets

The idea of this technique is to store, for each subset of a ground set on n elements
(and often some additional information), a partial solution to the problem in an
exponential size table so that the partial solutions can be looked up quickly. Dy-
namic programming across subsets can be used whenever a solution to an instance
can be extended in polynomial time based on the solutions to all subinstances no
matter how the solutions to the subinstances were obtained.

Consider the Travelling Salesman problem.

Travelling Salesman: Given a set {1, . . . , n} of n cities and the distance
d(i, j) between every two cities i and j, find a tour visiting all cities with
minimum total distance. A tour is a permutation of the cities starting and
ending in city 1.

The O∗(2n) algorithm for the Travelling Salesman problem by Held and
Karp [HK62] works as follows. For a subset S ⊆ {2, . . . , n} of cities and a city
i ∈ S, let Opt[S, i] denote the length of the shortest path starting in city 1,
visiting all cities in S \ {i} and ending in city i. Then,

Opt[S, i] :=

{
d(1, i) if S = {i}, and

minj∈S\{i}{Opt[S \ {i}, j] + d(i, j)} otherwise.

It is then straightforward to compute Opt[S, i] for each S ⊆ {2, . . . , n} and i ∈ S
by going through the subsets in increasing order of cardinality such that the time
spent to compute the entry for one couple (S, i) is polynomial by looking up the
values Opt[S\{i}, j] for each j ∈ S\{i}. The final solution to the problem is then
minj∈{2,...,n}{Opt[{2, . . . , n}, j] + d(j, 1)}. Despite its simplicity, this algorithm is
still the fastest known for the Travelling Salesman problem.

26 Introduction

For a variant of the Travelling Salesman problem where the instance is
given by a graph G with maximum degree d = O(1) where the vertices represent
cities and weighted edges represent the distance between these cities, Björklund
et al. [BHKK08b] use a slight modification of the former algorithm to solve
this variant in time O((2 − ε)n) where ε > 0 depends on d alone. Dynamic
Programming has also been used to derive the O(2.4423n) algorithm for the
Coloring problem by Lawler [Law76], which was the fastest known algorithm
for this problem for 25 years.

1.2.4 Branching

A branching algorithm selects at each step a local configuration of the instance
and recursively solves subinstances based on all possible values this local config-
uration can take. This technique is presented in detail in Chapter 2 and is at the
heart of many of the fastest known algorithms for various hard problems.

1.2.5 Memorization

Memorization was introduced by Robson [Rob86] as a trade-off between time
and space usage. The idea is to precompute the solutions to subinstances of
small size, say of size at most αn, α < 1, by Dynamic Programming and to
look them up whenever a branching algorithm encounters a subinstance of size at
most αn, thereby reducing its running time. Alternatively, the solutions to small
subinstances can also be computed on the fly by the branching algorithm and
looked up whenever a solution to the subproblem has already been computed.
We refer to [Rob86, Gra04, FGK05b] for more details on the technique.

1.2.6 Preprocessing

The idea of this approach is to first perform an initial analysis or restructuring
of the given input such that later on, queries to the precomputed values can
be answered quickly. Preprocessing an exponentially large data set may lead to
an exponential speedup in the running time of the algorithm. As an example,
consider the following outline of Liedloff’s algorithm [Lie08] for finding a minimum
dominating set in a bipartite graph G = (A, B, E) in time O∗(2n/2).

Let B = {b1, . . . , b|B|} be the largest of the two sets A and B. The algorithm
performs two phases, each having running time 2|A| · nO(1).
In the preprocessing phase, compute for each subset X ⊆ A and integer k, 1 ≤
k ≤ |B|, a subset Opt[X, k] which is a smallest subset of {b1, . . . , bk} that dom-
inates X. This phase can be performed by Dynamic Programming in time
2|A| · nO(1).
In its main phase (see Figure 1.1), the algorithm goes again through all subsets

1.2 Overview of Techniques 27

X ⊆ A and for each set X, it computes a dominating set D of G of minimum
size such that D ∩A = X. For each set X ⊆ A, such a dominating set D can be
obtained by setting

D := X ∪ (B \N(X)) ∪ Opt[A \ (N [X] ∪N(B \N(X))), |B|].

Observe that X ⊆ D by definition, the vertices in B \ N(X) must be added to
D to dominate themselves (since B is an independent set), and, additionally, a
minimum sized subset of vertices of B dominating the vertices in A \ (N [X] ∪
N(B \N(X))) (the only vertices that are not dominated by X nor B \N(X)) can
be looked up in Opt[A\ (N [X]∪N(B \N(X))), |B|]. This phase of the algorithm
also takes time 2|A| · nO(1).

A B

N(X) ∩B

X

N(X) ∩ A

N(B \N(X))

Figure 1.1: Illustration of the main phase of Liedloff’s algorithm for Dominating
Set in bipartite graphs

Preprocessing is a fundamental tool in algorithm design. For exponential
time algorithms, it has been applied to Binary Knapsack [HS74, SS81], Exact
Hitting Set [DP02], Subset Sum [Woe03], and several other problems [KW05,
FGK+07a]. The algorithms of Feige [Fei00] and Cygan and Pilipczuk [CP08] for
the Bandwidth problem could also be classified under Preprocessing algorithms.

1.2.7 Local Search

Local search algorithms explore the search space of candidate solutions by moving
from one candidate solution to the next in a local fashion. This method has mainly
be employed to design algorithms for k-Sat; see [Sch01] for an overview of local
search algorithms.

Consider the 3-Sat problem. The space of candidate solutions is {0, 1}n,
that is all possible truth assignments for the n variables of a logical formula in
conjunctive normal form. For a truth assignment t ∈ {0, 1}n and a distance d,
let H(t, d) denote the Hamming Ball of radius d around t, that is the set of all
truth assignments with Hamming distance at most d from t.

28 Introduction

An O∗(3d) algorithm to check whether there exists a satisfying assignment in
H(t, d) can easily be obtained as follows. As long as the current assignment is not
a satisfying assignment, choose an unsatisfied clause, and go over all (at most 3)
possibilities to flip the truth assignment of a variable in this clause and recurse
with the new truth assignment and d− 1.

Using a simple, so–called covering–code, of only the two Hamming balls
H({0}n, bn/2c) and H({1}n, dn/2e), the whole search space is clearly covered.
Applying the local search algorithm of the previous paragraph to both Hamming
balls, it is easy to solve 3-Sat in time O∗(3n/2) = O(1.7321n). More involved
choices for the covering–codes and a slightly faster local search procedure inside
the Hamming balls have led to the currently fastest deterministic algorithms for
3-Sat [DGH+02, BK04, Sch08].

1.2.8 Split and List

The Split and List method, which is quite similar to a preprocessing technique
used in [HS74] and [SS81], is described and used by Williams [Wil05] to obtain
an O∗(2ωn/3) algorithm for Max 2-CSP, where ω < 2.376 is the matrix mul-
tiplication exponent. The basic idea is to split the variables into k ≥ 3 equal
sized parts, list all assignments of the variables in each of the parts, and finally
combine all the solutions with a polynomial time algorithm on an exponentially
large instance.

A Split and List algorithm for the Max Cut problem works as follows [Wil05].
Divide the vertices of the graph G = (V, E) in three parts P0, P1, P2 of size roughly
n/3 each. Build a complete 3-partite auxiliary graph containing a vertex for each
subset of P0, P1 and P2. Given vertices xi and xj, i ∈ {0, 1, 2}, j = i + 1(mod3),
that correspond to subsets Xi, Xj of Pi, Pj respectively, set the weight w(xixj) of
the edge xixj to be the number of edges between Xi ∪ Xj and Pi \ Xi plus the
number of edges between Xi and Pj \Xj, that is

w(xixj) := |N(Xi) ∩ Pi|+ |N(Xj) ∩ (Pi \Xi)|+ |N(Xi) ∩ (Pj \Xj)|.

Then the weight of a triangle x1x2x3 in the auxiliary graph corresponds to the
number of edges that cross the partition of vertices (Vl, V \ Vl) where Vl = X1 ∪
X2 ∪ X3. To determine if G contains a cut with k edges, go over all O(m3)
possible triples (k01, k12, k20) such that k = k01 + k12 + k20, keep only those edges
xixj in the auxiliary graph that have w(xixj) = kij, and find a triangle in the
auxiliary graph on O(2n/3) vertices in time O∗(2ωn/3). As the auxiliary graph
can be computed in time O∗(22n/3), the total running time of the algorithm is
O∗(2ωn/3) = O(1.7315n).

1.2 Overview of Techniques 29

1.2.9 Partitioning Based Algorithms

Whereas the previous technique reduced an instance to an exponentially large
instance of a problem solvable in polynomial time, this technique reduces an
instance to an exponential number of simpler problems. Angelsmark et al. [AJ03,
AT06, Ang05] designed several algorithms according to the slogan

Solving an exponential number of small instances can be faster than
solving a single large one.

For problems with domain size d, like (d, l)-CSP or d-Coloring, split the do-
main of each variable in different parts of given sizes in each possible way and
solve all the corresponding subinstances using algorithms for smaller domains.
Algorithms for k-Coloring, counting versions of (d, 2)-CSP and a variety of
related problems have been obtained by this method; see the PhD thesis of An-
gelmark [Ang05] for details.

1.2.10 Treewidth

Many NP–hard graph problems can be solved in polynomial, or even linear time,
when the input graph has constant treewidth.6 Moreover, given a tree decom-
position of width ` of a graph G, many treewidth based dynamic programming
algorithms have a running time of the form c` · nO(1) for some constant c > 1
[ABF+02]. As the treewidth of any planar graph is at most O(

√
n), subexpo-

nential 2O(
√

n) time algorithms are easily obtained for planar graphs. Similarly,
bounds on the treewidth for sparse graphs lead directly to fast exponential time
algorithms for sparse graphs. We refer to the survey by Fomin et al. [FGK05b]
for more details on direct implications of treewidth bounds. In Chapters 6, 7 and
8 we present several bounds on the treewidth of graphs and use these bounds in
algorithms that combine branching and dynamic programming over tree decom-
positions.

1.2.11 Inclusion–Exclusion

The principle of Inclusion–Exclusion is a well known counting principle used to
determine the cardinality of a union of overlapping sets. Namely if V1, V2, . . . , Vm

are finite sets, then

6The notion of treewidth is defined and discussed more extensively in Chapter 6. For the
moment it is sufficient to know that it is a graph parameter measuring how tree-like a graph is.

30 Introduction

∣∣∣∣∣
m⋃

i=1

Vi

∣∣∣∣∣ =
m∑

i=1

|Vi| −
∑

1≤i<j≤m

|Vi ∩ Vj|+
∑

1≤i<j<k≤m

|Vi ∩ Vj ∩ Vk|

− · · ·+ (−1)m−1

∣∣∣∣∣
m⋂

i=1

Vi

∣∣∣∣∣ .
To our knowledge, the Inclusion–Exclusion principle was first used by Karp
[Kar82] to design exponential time algorithms. An astonishing result using this
principle was achieved by Björklund and Husfeldt [BH06b] and independently by
Koivisto [Koi06a] for Coloring and other partitioning problems; see also their
combined paper [BHK].

Let us describe an O∗(2n) algorithm for Coloring due to Björklund and
Husfeldt [BH06b]. First, we prove that a graph G = (V, E) is k-colorable if and
only if ck(G) > 0, where

ck(G) :=
∑
X⊆V

(−1)|X|s(X)k

and s(X) is the number of non–empty independent sets in G not intersecting
X. We will show that ck(G) is precisely the number of ways to cover V with
k (possibly overlapping) non–empty independent sets. Note that s(X)k is the
number of ways to choose, with repetition, k non–empty independent sets not
intersecting X. A set C of k non–empty independent sets covering V is counted
only in the term (−1)0s(∅), whereas a set C̄ of k non–empty independent sets
not covering V avoids some set of vertices U . Hence, C̄ is counted once in every
s(W) for every W ⊆ U . As every non–empty set has as many even– as odd–sized
subsets, the positive and negative counts of C̄ sum up to 0. This shows that G
is k-colorable if and only if ck(G) > 0.

The values s(X) can then be computed by dynamic programming in time
O∗(2n). Let us instead compute s(X), which denotes the number of non–empty
independent sets in G[X]. It is clear that s(X) = s(V \X) for every X ⊆ V . By
increasing cardinality of the sets X, compute s(X) using the formula

s(X) :=

{
0, if X = ∅, and

s(X \ v) + s(X \N [v]) + 1 for some v ∈ X, otherwise.

For the base case, it is clear that the number of non–empty independent sets in
an empty graph is 0. Otherwise, each non–empty independent set counted by
s(X) either does not contain v and is counted by s(X \ v), or contains v and is
counted by s(X \N [v]) + 1 where the term +1 accounts for the singleton {v}.

Now, ck(G) can easily be computed. To obtain the least k for which ck(G) > 0,
binary search may be used to solve Coloring in time O∗(2n).

1.2 Overview of Techniques 31

This technique has been further used and extended, for example to Subset
Convolution via Möbius transform and inversion by Björklund et al. [BHKK07,
BHKK08b, BHKK08c, BHKK08a].

1.2.12 Parameterized Complexity and Parameter
Bounded Subroutines

Parameterized Complexity [DF99, FG06, Nie06] is probably the area that is clos-
est to exponential time algorithms. Here, one asks if given a problem and a para-
meter k, the problem can be solved in time f(k) ·nO(1) where f(·) is an arbitrary
computable function. One of the basic examples in Parameterized Complexity is
the Minimum Vertex Cover problem with k being the cardinality of the ver-
tex cover one is asked to find. The fastest (in terms of the function f(k)) known
parameterized algorithm for this problem has polynomial space complexity and
running time O(1.2738k + kn) [CKX06]. It is natural to use these algorithms as
subroutines for exponential time algorithms in cases a good bound on the para-
meter is known, as done for example in [Wah04, Wah07] for solving Minimum
3-Hitting Set and in [RSS05] for a variety of other problems.

On the negative side, for many problem/parameter combinations, it is unlikely
that fixed parameter algorithms exist. When they introduced Parameterized
Complexity in 1992, Downey and Fellows [DF92] defined the complexity classes

FPT ⊆ W [1] ⊆ W[2] ⊆ · · · ⊆ W[P].

Problem/parameter combinations in FPT are fixed parameter tractable, that is,
there exist algorithms with running times of the form f(k) · nO(1) for them. For
problem/parameter combinations that are complete for one of the other classes,
like Maximum Independent Set (where k is the size of the independent set)
which is complete for W [1] or Minimum Dominating Set (where k is the size
of the dominating set) which is complete for W [2], no algorithms with running
times of the form f(k) · nO(1) are known, and it is strongly believed that none
of these problems is in FPT . Nevertheless, even algorithms with running time
O(nk) could be of interest for exponential time algorithms. For example, the
notoriously hard Bandwidth problem, which is hard for every level of the W [·]
hierarchy even for trees [BFH94], not approximable in polynomial time within
any constant [Ung98], and for which the best known exponential time algorithm
has running time O∗(5n) [CP08], can be solved in time O∗(2n) if the bandwidth
is at most n/ log n by an O(nk+1) algorithm of Saxe [Sax80].

1.2.13 Iterative Compression

Introduced in the area of Parameterized Complexity, this technique will be pre-
sented in detail in Chapter 9 and used to obtain faster algorithms for variants

32 Introduction

of the Minimum Hitting Set problem. For minimization problems, the basic
idea is to build an iterative algorithm, and at each iteration, either compress the
solution into a smallest one or prove that the current solution is optimal.

1.3 On Space and on Time

Several of the techniques presented in Section 1.2 naturally lead to algorithms
whose space complexity is close to their time complexity. A convenient and
important theoretical classification is to distinguish between algorithms needing
only polynomial space (in the worst case) and algorithms with exponential space
complexity. Research goes in both directions here. For problems where fast ex-
ponential space algorithms are known, alternative methods are studied requiring
only polynomial space, as in [GS87, FV08] for example. For problems where
fast polynomial space algorithms are known, methods to trade space for time are
applied to improve the running time bounds, as for example in [Rob86, FGK05a].

Whether or not exponential space algorithms are useful in practice is debat-
able. In one of his surveys on exponential time algorithms, Woeginger [Woe04]
writes:

Note that algorithms with exponential space complexities are ab-
solutely useless for real life applications.

On the other hand, after having implemented exponential space algorithms for
Bandwidth, Cygan and Pilipczuk [CP08] write:

It is worth mentioning that exponential space in our algorithms is
no problem for practical implementations, since in every case space
bound is less than square root of the time bound, thus space will not
be a bottleneck in a real life applications, at least considering todays
proportions of computing speed and fast memory size.

This shows that the community has not yet reached a consensus about what is
practical regarding space consumption of the algorithms. Indeed, it seems that
exponential time algorithms that require as much space as time, are impractical
from the implementation point of view. But what about algorithms that require
exponential space that is significantly (by a large enough exponential function)
smaller than the running time of the algorithm? A good compromise seems to be
achieved by techniques like Memorization or the techniques developed in Chapters
7 and 8 combining polynomial space branching and exponential space treewidth
based algorithms. Here, the space complexity of the algorithm can be adjusted,
by simply tuning a parameter of the algorithm, to the amount of space that one
is willing to use, at the expense of a slightly higher running time.

1.3 On Space and on Time 33

Concerning the running time of exponential time algorithms, the question of
what is a ‘significant’ improvement in the running time of an algorithm often
arises. Consider for example (a) an improvement of a running time from 2.2n

to 2.1n, and (b) an improvement from 1.2n to 1.1n. At a first glance, both
improvements seem comparable. At a second look however, improvement (b)
makes it now possible to solve instances that are log(1.2)/ log(1.1) ' 1.912 times
larger than before if both the 1.1n and the 1.2n algorithms are allowed to run
for the same amount of time, whereas improvement (a) makes it now possible
to solve instances that are only log(2.2)/ log(2.1) ' 1.062 times larger. This
is actually better seen if we use a 2c·n notation to express the running time
of the algorithms and compare the constant in the exponent: 2.2n = 21.1376n,
2.1n = 21.0704n, 1.2n = 20.2631n, and 1.1n = 20.1376n.

Polynomial factors in the running time are hidden by the O∗ notation. By
rounding the base of the exponent, polynomial factors even disappear in the
usual O notation; for example O(n100 · 1.38765n) = O(1.3877n). For practical
implementations, however, care should be taken about the polynomial factors.
Consider, for example, an algorithm A with running time TA(n) = n ·1.5n and an
algorithm B with running time TB(n) = n2 ·1.46n. Algorithm B seems preferable
as, asymptotically, it is exponentially faster than Algorithm A. However, simple
calculations show that for n ≤ 195, Algorithm A is faster; and for n = 195, both
algorithms need to perform a number of operations which exceeds the number of
attoseconds7 since the Big Bang.

Available time 1 s 1 min 1 hour 3 days > 6 months
number of operations 230 236 242 248 254

n5 64 145 329 774 1756
n10 8 12 18 27 41

1.05n 426 510 594 681 765
1.1n 218 261 304 348 391
1.5n 51 61 71 82 92
2n 30 36 42 48 54
5n 12 15 18 20 23
n! 12 14 15 17 18

Table 1.1: Maximum size of n for different running times for a given amount of
time under the assumption that 230 operations can be performed in one second

Table 1.1 gives an indication on the size of the instances that can be solved in a
given amount of time, assuming that 230 operations can be carried out per second,

7One attosecond is 10−18 seconds. The shortest time interval ever measured is about 100
attoseconds.

34 Introduction

which roughly corresponds to the computational power of an Intel Pentium III
processor at 500 MHz. Note that technology is not the predominant factor if
we would like to exactly solve NP–hard problems in practice, but algorithms
are. Suppose there is an algorithm to solve some problem in time 2n and the
current implementation has an acceptable running time for instance sizes up to
a constant x. To solve larger instances, we can wait for faster technology and
solve instances of size x + 1 after a period of 18–24 months, according to Moore’s
law, or we can try to find faster algorithms; a 1.7548n algorithm would solve the
problem for instances up to size 1.23 · x. Moreover, for instances of size, say 50,
the 1.7548n algorithm performs 692 times faster than the 2n algorithm.

It is also worth noticing that some of the techniques presented in Section 1.2,
like dynamic programming, inherently lead to algorithms that have the same
performance on every instance of a given size n, whereas other techniques, like
branching, lead to algorithms that naturally perform much faster on most inputs
than in a worst case scenario. Moreover, for most branching algorithms, the
known lower bounds on their running time are far from the upper bound and it is
very well possible that the worst case running time of most branching algorithms
is overestimated.

1.4 Outline of Thesis

The individual chapters of this thesis are organized as follows.

Chapters 2–5 mainly focus on branching algorithms. A general introduction
to branching algorithms is given in Chapter 2. The main focus of that chapter
is the running time analysis of branching algorithms, presented in a very general
way, and providing a solid background for the following chapters. Chapter 3
presents an O(1.7548n) algorithm for the Feedback Vertex Set problem, as
well as upper bound of 1.8638n and a lower bound of 1.5926n on the number of
minimal feedback vertex sets in a graph. The upper bound on the number of
feedback vertex sets is obtained via the same kind of techniques that are used
to upper bound the running time of the Feedback Vertex Set algorithm,
and the lower bound is achieved by an explicit construction of an infinite family
of graphs with a large number minimal feedback vertex sets. In Chapter 4, the
focus is on bicliques in graphs. We transform different results for independent
sets to results concerning bicliques and derive a n · 3n/3 upper bound on the
number of maximal bicliques in a graph on n vertices, derive algorithms that
can find, count and enumerate maximal or maximum bicliques in the same time
bound (up to polynomial factors) as the corresponding algorithms for independent
sets. For lack of an existing algorithm able to count all maximal independent
sets faster than enumerating all of them, we also provide the first non trivial
algorithm counting all maximal independent sets in a graph. It has running time

1.4 Outline of Thesis 35

O(1.3642n). The last example of a branching algorithm is presented in Chapter 5.
Here we present the currently fastest polynomial space algorithm for Max 2-Sat,
Max 2-CSP and mixed instances of these two problems. A very rigorous analysis
allows us to use both Max 2-Sat and Max 2-CSP specific simplification rules
and to parameterize the running time by the fraction of general integer–weighted
CSP clauses versus simple unit–weighted conjunctions and disjunctions to obtain
the currently fastest polynomial space algorithm for Max 2-Sat, Max 2-CSP,
and everything in between.

In Chapters 6–8, we present bounds for the treewidth of graphs and two Win–
Win strategies combining branching and tree decomposition based algorithms.
Treewidth bounds that are needed in the two following chapters are proved in
Chapter 6. In particular, we give upper bounds for the treewidth in terms of
the number of vertices of sparse graphs and in terms of the maximum degree of
circle graphs. In Chapter 7 we derive faster algorithms for the Minimum Dom-
inating Set problem for graph classes where one can find tree decompositions
whose widths do not exceed the maximum degree of the graph by more than a
constant multiplicative factor. A general framework based on the enumeration
of independent sets and tree decomposition based algorithms for sparse graphs is
presented in Chapter 8 and applied to different problems.

Showing how to carry over to exponential time algorithms a technique that
is prominent in the area of Parameterized Complexity, Chapter 9 presents expo-
nential time algorithms based on iterative compression for Minimum Hitting
Set–like problems.

Finally, Chapter 10 concludes with a short summary, some open problems and
possible further research directions.

36 Introduction

Chapter 2
Branching Algorithms

Nothing is particularly hard if you divide it
into small jobs.

Henry Ford

In this chapter, we present branching algorithms and various ways to an-
alyze their running times. Unlike for other techniques to design exponential
time algorithms (or polynomial time algorithms), like dynamic programming and
inclusion-exclusion, it is far less obvious for branching algorithms how to ob-
tain worst case running time bounds that are (close to) tight. The analysis of
branching algorithms is a very important and non trivial factor in the design of
branching algorithms; the design and the analysis of branching algorithms usually
influence each other strongly and they go hand in hand. Also, branching algo-
rithms usually perform faster on real life data and randomized instances than
the (upper bound of the) worst case running time derived by the analysis: it is
not uncommon that competitive SAT solvers in competitions like SAT Race and
SAT Competition solve instances with thousands of variables, although no known
algorithm for SAT has (worst case) time complexity O(1.9999n).

Branching algorithms are recursive algorithms that solve a problem instance
by reducing it to one or more “smaller” instances, solving these recursively, and
combining the solutions of the subinstances to a solution for the original instance.

In the literature they appear with various names, for example Branch-and-
Reduce, Branch-and-Bound, Branch-and-Search, Branching, Pruning the Search
Tree, Backtracking, DPLL, or Splitting algorithms.

Typically, these algorithms

1. select a local configuration of the problem instance (selection),

2. determine the possible values this local configuration can take (inspection),

38 Branching Algorithms

3. recursively solve subinstances based on these values (recursion), and

4. compute an optimal solution of the instance based on the optimal solutions
of the subinstances (combination).

We call reduction a transformation (selection, inspection and the creation
of the subinstances for the recursion) of the initial instance into one or more
subinstances. We also call simplification a reduction to one subinstance, and
branching or splitting a reduction to more than one subinstance.

Usually, the reduction and the combination steps take polynomial time and
the reduction creates a constant number of subinstances (for exceptions, see for
example [Ang05]). Polynomial time procedures to solve a problem for “simple”
instances are viewed here as simplification rules, reducing the instance to the
empty instance.

Let us illustrate branching algorithms by a simple algorithm for Maximum
Independent Set. Consider Algorithm mis on the facing page. It contains two
simplification rules. The first one (lines 1–2) solves Maximum Independent
Set for graphs of maximum degree 2 in polynomial time. Clearly, for a collection
of paths and cycles, the size of a maximum independent set can be computed
in polynomial time: a maximum independent set of Pn has size dn/2e and a
maximum independent set of Cn has size bn/2c. The second simplification rule
(lines 3–4) always includes vertices of degree 1 in the considered independent set.
Its correction is based on the following observation.

Observation 2.1. For a vertex v of degree 1, there exists a maximum independent
set containing v.

Proof. Suppose not, then all maximum independent sets of G contain v’s neighbor
u. But then we can select one maximum independent set, replace u by v in this
independent set, resulting in an independent set of the same size and containing
v — a contradiction.

By the argument used in the proof of Observation 2.1, the algorithm is not
guaranteed to go through all maximum independent sets of G, but is guaranteed
to find at least one of them.

The first branching rule (lines 5–7) is invoked when G has at least two con-
nected components. Clearly, the size of a maximum independent set of a graph
is the sum of the sizes of the maximum independent sets of its connected com-
ponents. If V (G1) (or V \ V (G1)) has constant size, this branching rule may
actually be viewed as a simplification rule, as G1 (or G \ V (G1)) is dealt with in
constant time.

The second branching rule (lines 8–10) of the algorithm selects a vertex v
of maximum degree; this vertex corresponds to the local configuration of the
problem instance that is selected. Including or excluding this vertex from the

2.1 Simple Analysis 39

Algorithm mis(G)
Input : A graph G = (V, E).
Output: The size of a maximum independent set of G.

if ∆(G) ≤ 2 then // G has maximum degree at most 21

return the size of a maximum independent set of G in polynomial time2

else if ∃v ∈ V : d(v) = 1 then // v has degree 13

return 1 + mis(G \N [v])4

else if G is not connected then5

Let G1 be a connected component of G6

return mis(G1) + mis(G \ V (G1))7

else8

Select v ∈ V such that d(v) = ∆(G) // v has maximum degree9

return max (1 + mis(G \N [v]),mis(G \ v))10

Figure 2.1: Algorithm mis(G), computing the size of a maximum indepen-
dent set of any input graph G

current independent set are the values that this local configuration can take. The
subinstances that are solved recursively are G \ N [v] — including the vertex v
in the independent set, which prevents all its neighbors to be included — and
G \ v — excluding v from the independent set. Finally, the computation of the
maximum in the last line of the algorithm corresponds to the combination step.

2.1 Simple Analysis

To derive upper bounds for the running time of a branching algorithm, let us
describe its behavior by a model which consists of a set of univariate constraints.

Definition 2.2. Given an algorithm A and an instance I, TA(I) denotes the
running time of A on instance I.

Lemma 2.3. Let A be an algorithm for a problem P , and α > 0, c ≥ 0 be
constants such that for any input instance I, A reduces I to instances I1, . . . , Ik,
solves these recursively, and combines their solutions to solve I, using time O(|I|c)
for the reduction and combination steps (but not the recursive solves) and such
that for any reduction done by Algorithm A,

(∀i : 1 ≤ i ≤ k) |Ii| ≤ |I| − 1, and (2.1)

2α·|I1| + · · ·+ 2α·|Ik| ≤ 2α·|I|. (2.2)

Then A solves any instance I in time O(|I|c+1)2α·|I|.

40 Branching Algorithms

Proof. The result follows easily by induction on |I|. For the base case, we as-
sume that the algorithm returns the solution to an empty instance in time O(1).
Suppose the lemma holds for all instances of size at most |I| − 1, then

TA(I) = O(|I|c) +
k∑

i=1

TA(Ii) (by definition)

= O(|I|c) +
∑
O(|Ii|c+1)2α·|Ii| (by the inductive hypothesis)

= O(|I|c) +O((|I| − 1)c+1)
∑

2α·|Ii| (by (2.1))

= O(|I|c) +O((|I| − 1)c+1)2α·|I| (by (2.2))

= O(|I|c+1)2α·|I|.

The final equality uses that α · |I| > 0 and holds for any c ≥ 0.

Let us use this lemma to derive a vertex-exponential upper bound of the
running time of Algorithm mis, executed on a graph G = (V, E) on n vertices.
For this purpose we set |G| := |V | = n. We may at all times assume that n is
not a constant, otherwise the algorithm takes constant time.

Determining if G has maximum degree 2 can clearly be done in time O(n). By
a simple depth–first–search, and using a pointer to the first unexplored vertex, the
size of a maximum independent set for graphs of maximum degree 2 can also be
computed in time O(n). Checking if G has more than one connected component
can be done in time O(n + m) = O(n2). Finding a vertex of maximum degree
and the creation of the two subinstances takes time O(n+m) = O(n2). Addition
and the computation of the maximum of two numbers takes time O(1).

For the first branching rule, we obtain a set of constraints for each possible
size s of V (G1):

(∀s : 1 ≤ s ≤ n− 1) 2α·s + 2α·(n−s) ≤ 2α·n. (2.3)

By convexity of the function 2x, these constraints are always satisfied, irrespective
of the value of α > 0 and can thus be ignored. Here we suppose that n is not a
constant, otherwise the algorithm takes only constant time.

For the second branching rule, we obtain a constraint for each vertex degree
d ≥ 3:

(∀d : 3 ≤ d ≤ n− 1) 2α·(n−1) + 2α·(n−1−d) ≤ 2αn. (2.4)

Dividing all these terms by 2αn, the constraints become

2−α + 2α·(−1−d) ≤ 1. (2.5)

2.2 Lower Bounds on the Running Time of an Algorithm 41

Then, by standard techniques [Kul99], the minimum α satisfying all these con-
straints is obtained by setting x := 2α, computing the unique positive real root
of each of the characteristic polynomials

cd(x) := x−1 + x−1−d − 1,

by Newton’s method, for example, and taking the maximum of these roots. Al-
ternatively, one could also solve a mathematical program minimizing α subject
to the constraints in (2.5) (the constraint for d = 3 is sufficient as all other con-
straints are weaker). The maximum of these roots (see Table 2.1) is obtained for
d = 3 and its value is 1.380277 . . . ≈ 20.464958....

d x α
3 1.3803 0.4650
4 1.3248 0.4057
5 1.2852 0.3620
6 1.2555 0.3282
7 1.2321 0.3011

Table 2.1: Positive real roots of cd(x)

Applying Lemma 2.3 with c = 2 and α = 0.464959, we find that the running
time of Algorithm mis is upper bounded by O(n3) · 20.464959·n = O(20.4650·n) or
O(1.3803n). Here the O notation permits to exclude the polynomial factor by
rounding the exponential factor.

2.2 Lower Bounds on the Running Time of an

Algorithm

One peculiarity of branching algorithms is that it is usually not possible by the
currently available running time analysis techniques to match the derived upper
bound of the running time by a problem instance for which the algorithm really
takes this time to compute a solution. Exceptions are brute-force branching algo-
rithms that go through all the search space or algorithms enumerating objects for
which tight bounds on their number are known, like the enumeration of maximal
independent sets [MM65] or maximal induced bicliques [GKL08].

Lower bounds on the running time of a specific algorithm are helpful as they
might give indications which instances are hard to solve by the algorithm, an
information that might suggest attempts to improve the algorithm. Moreover,
the design (or its attempt) of lower bound instances might give indications on

42 Branching Algorithms

which “bad” structures do not exist in an instance unless some other “good”
structures arise during the execution of the algorithm, which might hint at the
possibility of a better running time analysis. Finally, it is desirable to sandwich
the true worst case running time of the algorithm between an upper and a lower
bound to obtain more knowledge on it as a part of the analysis of the algorithm.

Lower bounds are usually obtained by describing an infinite family of graphs
for which the behavior of the algorithm is “cyclic”, that is it branches on a finite
number of structures in the instance in a periodic way.

To derive a lower bound of the running time of Algorithm mis, consider the
graph G = P 2

n , depicted in Figure 2.2 — the second power of a path on n vertices,
obtained from a path Pn on n vertices by adding edges between every two vertices
at distance at most two in Pn. Suppose n ≥ 9, then none of the simplification
rules applies to G. The algorithm selects some vertex of degree 4; here, we — the
designers of the lower bound — have the freedom to make the algorithm choose
a specific vertex of degree 4, as it does not itself give any preference. Suppose
therefore, that it selects v3 to branch on. It creates two subproblems:

• G \N [v3], a graph isomorphic to P 2
n−5, and

• G\v3, a graph isomorphic to P2 connected with one edge to the first vertex
of a P 2

n−3. In the first recursive step of mis, the reduction rule on vertices
of degree at most 1 includes v1 in the independent set and recurses on the
graph isomorphic to P 2

n−3.

Now, on each of these subproblems of sizes n− 3 and n− 5, the behavior of the
algorithm is again the same as for the original problem of size n. Therefore, the
running time of the algorithm can be lower bounded by Ω(xn) where x is the
positive root of

x−3 + x−5 − 1,

which is 1.193859 . . . ≈ 20.255632.... This gives a lower bound on the running time
of Algorithm mis of Ω(1.1938n) or Ω(20.2556·n).

v1 v2 v3 v4 v5 v6 v7 v8 vn−1 vn

Figure 2.2: Graph P 2
n used to lower bound the running time of Algorithm mis

Let us take a closer look at the decisions made by the algorithm with a P 2
n as

input. The size of the independent set increases by 1 when including v3 and also
by 1 when excluding v3 and including v1 by a simplification rule. But the instance

2.3 Measure Based Analysis 43

obtained by the second recursive call is, after the application of the simplification
rule, a subgraph of the instance of the first recursive call. Therefore, the second
recursive call always leads to a solution that is at least as good as the one obtained
in the first recursive call. This is a special case of a set of local configurations
where there exist two vertices u, v such that N [u] ⊆ N [v]. In such a situation,
the algorithm can just exclude v from being in the maximum independent set
it computes: consider a maximum independent set Iv of G containing v, then
Iv \ {v} ∪ {u} is a maximum independent set of G not containing v.

Thus, we could enhance the algorithm by adding the corresponding simplifi-
cation rule; see Figure 2.3 1.

if ∃u, v ∈ V : N [u] ⊆ N [v] then
return mis(G \ v)

Figure 2.3: Additional simplification rule for Algorithm mis

2.3 Measure Based Analysis

One drawback of the analysis presented in Section 2.1 is that, when reducing the
problem instance to several subinstances, many structural changes in the instance
are not accounted for by a simple analysis in just the instance size. Therefore,
let us in this section use a potential–function method akin to the measures used
by Kullmann [Kul99], the quasiconvex analysis of Eppstein [Epp06], the “Mea-
sure and Conquer” approach of Fomin et al. [FGK05a], the (dual to the) linear
programming approach of Scott and Sorkin [SS07a], and much older potential–
function analyses in mathematics and physics.

For Algorithm mis, for example, the simple analysis does not take into account
the decrease of the degrees of the neighbors when deleting a vertex from the
graph. Taking this decrease of the degrees into account is particularly useful
when deleting a vertex adjacent to one or more vertices of degree 2: their degree
decreases to 1 and they (as well as their neighbors) are removed by a simplification
rule.

Therefore, let us in a first step model the worst case running time of the
algorithm by a set of multivariate constraints, where the variables correspond to
the structures whose changes we would like to take into account. These structures
may depend as well on the input instance the algorithm is currently considering,
as on the output it is currently generating. Examples of parameters that the
analysis may rely on are the number of vertices/variables of certain degrees, the

1The simplification rule for vertices of degree 1 becomes obsolete by adding this rule as
vertices of degree 1 always fall under the scope of the new rule

44 Branching Algorithms

number of triangles in the input graph, the size of the current solution, (an
estimation of) the treewidth of the input graph, the connectivity of the current
solution, and possibly many others.

For notational convenience, let us make the multivariate constraints depend
solely on the problem instance, not on both the problem instance and the cur-
rently computed solution. There is no loss of generality as the current solution
can always be handed to the algorithm as a part of the input.

For Algorithm mis, let us model the worst case running time by T (n1, n2, . . .),
abbreviated as T

(
{ni}i≥1

)
where ni denotes the number of vertices of degree i in

G.
For the analysis of the second branching rule, let us take into account the

decrease of the degrees of the neighbors of v when deleting v and the decrease by
1 of the degree of one vertex in N2(v) when deleting N [v]. 2 Let

• d ≥ 3 be the degree of v, that is the maximum degree of G,

• pi, 2 ≤ i ≤ d such that
∑d

i=2 pi = d be the number of neighbors of v of
degree i, and

• k such that 2 ≤ k ≤ d be the degree of a vertex in N2(v).

In the branch where v is deleted, the number of vertices of degree i

• decreases by 1 if d = i (v is removed),

• decreases by pi (the neighbors of v of degree i have their degrees reduced),
and

• increases by pi+1 (the neighbors of v of degree i+1 have their degree reduced
to i).

In the branch where N [v] is deleted, the number of vertices of degree i

• decreases by 1 if d = i (v is removed),

• decreases by pi (the neighbors of v of degree i are removed),

• decreases by 1 if k = i (a vertex in N2(v) of degree i has its degree reduced),
and

• increases by 1 if k = i + 1 (a vertex in N2(v) of degree i + 1 has its degree
reduced to i).

2We assume for a moment that v has at least one vertex at distance 2. It will become clear
that this assumption is reasonable when we restrict the analysis to graphs of maximum degree
5. For a vertex v of degree at most 5, |N2(v)| ≥ 1 if G has at least 7 vertices (for constant size
instances our algorithm runs in constant time), because G is connected.

2.3 Measure Based Analysis 45

Thus, we obtain the following recurrence where the maximum ranges over all
d ≥ 3, all pi, 2 ≤ i ≤ d such that

∑d
i=2 pi = d and all k such that 2 ≤ k ≤ d:

T
(
{ni}i≥1

)
=

max
d,p2,...,pd,k

{
T
({

ni − pi + pi+1 − Kδ(d = i)
}

i≥1

)
+T
({

ni − pi − Kδ(d = i)− Kδ(k = i) + Kδ(k = i + 1)
}

i≥1

) (2.6)

Here, Kδ(·) is the logical Kronecker delta [CB94], returning 1 if its argument is
true and 0 otherwise.

Remark 1. This model of the worst case running time of the algorithm makes the
assumption that it is always beneficial to decrease the degree of a vertex. When
N [v] is deleted, many more vertices in N2(v) could have their degree reduced
(also by more than 1). Such assumptions are often necessary to limit the number
of cases that need to be considered in the analysis.

In order to make the number of terms in recurrence (2.6) finite, let us restrict
the running time analysis to graphs of maximum degree 5 in this section. In
Section 2.7, we will combine an analysis for graphs of maximum degree 5 with
the simple analysis of the previous section to derive an overall running time for
Algorithm mis for graphs of arbitrary degrees.

Based on the multivariate recurrence (2.6) for 3 ≤ d ≤ 5, we would now like
to compute an upper bound of the algorithm’s running time. Eppstein [Epp04,
Epp06] transforms the models based on multivariate recurrences into models
based on weighted univariate linear recurrences and shows that there exists a
set of weights for which the solution of one model is within a polynomial factor
of the solution of the other model.

Definition 2.4. A measure µ for a problem P is a function from the set of all
instances for P to the set of non negative reals.

To analyze Algorithm mis, let us use the following measure of a graph G of
maximum degree 5, which is obtained by associating a weight to each parameter
{ni}1≤i≤5:

µ(G) :=
5∑

i=1

wini, (2.7)

where wi ∈ R+ for i ∈ {1, . . . , 5} are the weights associated with vertices of
different degrees.

With this measure and the tightness result of Eppstein, we may transform
recurrence (2.6) into a univariate recurrence. For convenience, let

(∀d : 2 ≤ d ≤ 5) hd := min
2≤i≤d

{wi − wi−1} , (2.8)

46 Branching Algorithms

denote the minimum decrease of µ(G) when reducing by 1 the degree of a vertex
of degree at least 2 and at most d.

By the result of Eppstein there exist weights wi such that a solution to (2.6)
corresponds to a solution to the following recurrence (for an optimal assignment
of the weights), where the maximum ranges over all d, 3 ≤ d ≤ 5, and all pi, 2 ≤
i ≤ d, such that

∑d
i=2 pi = d,

T (µ(G)) = max
d,p2,...,pd,k

T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+T

(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
.

(2.9)

The solution to (2.9) clearly satisfies the following constraints for all d, 3 ≤ d ≤ 5,
and all pi, 2 ≤ i ≤ d, such that

∑d
i=2 pi = d:

T (µ(G)) ≥ T
(
µ(G)− wd −

∑d
i=2 pi · (wi − wi−1)

)
+ T

(
µ(G)− wd −

∑d
i=2 pi · wi − hd

)
. (2.10)

In order to upper bound the running time of algorithms based on a more
involved measure of the size of an instance and constraints like the ones in (2.10),
let us prove a lemma analogous to Lemma 2.3 on page 39 in Section 2.1.

Lemma 2.5. Let A be an algorithm for a problem P , c ≥ 0 be a constant, and
µ(·), η(·) be two measures for the instances of P , such that for any input instance
I, A reduces I to instances I1, . . . , Ik, solves these recursively, and combines their
solutions to solve I, using time O(η(I)c) for the reduction and combination steps
(but not the recursive solves) and such that for any reduction done by Algorithm
A,

(∀i) η(Ii) ≤ η(I)− 1, and (2.11)

2µ(I1) + . . . + 2µ(Ik) ≤ 2µ(I). (2.12)

Then A solves any instance I in time O(η(I)c+1)2µ(I).

Proof. The result follows by induction on η(I). For the base case, we assume that
the algorithm returns the solution to an empty instance in time O(1). Suppose
the lemma holds for all instances of size at most |I| − 1. Then

TA(I) = O(η(I)c) +
k∑

i=1

TA(Ii) (by definition)

= O(η(I)c) +
∑
O(η(Ii)

c+1)2µ(Ii) (by the inductive hypothesis)

= O(η(I)c) +O(η(I)− 1)c+1
∑

2µ(Ii) (by (2.11))

= O(η(I)c) +O(η(I)− 1)c+12µ(I) (by (2.12))

= O(η(I)c+1)2µ(I). (c ≥ 0 and µ(·) ≥ 0).

2.4 Optimizing the Measure 47

Thus the lemma follows.

Remark 2. The measure η(·) corresponds often to the size of the input, but we
will see in Chapter 3 an analysis for which η(·) is different.

Slightly rephrasing (2.10) to fit into the framework of Lemma 2.5, we obtain
the following set of constraints. For each d, 3 ≤ d ≤ 5, and all pi, 2 ≤ i ≤ d, such
that

∑d
i=2 pi = d,

2µ(G) ≥ 2µ(G)−wd−
Pd

i=2 pi·(wi−wi−1) + 2µ(G)−wd−
Pd

i=2 pi·wi−hd . (2.13)

Dividing by 2µ(G), we obtain

1 ≥ 2−wd−
Pd

i=2 pi·(wi−wi−1) + 2−wd−
Pd

i=2 pi·wi−hd . (2.14)

i wi hi

0 0 0
1 0 0
2 0.25 0.25
3 0.35 0.10
4 0.38 0.03
5 0.40 0.02

Table 2.2: An assignment of the weights for the measure µ(G) =
∑5

i=1 wini for
the analysis of Algorithm mis

With the values in Table 2.2 for wi, all these constraints are satisfied. With
these weights, µ(G) ≤ 2n/5 for any graph of maximum degree 5 on n vertices.
Taking c = 2 and η(G) = n, Lemma 2.5 implies that Algorithm mis has running
time O(n3)22n/5 = O(1.3196n) on graphs of maximum degree at most 5.

Thus, we were able to improve the analysis of Algorithm mis by a different
measure of graphs. However, the weights in Table 2.2 are not optimal for this
model of the running time of Algorithm mis and we will discuss in the next
section how to optimize the weights.

2.4 Optimizing the Measure

In the literature, mainly two techniques have been used to optimize the weights for
measures employed for upper bounding the worst case running time of branching
algorithms. These are a sort of random local search [FGK05b, FGK07b] and
quasiconvex programming [Epp04, Epp06].

48 Branching Algorithms

Introductory example: Maximum Independent Set

param maxd integer >= 3;
set DEGREES := 0..maxd;
weight for vertices according to their degrees
var W {DEGREES} >= 0;
weight for degree reductions from degree exactly i
var g {DEGREES} >= 0;
weight for degree reductions from degree at most i
var h {DEGREES} >= 0;
maximum weight of W[d]
var Wmax;

minimize the maximum weight
minimize Obj: Wmax;

the max weight is at least the weight for vertices of degree d
subject to MaxWeight {d in DEGREES}:
Wmax >= W[d];

constraints for the values of g[]
subject to gNotation {d in DEGREES : 2 <= d}:
g[d] <= W[d]-W[d-1];

constraints for the values of h[]
subject to hNotation {d in DEGREES, i in DEGREES : 2 <= i <= d}:
h[d] <= W[i]-W[i-1];

constraints for max degree 3
subject to Deg3 {p2 in 0..3, p3 in 0..3 : p2+p3=3}:
2^(-W[3] - p2*g[2] - p3*g[3])

+ 2^(-W[3] - p2*W[2] - p3*W[3] - h[3]) <=1;

constraints for max degree 4
subject to Deg4 {p2 in 0..4, p3 in 0..4, p4 in 0..4 : p2+p3+p4=4}:
2^(-W[4] - p2*g[2] - p3*g[3] - p4*g[4])

+ 2^(-W[4] - p2*W[2] - p3*W[3] - p4*W[4] - h[4]) <=1;

constraints for max degree 5
subject to Deg5 {p2 in 0..5, p3 in 0..5, p4 in 0..5, p5 in 0..5 :

p2+p3+p4+p5=5}:
2^(-W[5] - p2*g[2] - p3*g[3] - p4*g[4] - p5*g[5])

+ 2^(-W[5] - p2*W[2] - p3*W[3] - p4*W[4] - p5*W[5] - h[5]) <=1;

Figure 2.4: Mathematical program in AMPL modelling the constraints for the
analysis of Algorithm mis

2.4 Optimizing the Measure 49

In this thesis, we will use convex programming to optimize the weights of
the considered measures. As affine multivariate functions are convex, and the
function 2x is convex and non decreasing, and the composition g ◦ f of a convex,
non decreasing function g and a convex function f is convex, and summing convex
functions preserves convexity, all the constraints in Lemma 2.5 are convex if the
measure µ is a linear function in the weights.

In order to compute the optimal weights for the improved analysis of Al-
gorithm mis, let us use a standard trick in linear programming to make the
conditions (2.8) on hd linear:

(∀i, d : 2 ≤ i ≤ d) hd ≤ wi − wi−1. (2.15)

Minimizing the maximum wi, 0 ≤ i ≤ 5 can thus be done by solving a con-
vex program, whose implementation in AMPL (A Mathematical Programming
Language) [FGK03] is depicted in Figure 2.4.

Using mathematical programming solvers such as IPOPT (part of the free,
open-source code repository at www.coin-or.org) and MINOS (a commercial
solver), the mathematical programs can be solved to optimality very fast (less
than a second on a typical nowadays laptop for the program in Figure 2.4 with
95 constraints).

i wi hi

0 0 0
1 0 0
2 0.206018 0.206018
3 0.324109 0.118091
4 0.356007 0.031898
5 0.358044 0.002037

Table 2.3: An optimal assignment of the weights for the measure µ(G) =∑5
i=1 wini for the analysis of Algorithm mis

The mathematical program provides the optimal values for wi, see Table 2.3.
With these weights, µ(G) ≤ 0.358044 · n for any graph of maximum degree 5 on
n vertices. Taking c = 2 and η(G) = n, Lemma 2.5 implies that Algorithm mis
has running time O(n3)20.358044·n = O(1.2817n).

The tight constraints for the second branching rule of the algorithm is in-
equality (2.14) with parameters

• d = 3, p2 = 3, p3 = 0,

• d = 3, p2 = 0, p3 = 3,

• d = 4, p2 = 0, p3 = 0, p4 = 4, and

www.coin-or.org

50 Branching Algorithms

• d = 5, p2 = 0, p3 = 0, p4 = 0, p5 = 5.

Improving at least one of the tight constraints usually leads to a better upper
bound for the worst case running time of the algorithm (except if there is another
equivalent constraint).

2.5 Search Trees

The execution of a branching algorithm on a particular input instance can natu-
rally be depicted as a search tree or recursion tree: a rooted tree where the root
is associated to the input instance and for every node whose associated instance
I is reduced to the subinstances I1, I2, . . . , Ik, it has children associated to these
subinstances; see Figure 2.5. Often the nodes of the search tree are labelled with
the measure of the corresponding instance.

µ(I)

µ(I1)

.

µ(I2)

.

. . . µ(Ik)

.

Figure 2.5: Illustration of a search tree

For instance, Figure 2.6 shows a part of the search tree corresponding to the
execution of Algorithm mis on the graph P 2

n , depicted in Figure 2.2 on page 42.

n

n− 3

n− 6 n− 8

n− 5

n− 8 n− 10

Figure 2.6: First levels of the search tree for the execution of Algorithm mis on
the instance P 2

n

With the assumptions in Lemma 2.5 on page 46, the running time of an
algorithm A for a particular input instance I is proportional — up to a polynomial

2.6 Branching Numbers and their Properties 51

factor — to the number of leaves in the corresponding search tree. To upper
bound the running time of an algorithm, one could therefore bound the number
of leaves in any search tree corresponding to the algorithm with root µ(I).

2.6 Branching Numbers and their Properties

Let us introduce a convenient and short way to specify the most common con-
straints that we use. Given a constraint of the form

2µ(I)−a1 + · · ·+ 2µ(I)−ak ≤ 2µ(I), (2.16)

we define its branching number to be

2−a1 + · · ·+ 2−ak , (2.17)

and denote it by

(a1, . . . , ak) . (2.18)

Clearly, any constraint with branching number at most 1 is satisfied. The fol-
lowing two properties of branching numbers are useful to eliminate unnecessary
constraints.

Dominance For any ai, bi such that ai ≥ bi for all i, 1 ≤ i ≤ k,

(a1, . . . , ak) ≤ (b1, . . . , bk) , (2.19)

as 2−a1 +· · ·+2−ak ≤ 2−b1 +· · ·+2−bk . We say in this case that the branching
number (a1, . . . , ak) is dominated by the branching number (b1, . . . , bk). In
particular, this implies that for any a, b > 0,

either (a, a) ≤ (a, b) or (b, b) ≤ (a, b) . (2.20)

Balance If 0 < a ≤ b, then for any ε such that 0 ≤ ε ≤ a,

(a, b) ≤ (a− ε, b + ε) (2.21)

by convexity of 2x. We say in this case that (a, b) is more balanced than
(a− ε, b + ε).

52 Branching Algorithms

2.7 Exponential Time Subroutines

So far, we analyzed the running time of Algorithm mis for graphs of maximum
degree 5 only. In this section, we see one way to combine different analyzes for
different algorithms or the same algorithm. For an algorithm that can be divided
in different stages, the following lemma shows that it is allowed to “decrease” the
measure when passing from one stage to another.

Lemma 2.6. Let A be an algorithm for a problem P , B be an algorithm for
(special instances of) P , c ≥ 0 be a constant, and µ(·), µ′(·), η(·) be three measures
for the instances of P , such that for any input instance I, µ′(I) ≤ µ(I) and for
any input instance I, A either solves P on I by invoking B with running time
O(η(I)c+1)2µ′(I), or reduces I to instances I1, . . . , Ik, solves these recursively, and
combines their solutions to solve I, using time O(η(I)c) for the reduction and
combination steps (but not the recursive solves) and such that for any reduction
done by Algorithm A,

(∀i) η(Ii) ≤ η(I)− 1, and (2.22)

2µ(I1) + · · ·+ 2µ(Ik) ≤ 2µ(I). (2.23)

Then A solves any instance I in time O(η(I)c+1)2µ(I).

Proof. Again, the result follows by induction on η(I). For the base case, we
assume that the algorithm returns the solution to an empty instance in time O(1).
If an instance I is solved in time O(η(I)c+1)2µ′(I) by invoking Algorithm B, then
the running time of algorithm A to solve instance I is TA(I) ≤ O(η(I)c+1)2µ′(I) ≤
O(η(I)c+1)2µ(I) as µ′(I) ≤ µ(I). Otherwise,

TA(I) = O(η(I)c) +
k∑

i=1

TA(Ii) (by definition)

= O(η(I)c+1)2µ(I). (following the proof of Lemma 2.5)

Very related is the idea of a piecewise linear measure [GSB95, DJW02, DJW05,
FK05, Wah08] which can be seen as dividing the algorithm in different subrou-
tines — one for each piece of the linear measure.

To derive an upper bound for the worst case running time of Algorithm mis
on general instances, use Lemma 2.6 with A = B = mis, c = 2, µ(G) = 0.35805n,
µ′(G) =

∑5
i=1 wini with the values of the wi’s as in Table 2.3 on page 49, and

η(G) = n. For every instance G, µ′(G) ≤ µ(G) because for each i ∈ {1, . . . , 5},
wi ≤ 0.35805. Further, for each d ≥ 6,

(0.35805, (d + 1) · 0.35805) ≤ 1.

Thus, Algorithm mis has running timeO(1.2817n) for graphs of arbitrary degrees.

2.8 Towards a Tighter Analysis 53

2.8 Towards a Tighter Analysis

2.8.1 Structures that Arise Rarely

It was — to our knowledge — first observed by Robson [Rob86] that branching
on a local configuration only affects the overall running time of the algorithm
by a constant factor if this local configuration is only selected (for branching) a
constant number of times on the path from a leaf to the root of any search tree
corresponding to an execution of the algorithm.

This can be formally proved by slightly modifying the measure of the instance.
Let C be a constant and s be an “undesired” local configuration which may only
be selected once on the path from a leaf to the root in any search tree of the
algorithm. Let

µ′(I) :=

{
µ(I) + C if s may be selected in the current subtree, and

µ(I) otherwise.
(2.24)

Consider an instance I where s is selected for the branching. Then µ′(I) =
µ(I) + C and for each subinstance Ii, 1 ≤ i ≤ k, µ′(Ii) = µ(Ii). By giving a high
enough constant value to C, the branching number(

µ(I)− µ(I1) + C, . . . , µ(I)− µ(Ik) + C
)

is at most 1, with the reasonable assumption that branching on s does not increase
the measure of the subinstances by more than a constant. The overall running
time in Lemma 2.5 on page 46 can then be upper bounded by η(I)c+12µ′(I) =
η(I)c+12µ(I)+C = η(I)c+12C · 2µ(I).

This argument can easily be iterated for undesired local configurations that
only arise at most a constant number of times on the path from a leaf to the root
of any search tree corresponding to an execution of the algorithm.

Let us slightly modify the selection of the local configuration for the second
branching rule of Algorithm mis on page 39 as shown in Figure 2.7.

else
Select v ∈ V such that

(1) v has maximum degree, and
(2) among all vertices satisfying (1), v has a neighbor of minimum
degree

return max (1 + mis(G \N [v]),mis(G \ v))

Figure 2.7: Modified branching rule for Algorithm mis

With this modification, Algorithm mis only selects v of degree d with all
neighbors of degree d when the graph is d-regular. As no connected d-regular

54 Branching Algorithms

graph contains any other d-regular subgraph, let us define

µ′(G) = µ(G) +
5∑

d=3

Kδ(G has a d-regular subgraph)Cd (2.25)

where Cd, 3 ≤ d ≤ 5, are constants.
A little care is now required for analyzing the first branching rule of Algo-

rithm mis, as we do not necessarily have that µ′(G) = µ′(G1) + µ′(G \ V (G1)).
Suppose µ(G1), µ(G \ V (G1)) > K for a large enough constant K. Then the
constraint

2µ′(G1) + 2µ′(G\V (G1)) ≤ 2µ′(G)

is satisfied. Otherwise, µ(G1) ≤ K or µ(G \ V (G1)) ≤ K and a maximum inde-
pendent set can be computed in constant time for the subgraph whose measure
µ is bounded by K.

i wi hi

0 0 0
1 0 0
2 0.207137 0.207137
3 0.322203 0.115066
4 0.343587 0.021384
5 0.347974 0.004387

Table 2.4: An optimal assignment of the weights for the measure µ(G) =∑5
i=1 wini for the analysis of Algorithm mis modified according to Figure 2.7

Turning to the second branching rule, all the branching numbers for regular
instances can now be ignored as they are irrelevant to the worst case behavior of
the algorithm. Thus, we obtain the following set of branching numbers. For each
d, 3 ≤ d ≤ 5 and all pi, 2 ≤ i ≤ d such that

∑d
i=2 pi = d and pd 6= d,

(
wd +

d∑
i=2

pi · (wi − wi−1), wd +
d∑

i=2

pi · wi + hd

)
.

All these branching numbers are at most 1 with the optimal set of weights in
Table 2.4. Thus, Algorithm mis, modified according to Figure 2.7 on the previous
page, has running time O(20.3480·n) or O(1.2728n).

With the same arguments, we may also loosen one condition of Lemma 2.6 on
page 52; namely, we can replace µ′(I) ≤ µ(I) by µ′(I) ≤ µ(I) + C for a constant
C.

2.8 Towards a Tighter Analysis 55

2.8.2 State Based Measures

Sometimes it is very useful to introduce states of the algorithm in order to specify
that some branching with a “bad” branching number is always followed by a
branching with a “better” branching number. A convenient way to amortize over
the branching numbers is to add a constant to the measure depending on some
properties of the instance, see for example [Wah04, CKX05] or Chapters 4 and 5
for applications.

More formally, the measure of an instance I is divided in two parts

µ′(I) := µ(I) + Ψ(I),

where Ψ : I → R+ is a function from the set of instances I to the positive reals
depending on global properties of the instance. Being additive and constant–
bounded, the function Ψ(·) increases the running time only by a constant factor
and has the potential to decrease the branching numbers.

The intuition is that Ψ(I) is larger for branchings whose branching numbers
with respect to µ are high, but that create subinstances for which the branchings
have low branching numbers with respect to µ. In this way, the function Ψ(·)
may enable us to decrease the highest branching numbers by increasing some
branching numbers that are not tight.

regular
not

regular
−R

+R

Figure 2.8: A state graph

Imagine an algorithm for Maximum Independent Set similar to mis, but
where d-regular instances may appear often on the path from a leaf to the root
of the search trees. For example, the folding operation used in [Bei99, CKJ01,
FGK06] has the potential to create regular graphs over and over again. The
branching numbers for regular instances are very often the most constraining ones.
Note however that a branching on a d-regular instance is not followed by another
branching on a d-regular instance unless all the vertices of degree less than d some-
how disappear by simplification rules. Let us use Ψ(G) := Kδ(G is regular) · R
for a constant R, and add it to our measure µ. See Figure 2.8 for the corre-
sponding state graph. Note that the measure of an instance increases by R when

56 Branching Algorithms

a branching on a nonregular graph creates a regular graph, and decreases by
R when the instance was regular and becomes nonregular. This decreases the
branching numbers for regular instances and increases the branching numbers for
nonregular instances, and thereby amortizes over the branching numbers.

2.9 Conclusion

In this chapter, we have seen how to establish worst case upper bounds on the
running time of branching algorithms. Methods and ideas how to improve the
analysis have been extensively discussed and exemplified on an algorithm for
Maximum Independent Set, which served as an introductory example; the
goal was to illustrate methods of analysis, and not to design a competitive algo-
rithm for this problem.

The methods and ideas presented in this chapter will be used in the forth-
coming chapters to design and analyze the currently fastest algorithms for various
problems.

Chapter 3
Feedback Vertex Sets

In all things there is a law of cycles.

Publius Cornelius Tacitus

In this chapter we present an O(1.7548n) time algorithm finding a minimum
feedback vertex set in an undirected graph on n vertices. We also prove that a
graph on n vertices can contain at most 1.8638n minimal feedback vertex sets
and that there exist graphs having 105n/10 ≈ 1.5926n minimal feedback vertex
sets. The optimization algorithm, as well as the upper bound on the number
of minimal feedback vertex sets use a measure based analysis as presented in
Section 2.3. The lower bound on the number of minimal feedback vertex sets is
derived via the construction of an infinite family of graphs with this number of
minimal feedback vertex sets.

3.1 Motivation and Previous Work

The problem of finding a minimum feedback vertex set in a graph, that is the
smallest set of vertices whose removal makes the graph acyclic, has many appli-
cations, for example in genome sequence assembly [PKS04] and VLSI chip de-
sign [KVZ01]. Its history can be traced back to the early ’60s (see the survey of
Festa et al. [FPR99]). It is also one of the classical NP-complete problems from
Karp’s list [Kar72]. Thus not surprisingly, for several decades, many different
algorithmic approaches were tried on this problem including approximation algo-
rithms [BBF99, BYGNR98, ENSZ00, KK01], linear programming [CGHW98], lo-
cal search [BMT00], polyhedral combinatorics [CDZ02, FR96], probabilistic algo-
rithms [PQR99], parameterized algorithms [DFL+05, DF99, GNW05, CFL+07],
and kernelization [BECF+06, Bod07, Tho09].

The problem is approximable within a factor of 2 in polynomial time [BBF99].
It was also extensively studied from the point of view of parameterized complexity.

58 Feedback Vertex Sets

There was a chain of improvements (see for example [RSS02]) concluding with two
2O(k)nO(1)-time algorithms obtained independently by different research groups
[DFL+05, GNW05]. It had been open for a long time whether computing a
feedback vertex set of a directed graph is fixed-parameter tractable. In 2007, this
question has been resolved positively by two independent groups [CLL07, RO07,
CLL+08].

Although the topic of exact exponential time algorithms for NP-hard prob-
lems has led to much research in recent years, and despite much progress on
exponential time solutions to other graph problems such as Chromatic Num-
ber [BH06b, Bys04a, Koi06a], Maximum Independent Set [FGK06, Rob86],
and Minimum Dominating Set [FGK05a], no algorithm faster than the trivial
O∗(2n) was known for Feedback Vertex Set until recently. For some special
graph classes, like bipartite graphs or graphs of maximum degree 4, algorithms
of running time O(1.8621n) and O(1.945n) respectively can be found in the lit-
erature [FP05, RSS05].

3.2 Discussion of Results

The first exact algorithm for Feedback Vertex Set breaking the trivial 2n

barrier is due to Razgon [Raz06]. The running time O(1.8899n) of the algorithm
from [Raz06] was reduced in [FGP06] to O(1.7548n). Both results are based on
branching algorithms. The main idea behind breaking the 2n barrier is based on
the choice of the measure of the subproblems recursively generated by the algo-
rithm. The exact algorithm presented here that solves Feedback Vertex Set
in time O(1.7548n) is based on a merged paper [FGPR08] combining preliminary
results announced in [Raz06] and [FGP06].

By making use of similar ideas, we show that every graph on n vertices contains
at most 1.8638n minimal feedback vertex sets. It is the first known upper bound
for the number of minimal feedback vertex sets breaking the trivial O(2n/

√
n)

bound (which is roughly the maximum number of subsets of an n-element set
such that none of them is contained in the other). This bound has algorithmic
consequences as well. By the result of Schwikowski and Speckenmeyer [SS02],
all minimal feedback vertex sets can be enumerated with polynomial time delay.
Thus our result implies that the running time of the algorithm by Schwikowski
and Speckenmeyer is O(1.8638n). We also show that there exist graphs with at
least 1.5926n minimal feedback vertex sets.

The rest of this chapter is organized as follows. Section 3.3 contains prelim-
inary results. In Section 3.4 we present an O(1.7548n) time algorithm finding a
minimum feedback vertex set in a graph on n vertices. In Section 3.5 we prove
that every graph on n vertices has at most 1.8638n minimal feedback vertex sets

3.3 Preliminaries 59

and that there exists an infinite family of graphs having 1.5926n minimal feedback
vertex sets.

3.3 Preliminaries

The set V ′ is a feedback vertex set if and only if G \ V ′ is a forest. A feedback
vertex set is minimal if it does not contain any other feedback vertex set as a
proper subset, and minimum if it has minimum cardinality among all feedback
vertex sets in a graph. Let us note that X is a minimal (minimum) feedback
vertex set if and only if G \X is a maximal (maximum) induced forest. Thus the
problem of finding a minimum feedback vertex set is equivalent to the problem
of finding a maximum induced forest. Similarly, the number of minimal feedback
vertex sets in a graph is equal to the number of maximal induced forests. For
the description of the algorithm it is more convenient to work with maximum
induced forests than with feedback vertex sets.

We call a subset F ⊆ V acyclic if G[F] is a forest. If F is acyclic then every
connected component of G[F] on at least two vertices is called non-trivial. If
T is a non-trivial connected component of G[F] then we denote by Id(T, t) the
operation of contracting all edges of T into one vertex t and removing appeared
loops. Note that this operation may create multiedges in G. We denote by
Id∗(T, t) the operation Id(T, t) followed by the removal of all vertices connected
with t by multiedges.

For an acyclic subset F ⊆ V , denote by MG(F) and by M∗
G(F) the set of

all maximal and maximum acyclic supersets of F in G, respectively (we omit
the subindex G when it is clear from the context which graph is meant). Let
M∗ := M∗(∅). Then the problem of finding a maximum induced forest can be
stated as finding an element of M∗. We solve a more general problem, namely
finding an element of M∗(F) for an arbitrary acyclic subset F .

To simplify the description of the algorithm, we suppose that F is always an
independent set. The next lemma justifies this assumption.

Lemma 3.1. Let G = (V, E) be a graph, F ⊆ V be an acyclic subset of vertices
and T be a non-trivial connected component of G[F]. Denote by G′ the graph
obtained from G by the operation Id∗(T, t) and let F ′ := F ∪ {t} \ T . Then

• X ∈MG(F) if and only if X ′ ∈MG′(F ′), and

• X ∈M∗
G(F) if and only if X ′ ∈M∗

G′(F ′),

where X ′ := X ∪ {t} \ T .

Proof. Assume that X ∈ MG(F). If after the operation Id(T, t) a vertex v is
connected with t by a multiedge, then the set T ∪{v} is not acyclic in G. Hence,

60 Feedback Vertex Sets

no element of MG(F) may contain v. In other words, X does not contain any
vertices removed by the transformation from G to G′ and hence X ′ = X ∪{t}\T
is a set of vertices of G′. Moreover, X ′ is an acyclic subset of G′. To see this,
assume by contradiction that X ′ induces a cycle C ′ in G′. Then C ′ necessarily
includes t because otherwise C ′ is induced by X in G in contradiction to the
acyclicity of X. Let x1 and x2 be the two neighbors of t in C ′. It follows that
there is a path in G from x1 to x2 including vertices of T only. Replace t in C ′

by such a path. As a result we obtain a cycle induced by X in G in contradiction
to the acyclicity of X. It remains to show that X ′ is a maximal acyclic subset
of G′. For this purpose, assume that there is a vertex v ∈ V (G′) \X ′ such that
X ′ ∪ {v} is an acyclic subset. Then X ∪ {v} is an acyclic subset of G (any cycle
in X ∪{v} can be transformed into a cycle in X ′ ∪{v} by the operation Id(T, t))
larger than X in contradiction to the maximality of X.

Arguing similarly, we can prove that if X ′ ∈MG′(F ′) then X ∈MG(F) and
that X ∈M∗

G(F) if and only if X ′ ∈M∗
G′(F ′).

By using the operation Id∗ on every non-trivial component of F , we obtain
an independent set F ′.

The following lemma is used to justify the main branching rule of the algo-
rithm.

Lemma 3.2. Let G = (V, E) be a graph, F ⊆ V be an independent subset of
vertices and v 6∈ F be a vertex adjacent to exactly one vertex t ∈ F . Then

1. For every X ∈M(F), either v or at least one vertex of N(v) \ {t} is in X.

2. There exists X ∈ M∗(F) such that either v or at least two vertices of
N(v) \ {t} are in X.

Proof. 1. If there is X ∈ M(F) such that v 6∈ X and no vertex of N(v) \ {t} is
in X, then X ∪{v} is also an induced forest of G. Thus X is not maximal, which
is a contradiction.

2. Let us consider X ∈ M∗(F) such that v 6∈ X. By item 1, at least one
vertex z ∈ N(v) \ {t} is in X. For the sake of contradiction, let us assume that z
is the only such vertex. Since X is maximal, we have that X ∪{v} is not acyclic.
Because v is of degree at most 2 in G[X ∪{v}], we conclude that all the cycles in
G[X ∪{v}] must contain z. Then the set X ∪{v} \ {z} is inM∗(F) and satisfies
the conditions.

Consequently, if N(v) = {t, v1, v2, . . . , vk}, then there exists X ∈ M∗(F)
satisfying one of the following properties:

1. v ∈ X;

2. v 6∈ X, vi ∈ X for some i ∈ {1, 2, . . . , k − 2} while vj 6∈ X for all j < i;

3.4 Computing a Minimum Feedback Vertex Set 61

3. v, v1, v2, . . . , vk−2 6∈ X but vk−1, vk ∈ X.

In particular, if k ≤ 1, then v ∈ X for some X ∈M∗(F).

The following lemma is needed to handle the case where every vertex in V \F is
adjacent to a vertex t ∈ F . We reduce this case to finding a maximal (respectively
maximum) independent set in the graph G[V \ F] with some additional edges.

Lemma 3.3. Let G = (V, E) be a graph and F be an independent set in G
such that V \ F = N(t) for some t ∈ F . Consider the graph G′ := G[N(t)]
and for every pair of vertices u, v ∈ N(t) having a common neighbor in F \ {t}
add an edge uv to G′. Denote the obtained graph by H and let I ⊆ N(t). Then
F ∪I ∈MG(F) if and only if I is a maximal independent set in H. In particular,
F ∪ I ∈M∗

G(F) if and only if I is a maximum independent set in H.

Proof. Let X ∈ MG(F) and u, v ∈ V \ F . If uv ∈ E then u, v, t form a triangle.
If there is a vertex w ∈ F \ {t} adjacent to both u and v then tuwv is a 4-cycle.
In both cases, X cannot contain u and v at the same time. On the other hand, if
I ⊆ N(t) such that no two vertices of I are adjacent in G and no two vertices of
I have a common neighbor except t then F ∪ I induces a forest in G. Therefore,
X ∈MG(F) if and only if X \ F is a maximal independent set in H.

There are several fast exponential algorithms computing a maximum inde-
pendent set in a graph. We use the polynomial space algorithm of Robson.

Theorem 3.4 ([Rob86]). Let G be a graph on n vertices. Then a maximum
independent set in G can be found in time O(20.296n) and polynomial space.

For the upper bound on |MG(∅)| for any graph G, we also need the following
well known result of Moon and Moser [MM65].

Theorem 3.5 ([MM65]). A graph on n vertices has at most 3n/3 maximal inde-
pendent sets.

3.4 Computing a Minimum Feedback Vertex

Set

In this section we show how to compute the minimum size of a feedback vertex
set. Our algorithm can easily be turned into an algorithm computing at least
one such set. Instead of working with feedback vertex sets directly, the algorithm
finds the maximum size of an induced forest in a graph. In fact, it solves a more
general problem: for any acyclic set F it finds the maximum size of an induced
forest containing F .

During the work of the algorithm one vertex t ∈ F is called an active vertex.
The algorithm branches on a chosen neighbor of t. Let v ∈ N(t). Denote by K

62 Feedback Vertex Sets

the set of all vertices of F other than t that are adjacent to v. Let G′ be the graph
obtained after the operation Id(K ∪ {v}, u). We say that a vertex w ∈ V \ {t} is
a generalized neighbor of v in G if w is a neighbor of u in G′. Denote by gd(v)
the generalized degree of v which is the number of its generalized neighbors.

The description of the algorithm consists of a sequence of cases and subcases.
To avoid a confusing nesting of if-then-else statements let us use the following
convention: the first case which applies is used in the algorithm. Thus, inside a
given case, the hypotheses of all previous cases are assumed to be false.

Algorithm mif(G, F) computing for a given graph G and an acyclic set F the
maximum size of an induced forest containing F is described by the following
preprocessing and main procedures (let us note that mif(G, ∅) computes the
maximum size of an induced forest in G).

Preprocessing

1. If G consists of k ≥ 2 connected components G1, G2, . . . , Gk, then the algo-
rithm is called on each of the components and

mif(G, F) =
k∑

i=1

mif(Gi, Fi),

where Fi := V (Gi) ∩ F for all i ∈ {1, 2, . . . , k}.

2. If F is not independent, then apply operation Id∗(T, vT) on an arbitrary
non-trivial component T of F . If T contains the active vertex then vT

becomes active. Let G′ be the resulting graph and let F ′ be the set of
vertices of G′ obtained from F . Then

mif(G, F) = mif(G′, F ′) + |T | − 1.

Main procedures

1. If F = V then MG(F) = {V }. Thus,

mif(G, F) = |V |.

2. If F = ∅ and ∆(G) ≤ 1 then MG(F) = {V } and

mif(G, F) = |V |.

3. If F = ∅ and ∆(G) ≥ 2 then the algorithm chooses a vertex t in G of
degree at least 2. Then t is either contained in a maximum induced forest
or not. Thus the algorithm branches on two subproblems and returns the
maximum:

mif(G, F) = max{mif(G, F ∪ {t}),
mif(G \ {t}, F)}.

3.4 Computing a Minimum Feedback Vertex Set 63

4. If F contains no active vertex then choose an arbitrary vertex t ∈ F as an
active vertex. Denote the active vertex by t from now on.

5. If V \ F = N(t) then the algorithm constructs the graph H from Proposi-
tion 3.3 and computes a maximum independent set I in H. Then

mif(G, F) = |F |+ |I|.

6. If there is v ∈ N(t) with gd(v) ≤ 1 then add v to F :

mif(G, F) = mif(G, F ∪ {v}).

7. If there is v ∈ N(t) with gd(v) ≥ 4 then either add v to F or remove v from
G:

mif(G, F) = max{mif(G, F ∪ {v}),
mif(G \ {v}, F)}.

8. If there is v ∈ N(t) with gd(v) = 2 then denote its generalized neighbors by
w1 and w2. Either add v to F or remove v from G but add w1 and w2 to F .
If adding w1 and w2 to F induces a cycle, we just ignore the last branch.

mif(G, F) = max{mif(G, F ∪ {v}),
mif(G \ {v}, F ∪ {w1, w2})}.

9. If all vertices in N(t) have exactly three generalized neighbors then at least
one of these vertices must have a generalized neighbor outside N(t), since
the graph is connected and the condition of the case Main 5 does not hold.
Denote such a vertex by v and its generalized neighbors by w1, w2 and w3

in such a way that w1 6∈ N(t). Then we either add v to F ; or remove v
from G but add w1 to F ; or remove v and w1 from G and add w2 and w3

to F . Similarly to the previous case, if adding w2 and w3 to F induces a
cycle, we just ignore the last branch.

mif(G, F) = max{mif(G, F ∪ {v}),
mif(G \ {v}, F ∪ {w1}),
mif(G \ {v, w1}, F ∪ {w2, w3})}.

The correctness and the running time of the algorithm are analyzed in the fol-
lowing.

64 Feedback Vertex Sets

Theorem 3.6. Let G be a graph on n vertices. Then a maximum induced forest
of G can be found in time O(1.7548n).

Proof. Let us consider Algorithm mif(G, F) described above. The correctness of
Preprocessing 1 and Main 1, 2, 3, 4, 7 is clear. The correctness of Main 5
follows from Lemma 3.3, while the correctness of Preprocessing 2 and Main 6,
8, 9 follows from Lemma 3.1 and 3.2 (indeed, applying Lemma 3.2 to the vertex
u of the graph G′ shows that for some X ∈MG(F) either v or at least two of its
generalized neighbors are in X).

In order to evaluate the time complexity of the algorithm we use Lemma 2.6
with the following measures:

µ(G, F, t) := α|N(t)|+ β|V \ (F ∪N(t))|
µ′(G, F) := 0.296|V \ F |
η(G, F) := |V |+ |V \ F |

with α := 0.415 and β := 0.8113. In other words, for the measure µ each vertex
in F has weight 0, each vertex in N(t) has weight α, each other vertex has weight
β, and µ is equal to the sum of the vertex weights. We will prove that a problem
of size µ can be solved in time O(2µ). As µ ≤ βn, the running time is O(1.7548n).

First, we prove that every simplification and every branching which reduces
an instance (G, F) to an instance (G1, F1), the measure η(G, F) decreases by at
least 1, that is η(G1, F1) ≤ η(G, F)− 1.

For the preprocessing cases and the cases Main 3, 6, 7, 8, 9, this immediately
follows from the description. Cases Main 1, 2 do not make any recursive calls.
As case Main 4 never occurs in two consecutive nodes of the search tree, its
statement may be reformulated as “choose an arbitrary vertex t as new active
vertex and go through the list of cases again to select the appropriate one”. That
is, the node corresponding to case Main 4 may be analyzed together with the
next node where t is specified. Finally in case Main 5, µ′ ≤ µ for every instance
and by Theorem 3.4, a maximum independent set in H can be found in time
O(2µ′).

It is now clear that the following steps do not increase the measure µ and do
not contribute to the exponential factor of the running time of the algorithm:
Preprocessing 1, 2 and Main 1, 2, 4, 6.

In all the remaining cases the algorithm is called recursively on smaller prob-
lems. We consider these cases separately.

In case Main 3 every vertex has weight β. So, removing v leads to a problem
of size µ − β. Otherwise, v becomes active after the next Main 4 step. Then
all its neighbors become of weight α, and we obtain a problem of size at most
µ − β − 2(β − α) since v has degree at least 2. Thus the branching number of
this case is at most

(β, 3β − 2α) ≤ 1.

3.5 On the Number of Minimal Feedback Vertex Sets 65

In case Main 7 removing vertex v decreases the size of the problem by α. If
v is added to F then we obtain a non-trivial component in F , which is contracted
into a new active vertex t′ at the next Preprocessing 2 step. Those of the general-
ized neighbors of v that had weight α will be connected with t′ by multiedges and
thus removed during the next Preprocessing 2 step. If a generalized neighbor of
v had weight β then it will become a neighbor of t′, that is of weight α. Thus, in
any case the size of the problem is decreased by at least α+4(β−α) as β−α < α.
So, we have a branching number of at most

(α, 4β − 3α) ≤ 1.

In case Main 8 we distinguish three subcases depending on the weights of
the generalized neighbors of v. Let i be the number of generalized neighbors of
v having weight β. Adding v to F reduces the weight of a generalized neighbor
either from α to 0 or from β to α. Removing v from the graph reduces the weight
of both generalized neighbors of v to 0 (since we add them to F). According to
this, we obtain the following branching numbers: for i ∈ {0, 1, 2},

(α + i · (β − α) + (2− i) · α, α + i · β + (2− i) · α) ≤ 1.

Case Main 9 is considered analogously to Main 8, except that at least one of
the generalized neighbors of v has weight β, that is i ≥ 1 (i = 0 is excluded by
Main 5). In this case, we have for i ∈ {1, 2, 3},

(α + i · (β − α) + (3− i) · α, α + β, α + i · β + (3− i) · α) ≤ 1.

Thus all the branching numbers are at most 1 and the proof follows from
Lemma 2.6.

Remark 3. The only tight constraint is the one of Case Main 7 when v has
generalized degree 4. Thus, an improvement of this case would improve the
overall (upper bound of the) running time of the algorithm.

3.5 On the Number of Minimal Feedback Ver-

tex Sets

In this section we use a measure based analysis in order to obtain an upper bound
of 1.8638n for the number of maximal induced forests (and thus the number of
minimal feedback vertex sets) in a graph G on n vertices. It follows from the
result of Schwikowski and Speckenmeyer [SS02] that all maximal induced forests
and all minimal feedback vertex sets can be enumerated in time O(1.8638n).

We also give a lower bound, namely we exhibit an infinite family of graphs, all
having 105n/10 ≈ 1.5926n maximal induced forests. Thus, the worst case running
time of the algorithm in [SS02] is between Ω(1.5926n) and O(1.8638n).

First, we prove the upper bound for the number of maximal induced forests.

66 Feedback Vertex Sets

Theorem 3.7. A graph G on n vertices contains at most 1.8638n maximal in-
duced forests.

Proof. To prove the theorem, we show that |MG(∅)| ≤ 1.8638n. We will prove a
slightly stronger statement, namely that for any acyclic subset F of G = (V, E),
|MG(F)| ≤ 1.8638n. By Lemma 3.1 we may assume that F is independent. For
a graph G, an independent set F and a vertex t ∈ F (we call such a vertex t an
active vertex), we use the same kind of measure as in the previous section:

µ(G, F, t) := α · |N(t)|+ β · |V \ (F ∪N(t))|,

with α := 0.58 and β := 0.89823. In the case where F = ∅, we set

µ(G, ∅) := β · |V |.

Note, that µ(G, F, t) ≤ µ(G, ∅) = βn for every F and t ∈ F . Let f(G, F) =
|MG(F)| be the number of maximal induced forests containing F and let f(µ)
be a maximum f(G, F) among all triples (G, F, t) and couples (G, ∅) of measure
at most µ. We claim that

f(µ) ≤ 2µ.

Since for F = ∅ every vertex of G has weight β, the claim implies that |MG(∅)| ≤
2βn ≤ 20.89823n ≤ 1.8638n, which proves the theorem.

Let us observe that the claim is true for µ = 0. In fact, for µ = 0 we have that
F = V . Thus MG(F) = {V } and f(0) = 1. To prove the claim we proceed by
induction assuming that f(κ) ≤ 2κ for every κ < µ. Let (G, F, t) be an instance
of measure µ.

We consider several cases. As in the previous section, we assume that inside
a given case, the hypotheses of all previous cases are assumed to be false.

Case 1: G is not connected. Denote by G1, G2, . . . , Gk the components of G. Let
Fi denote the intersection of F and the vertices of Gi, for i = 1, 2, . . . , k. If the
vertices of V \F are present in at least two components, then for all i ∈ {1, . . . , k},
µ(Gi, Fi) < µ(G, F) and by the induction assumption,

f(µ) =
k∏

i=1

f(Gi, Fi) ≤
k∏

i=1

2µ(Gi,Fi) = 2
Pk

i=1 µ(Gi,Fi) = 2µ.

Otherwise, each component which does not contain vertices of V \ F has exactly
one maximal induced forest (see the next case) and the component including
all the vertices of V \ F (which determines the overall number of the maximal
induced forests) has less vertices than G. Hence we may consider that we prove
the theorem by two-dimensional induction, the first dimension is the induction on
µ, the second dimension is induction on the number of vertices of the underlying

3.5 On the Number of Minimal Feedback Vertex Sets 67

graph. The considered case follows from the induction assumption of the second
dimension. In fact, this is the only place in the proof where the second dimension
is used.

Case 2: F = ∅. If ∆(G) ≤ 1 then MG(F) = {V }, that is f(G, F) = 1.
Otherwise, let t be a vertex of G of degree at least 2. Then every maximal forest
either contains t, or does not. Thus the number of maximal forests in G is equal
to the number of maximal forests containing t, that is f(G, {t}), plus the number
of maximal forests not containing t, that is f(G \ {t}, ∅). Since

µ(G, {t}, t) ≤ µ− β − 2(β − α)

and
µ(G \ {t}, ∅) ≤ µ− β,

we use the induction assumption and arrive at

f(µ) ≤ f(µ− β − 2(β − α)) + f(µ− β) ≤ 2µ−β−2(β−α) + 2µ−β ≤ 2µ.

From now on we denote by t ∈ F an active vertex (if F 6= ∅ contains no
such vertex, we may always choose an arbitrary vertex as active, reducing the
measure).

Case 3: V \ F = N(t). Then by Lemma 3.3, f(µ) is equal to the number of
maximal independent sets in the graph H from Lemma 3.3. Since all vertices of
V \ F have weight α, H has µ/α vertices. By Theorem 3.5,

f(µ) ≤ 3µ/3α ≤ 2µ,

as (log2 3)/(3α) ≤ 1.

Case 4: There is a vertex v ∈ N(t) such that gd(v) = 0. In this case every X ∈
MG(F) contains v and thus f(G, F) = f(G, F ∪{v}). Since µ(G, F ∪{v}, t) < µ,
we have that f(µ) ≤ 2µ.

Now we assume that V \ F 6= N(t), that F 6= ∅ and that G is connected.
Then there is a vertex v ∈ N(t) such that at least one of its generalized neighbors
lies not in N(t) (and thus contributes weight β to the measure). Among all
such vertices we choose a vertex v of minimum generalized degree. Similarly
to the proof of Theorem 3.6, it follows from Lemmata 3.1 and 3.2 that every
X ∈MG(F) must contain either v or at least one of its generalized neighbors.

Case 5: gd(v) = 1. Every forest X ∈ MG(F) either contains v, or does not
contain v and contains its generalized neighbor w1. The measure µ(G, F ∪{v}, t)
is at most µ−β as w1 6∈ N(t), and the measure µ(G \ {v}, F ∪{w1}, t) is at most
µ− α− β. Hence

f(µ) ≤ f(µ− β) + f(µ− α− β) ≤ 2µ−β + 2µ−α−β ≤ 2µ.

68 Feedback Vertex Sets

Case 6: gd(v) = 2. Let us denote the generalized neighbors of v by w1 and w2

and let us assume that w1 6∈ N(t). Then every forest X from MG(F)

— Either contains v;

— or does not contain v and contains w1;

— or does not contain v and w1 but contains w2.

Let us note that if w2 ∈ N(t) and v belongs to a maximal induced forest X, then
w2 does not belong to X. Thus if w2 ∈ N(t), then the number of forests inM(F)
is at most

f(G \ {w2}, F ∪ {v}) + f(G \ {v}, F ∪ {w1}) + f(G \ {v, w1}, F ∪ {w2}).

Thus

f(µ) ≤ f(µ− 2α− (β − α)) + f(µ− α− β) + f(µ− 2α− β)

≤ 2 · 2µ−α−β + 2µ−2α−β ≤ 2µ.

If w2 6∈ N(t), then

f(µ) ≤ f(µ− α− 2(β − α)) + f(µ− α− β) + f(µ− α− 2β)

≤ 2µ+α−2β + 2µ−α−β + 2µ−α−2β ≤ 2µ.

Case 7: gd(v) = 3. Denote the generalized neighbors of v by w1, w2, and w3

according to the rule that wj 6∈ N(t) and wk ∈ N(t) imply j < k. Then for every
forest X from MG(F) holds one of the following

— X contains v;

— X does not contain v and contains w1;

— X does not contain v and w1 but contains w2; or

— X does not contain v, w1 and w2 but contains w3.

Let i be the number of generalized neighbors of v that are not adjacent to t. For
i = 1, we have

f(µ) ≤ f(µ− α− (β − α)− 2α) + f(µ− α− β) + f(µ− 2α− β)

+ f(µ− 3α− β) ≤ 2µ−2α−β + 2µ−α−β + 2µ−2α−β + 2µ−3α−β ≤ 2µ.

For i = 2,

f(µ) ≤ f(µ− α− 2(β − α)− α) + f(µ− α− β) + f(µ− α− 2β)

+ f(µ− 2α− 2β) ≤ 2µ−2β + 2µ−α−β + 2µ−α−2β + 2µ−2α−2β ≤ 2µ.

3.5 On the Number of Minimal Feedback Vertex Sets 69

For i = 3,

f(µ) ≤ f(µ− α− 3(β − α)) + f(µ− α− β) + f(µ− α− 2β) + f(µ− α− 3β)

≤ 2µ+2α−3β + 2µ−α−β + 2µ−α−2β + 2µ−α−3β ≤ 2µ.

Case 8: gd(v) ≥ 4. Then every forest X from MG(F) either contains v or does
not. Thus

f(µ) ≤ f(µ− α− 4(β − α)) + f(µ− β) ≤ 2µ+3α−4β + 2µ−β ≤ 2µ.

Remark 4. The two tight constraints here are in the case Main 7, when i = 1 and
when i = 3. Again, an improvement of this case would provide a better bound
on the number of minimal feedback vertex sets.

Now, we prove the lower bound for the number of maximal induced forests.

Theorem 3.8. There exists an infinite family of graphs all having 105n/10 ≈
1.5926n maximal induced forests.

Proof. The infinite family consists of disjoint copies of the graph given in Fig-
ure 3.1 (the strong product of a C5 and a P2). The same family of graphs has
been used in [BMS05] to show that the number of maximal induced bipartite
subgraphs is lower bounded by 1.5926n.

0

1

2 3

4

5

6

7 8

9

Figure 3.1: Generating graph C5�P2 used to lower bound the number of maximal
induced forests in a graph

A pair of vertices in the graph of Figure 3.1 are two vertices whose labels differ
by 5. This graph has 5 · 24 = 80 maximal induced forests containing one vertex
from 4 of the pairs, 5 · 22 = 20 containing one pair and one vertex from each of
the “opposite” pairs and 5 containing two pairs. In total, it has 105 maximal
induced forests.

70 Feedback Vertex Sets

It is clear that the maximal induced forests of a disconnected graph are the
union of one maximal induced forest of each component. Their number thus
equals the product of the number of maximal induced forests of each component.
By taking multiple copies of the graph in Figure 3.1, we get the lower bound of
105n/10.

3.6 Conclusion

In this chapter we presented an O(1.7548n) time algorithm finding a minimum
feedback vertex set in an undirected graph on n vertices. We also proved that a
graph on n vertices can contain at most 1.8638n minimal feedback vertex sets and
that there exist graphs having 105n/10 ≈ 1.5926n minimal feedback vertex sets.
The design and analysis of algorithms establishing the first two results is based on
the following three ideas. The first one is considering the complementary problem
of maximum induced forest instead the straightforward computing of the feedback
vertex set. The second idea is a generalization of the maximum induced problems
according to which a subset of vertices F of the given graph G is introduced and
the task is to find the largest forest including F as a subset. The third idea is
a good choice of the measure of the subproblems recursively generated by the
algorithm. This good choice led us to a significantly better worst case running
time analysis of the proposed algorithm.

There are a few possible directions of further research related to the topic
of this chapter. The first is the design of a faster algorithm for computing a
minimum feedback vertex set (or maximum induced forest). Another possible
research direction is to ask the same questions as addressed in this chapter to
other classes of graphs than forests: Find a maximum induced subgraph that
belongs to a certain class C of graphs. In the literature, there exist algorithms
faster than O(2n) if C is, for example,

• the class of k-colorable graphs for k ≤ 3 (see [TT77, Rob86, Jia86, Bei99,
FGK06] for k = 1, [Bys04b, RSS07, AT06] for k = 2 and [AT06] for k = 3),

• the class of cluster graphs (see [FGK+08] and Chapter 9), and

• the class of d-regular graphs (see [GRS06]).

It is also easy to give an O∗(3n/3) algorithm for the case where C is the class
of paths and algorithms faster than O(2n) follow by a reduction to Minimum
k-Hitting Set for all classes of graphs with a finite number of finite forbidden
subgraphs1, for example split graphs [FH77], cographs, line graphs [Bei70] and
trivially perfect graphs [Gol78]. It remains open to find an algorithm faster than

1see [Wah04, Wah07, FGK+08] and Chapter 9 for algorithms for Minimum k-Hitting Set

3.6 Conclusion 71

O(2n) for the cases where C is the class of chordal graphs, planar graphs, or even
outerplanar graphs, for example.

72 Feedback Vertex Sets

Chapter 4
On Bicliques in Graphs

Thoughts without content are empty, intuitions
without concepts are blind.

Immanuel Kant

Bicliques of graphs have been studied extensively, partially motivated by the
large number of applications. One of the main algorithmic interests is in designing
algorithms to enumerate all maximal bicliques of a (bipartite) graph. Polynomial
time reductions have been used explicitly or implicitly to design polynomial delay
algorithms to enumerate all maximal bicliques.

Based on polynomial time Turing reductions, various algorithmic problems
on (maximal) bicliques can be studied by considering the related problem for
(maximal) independent sets. In this line of research, we improve Prisner’s upper
bound on the number of maximal bicliques [Pri00] and show that the maximum
number of maximal bicliques in a graph on n vertices is exactly 3n/3 (up to
a polynomial factor). We also give algorithms for various problems related to
bicliques, and mainly O(1.3642n) time algorithms to compute the number of
maximal independent sets and maximal bicliques in a graph.

4.1 Introduction

Bicliques. Let the vertex sets X and Y be independent sets of a graph G =
(V, E) such that xy ∈ E for all x ∈ X and all y ∈ Y . The subgraph of G induced
by X∪Y is called a biclique of G. Furthermore depending on the context and the
application area, one also calls the pair (X, Y) or the vertex set X ∪Y a biclique.
From a graph–theoretic point of view it is natural to consider a biclique of a
graph G as a complete bipartite induced subgraph of G. For technical reasons,

74 On Bicliques in Graphs

we prefer to consider a biclique B ⊆ V of a graph G = (V, E) as a vertex set
inducing a complete bipartite subgraph of G.

Maximal bicliques. A biclique B ⊆ V of G is a maximal biclique of G if B is
not properly contained in another biclique of G.

A lot of the research on maximal bicliques and in particular on algorithms to
enumerate all maximal bicliques of (bipartite) graphs with polynomial delay is
motivated by the various applications of bicliques in (bipartite) graphs. Applica-
tions of bicliques in automata and language theory, graph compression, artificial
intelligence and biology are discussed in [AVJ98]. An important application in
data mining is based on the formal concept analysis [GW96] where each concept
is a maximal biclique of a bipartite graph.

Previous work. The complexity of algorithmic problems on bicliques has been
studied extensively. First results were mentioned by Garey and Johnson [GJ79],
among them the NP–completeness of the balanced complete bipartite subgraph
problem. The maximum biclique problem is polynomial for bipartite graphs
[DKST01], andNP–hard for general graphs [Yan78]. The maximum edge biclique
problem was shown to be NP–hard by Peeters [Pee03].

Approximation algorithms for node and edge deletion biclique problems are
given by Hochbaum [Hoc98]. Enumerating maximal bicliques has attracted a
lot of attention in the last decade. The algorithms in [NR99, NR02] enumerate
all maximal bicliques of a bipartite graph as concepts during the construction
of the concept lattice. Nowadays there are polynomial delay enumeration algo-
rithms for maximal bicliques in bipartite graphs [DdFS07, MU04] and general
graphs [DdFS05, MU04]. There are also polynomial delay algorithms to enumer-
ate all maximal non–induced bicliques of a graph [AAC+04, DdFS07].1

Prisner studied various aspects of bicliques in graphs. Among others, he
showed that the maximum number of maximal bicliques in a bipartite graph on
n vertices is 2n/2. He established a lower bound of 3n/3 and an upper bound of
1.6181n (up to a polynomial factor) on the maximum number of maximal bicliques
in a graph on n vertices [Pri00].

Our Results. We use a simple polynomial time Turing reduction to transform
results on maximal independent sets into results on maximal bicliques. We also
improve upon Prisner’s upper bound and give a simple proof that the maximum
number of maximal bicliques in a graph on n vertices is at most n · 3n/3. On the
algorithmic side, our main result is an O(1.3642n) time algorithm to count all
maximal independent sets in a graph, which is established by using a measure
based analysis as described in Chapter 2. No such algorithm was known prior to
our work. We show how to use it to count all maximal bicliques of a graph within

1When the condition that X and Y are independent sets in the definition of a biclique is
omitted, then (X, Y) is called a non–induced biclique of G. In this case a different maximality
notion is used. See for example [AAC+04].

4.2 Polynomial Time Reductions 75

the same time bound and also provide a lower bound for the running time of this
algorithm.

4.2 Polynomial Time Reductions

There is a natural relation between independent sets (and cliques) on one hand
and bicliques on the other hand. Thus it is not surprising that polynomial–time
Turing reductions (in fact mainly Karp reductions) have been used in various
hardness proofs for problems on bicliques [GJ79]. The famous polynomial delay
algorithm of Johnson and Papadimitriou to enumerate all maximal independent
sets [JYP88] is used explicitly or implicitly in polynomial delay algorithms to enu-
merate maximal (non–induced) bicliques in (bipartite) graphs [AAC+04, DdFS05,
DdFS07].

The first reduction simply recalls an often used argument.

Lemma 4.1 (Property A). Let G = (V, E) be a bipartite graph. Let H be the
bipartite complement of G. Then B is a (maximal) biclique of G if and only if B
is a (maximal) independent set of H.

The above lemma implies, among others, that any algorithm enumerating all
maximal independent sets within delay f(n) can be transformed into an algo-
rithm enumerating all maximal bicliques of a bipartite graph within delay f(n).
The known tight bound of 2n/2 for the maximum number of maximal bicliques in
a bipartite graph given in [Pri00] follows easily from Property A and the corre-
sponding bound for maximal independent sets in [HT93]. Based on this property,
Yannakakis observed that the problem of finding a maximum biclique in a bipar-
tite graph is solvable in polynomial time [Yan78].

The following property is central for this chapter.

Lemma 4.2 (Property B). Let G = (V, E) be a graph. For every v ∈ V , the
graph Hv is the graph with vertex set V (Hv) := N(v)∪N2(v). Its edge set E(Hv)
consists of the following edges:

• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N(v),

• xy ∈ E(Hv) if xy ∈ E and x, y ∈ N2(v),

• xy ∈ E(Hv) if xy /∈ E, x ∈ N(v) and y ∈ N2(v).

Then B ⊆ V is a (maximal) biclique of G if and only if B \ {v} is a (maximal)
independent set of a graph Hv for some v ∈ B.

76 On Bicliques in Graphs

Proof. Let B be a (maximal) biclique of G. Take some v ∈ B. Then B ⊆
{v} ∪ N(v) ∪ N2(v) in G, where the independent sets X and Y of the biclique
B satisfy X ⊆ N(v) and Y ⊆ {v} ∪ N2(v). Since B is a biclique and by the
construction of H, we obtain that B \ {v} is an independent set. On the other
hand, if B′ is a (maximal) independent set of Hv, for some v ∈ V , then B′∩N(v)
is an independent set of G[N(v)] and B′∩N2(v) is an independent set of G[N2(v)].
Hence B′ is a biclique of G \ v and B′ ∪ {v} is a biclique of G.

Finally, due to the correspondence between bicliques and independent sets,
this also holds for maximality by inclusion of vertices.

The corresponding Turing reduction does not increase the number of vertices,
since |V (Hv)| ≤ |V | − 1. Thus this reduction is useful for exponential time
algorithms.

Corollary 4.3. Given an algorithm to find a maximum independent set (respec-
tively to count all independent sets of size k) of a graph in time O∗(cn), there
exists an algorithm to find a maximum biclique (respectively to count all bicliques
of size k) of a graph in time O∗(cn).

Proof. To find a maximum biclique of a graph G = (V, E), compute a maximum
independent set for each Hv, v ∈ V , constructed according to Property B and
return the largest set of vertices found. To count all bicliques of size k of a graph
G = (V, E) on n vertices, order the vertices of G: V := {v1, v2, . . . , vn}. For
i = 1, . . . , n, compute the number of independent sets of size k − 1 of H i

vi
where

H i
vi

is obtained from Gi = G[V \ {v1, v2, . . . , vi−1}] using Property B. Adding up
the results gives the number of bicliques of size k of G.

By this corollary and the algorithms in [Rob86, Wah08], a maximum biclique of
a graph can be found in time O(1.2109n) and all maximum bicliques of a graph
can be counted in time O(1.2377n).

Note that Corollary 4.3 is not directly applicable to use an algorithm for
counting maximal independent sets to count the maximal bicliques of a graph.
The issues are that double–counting has to be avoided at the same time as the
maximality of each counted biclique has to be ensured.

4.3 Improving Prisner’s Bound

The maximum number of maximal bicliques in a graph on n vertices has been
studied by Prisner [Pri00]. He settled the question for bipartite graphs. The
maximum number of maximal bicliques in a bipartite graph on n vertices is
precisely 2n/2. For general graphs the question remained open. He established
a lower bound of 3n/3 and an upper bound of (1.618034n + o(1)) · n5/2 for the
maximum number of maximal bicliques in a graph on n vertices. We settle the
question via an elegant proof based on Property B.

4.4 Counting Algorithms 77

Theorem 4.4. The maximum number of maximal bicliques in a graph is at most
n · 3n/3.

Proof. Let n be a positive integer and let G be any graph on n vertices. Apply-
ing Property B, for every vertex v ∈ V , there is a one–to–one correspondence
between the maximal bicliques B of G satisfying v ∈ B and the maximal inde-
pendent sets B − v of the graph Hv. By Theorem 3.5 on page 61, the maximum
number of maximal independent sets in a graph on n vertices is 3n/3. Thus the
number of maximal bicliques containing vertex v is at most 3n/3 for each v ∈ V .
Consequently G has at most n · 3n/3 maximal bicliques.

Corollary 4.5. The maximum number of maximal bicliques in a graph is 3n/3

(up to a polynomial factor).

4.4 Counting Algorithms

A problem related to enumerating all maximal bicliques of a graph is to compute
the number of maximal bicliques of a graph faster than by simply enumerating
all of them. By property B, an algorithm to count all maximal independent sets
of a graph could be a cornerstone to design such an algorithm. However no non–
trivial algorithm for counting maximal independent sets was known prior to our
work. It is known that the counting problem for maximal independent sets is
#P–complete even when restricted to chordal graphs [OUU05]. Hence our goal
is to construct a fast exponential time algorithm solving this problem.

4.4.1 Algorithm to Count all Maximal Independent Sets

We would first like to say a word of precaution. Even if the problems of counting
all maximal independent sets of a graph seems very similar to the problem of
counting all maximum independent sets of a graph, or all independent sets of a
given size k, there is a fundamental difference coming from the notion of maxi-
mality. All fast algorithms for counting all independent sets of maximum size or
of size k [DJ02, DJW05, FK05, Wah07] rely on a branching strategy similar to
the one of Algorithm mis in Chapter 2: vertices that are decided not to be in the
counted independent sets of a branch can be deleted and removed from further
consideration, and graphs of maximum degree 2 can be handled in polynomial
time. But if the algorithm is supposed to count all maximal independent sets, this
strategy does not work (unless P = NP). Consider a graph G = (F ∪M, E)
for which we would like to count all maximal independent sets of G that are
included in F . In other words, M is the set of vertices that have been decided
not to be in any maximal independent set in the current branch, but for each of
them, a neighbor must be added to ensure the maximality of the counted inde-
pendent sets. By a simple reduction from Sat, it can be shown that this problem

78 On Bicliques in Graphs

is NP–hard even if G[F] has maximum degree 1 (an edge in G[F] corresponds to
a variable, its end points to the true/false value of this variable, and the vertices
in M correspond to the clauses of the Sat formula).

Let G = (F, M, E) be a marked graph which are the graphs dealt with by
our algorithm. Vertices of F are called free and vertices of M are called marked.
Let u be a vertex of F ∪ M . The degree of u is the number of neighbors in
F ∪M and is denoted by d(u). Given a set D ⊆ (F ∪M), the set N(u) ∩D is
denoted by ND(u) and its cardinality is denoted by dD(u). For a marked graph
G = (F, M, E), the marked graph induced by the vertex sets F ′ ⊆ F and M ′ ⊆M
is G[F ′, M ′] = (F ′, M ′, E ∩ ((F ′ ∪M ′)× (F ′ ∪M ′))).

The following notions are crucial for our algorithm. A set S ⊆ F is a maximal
independent set (or shortly, MIS) of a marked graph G = (F, M, E) if S is a MIS
of G[F]. We say that the MIS S of G satisfies property Π if each vertex of M
has a neighbor in S.

Given a marked graph G, our algorithm computes the number of MISs of
G = (F, M, E) satisfying Π. Thus, a marked vertex u is used to force that
each MIS S of G counted by the algorithm contains at least one free neighbor of
u. This is particularly useful to guarantee that only maximal independent sets
of the input graph are counted. In the remainder of this section, we suppose
that G is a connected graph, otherwise the algorithm is called for each of its
connected components, and the product of the results gives the number of MISs
of G satisfying Π.

Given a simple graph G′ = (V, E), #MaximalIS
(
G = (V, ∅, E)

)
returns the

number of maximal independent sets of G′. See Figure 4.1 for the description of
the algorithm.

We emphasize that all the halting ((H1)–(H2)) and simplification ((S1)–(S7))
rules are necessary for our running time analysis in Subsection 4.4.3. The branch-
ing rule (B) selects a vertex u, orders its free neighbors in a list BL(u) = [v1, v2, . . . ,
vdF (u)] and makes a recursive call (that is a branching) counting all MISs contain-
ing u, and a recursive call for each i = 1, 2, . . . , dF (u) where it counts all MISs
containing vi but none of v1, v2, . . . , vi−1.

The selected vertex u is chosen according to three criteria (i)–(iii). By (i), u
has minimum degree, which ensures either that the algorithm makes few recursive
calls or that many vertices are removed in each branching. By (ii), u has a
neighbor of maximum degree among all vertices satisfying (i). If the degree of
this neighbor is high, then many vertices are removed in at least one recursive call.
If the degree of this vertex is low, every vertex of minimum degree has no high–
degree neighbor. This property is exploited in the analysis of our algorithm, which
considers a decrease in the degree of a vertex of small degree more advantageous
than a decrease in the degree of a high–degree vertex. Similarly, (iii) ensures
either many recursive calls where many vertices are removed or a knowledge on
the degrees of the neighbors of a vertex of minimum degree. The ordered list

4.4 Counting Algorithms 79

Algorithm #MaximalIS
(
G = (F,M,E)

)
Input: A marked graph G = (F,M,E).
Output: The number of MISs of G satisfying Π.
// Simplification rules
if G is empty then

return 1 (H1)

if there exists u ∈M such that dF (u) = 0 then
return 0 (H2)

if there exists u ∈M such that NF (u) = {v} then
return #MaximalIS

(
G[F \N [v],M \N(v)]

)
(S1)

if there exists u ∈ F such that dF (u) = 0 then
return #MaximalIS

(
G[F \N [u],M \N(u)]

)
(S2)

if there exists u, v ∈M such that {u, v} ∈ E then
return #MaximalIS

(
(F,M,E \ {u, v})

)
(S3)

if there exists u, v ∈ F such that N [u] = N [v] then
count← #MaximalIS

(
G[F \ {v},M]

)
Let MISu be the number of MISs computed by #MaximalIS

(
G[F \ {v},M]

)
containing u
return MISu + count (S4)

if there exists u ∈M and v ∈ N(u) such that N [v] ⊆ N [u] then
return #MaximalIS

(
G[F,M \ {u}]

)
(S5)

if there exists u, v ∈M such that N(u) = N(v) then
return #MaximalIS

(
G[F,M \ {v}]

)
(S6)

if there exists u ∈ F ∪M and v ∈ F such that N(u) = N(v) then
return #MaximalIS

(
G[F \ {v},M]

)
(S7)

// Branching rule (B)
if there exists a marked vertex u with d(u) = 2 then

Choose u

else
Choose a vertex u ∈ (F ∪M) such that

(i) u has minimum degree among all vertices in F ∪M
(ii) among all vertices fulfilling (i), u has a neighbor of maximum degree
(iii) among all vertices fulfilling (ii), u has maximum dual degree

Let BL(u)← [v1, . . . , vdF (u)] be an ordered list of NF (u) such that:
(i) v1 is a vertex of NF (u) having a minimum number of neighbors in V \N(u)
(ii) append (in any order) the vertices of N(v1) ∩NF (u) to the ordered list
(iii) append NF (u) \N [v1] ordered by increasing number of neighbors in V \N(u)

count← 0
if u is free then // select u (to be in the current MIS)

count← #MaximalIS
(
G[F \N [u],M \N(u)]

)
foreach vi ∈ BL(u) do // mark each vertex of M ′ and select vi

M ′ ← {vj ∈ BL(u) : 1 ≤ j < i and {vj , vi} 6∈ E}
count← count+ #MaximalIS

(
G[F \ (M ′ ∪N [vi]), (M ∪M ′) \N(vi)]

)
return count

Figure 4.1: Algorithm #MaximalIS counting all maximal independent sets

80 On Bicliques in Graphs

BL(u) is defined in this way to ensure that for certain configurations of N2[u],
simplification rule (S1) or a (fast) subsequent branching on a marked vertex of
degree 2 is applied in many recursive calls.

4.4.2 Correctness of #MaximalIS

We show the correctness of the branching and simplification rules of #MaximalIS.
(H1) If the input graph is empty then the only MIS is the empty set. (H2)
If there is a marked vertex u without any free neighbor then there is no MIS
satisfying Π. (S1) If u has only one free neighbor, it has to be in the MIS to
satisfy Π. (S2) By maximality, each free vertex without any free neighbor has to
belong to all MISs. (S3) Since marked vertices cannot belong to any MIS, edges
between two marked vertices are irrelevant and can be removed. (S4) Suppose
u, v ∈ F are two free vertices and N [u] = N [v]. Every MIS containing a neighbor
of u does not contain v. Moreover, every MIS containing u can be replaced by
one containing v instead of u. Thus, it is sufficient to remove v and to return
the number of MISs containing a neighbor of u plus twice the number of MISs
containing u. (Note that the algorithm can easily be implemented such that the
number of MISs containing u is obtained from the recursive call. For example,
keep a counter to associate to each free vertex the number of MISs containing
this vertex.) (S5) If u ∈ M has a neighbor v such that all neighbors of v are
also neighbors of u, then every MIS of G \ u must contain a vertex of N [v] \ {u}
and thus a neighbor of u in G. (S6) If two marked vertices have the same
neighborhood then one of them is irrelevant. (S7) Let v be a free vertex and u a
vertex such that N(u) = N(v), and thus u and v are non adjacent. Hence every
MIS containing a neighbor of u does not contain v and every MIS containing u
(if u is free) also contains v. Thus the number of MISs is the same as for G \ v.

(B) The algorithm considers the two possibilities that either u or at least
one neighbor of u is in the current MIS. By induction and the fact that N [u]
is removed if the algorithm decides to add u to the current MIS, every MIS
containing u is counted and it is counted only once. Consider the possibility
that at least one neighbor of u is in the current MIS and let vi be the first such
neighbor in the ordered list BL(u), containing all the free neighbors of u. That
no MIS containing a vertex appearing before vi in BL(u) is counted, is ensured by
either its deletion (because it is a neighbor of vi) or the marking of this vertex.
So, every MIS containing vi but neither u (removed as it is a neighbor of vi) nor
a vertex appearing before vi in BL(u) is counted exactly once.

4.4 Counting Algorithms 81

4.4.3 Running Time Analysis of #MaximalIS

To analyze the running time of our algorithm, we use the following measure µ(G)
of a marked graph G.

µ := µ
(
G = (F, M, E)

)
:=

n−1∑
i=1

wi|Vi|+ Kδ(G has no marked vertex of degree 2)M2

The weights M2 and wi, 1 ≤ i ≤ n − 1 are real non–negative numbers that will
be fixed later. For 1 ≤ i ≤ n− 1, Vi denotes the set of vertices of degree i in G.
The following values will be useful in the analysis.

∆wi :=

{
wi − wi−1 if 2 ≤ i ≤ n− 1
w1 if i = 1

To further simplify the forthcoming analysis, we assume:

wi = wi+1, 4 ≤ i ≤ n− 1,

wi−1 ≤ wi, 2 ≤ i ≤ n− 1, and

∆wi ≥ ∆wi+1, 1 ≤ i ≤ n− 1.

It is not hard to see that an application of a simplification rule will not increase∑n−1
i=1 wi|Vi|. Furthermore no simplification rule can be applied more than n times,

respectively m times for (S3). As in every simplification rule and every branch of
the branching rule, at least one vertex or edge is removed, we set η(G) := n + m
and use Lemma 2.5 on page 46 to upper bound the running time of the algorithm.
Let T (µ) = 2µ.

We only have to analyze the changes in measure when applying branching
rule (B).
Case 1: (B) is applied to a marked vertex u with d(u) = 2.
Let v1 and v2 be its two neighbors. By (S3), that is since (S3) could not be
applied, v1, v2 ∈ F , and by (S3), d(v1), d(v2) ≥ 2.

(a) Suppose d(v1) = d(v2) = 2. For i ∈ {1, 2}, let xi be the other neighbor
of vi. If d(x1) = d(x2) = 1 then the algorithm deals with a component
of constant size, and the number of MISs of such a component can be
computed in constant time. Suppose now that d(x1) ≥ 2. In the first
branch (or subproblem) u, v1 and x1 are removed. In the second branch
u, v2 and x2 are removed. In both branches, the graph might not have a
marked vertex of degree 2 any more. Thus, the corresponding constraint is

T (µ) ≥ T (µ− 3w2 + M2) + T (µ− w1 − 2w2 + M2).

82 On Bicliques in Graphs

(b) Suppose d(v1) ≥ 3 and d(v2) ≥ 2. In the first branch u, v1 and at least
two other neighbors of v1 are removed. In the second branch u, v2 and the
other neighbors of v2, at least one, are removed. Thus, the corresponding
constraint is T (µ) ≥ T (µ− 2w1 −w2 −w3 + M2) + T (µ−w1 − 2w2 + M2).
Since w2 ≤ w3 and w2 ≤ 2w1 (recall that ∆w1 ≥ ∆w2), it follows that
3w2 ≤ 2w1 + w2 + w3 and thus the constraint imposed in case (b) is not
stronger than the one of case (a) by the Dominance property on page 51.

Case 2: Vertex u is chosen by the else statement of (B).
Thus u satisfies the conditions (i), (ii) and (iii). Let [v1, . . . , vdF (u)] be the Branch-
ing List, short BL(u), built by the algorithm. Given a vertex vi, 1 ≤ i ≤ dF (u),
of BL(u), we denote by Op(vi) the operation of adding vi to the current MIS,
removing N [vi] and marking the vertices v1, . . . , vi−1 that are not adjacent to vi.

Let ∆u denote the gain on the measure obtained by adding u to the cur-
rent MIS. Removing u and its neighbors from the graph decreases µ(G) by
wd(u) +

∑
v∈N(u) wd(v). Moreover, the decrease of the degrees of vertices in N2(u)

implies a gain of
∑

x∈N2(u)(wd(x) − wd(x)−dN(u)(x)). Let M2(u) be equal to M2 if
the subinstance obtained from adding u to the current MIS has a marked vertex
of degree 2 after exhaustively applying all the simplification rules, and equal to
0 otherwise. Then,

∆u := wd(u) +
∑

v∈N(u)

wd(v) +
∑

x∈N2(u)

(wd(x) − wd(x)−dN(u)(x)) + M2(u).

Let ∆Op(vi) denote the gain on the measure when vi ∈ BL(u), 1 ≤ i ≤ dF (u),
is selected and added to the maximal independent set. Again, by selecting vi

the vertices of N [vi] are removed and thus a gain of wd(vi) +
∑

x∈N(vi)
wd(x) is

obtained. Since neighbors of vertices of N2(vi) have been removed, we gain∑
y∈N2(vi)

(wd(y)−wd(y)−dN(vi)
(y)). The measure further decreases whenever among

the marked vertices of {v1, . . . , vi−1}, some of them have only one remaining free
neighbor after the deletion of N [vi]. By direct application of simplification rule
(S1), these vertices and their neighbors are also removed from the graph. We
denote this extra gain by marked1(Op(vi)) Thus,

∆Op(vi) := wd(vi) +
∑

x∈N(vi)

wd(x) +
∑

y∈N2(vi)

(wd(y) − wd(y)−dN(vi)
(y))

+ marked1(Op(vi)) + M2(vi).

Putting all together, we obtain the following general constraint for case 2:

T (µ) ≥ T (µ−∆u) +
∑

vi∈BL(u)

T (µ−∆Op(vi))

Finally, we conclude the time analysis by the measure based method described
in Chapter 2. We solve the corresponding convex program and establish an

4.4 Counting Algorithms 83

upper bound on the worst case running time of our algorithm. Using the weights
M2 = 0.2, w1 = 0.37962, w2 = 0.41133, w3 = 0.44244, and w4 = 0.44804 we
obtain:

Theorem 4.6. Algorithm #MaximalIS counts all maximal independent set of a
graph on n vertices in time O(1.3642n).

For our algorithm analysis the number of constraints is still rather moderate and
therefore we are able to provide for the interested reader the details of the analysis
and list all possible worst cases in Appendix A.

4.4.4 Count all MISs in a Marked Graph of Maximum
Degree Two

Given a marked graph of maximum degree 2, #MaximalIS takes exponential time.
We show in this subsection, that all MISs of a marked graph of maximum degree
2 can be counted in polynomial time. Adding this polynomial time procedure to
#MaximalIS is likely to be of help in implementations of the algorithm, however
it does not improve its worst case running time.

Suppose first that G is a path Pn = (v1, v2, . . . , vn). Let Vi = {v1, v2, . . . , vi}
for i = 1, . . . , n. We define three values for the vertices of G with the following
meaning:

• is(vi) - the number of MISs of G[Vi] containing vi

• od(vi) - the number of MISs of G[Vi−1] containing vi−1

• ond(vi) - the number of MISs of G[Vi−1] not containing vi−1

The algorithm gives the following values to v1:

• is(v1) = 0 if v1 is marked, and 1 otherwise,

• od(v1) = 0, and

• ond(v1) = 1.

Suppose the values for vi−1 are known, then the values for vi are computed by
simple dynamic programming as follows:

• is(vi) = 0 if vi is marked, and od(vi−1) + ond(vi−1) otherwise,

• od(vi) = is(vi−1), and

• ond(vi) = od(vi−1).

84 On Bicliques in Graphs

The number of maximal independent sets satisfying property Π (defined in Sub-
section 4.4.1) of G is is(vn) + od(vn).

If G is a cycle Cn, select an arbitrary vertex vi with neighbors vi−1 and vi+1

and return the sum of the number of maximal independent sets

• containing vi if vi is not marked, or 0 otherwise,

• containing vi−1 if vi−1 is not marked, or 0 otherwise, and

• containing vi+1 but not vi−1 if vi+1 is not marked, or 0 otherwise.

This can easily be done by 3 recursive calls on the instances G\N [vi], G\N [vi−1]
and G \N [vi+1] and by marking vi−1 in the last recursive call.

Lemma 4.7. Let G be a marked graph with maximum degree 2. The number of
maximal independent sets of G satisfying property Π can be computed in linear
time.

Remark 5. As od(vi) = is(vi−1), the value od(·) is redundant. But the above
description makes it easier to see that a slight generalization of this algorithm,
which is very similar to the algorithm in [Alb02], makes it possible to count all
maximal independent sets of a marked graph satisfying property Π in time 3kn
when a path decomposition of width k of the graph is known.

4.4.5 Lower Bound on the Running Time of the Algo-
rithm

For most non–trivial branching algorithms, it is not known whether the upper
bound of the running time provided by the currently available analyses is tight or
not. A lower bound for the worst case running time of such algorithms is therefore
desirable. Here we lower bound the running time of Algorithm #MaximalIS by
Ω(1.3247n).

Theorem 4.8. There exists an infinite family of graphs for which Algorithm
#MaximalIS takes time Ω(1.3247n), and thus its worst case running time is
Ω(1.3247n).

Proof. The lower bound for the running time of #MaximalIS established here
uses the same family of graphs as the lower bound for an algorithm computing a
minimum independent dominating set [GL06].

Consider the graph Gl of Figure 4.2. It has n = 2l vertices. Note that none
of the simplification or halting rules are applicable to Gl. The first branching of
#MaximalIS is on vertex u1 or vertex vl. Without loss of generality, suppose the
algorithm always chooses the vertex with smallest index when it has more than
one choice (that is it chooses u1 for the first recursive call).

4.4 Counting Algorithms 85

v1 v2 v3 v4 v5 vl−1 vl

u1 u2 u3 u4 u5 ul−1 ul

· · ·

Figure 4.2: Graph Gl used to lower bound the running time of Algorithm
#MaximalIS

u1

v2

u4

v2

u5

v3

v4

u3

u1

u3

v4

u3

u5

v3

v5

u4

v1

v3

u5

v3

v5

u4

u6

v4

u2

Figure 4.3: A part of the search tree of the execution of Algorithm #MaximalIS

on the graph Gl

The branching rule (B) then makes recursive calls on graphs with n−3, n−4
and n− 5 vertices, not marking any vertex. The structure of all resulting graphs
is similar to Gl: either isomorphic to Gl−2 or equal to Gl \ N [u1] or Gl \ N [u2].
The subsequent recursive calls again remove 3, 4 and 5 vertices in each case and
do not mark any vertices.
The first levels of the corresponding search tree are depicted in Figure 4.3. Unless
the graph has at most 4 vertices, each application of branching rule (B) satisfies
the recurrence

T (n) = T (n− 3) + T (n− 4) + T (n− 5)

for this graph and therefore the running time for this class of graphs is Ω(αn)
where α is the positive root of x−3+x−4+x−5−1, that is 1.3247 < α < 1.3248.

4.4.6 Algorithm to Count all Maximal Bicliques

Finally, we consider the problem of counting all maximal bicliques of a graph
G = (V, E). Let G′ = (V ′, E ′) be a copy of G. Let G′′ = (V ′′, E ′′) where
V ′′ := V ∪ V ′ and E ′′ := E ∪ E ′ ∪ {xy′ : x = y or xy 6∈ E}.

Lemma 4.9. The number of MISs of G′′ equals twice the number of maximal
bicliques of G.

86 On Bicliques in Graphs

Proof. We show that there is a one–to–one correspondence between the bicliques
of G and the symmetric pairs of independent sets of G′′.

Let X ∪ Y be a biclique of G. Clearly, X, Y are independent sets in G and
their copies X ′, Y ′ are independent sets in G′. Let x ∈ X and y ∈ Y . Then
xy, x′y′ ∈ E ′′ and xy′, x′y 6∈ E ′′. So, X ∪ Y ′ and X ′ ∪ Y are independent sets in
G′′.

Let X, Y ⊆ V be such that X ∪ Y ′ is an independent set in G′′ where X ′, Y ′

are the copies of X, Y . Hence X, Y are independent sets in G. Let x ∈ X and
y′ ∈ Y ′. Then xy ∈ E. So, X ∪Y is a biclique in G. By the symmetry of G′′, the
independent set X ′ ∪ Y in G′′ also corresponds to the biclique X ∪ Y in G.

Clearly, this correspondence also holds for maximality by inclusion of vertices.
This implies that X ∪ Y is a maximal biclique of G if and only if X ∪ Y ′, and

thus also Y ∪X ′, are MISs of G′′.

With this construction and the algorithm for counting all maximal independent
sets of a graph, we are now able to give an algorithm for counting all maximal
bicliques of a graph.

Theorem 4.10. There is an algorithm that counts all maximal bicliques of a
graph in time O(1.3642n).

Proof. The algorithm simply calls #MaximalIS
(
(V ′′, ∅, E ′′)

)
and divides the result

by 2. Note that G′′ has 2n vertices and that every vertex of G′′ has degree n.
The first application of branching rule (B) makes n+1 recursive calls and in each
one, n + 1 vertices are removed from the marked graph. Thus the running time
is (n + 1)(cn−1)nO(1) where O∗(cn) is the running time of #MaximalIS on a graph
with n vertices. The constant c = 1.3642 was rounded to derive the running time
for #MaximalIS, and thus the running time of the algorithm to count maximal
bicliques is O(1.3642n).

4.5 Conclusion

We have seen in this chapter that various results for independent sets translate to
results for bicliques. But the reverse questions are also interesting. For example,
given an algorithm to find a maximum biclique in a graph in time O(cn), is it
possible to design an O(cn) algorithm for Maximum Independent Set?

Given a graph G = (V, E) on n vertices, finding a maximum independent
set in G could be done by constructing a graph G′ obtained from G by adding
an independent set I of size n such that every vertex of I is adjacent to every
vertex of V . Then G has an independent set of size k if and only if G′ has a
biclique of size n + k. This shows that it is possible to obtain a O(c2n) algorithm
for Maximum Independent Set from an algorithm for computing a maximum
biclique in a graph.

4.5 Conclusion 87

A simple variant of this reduction also shows that it is W [1]–hard to find
an induced Kk,k in a graph, where the parameter is k (now only k independent
vertices need to be added to G and made adjacent to every vertex in V). However
the following question is still open.

Open Question. Determine the parameterized complexity of the following prob-
lem: given a graph G and a parameter k, does G have a Kk,k as a subgraph.

Note that the problem in the open question does not require the Kk,k to be
an induced subgraph.

88 On Bicliques in Graphs

Chapter 5
Max 2-Sat, Max 2-CSP, and everything
in between

All we ask for is satisfaction.

Silent Hill (2006), movie

We introduce “hybrid” Max 2-CSP formulae consisting of “simple” clauses,
namely conjunctions and disjunctions of pairs of variables, and general 2-variable
clauses, which can be any integer–valued functions of pairs of boolean variables.
This allows an algorithm to use both efficient reductions specific to AND and OR
clauses, and other powerful reductions that require the general CSP setting.

Parametrizing an instance by the fraction p of non-simple clauses, we give an
algorithm that is the fastest polynomial space algorithm known for Max 2-Sat
(and other p = 0 formulae, with arbitrary mixtures of AND and OR clauses);

the only efficient algorithm for mixtures of AND, OR, and general integer–valued
clauses; and tied for fastest for Max 2-CSP (p = 1). Since a pure 2-Sat input
instance may be transformed to a general CSP instance in the course of being
solved, the algorithm’s efficiency and generality go hand in hand.

Our novel analysis results in a family of running time bounds, each optimized
for a particular value of p. The algorithm uses new reductions introduced here, as
well as recent reductions such as “clause–learning” and “2-reductions” adapted
to our setting’s mixture of simple and general clauses. Each reduction imposes
constraints on various parameters, and the running time bound is an “objective
function” of these parameters and p. The optimal running time bound is obtained
by solving a convex nonlinear program, which can be done efficiently and with a
certificate of optimality.

90 Max 2-Sat, Max 2-CSP, and everything in between

5.1 Introduction

Treatment of “Hybrid” Sat–CSP Formulae. We show a polynomial space
algorithm that solves general instances of integer–valued Max 2-CSP (formally
defined in Section 5.2), but that takes advantage of “simple” clauses, namely unit–
weighted conjunctions and disjunctions. In a sense made precise near Remark 7,
exclusive–or is the only boolean function we cannot treat efficiently.

Let us give a simple example. In the Max 2-CSP instance

(x1∨x2) + (x2∨x4) + (x2∧x3) + 3 · (x1∨x3) + (2 · (x2)−5 ·x4 + (x2⊕x4)), (5.1)

the first two clauses are unit–weighted disjunctive clauses, the third clause is a
unit–weighted conjunction, the fourth clause is a disjunction with weight 3, and
the last clause is a general integer–valued CSP clause (any integer–valued 2-by-2
truth table). Thus this example has 3 (the first three clauses) simple clauses and
2 non–simple clauses.

Running Time Problem Space Reference

O∗ (2m/2.879
)

Max 2-Sat poly Niedermeier and Rossmanith [NR00]
O∗ (2m/3.448

)
Max 2-Sat poly implicit by Bansal and Raman [BR99]

O∗ (2m/4
)

Max 2-Sat poly Hirsch [Hir00]
O∗ (2m/5

)
Max 2-Sat poly Gramm et al. [GHNR03]

O∗ (2m/5
)

Max 2-CSP poly Scott and Sorkin [SS03]
O∗ (2m/5.263

)
Max 2-CSP poly Scott and Sorkin [SS04]

O∗ (2m/5.217
)

Max 2-Sat poly Kneis and Rossmanith [KR05]
O∗ (2m/5.769

)
Max 2-Sat exp Kneis et al. [KMRR05]

O∗ (2m/5.5
)

Max 2-Sat poly Kojenikov and Kulikov [KK06]
O∗ (2m/5.769

)
Max 2-CSP exp Scott and Sorkin [SS07a]

O∗ (2m/5.88
)

Max 2-Sat poly Kulikov and Kutzkov [KK07]
O∗ (2m/6.215

)
Max 2-Sat poly Raible and Fernau [RF08]

O∗ (2m/5.263
)

Max 2-CSP poly (here)
O∗ (2m/6.321

)
Max 2-Sat poly (here)

Table 5.1: A historical overview of algorithms for Max 2-Sat and Max 2-CSP

Both Max 2-Sat and Max 2-CSP have been extensively studied from the
algorithmic point of view. For variable–exponential running times, the only
two known algorithms faster than 2n for Max 2-CSP (and even Max 2-Sat)
are those by Williams [Wil05] and Koivisto [Koi06b], both with running time
O∗ (2n/1.262

)
. They employ beautiful ideas, but have exponential space complex-

ity.
For clause–exponential running times, there has been a long series of improved

algorithms; see Table 5.1. To solve Max 2-Sat, all early algorithms treated pure

5.1 Introduction 91

2-Sat formulae. By using more powerful reductions closed over Max 2-CSP
but not Max 2-Sat, the Max 2-CSP generalization of Scott and Sorkin [SS04]
led to a faster algorithm. Then, several new Max 2-Sat specific reductions once
again gave the edge to algorithms addressing Max 2-Sat particularly.

In this chapter we get the best of both worlds by using reductions specific to
Max 2-Sat (actually, we allow disjunctive as well as conjunctive clauses), but
also using CSP reductions. While it is likely that Max 2-Sat algorithms will
become still faster, we believe that further improvements will continue to use this
method of combination.

Results. Let p be the fraction of non–simple clauses in the initial instance,
no matter how this fraction changes during the execution of the algorithm. In
example (5.1), the fraction of non–simple clauses is p = 2/5. The algorithm we
present here is the fastest known polynomial space algorithm for p = 0 (including
Max 2-Sat but also instances with arbitrary mixtures of AND and OR clauses);
fastest for all p < 0.29 (where indeed no other algorithm is known, short of
solving the instance as a case of general Max 2-CSP); and tied for fastest for
0.29 ≤ p ≤ 1, notably for Max 2-CSP itself. For the well known classes Max
2-Sat and Max 2-CSP, our algorithm has polynomial space complexity and
running time O∗ (2m/6.321

)
and O∗ (2m/5.263

)
, respectively.

For “cubic” instances, where each variable appears in at most three 2-variable
clauses, our analysis gives running time bounds that match and generalize the
best known when p = 0 (including Max 2-Sat); improve on the best known
when 0 < p < 1/2; and match the best known for 1/2 ≤ p ≤ 1 (including Max
2-CSP).

We derive running time bounds that are optimized to the fraction p of non–
simple clauses; see Table 5.2. Every such bound is valid for every formula, but
the bound derived for one value of p may not be the best possible for a formula
with a different value.

Method of analysis, and hybrid Sat–CSP formulae. We view a Max 2-
CSP instance as a constraint graph G = (V, E ∪ H) where vertices represent
variables, the set of “light” edges E represents simple clauses and the set of
“heavy” edges H respresents general clauses. Our algorithm is reduction–based,
and the running time analysis is measure–based, as described in Chapter 2. The
measure µ, that we use to upper bound the running time of our algorithm, includes
weights we and wh for each simple and general clause, and weights wd for each
vertex of degree d.

To get the best possible running time bound subject to the constraints im-
posed by our analysis of the reductions, we wish to minimize µ(G). To avoid
looking at the full degree spectrum of G, we constrain each vertex weight wd to
be non–positive, and then ignore these terms, resulting in a (possibly pessimistic)
running time bound O∗ (2|E|we+|H|wh

)
.

If the instance G is a Max 2-Sat instance, with no heavy edges, to minimize

92 Max 2-Sat, Max 2-CSP, and everything in between

the running time bound is simply to minimize we subject to the constraints: as
there are no heavy edges in the input instance, it makes no difference if wh is large.
This optimization will yield a small value of we and a large wh. Symmetrically,
if we are treating a general Max 2-CSP instance, where all edges are heavy,
we need only minimize wh. This optimization will yield weights we, wh that are
larger than the Max 2-Sat value of we but smaller than its wh. For a hybrid
instance with some edges of each type, minimizing |E|we + |H|wh is equivalent
to minimizing (1 − p)we + pwh, where p = |H|/(|E| + |H|) is the fraction of
non–simple clauses. This will result in weights we and wh each lying between
the extremes given by the pure 2-Sat and pure CSP cases; see Figure 5.10 on
page 132.

Thus, a new aspect of our approach is that it results in a family of nonlinear
programs, not just one: the nonlinear programs differ in their objective functions,
which are tuned to the fraction p of non–simple clauses in an input instance. The
optimization done for a particular value of p, by construction, gives a running
time bound that is the best possible (within our methods) for an input instance
with this fraction of non–simple clauses. However, it is worth noting that the
constraints are the same in all the nonlinear programs, and thus the weights
(we, wh, and the vertex weights) that are optimal for one nonlinear program are
feasible (but not necessarily optimal) for all the nonlinear programs. This means
that our family of nonlinear programs results in a family of running time bounds,
each of them valid for every input instance, but with the bound optimized to a
given value of p being best for formulae with that fraction of non–simple clauses.

Novel aspects of the analysis. Our introduction of the notion of hybrids be-
tween Max 2-Sat and Max 2-CSP, discussed above, is the main distinguishing
feature of the present work. It yields a more general algorithm, applicable to CSP
instances not just Sat instances, and gives better performance on Max 2-Sat by
allowing both efficient Sat–specific reductions and powerful reductions that go
outside that class. This is surely not the final word on Max 2-Sat algorithms,
but we expect new algorithms to take advantage of this hybrid approach.

A secondary point is that CSP reductions such as combining parallel edges or
reducing on small cuts mean that in other cases it can be assumed that a graph
has no parallel edges or small cuts. This simplifies the case analysis, counter–
balancing the complications of considering two types of edges.

The hybrid view marks the biggest change to our approach, since it means
that the objective function depends on the fraction of non–simple clauses, so there
is a continuum of nonlinear programs, not just one.

Also, it is common to make some assumptions about the weights, but we try
to avoid this, instead only limiting the weights by the constraints necessitated by
each reduction. This avoids unnecessary assumptions compromising optimality of
the result, which is especially important in the hybrid realm where an assumption
might be justified for Sat but not for CSP, or vice–versa. It also makes the

5.2 Definitions 93

analysis more transparent.

As is often the case with exact algorithms, regularity of an instance is impor-
tant, and in our analysis we treat this with explicit weights penalizing regularity
(motivated by a similar accounting for the number of 2-edges in a hypergraph,
in [Wah04], and by the “forced moves” in [SS07a]; see also Subsection 2.8.2 on
page 55). This introduces some extra bookkeeping but results in a more struc-
tured, more verifiable analysis.

We introduce several new reductions, including a 2-reduction combining ideas
from [KK06] (for the Sat case) and [SS07a] (the CSP case), a “super 2-reduction”,
and a generalization of the “clause-learning” from [KK07].

Another useful tool we introduce is a simple graph–theoretic lemma on “good
1-reductions” (Lemma 5.7) which shows that in various situations a certain num-
ber of these helpful simplifications occur. This eliminates some amount of case
analysis.

Remark. Our research was performed concurrently with that of Raible and Fer-
nau [RF08], and independently except that our use of Kulikov and Kutzkov’s
“clause learning” [KK07] is a late addition, copied from them, that slightly im-
proves our bounds. Our study, like theirs, is a case–based analysis of a reduc-
tive algorithm, but it differs in some of the aspects noted above: our use of
cut reductions and others that go outside the class Max 2-Sat; the lemma on
1-reductions; an explicit, convex, mathematical program; and explicit costs for
analyzing regularity. The foremost difference, though, is our treatment of general
integer–weighted Max 2-CSP formulae, not just Max 2-Sat. For Max 2-Sat
itself, our running time is slightly better than theirs, with both significantly better
than the previously fastest algorithm of [KK07] (see Table 5.1).

5.2 Definitions

We use the value 1 to indicate Boolean “true”, and 0 “false”. The canonical
problem Max Sat is, given a boolean formula in conjunctive normal form (CNF),
to find a boolean assignment to the variables of this formula satisfying a maximum
number of clauses. Max 2-Sat is Max Sat restricted to instances in which each
clause contains at most 2 literals.

We will consider a class more general than Max 2-Sat, namely integer–
valued Max (2,2)-CSP; we will generally abbreviate this to Max 2-CSP. An
instance (G, S) of Max 2-CSP is defined by a constraint graph (or multigraph)
G = (V, E) and a set S of score functions. There is a dyadic score function
se : {0, 1}2 → Z for each edge e ∈ E, a monadic score function sv : {0, 1} → Z
for each vertex v ∈ V , and (for bookkeeping convenience) a single niladic score
“function” (really a constant) s∅ : {0, 1}0 → Z.

A candidate solution is a function ϕ : V → {0, 1} assigning values to the

94 Max 2-Sat, Max 2-CSP, and everything in between

vertices, and its score is

s(ϕ) :=
∑
uv∈E

suv(ϕ(u), ϕ(v)) +
∑
v∈V

sv(ϕ(v)) + s∅.

An optimal solution ϕ is one which maximizes s(ϕ).
The algorithm we present here solves any instance of Max 2-CSP with poly-

nomial space usage, but runs faster for instances having a large proportion of
“simple” clauses, namely conjunctions and disjunctions.

A hybrid instance F = (V, E, H, S) is defined by its variables or vertices V ,
normal or light edges E representing conjunctive clauses and disjunctive clauses,
heavy edges H representing arbitrary (integer–valued) clauses, and a set S of
monadic functions and dyadic functions. Its light–and–heavy–edged constraint
graph is G = (V, E, H), though generally we will just think of the graph (V, E ∪
H); no confusion should arise. We will write V (F) and V (G) for the vertex set
of an instance F or equivalently that of its constraint graph G.

We define the degree d(u) of a vertex u to be the number of edges incident on
u where loops are counted twice and the degree (or maximum degree) of a formula
F (or its constraint graph G) to be the maximum of its vertex degrees. Without
loss of generality we will assume that there is at most one score function for each
vertex, though we will allow multiple edges. Then, up to constant factors the
space required to specify an instance F with constraint graph G = (V, E, H) is
the instance size

|F | := 1 + |V |+ |E|+ |H|. (5.2)

We use the symbol � to end the description of a reduction rule or the analysis
of a case.

5.3 Algorithm and Outline of Analysis

We will show an algorithm (sketched as Algorithm max2csp in Figure 5.1) which,
on input of a hybrid instance F , returns an optimal coloring ϕ of F ’s vertices in
time

T (F) = O∗ (2we|E|+wh|H|) . (5.3)

5.3.1 Algorithm and General Arguments

The central argument (corresponding to the analysis for line 10 of Algorithm
max2csp) is to establish (5.3) for simplified formulae of maximum degree at most
6. We do this shortly, in Lemma 5.1, with the bulk of the chapter devoted to
verifying the lemma’s hypotheses.

5.3 Algorithm and Outline of Analysis 95

Algorithm max2csp(F)
Input : A hybrid Max 2-Sat/ CSP instance F .
Output: An optimal coloring ϕ of the vertices of F .

if F has any vertex v of degree ≥ 7 then1

Branch on ϕ(v) = 0 and ϕ(v) = 1 to obtain F1, F2, recursively solve2

the instances F1 and F2 and return the best assignment for F .
(Analysis: Inductively establish running time, using that both F1 and3

F2 have at least 7 edges fewer than F .)

Simplify F . (See procedure Simplify.)4

(Analysis: Establish running time bound for general instances, using a5

bound for simplified instances.)
if F is nonempty then6

Apply first applicable branching reduction, obtaining F1, . . . , Fk.7

Simplify each of F1, . . . , Fk.8

Recursively solve F1, . . . , Fk and return the best assignment for F .9

(Analysis: Inductively establish running time bound for simplified10

instances of maximum degree ≤ 6, using
∑k

i=1 2µ(Fi) ≤ 2µ(F).)

Figure 5.1: Outline of Algorithm max2csp and its analysis

Procedure Simplify

Input : A hybrid instance F
Output: A simplified instance

while Any of the following simplification rules is applicable do
Apply the first applicable simplification: combine parallel edges; remove
loops; 0-reduction; delete a small component; delete a decomposable
edge; half–edge reduction; 1-reduction; 1-cut; 2-reduction; 2-cut

return the resulting simplified instance

Figure 5.2: Procedure Simplify

96 Max 2-Sat, Max 2-CSP, and everything in between

Given Lemma 5.1, we then establish a similar running time bound for instances
F of degree at most 6 which are not simplified, that is, instances to which we
may apply one or more of the simplifications of Procedure Simplify (the analysis
referred to by line 5 in Algorithm max2csp), and for instances of arbitrary degree
(the argument alluded to in line 3 of Algorithm max2csp).

5.3.2 Central Argument

The main argument is to establish (5.3) for formulae of maximum degree at most
6. We will instead prove that

T (F) ≤ |F |k2µ(F), (5.4)

which is stronger if (as we will ensure) for some constant C and every simplified
instance F of degree at most 6, the measure µ(F) satisfies

µ(F) ≤ we|E|+ wh|H|+ C. (5.5)

The following Lemma follows directly from Lemma 2.5.

Lemma 5.1 (Main Lemma). Suppose there exists an algorithm A and constants
D, c ≥ 1, such that on input of any hybrid CSP instance F of maximum degree
at most D, A either solves F directly in time O(1), or decomposes F into in-
stances F1, . . . , Fk all with maximum degree at most D, solves these recursively,
and inverts their solutions to solve F , using time O(|F |c) for the decomposition
and inversion (but not the recursive solves). Further suppose that for a given
measure µ,

(∀F) µ(F) ≥ 0, (5.6)

and, for any decomposition done by algorithm A,

(∀i) |Fi| ≤ |F | − 1, and (5.7)

2µ(F1) + · · ·+ 2µ(Fk) ≤ 2µ(F). (5.8)

Then A solves any instance F of maximum degree at most D in time
O(|F |c+1)2µ(F).

We will often work with the equivalent to (5.8), that

k∑
i=1

2µ(Fi)−µ(F) ≤ 1. (5.8′)

The main work of the chapter will be to find a set of decompositions and a
measure µ such that the decompositions satisfy inequality (5.7), µ satisfies in-
equality (5.6), and (more interestingly) µ satisfies inequality (5.5) for some small
values of we and wh, and finally, for every decomposition, µ satisfies inequal-
ity (5.8).

5.3 Algorithm and Outline of Analysis 97

5.3.3 Measure

For an instance F of (maximum) degree at most 6, we define a measure µ(F) as
a sum of weights associated with light edges, heavy edges, and vertices of various
degrees (at most 6), and constants associated with the maximum degree d of F
and whether F is regular (for all the degree criteria treating light and heavy edges
alike):

µ(F) := ν(F) + δ(F), with (5.9)

ν(F) := |E|we + |H|wh +
∑
v∈V

wd(v), (5.10)

δ(F) :=
6∑

d=4

Kδ(∆(G) ≥ d)Cd +
6∑

d=4

Kδ(G is d-regular)Rd. (5.11)

Recall that Kδ(·) denotes the logical Kronecker delta.

To satisfy condition (5.5) it is sufficient that

(∀d) wd ≤ 0; (5.12)

this is also necessary for large regular instances. Since we are now only considering
instances of degree at most 6, we interpret “∀d” to mean for all d ∈ {0, 1, . . . , 6}.

5.3.4 Peripheral Arguments

We first dispense with non simplified instances.

Lemma 5.2. Let poly1(·) and poly2(·) be two polynomial functions. Suppose that
every simplified Max 2-CSP instance F of degree at most D ≤ 6 can be solved
in time poly1(|F |)2µ(F). Suppose also that

1. simplifying F (or determining that F is already simplified) takes time at
most poly2(|F |),

2. any instance F ′ obtained from simplifying F satisfies |F ′| ≤ |F | − 1 and
µ(F ′) ≤ µ(F) + C ′ for some positive constant C ′, and

3. the simplification can be reversed in time at most poly2(|F |) to recover an
optimal solution to F from any optimal solution of F ′.

Then every instance F of degree at most D can be solved in time poly(|F |)2µ(F),
with poly(·) = poly2(·) + 2C′

poly1(·).

98 Max 2-Sat, Max 2-CSP, and everything in between

Proof. Since simplifying reduces the instance size, a solution to the original in-
stance F can be obtained in time

T (F) ≤ poly2(|F |) + T (F ′)

≤ poly2(|F |) + poly1(|F ′|)2µ(F ′)

≤ poly2(|F |) + poly1(|F |)2µ(F)+C′

≤
(
poly2(|F |) + 2C′

poly1(|F |)
)
2µ(F)

= poly(|F |)2µ(F).

The lemma’s hypotheses (1) and (3) will be satisfied by construction. Hy-
pothesis (2) is assured if we constrain that, for each simplification rule taking F
to F ′,

ν(F ′) ≤ ν(F), (5.13)

since by transitivity the same inequality then holds for any sequence of simplifi-
cations starting with F and ending with a simplified instance F ′, and the desired
inequality µ(F ′) = ν(F) + δ(F) − δ(F ′) ≤ ν(F) + C ′ follows by boundedness of
δ and choosing C ′ sufficiently large.

Finally, we dispense with instances of high degree, the argument alluded to
in line 3 of Algorithm max2csp. We replace our usual polynomial bounds with
simple powers |F |k; given that any relevant instance size is at least 2, this can
always be done by choosing k sufficiently large.

Lemma 5.3. Suppose that every Max 2-CSP instance F of degree at most 6 can
be solved in time |F |k12we|E|+wh|H|, with we, wh ≥ 1/7. Then for some sufficiently
large k, every instance F can be solved in time |F |k2we|E|+wh|H|.

Proof. If F has any vertex v of degree at least 7, we will set ϕ(v) to 0 and 1
to generate instances F0 and F1 respectively, solve them recursively, and note
that the solution to F is that of the better of F0 and F1, extended with the
corresponding value for ϕ(v). We may assume that the branching and its reversal
together take time at most |F |k2 .

Ensure that k ≥ k1 is large enough that for all x ≥ 2, xk2 ≤ xk − (x − 1)k,
and note that the hypothesis remains true replacing k1 with k.

The proof is by induction on F . If F has no vertex of degree at least 7 then we
are already done. Otherwise reduce F to F1 and F2, each having at least 7 fewer
(light and/or heavy) edges than F . By induction we may assume the bound for
T (F1) and T (F2), so

T (F) ≤ |F |k2 + 2(|F | − 1)k2we|E|+wh|H|−7·1/7

= |F |k2 + (|F | − 1)k2we|E|+wh|H|

≤ |F |k2we|E|+wh|H|.

5.3 Algorithm and Outline of Analysis 99

The worst case for the last inequality is when we|E|+ wh|H| = 0 (it is nonnega-
tive), and in that case the inequality follows by the construction of k.

5.3.5 Optimizing the Measure

The task of the rest of the chapter is to produce the comprehensive set of reduc-
tions hypothesized by Lemma 5.1 (to any formula there should be some reduction
we can apply) and a measure µ, satisfying the hypotheses, with we as small as
possible. (More generally, if there are m(1 − p) conjunctions and mp general
integer–valued clauses, we wish to minimize m(1− p)we + mpwh or equivalently
(1− p)we + pwh, but for the discussion here we will just think in terms of mini-
mizing we.)

For each reduction, the hypothesized constraint (5.7) will be trivially satisfied,
and it will be straightforward to write down a constraint ensuring (5.8′). We then
solve the nonlinear program of minimizing we subject to all the constraints.

Minimizing we for a given set of constraints can be done with an off–the–shelf
nonlinear solver (see Section 5.8.6), but finding a set of reductions resulting in
a small value of we remains an art. It consists of trying some set of reductions,
seeing which ones’ constraints are tight in an optimal solution, and trying to
replace these reductions with more favorable ones.

With the constraints established in the next sections, we will obtain our main
result.

Theorem 5.4. Let F be an instance of integer–weighted Max 2-CSP in which
each variable appears in at most ∆(F) 2-clauses, and there are (1 − p(F))m
conjunctive and disjunctive 2-clauses, and p(F)m other 2-clauses. Then, for any
pair of values we, wh in Table 5.2 (not necessarily with the table’s p equal to p(F)),
the above algorithm solves F in time O∗ (2m·((1−p(F))we+p(F)wh)

)
. When the table’s

p = p(F), we obtain our best bound, O∗ (2m·((1−p)we+pwh)
)

= O∗ (2mw).

Proof. Corollary of Lemma 5.1, solving the mathematical program given by the
various constraints given in the next sections and minimizing pwh +(1−p)we.

Which of the constraints are tight strongly depends on p and ∆(F).

5.3.6 The Measure’s Form

Let us explain the rather strange form of the measure. Ideally, it would be
defined simply as ν, and indeed for the measure we ultimately derive, all of
our simplifications and most of our branchings satisfy the key inequality (5.8′)
with ν alone in place of µ. Unfortunately, for regular instances of degrees 4, 5,
and 6, satisfying this constraint would require a larger value of we. Viewing (5.8′)

100 Max 2-Sat, Max 2-CSP, and everything in between

p 0 0.05
∆(F) we wh w we wh w

3 0.10209 0.23127 0.10209 0.10209 0.23125 0.10855
4 0.14662 0.31270 0.14662 0.14662 0.31270 0.15493
5 0.15518 0.30728 0.15518 0.15637 0.27997 0.16255
≥ 6 0.15819 0.31029 0.15819 0.15912 0.28223 0.16527

p 0.1 0.2
∆(F) we wh w we wh w

3 0.10209 0.23125 0.11501 0.10209 0.23125 0.12793
4 0.15023 0.26951 0.16216 0.15023 0.26951 0.17409
5 0.15640 0.27951 0.16871 0.15640 0.27951 0.18102
≥ 6 0.15912 0.28223 0.17143 0.16520 0.25074 0.18231

p 0.3 1
∆(F) we wh w we wh w

3 0.10209 0.23125 0.14084 0.16667 0.16667 0.16667
4 0.15023 0.26951 0.18601 0.18750 0.18750 0.18750
5 0.19000 0.19000 0.19000 0.19000 0.19000 0.19000
≥ 6 0.19000 0.19000 0.19000 0.19000 0.19000 0.19000

Table 5.2: Values of we, wh and w := pwh + (1 − p)we according to the fraction
p of heavy edges and the maximum degree ∆(F) of a formula F . For any pair
(we, wh) in the table, a running time bound of O∗ (2m·((1−p)we+pwh)

)
is valid for

every formula, regardless of its fraction p(F) of non–simple clauses, but the pair
obtained when the table’s p equals p(F) gives the best bound

5.3 Algorithm and Outline of Analysis 101

equivalently as

k∑
i=1

2µ(Fi)−µ(F) ≤ 1,

adding a cost Rd to the measure of a d-regular instance F means that if a d-
regular instance F is reduced to nonregular instances F1 and F2 of degree d,
each difference µ(Fi) − µ(F) is smaller by Rd than the corresponding difference
ν(Fi)− ν(F) (see Subsection 2.8.2). We will therefore want

(∀d ∈ {4, 5, 6}) Rd ≥ 0. (5.14)

Of course, if a nonregular instance F of degree d is reduced to instances Fi of
degree d one or more of which is regular, there will be a corresponding penalty:
for each d-regular Fi, µ(Fi)− µ(F) is ν(Fi)− ν(F) + Rd.

Indeed, for each branching reduction we will have to consider several cases.
Typically, the “baseline” case will be the reduction of a nonregular instance to
two nonregular instances. In this case µ and ν are equivalent, and if we know for
example that ν(Fi)−ν(F) ≤ xi, our nonlinear program constrains that 2x1 +2x2 ≤
1.

If we reduce starting from a regular instance, the nature of the reductions is
such that, generically, we will get less favorable bounds ν(Fi) − ν(F) ≤ x′i (the
values x′i will be larger than the xi were), but we also get a “reward” (a further
decrease of Rd) for whichever of F1 and F2 are not also regular. If we reduce
starting from a nonregular instance but producing one or more regular children,
we will consider various possibilities.

The cases where a nonregular instance of degree d produces a regular instance
Fi of degree at most d−1, can be dispensed with simply by choosing Cd sufficiently
large, to reap whatever additional reward is needed. Our branching rules are
generally local and will never increase the measure by more than a constant, so
some constant Cd suffices. Also, our reductions never increase the degree of an
instance (each Fi has degree at most that of F), so Cd will never work against
us, and there is no harm in choosing it as large as we like. Thus, we never need
to consider the particulars of cases where the instance degree decreases, nor the
values Cd (see Subsection 2.8.1).

The remaining cases where a nonregular instance has regular children will
be considered on a case–by–case basis for each reduction. Generally, for a child
to become regular means that, beyond the constraint graph changes taken into
account in the baseline case (with the child nonregular), some additional ver-
tices (those of degree less than d) must have been removed from the instance by
simplifications. Accounting for these implies a further decrease in measure that
compensates for the increase by Rd.

102 Max 2-Sat, Max 2-CSP, and everything in between

5.4 Some Initial Constraints

We have already derived one constraint for µ, namely (5.12), and we will now
introduce some notation and derive several more constraints.

Let us write w(v) for the weight of a vertex v (so w(v) = wd(v)), and similarly
w(e) for the weight of an edge (we or wh depending on whether e is light or
heavy). Sometimes it will be helpful to think of ν(F) as

ν(F) =
∑
v∈V

(
w(v) + 1

2

∑
e : v∈e

w(e)
)
, (5.15)

the sum of the weights of the vertices and their incident half edges. For conve-
nience, we define (and thus constrain)

ad := wd + 1
2
dwe. (5.16)

Thus, ad is equal to the summand in (5.15) for a vertex all of whose incident
edges are light, and smaller otherwise.

We require µ(F) ≥ 0 for all instances. Considering regular Max 2-Sat
instances with degree d (d = 0, . . . , 6), this implies that

(∀d) ad ≥ 0. (5.17)

(For d ≤ 3, (5.17) is implied by δ(F) = 0, with (5.15) and (5.16). For d ≥ 4,
positivity of ν might give positive measure to Kd even if δ(Kd) were negative, but
then a graph consisting of sufficiently many copies of Kd would still have negative
measure.) If we also constrain that

(∀d ∈ {4, 5, 6}) Cd, Rd ≥ 0, (5.18)

then we have assured that µ(F) ≥ 0 for all instances. In the end, constraint
(5.18) will not be tight and so there is no loss in making the assumption.

Were it the case that wh ≤ we, then we could simply transform each light
edge into a heavy one, reducing the measure, and getting a better time bound for
solving an instance of Max 2-CSP than an instance of Max 2-Sat or a hybrid
instance. Thus if we are to gain any advantage from considering Max 2-Sat or
hybrid instances, it must be that

we ≤ wh. (5.19)

In the end we will find that this constraint is not tight, and so there is no cost to
making the assumption.1

1For the most part we will only write down constraints that are necessary, typically being
required for some reduction to satisfy (5.8′), but we make a few exceptions early on.

5.5 Simplification Rules and their Weight Constraints 103

For intuitive purposes let us leap ahead and mention that we will find that
a0 = a1 = a2 = 0, (thus w0 = 0, w1 = −1

2
we, and w2 = −we), while 0 < a3 <

· · · < a6. Per (5.19) above, wh ≥ we. Typically we will find that wh ≤ 2we, but
not always. (Even where this fails to hold, notably for cubic Max 2-Sat, we can
still replace two conjunctions or disjunctions on the same variables with one CSP
edge: decreasing the degrees of the incident vertices decreases the measure enough
to make up for the increase of wh − 2we.) This “intuition” has changed several
times as the algorithm and its analysis have evolved, which supports the value
of making as few assumptions as possible, instead just writing down constraints
implied by the reductions.

5.5 Simplification Rules and their Weight Con-

straints

We use a number of simplification rules (reductions of F to a single simpler
instance F1 or F ′). Some of the simplification rules are standard, the CSP 1-
reductions are taken from [SS07a], the CSP 2-reductions combine ideas from
[SS07a] and [KK06], and a “super 2-reduction” is introduced here. For vertices
of degree 5 we use a branching reduction taken from [KK07] that we generalize
to hybrid instances.

We have already ensured constraint (5.6) by (5.17) and (5.18), so our focus is
on ensuring that each reduction satisfies (5.8′). Since each branching is followed
by an (unpredictable) sequence of simplifications, to have any hope of satisfying
(5.8′) it is essential that each simplification from any F to F ′ satisfies

ν(F ′) ≤ ν(F); (5.20)

in any case this inequality is required by Lemma 5.2 (it duplicates inequal-
ity (5.13)). Constraint (5.7) of Lemma 5.1 will be trivially satisfied by all our
simplifications and branchings.

Recapitulating, in this section we show that (5.20) is satisfied by all our sim-
plifications. Ensuring (5.8′) will come when we look at the branching rules, and
the measure component δ we are ignoring here.

5.5.1 Combine Parallel Edges

Two parallel edges (light or heavy) with endpoints x and y may be collapsed
into a single heavy edge. This means that the “transformed” instance F ′ (F1

in Lemma 5.1, with k = 1) is identical to F except that the two score functions
sxy(ϕ(x), ϕ(y)) and s′xy(ϕ(x), ϕ(y)) in F are replaced by their sum s′′xy(ϕ(x), ϕ(y))
in F ′. If one of the endpoints, say x, of the two parallel edges has degree 2,
collapse the parallel edges and immediately apply a 1-reduction (see 5.5.7) on x

104 Max 2-Sat, Max 2-CSP, and everything in between

(of degree 1), which removes x from the constraint graph. To ensure (5.20) we
constrain

(∀d ≥ 2) − a2 − ad + ad−2 ≤ 0 : (5.21)

the left hand side is ν(F ′) − ν(F) thought of as the subtraction of a vertex of
degree 2 and a vertex of degree d and the addition of a vertex of degree d − 2.
For the case that x and y have degree d ≥ 3, we constrain

(∀d ≥ 3) − 2ad + 2ad−1 − we + wh ≤ 0 : (5.22)

the left hand side is ν(F ′) − ν(F) thought of as replacing two vertices of degree
d by two vertices of degree d − 1 and replacing a light edge by a heavy edge.
(Remember that the degree of a vertex is the number of incident edges rather
than the number of distinct neighbors.) If d(x) 6= d(y), the resulting constraint
is a half–half mixture of a constraint (5.22) with d = d(x) and another with
d = d(y), and is thus redundant.

By construction, the score functions of F ′ and F are identical, so an optimal
solution ϕ′ for F ′ is an optimal solution ϕ of F ′ (no transformation is needed).

�
Applying this reduction whenever possible, we may assume that the instance

has no parallel edges.
Note that we cannot hope to combine simple clauses (conjunctions and dis-

junctions) and still take advantage of their being simple clauses rather than gen-
eral CSP clauses: (x∨ y) + (x̄∨ ȳ) = 1 + (x⊕ y), the additive 1 is irrelevant, and
the XOR function is not simple.

5.5.2 Remove Loops

If the instance includes any edge xx ∈ E∪H, the nominally dyadic score function
sxx(ϕ(x), ϕ(x)) may be replaced by a (or incorporated into an existing) monadic
score function sx(ϕ(x)). This imposes the constraints

(∀d ≥ 2) − ad + ad−2 ≤ 0. (5.23)

�
As this constraint is stronger than (5.21), we may ignore constraint (5.21)

now. With this and the edge–combining reduction, we may at all times assume
the constraint graph is simple.

5.5.3 Delete a Vertex of Degree 0 (0-reduction)

If v is a vertex of degree 0, reduce the instance F to F ′ by deleting v and its
monadic score function sv, solve F ′, and obtain an optimal solution of F by

5.5 Simplification Rules and their Weight Constraints 105

augmenting the solution of F ′ with whichever coloring ϕ(v) of v gives a larger
value of sv(ϕ(v)). Constraint (5.7) is satisfied, since |F ′| = |F | − 1. Constraint
(5.20) is satisfied if and only if −w0 ≤ 0. On the other hand, for a useful result
we need each wd ≤ 0 (inequality (5.12)), implying that w0 = 0, and thus

a0 = 0. (5.24)

We will henceforth ignore vertices of degree 0 completely. �

5.5.4 Delete a Small Component

For a constant C (whose value we will fix in the branching (reduction 5.7.1)), if the
constraint graph G of F has connected components G′ and G′′ with 1 ≤ |V (G′′)| <
C, then F may be reduced to F ′ with constraint graph G′. The reduction and
its correctness are obvious, noting that F ′′ may be solved in constant time. Since
ν(F ′)−ν(F) ≤ −

∑
v∈V (G) ad(v), it is immediate from (5.17) that (5.20) is satisfied.

�

5.5.5 Delete a Decomposable Edge

If a dyadic score function sxy(ϕ(x), ϕ(y)) can be expressed as a sum of monadic
scores, s′x(ϕ(x))+s′y(ϕ(y)), then delete the edge and add s′x to the original sx, and
s′y to sy. If x and y have equal degrees, the constraint imposed is that (∀d ≥ 1)
−we − 2wd + 2wd−1 ≤ 0, or equivalently,

(∀d ≥ 1) − ad + ad−1 ≤ 0 (5.25)

(the d = 1 case was already implied by (5.24) and (5.17)). As in (5.22), inequal-
ities for degree pairs are a mixture of those for single degrees. Note that we may
ignore constraint (5.23) now as it is weaker than (5.25). �

Three remarks. First, together with (5.24), (5.25) means that

0 = a0 ≤ a1 ≤ · · · ≤ a6. (5.26)

Second, if an edge is not decomposable, the assignment of either endpoint
has a (nonzero) bearing on the optimal assignment of the other, as we make
precise in Remark 6. We will exploit this in Lemma 5.5, which shows how “super
2-reduction” opportunities (reduction 5.6.1) are created.

Remark 6. Let

biasy(i) := sxy(i, 1)− sxy(i, 0),

the “preference” of the edge function sxy for setting ϕ(y) = 1 over ϕ(y) = 0 when
x is assigned ϕ(x) = i. Then sxy is decomposable if and only if biasy(0) = biasy(1).

106 Max 2-Sat, Max 2-CSP, and everything in between

Proof. sxy is decomposable if and only if its 2-by-2 table of function values has
rank 1, which is equivalent to equality of the two diagonal sums, sxy(0, 1) +
sxy(1, 0) = sxy(0, 0)+sxy(1, 1), which in turn is equivalent to sxy(0, 1)−sxy(0, 0) =
sxy(1, 1)− sxy(1, 0), that is, biasy(0) = biasy(1).

Finally, when some vertices and their incident edges are deleted from a graph,
we may think of this as the deletion of each vertex and its incident half–edges
(which typically we will account for explicitly) followed (which we may not ac-
count for) by the deletion of any remaining half–edges and the concomitant de-
crease in the degrees of their incident vertices (for edges one of whose endpoints
was deleted and one not). A “half–edge deletion” and vertex degree decrease
is precisely what is characterized by the left–hand side of (5.25), so it cannot
increase the measure ν. Even though such simplifications take place on an in-
termediate structure that is more general than a graph, and that we will not
formalize, for convenient reference we will call this a half–edge reduction.

5.5.6 Half–Edge Reduction

Delete a half–edge, and decrease the degree of its incident vertex. By (5.25), this
does not increase the measure.

5.5.7 Delete a Vertex of Degree 1 (1-reduction)

This reduction comes from [SS07a], and works regardless of the weight of the
incident edge. Let y be a vertex of degree 1, with neighbor x. Roughly, we use
the fact that the optimal assignment of y is some easily computable function of
the assignment of x, and thus y and its attendant score functions sy(ϕ(y)) and
sxy(ϕ(x), ϕ(y)) can be incorporated into sx(ϕ(x)).

We take a precise formulation from [SS07a]. Here V is the vertex set of F ,
E is the set of all edges (light and heavy), and S is the set of score functions.

Reducing (V, E, S) on y results in a new instance (V ′, E ′, S ′) with V ′ = V \ y
and E ′ = E \ xy. S ′ is the restriction of S to V ′ and E ′, except that for all
“colors” C ∈ {0, 1} we set

s′x(C) := sx(C) + max
D∈{0,1}

{sxy(CD) + sy(D)}.

Note that any coloring ϕ′ of V ′ can be extended to a coloring ϕ of V in two
ways, depending on the color assigned to y. Writing (ϕ′, D) for the extension
in which ϕ(y) = D, the defining property of the reduction is that S ′(ϕ′) =
maxD S(ϕ′, D). In particular, maxϕ′ S

′(ϕ′) = maxϕ S(ϕ), and an optimal coloring
ϕ′ for the instance (V ′, E ′, S ′) can be extended to an optimal coloring ϕ for
(V, E, S). This establishes the validity of the reduction.

5.5 Simplification Rules and their Weight Constraints 107

Since the reduction deletes the vertex of degree 1 and its incident edge (light,
in the worst case), and decreases the degree of the adjacent vertex, to ensure
(5.20), we constrain that (∀d ≥ 1) −w1 − we − wd + wd−1 ≤ 0, or equivalently
that

(∀d ≥ 1) ad−1 − ad − a1 ≤ 0,

which is already ensured by constraint (5.26). �

5.5.8 1-cut

Let x be a cut vertex isolating a set of vertices A, 2 ≤ |A| ≤ 10. (The 1-cut
reduction extends the 1-reduction, thought of as the case |A| = 1.) Informally, for
each of ϕ(x) = 0, 1 we may determine the optimal assignments of the vertices in
A and the corresponding optimal score; adding this score function to the original
monadic score sx gives an equivalent instance F ′ on variables V \ A. With A of
bounded size, construction of F ′, and extension of an optimal solution of F ′ to
one of F , can be done in polynomial time. (Formal treatment of a more general
“cut reduction” on more general “Polynomial CSPs” can be found in [SS07b].)

This simplification imposes no new constraint on the weights. Vertices in A
and their incident half–edges are deleted, and any remaining half–edges (those
incident on x) are removed by half–edge reductions (reduction 5.5.6); by (5.26),
neither increases the measure ν. �

5.5.9 Contract a Vertex of Degree 2 (2-reduction)

Let y be a vertex of degree 2 with neighbors x and z. Then y may be contracted
out of the instance: the old edges xy, yz, and (if any) xz are replaced by a single
new edge xz which in general is heavy, but is light if there was no existing edge
xz and at least one of xy and yz was light.

The basics are simple, but care is needed both because of the distinction
between light and heavy edges and because we insist that the constraint graph
be simple, and the 2-reduction is the one operation that has the capacity to
(temporarily) create parallel edges and in the process change the vertex degrees.
We consider two cases: there is an edge xz; and there is no edge xz.

If there is an edge xz then x and z both have degree 3 or more by Simplifica-
tion 5.5.8, we use the general Max 2-CSP 2-reduction from [SS07a]. Arguing as
in the 1-reduction above, here the optimal assignment of y depends only on the as-
signments of x and z, and thus we may incorporate all the score terms involving y,
namely sy(ϕ(y)) + sxy(ϕ(x), ϕ(y)) + syz(ϕ(y), ϕ(z)), into a new s′xz(ϕ(x), ϕ(z)),
which is then combined with the original sxz(ϕ(x), ϕ(z)). The effect is that y is
deleted, three edges (in the worst case all light) are replaced by one heavy edge,

108 Max 2-Sat, Max 2-CSP, and everything in between

and the degrees of x and z decrease by one. If d(x) = d(y) = d, ν(F ′)− ν(F) ≤ 0
is assured by −w2 − 3we + wh − 2wd + 2wd−1 ≤ 0, or equivalently

(∀d ≥ 3) − a2 − we + wh − 2ad + 2ad−1 ≤ 0,

which is already ensured by (5.22) and (5.17). As in (5.25), inequalities for pairs
d(x) 6= d(y) are a mixture of those for single degrees. If xy or yz is heavy, then
ν(F ′)− ν(F) ≤ −wh + we, and we will capitalize on this later.

Finally, we consider the case where there was no edge xz. If xy and yz are
both heavy, then as in the first case we apply the general Max 2-CSP reduction
to replace them with a heavy edge xz, giving ν(F ′)− ν(F) ≤ −2wh + wh−w2 =
−a2 − wh + we ≤ −wh + we.

Otherwise, at least one of xy and yz is light, and we show that the resulting
edge xz is light. (For pure Sat formulae, this is the “frequently meeting variables”
rule of [KK06].) Without loss of generality we assume that xy is the conjunctive
constraint x∨y or the disjunction x∧y (what is relevant is that the clause’s score
is restricted to {0, 1}, and is monotone in ϕ(y)). We define a bias

biasy(i) := (sy(1)− sy(0)) + (syz(1, i)− syz(0, i)), (5.27)

to be the “preference” (possibly negative) of sy + syz for setting ϕ(y) = 1 versus
ϕ(y) = 0, when z has been assigned ϕ(z) = i. If biasy(i) ≤ −1 then ϕ(y) = 0 is
an optimal assignment. (That is, for every assignment to the remaining variables,
including the possibility that ϕ(x) = 0, setting ϕ(y) = 0 yields at least as large as
score as ϕ(y) = 1.) Also, if biasy(i) ≥ 0 then ϕ(y) = 1 is an optimal assignment.

Thus, an optimal assignment ϕ(y) can be determined as a function of ϕ(z)
alone, with no dependence on ϕ(x). (This cannot be done in the general case
where xy and yz are both heavy edges.) With ϕ(y) a function of ϕ(z), the score
syz(ϕ(y), ϕ(z)) may be incorporated into the monadic score function sz(ϕ(z)).
Also, there are only 4 functions from {0, 1} to {0, 1}: as a function of ϕ(z),
ϕ(y) must the constant function 0 or 1 (in which cases x ∨ y can be replaced
respectively by a monadic or niladic clause) or ϕ(z) or ϕ(z) (in which cases x∨ y
can be replaced respectively by the Sat clause x ∨ z or x ∨ z̄).

This shows that if there is no edge xz and either xy or yz is light, then the
2-reduction produces a light edge xz. If both xy and yz are light, ν(F ′)−ν(F) ≤
−a2 ≤ 0, while (once again) if one of xy and yz is heavy, ν(F ′)−ν(F) ≤ −wh+we.

To summarize, no new constraint is imposed by 2-reductions. Also, if either
of xy or yz is heavy, then we have not merely that ν(F ′) − ν(F) ≤ 0 but that
ν(F ′)− ν(F) ≤ −wh + we, and we will take advantage of this later on. �

5.5.10 2-cut

Let {x, y} be a 2-cut isolating a set of vertices A, 2 ≤ |A| ≤ 10. (The 2-cut
reduction extends the 2-reduction, thought of as the case |A| = 1.) Similarly to

5.6 Some Useful Tools 109

the 1-cut above, for each of the four cases ϕ : {x, y} → 0, 1 we may determine the
optimal assignments of the vertices in A and the corresponding optimal score;
adding this score function to the original dyadic score sxy gives an equivalent
instance F ′ on variables V \ A. There is nothing new in the technicalities, and
we omit them.

In general, ν ′ − ν may be equated with the weight change from deleting the
original edge xy if any (guaranteed by (5.25) not to increase the measure), deleting
all vertices in A with their incident half edges (a change of−

∑
v∈A ad(v)), replacing

one half–edge from each of x and y into A with a single heavy edge between x
and y (not affecting their degrees, and thus a change of −we + wh), then doing
half–edge reductions to remove any half–edges remaining from other edges in
{x, y} × A (guaranteed by reduction 5.5.6 not to increase the measure). Thus,
−
∑

v∈A ad(v)−we + wh ≤ −2a3−we + wh, where the second inequality uses that
|A| ≥ 2, all vertices have degree ≥ 3 (a 2-reduction is preferred to this 2-cut
reduction), and the values ai are nondecreasing (see (5.26)). Thus we can assure
that ν ′ − ν ≤ 0 by

−2a3 − we + wh ≤ 0,

which is already imposed by (5.22) and (5.17). �

5.6 Some Useful Tools

Before getting down to business, we remark that in treating disjunction and
conjunction efficiently, as well as decomposable functions (see reduction 5.5.5
and Remark 6), the only boolean function our algorithm cannot treat efficiently
is exclusive–or. The following remark is surely well known.

Remark 7. The only non decomposable two-variable boolean functions are con-
junction, disjunction, and exclusive–or.

Proof. A function s : {0, 1}2 7→ {0, 1} is characterized by a 2-by-2 table of 0s and
1s. If the table has rank 1 (or 0), we can decompose s into monadic functions
writing sxy(ϕ(x), ϕ(y)) = sx(ϕ(x)) + sy(ϕ(y)). A table with zero or four 1s is
a constant function, trivially decomposable. A table with one 1 is the function
ϕ(x) ∧ ϕ(y), up to symmetries of the table and (correspondingly) negations of
one or both variables; similarly a table with three 1s is the function ϕ(x)∨ ϕ(y).
In a table with two 1s, either the 1s share a row or column, in which case the
function is decomposable, or they lie on a diagonal, which is (up to symmetries
and signs) the function ϕ(x)⊕ ϕ(y).

The property of disjunction and conjunction on which we rely (besides having
range {0, 1}) is that they are monotone in each variable. Obviously exclusive–or
is not monotone, and it seems that it cannot be accommodated by our methods.

110 Max 2-Sat, Max 2-CSP, and everything in between

5.6.1 Super 2-reduction

Suppose that y is of degree 2 and that its optimal color C ∈ {0, 1} is independent
of the colorings of its neighbors x and z, that is,

(∀D, E) sy(C) + syx(C, D) + syz(C, E) (5.28)

= max
C′∈{0,1}

sy(C ′) + syx(C ′, D) + syz(C ′, E).

In that case, sy(ϕ(y)) can be replaced by sy(C) and incorporated into the
niladic score, sxy(ϕ(x), ϕ(y)) can be replaced by a monadic score s′x(ϕ(x)) :=
sxy(ϕ(x), C) and combined with the existing sx, and the same holds for syz,
resulting in an instance with y and its incident edges deleted. �

A super 2-reduction is better than a usual one since y is deleted, not just
contracted.

We will commonly branch on a vertex u, setting ϕ(u) = 0 and ϕ(u) = 1 to
obtain instances F0 and F1, and solving both.

Lemma 5.5. After branching in a simplified instance F on a vertex u incident to
a vertex y of degree 3 whose other two incident edges xy and yz are both light, in
at least one of the reduced instances F0 or F1, y is subject to a super 2-reduction.

Proof. In the clauses represented by the light edges xy and yz, let b ∈ {−2, 0, 2}
be the number of occurrences of y minus the number of occurrences of ȳ. (As
in reduction 5.5.9, we capitalize on the fact that conjunction and disjunction are
both elementwise monotone, and that their scores are limited to {0, 1}.) Following
the fixing of u to 0 or 1 and its elimination, let biasy := sy(1)− sy(0). Given that
F was simplified, the edge uy was not decomposable, so by Remark 6 the value
of biasy in F0 is unequal to its value in F1.

First consider the case b = 0. If biasy ≥ 1, the advantage from biasy for
setting ϕ(y) = 1 rather than 0 is at least equal to the potential loss (at most 1)
from the one negative occurrence of y in xy and yz, so the assignment ϕ(y) = 1
is always optimal. Symmetrically, if biasy ≤ −1 we may set ϕ(y) = 0. The only
case where we cannot assign y is when biasy = 0 = −b/2.

Next consider b = 2. (The case b = −2 is symmetric.) If biasy ≥ 0 we can
fix ϕ(y) = 1, while if biasy ≤ −2 we can fix ϕ(y) = 0. The only case where we
cannot assign y is when biasy = −1 = −b/2.

Thus, we may optimally assign y independent of the assignments of x and z
unless biasy = −b/2. Since biasy has different values in F0 and F1, in at least one
case biasy 6= −b/2 and we may super 2-reduce on y.

5.6.2 Branching on Vertices of Degree 5

Kulikov and Kutzkov [KK07] introduced a clever branching on vertices of de-
gree 5. Although we will not use it until we address instances of degree 5 in

5.6 Some Useful Tools 111

Section 5.10, we present it here since the basic idea is the same one that went
into our 2-reductions: that in some circumstances an optimal assignment of a
variable is predetermined. In addition to generalizing from degree 3 to degree 5
(from which the generalization to every degree is obvious), [KK07] also applies
the idea somewhat differently.

The presentation in [KK07] is specific to 2-Sat. Reading their result, it seems
unbelievable that it also applies to Max 2-CSP as long as the vertex being
reduced upon has only light incident edges (even if its neighbors are incident to
heavy edges), but in fact the proof carries over unchanged. For completeness and
to make the presentation self–contained, we present the generalized result.

Lemma 5.6 (clause learning). In a Max 2-CSP instance F , let u be a variable
of degree 5, with light edges only, and neighbors v1, . . . , v5. Then there exist
“preferred” colors Cu for u and Ci for each neighbor vi such that a valid branching
of F is into three instances: F1 with ϕ(u) = Cu; F2 with ϕ(u) 6= Cu, ϕ(v1) = C1;
and F3 with ϕ(u) 6= Cu, ϕ(v1) 6= C1, and ϕ(vi) = Ci (∀i ∈ {2, 3, 4, 5}).

Proof. For any coloring ϕ : V → {0, 1}, let ϕ0 and ϕ1 assign colors 0 and 1
respectively to u, but assign the same colors as ϕ to every other vertex. That is,
ϕi(u) = i, and (∀x 6= u) ϕi(x) = ϕ(x).

What we will prove is that for any assignment ϕ in which at least two neighbors
of u do not receive their preferred colors, s(ϕCu) ≥ s(ϕ): the assignment in
which u receives its preferred color has score at least as large as that in which
it receives the other color, and thus we may exclude the latter possibility in our
search. (This may exclude some optimal solutions, but it is also sure to retain
an optimal solution; thus this trick will not work for counting, but does work
for optimization.) That is, if u and one neighbor (specifically, v1) do not receive
their preferred color, then we may assume that every other neighbor receives its
preferred color.

It suffices to show the existence of colors Cu and Ci, i ∈ 1, . . . , 5, such that
for any ϕ with ϕ(i) 6= Ci for two values of i ∈ {1, . . . , 5}, we have s(ϕCu) ≥ s(ϕ).

Leave the immediate context behind for a moment, and consider any Max
2-CSP instance F in which some variable u has only light edges, and in them
appears N+

2 times positively and N−
2 times negatively. (As in reduction 5.5.9 and

Lemma 5.5, we are using the fact that conjunction and disjunction are elementwise
monotone.) If ϕ(u) = 0, the total score s0 from terms involving u satisfies

su(0) + N−
2 ≤ s0 ≤ su(0) + N−

2 + N+
2 ,

and if ϕ(u) = 1 the corresponding score s1 satisfies

su(1) + N+
2 ≤ s1 ≤ su(1) + N+

2 + N−
2 .

112 Max 2-Sat, Max 2-CSP, and everything in between

From the second inequality in the first line and the first inequality in the second
line, if su(1) − su(0) ≥ N−

2 then s1 ≥ s0, and for any coloring ϕ, s(ϕ1) ≥ s(ϕ0).
Symmetrically, if su(0)− su(1) ≥ N+

2 then ϕ0 always dominates ϕ1. Defining the
bias

b := su(1)− su(0),

we may thus infer an optimal color for u if b−N−
2 ≥ 0 or −b−N+

2 ≥ 0.
If u has degree 5, (b − N−

2) + (−b − N+
2) = −N−

2 − N+
2 = −5, and thus one

of these two parenthesized quantities must be at least −2.5, and by integrality at
least −2. Given the symmetry, without loss of generality suppose that b−N−

2 ≥
−2. The preferred color for u will be Cu = 1.

A small table shows that for any conjunctive or disjunctive clause involving
u or ū and some other variable vi (which without loss of generality we assume
appears positively), there exists a color Ci for vi (according to the case) such that
assigning vi this color increases b − N−

2 by 1 (either by increasing the bias and
leaving N−

2 unchanged, or leaving the bias unchanged and decreasing N−
2).

original set ϕ(vi) = resulting change change change in
clause Ci = clause in b in N−

2 b−N−
2

(u ∨ vi) 0 (u) +1 0 +1
(u ∧ vi) 1 (u) +1 0 +1
(ū ∨ vi) 1 (1) 0 −1 +1
(ū ∧ vi) 0 (0) 0 −1 +1

Thus, starting from b − N−
2 ≥ −2, assigning to any two neighbors of u their

color Ci results in an instance in which b−N−
2 ≥ 0, and thus in which an optimal

assignment for u is ϕ(u) = Cu = 1. This proves the lemma.

5.6.3 A Lemma on 1-reductions

A half–edge reduction or 1-reduction is “good” if the target vertex has degree
at lest 3, because (as the weights will come out) the measure decrease due to
ad−1 − ad is substantial for d ≥ 3, but small (in fact, 0) for d = 1 and d = 2.

If for example we start with a simplified instance (in which all vertices must
have degree at least 3) and reduce on a vertex of degree d, deleting it and its
incident half–edges, each of the d remaining half–edges implies a good degree
reduction on a neighboring vertex. However, if we deleted several vertices, this
might not be the case: if two deleted vertices had a common neighbor of degree 3,
its degree would be reduced from 3 to 2 by one half–edge reduction (good), but
then from 2 to 1 by the other (not good).

The following lemma allows us to argue that a certain number of good half–
edge reductions occur. The lemma played a helpful role in our thinking about

5.6 Some Useful Tools 113

the case analysis, but in the presentation here we invoke it rarely: the cases dealt
with are relatively simple, and explicit arguments are about as easy as applying
the lemma.

Note that for any half edge incident on a vertex v, we can substitute a full
edge between v and a newly introduced vertex v′: after performing a half–edge
reduction on v in the first case or a 1-reduction in the second, the same instance
results. (Also, the measure increase of a1 when we add the degree-1 vertex and
half–edge is canceled by the extra decrease for performing a 1-reduction rather
than a half–edge reduction.) For clarity of expression, the lemma is thus stated
in terms of graphs and 1-reductions, avoiding the awkward half edges.

Lemma 5.7. Let G be a graph with k degree-1 vertices, X = {x1, . . . , xk}. It
is possible to perform a series of 1-reductions in G where each vertex xi in X is
either matched one–to–one with a good 1-reduction (a 1-reduction on a vertex of
degree 3 or more), or belongs to a component of G containing at least one other
vertex of X, where the total order of all such components is at most 2k plus the
number of degree-2 vertices.

In particular, if G is a connected graph then there are k good 1-reductions.
By analogy with the well–definedness of the 2-core of a graph, any series of 1-
reductions should be equivalent, but the weaker statement in the lemma suffices
for our purposes.

Proof. The intuition is that each series of reductions originating at some xi ∈ X,
after propagating through a series of vertices of degree 2, terminates either at a
vertex of degree 3 or more (reducing its degree), establishing a matching between
x and a good reduction, or at another vertex xj ∈ X, in which case the path from
xi to xj (or some more complex structure) is a component.

Starting with i = 1, let us 1-reduce from xi as long as possible before moving
on to xi+1. That is, if we 1-reduce into a vertex of degree 2 we perform a new
1-reduction from that vertex, terminating when we reach a vertex of degree 1 or
degree 3 or more. Rather than deleting an edge with a 1-reduction, imagine that
the edges are originally black, and each reduced edge is replaced by a red one
(which of course is not available for further 1-reductions).

We assert that just before we start processing any xi, the red–edged graph
has components consisting of vertices all of whose edges are red (in which case
this is also a component in G itself), and components where all vertices but one
component owner are all–red, and the component owner has at least 1 red edge
and at least 2 black edges. We prove this by induction on i, with i = 1 being
trivial.

Given that it is true before xi, we claim that: (1) as we reduce starting with xi,
the reduction sequence is uniquely determined; (2) in the red–edged component
including xi, all vertices are all–red except for a single active one; and (3) the

114 Max 2-Sat, Max 2-CSP, and everything in between

sequence on xi ends when we reduce a vertex that had at least 3 black edges
(matching xi with this good reduction), or a vertex xj ∈ X, j > i (in which case
we will show that the red component including xi and xj is also a component of
G itself).

We prove these claims by induction on the step number, the base case again
being trivial (xi itself is active). If we reduce into a vertex v with two black edges
(we will say it has black degree 2), the next reduction takes us out its other black
edge, leaving both red. If v was of degree 2 it is added to xi’s red component;
if not, it must have been a component owner (these are the only mixed–color
vertices), and we unite the vertex and its component with xi’s component. If we
reduce into a vertex v with at least 3 black edges, we match xi with the good
reduction on v, and vi owns xi’s red component. The only remaining possibility
is that we reduce into a vertex with 1 black edge, which can only be a degree-1
vertex xj (with j > i), as there are no mixed–color vertices with 1 black edge. In
this case we add xj to xi’s component, and terminate the sequence of reductions
for xi without a good reduction. However the red component on xi now has no
black edges on any of its vertices, and is thus a component in the original black
graph G.

Starting with the k vertices xi as initial red components, as we generate the
component for xi, the union of all components is expanded as we pass through
(and use up) a (true) degree-2 vertex, left unchanged if we pass through a vertex
of higher degree with black degree 2, expanded as we enter a terminal all–black
degree-3 vertex, and left unchanged if we terminate at another vertex xj. Then,
recalling that k is the number of degree-1 vertices in X and letting k2 be the
number of degree-2 vertices, the total number of vertices in the union of all
components is at most the number of seeds (k), plus the number of pass–throughs
(at most k2), plus the number of good terminals (at most k). In particular, we can
partition X into the set of vertices with good terminals in G, and the rest; the rest
lie in components of G where the total size of these components is ≤ 2k +k2.

5.7 Branching Reductions and Preference Or-

der

Recall from Algorithm max2csp that if we have a nonempty simplified instance F ,
we will apply a branching reduction to produce smaller instances F1, . . . , Fk,
simplify each of them, and argue that

∑k
i=1 2µ(Fi)−µ(F) ≤ 1 (inequality (5.8′)).

We apply branching reductions in a prescribed order of preference, starting
with division into components.

5.8 Cubic Instances 115

5.7.1 Split large components

If the constraint graph G of F has components G1 and G2 with at least C vertices
each (C is the same constant as in the simplification rule (5.5.4)), decompose F
into the corresponding instances F1 and F2. The decomposition is the obvious
one: monadic score functions sx of F are apportioned to F1 or F2 according to
whether x is a vertex of G1 or G2, similarly for dyadic score functions and edges
xy, while we may apportion the niladic score function of F to F1, setting that of
F2 to 0.

It is clear that this is a valid reduction, but we must show that (5.8′) is
satisfied. Note that ν(F1) + ν(F2) = ν(F), and ν(Fi) ≥ Ca3 since Fi has at
least C vertices, all degrees are at least 3, and the ai are nondecreasing. Thus
ν(F1) ≤ ν(F) − Ca3. Also, δ(F1) − δ(F) is constant–bounded. Assuming that
a3 > 0, then for C sufficiently large,

µ(F1)− µ(F) = ν(F1)− ν(F) + δ(F1)− δ(F)

≤ −Ca3 +
6∑

d=4

(Rd + Cd)

≤ −1.

The same is of course true for F2, giving 2µ(F1)−µ(F) + 2µ(F2)−µ(F) ≤ 2−1 + 2−1 = 1
as required.

The non strict inequality a3 ≥ 0 is established by (5.17), and if a3 = 0, a
3-regular (cubic) instance would have measure 0, implying that we could solve it
in polynomial time, which we do not know how to do. Thus let us assume for a
moment that

a3 > 0. (5.29)

This strict inequality (in fact a3 ≥ 1/7) will be implied by the constraints for
branching rules for cubic instances, constraint (5.31) for example. �

If F ’s constraint graph is connected the branching we apply depends on the
degree of F , that is, the degree of its highest–degree vertex. Although high–
degree cases thus take precedence, it is easier to discuss the low–degree cases
first. Sections 5.8, 5.9, 5.10, and 5.11 detail the branchings for (respectively)
instances of degree 3, 4, 5, and 6. For a given degree, we present the reductions
in order of priority.

5.8 Cubic Instances

Many formulae are not subject to any of the simplification rules above nor to
large–component splitting. In this section we introduce further reductions so that

116 Max 2-Sat, Max 2-CSP, and everything in between

for any formula F of maximum degree at most 3 (which is to say, whose constraint
graph has maximum degree at most 3), some reduction can be applied.

If F has any vertex of degree strictly less than 3, we may apply the 0-, 1-, or
2-reductions above. Henceforth, then, we assume that F is 3-regular (cubic).

The new reductions will generally be “atomic” in the sense that we will carry
each through to its stated completion, not checking at any intermediate stage
whether an earlier simplification or reduction rule can be applied.

We define

h3 := a3 − a2 (5.30)

to be the decrease of measure resulting from a half–edge reduction (reduction
5.5.6) on a vertex of degree 3.

5.8.1 3-cut

There is a 3-cut X = {x1, x2, x3} isolating a set S of vertices, with 4 ≤ |S| ≤ 10.
Each cut vertex xi has at least 1 neighbor in V \ {S ∪X} (otherwise X without
this vertex is a smaller cut), and without loss of generality we may assume that
either each cut vertex has 2 neighbors in V \ {S ∪X}, or that |S| = 10. (If a cut
vertex, say x1, has just one neighbor x′1 ∈ V \ {S ∪X}, then {x′1, x2, x3} is also a
3-cut, isolating the larger set S ∪ {x1}. Repeat until |S| = 10 or each cut vertex
has two neighbors in V \ {S ∪X}.)

With reference to Figure 5.3, let y1, y2, y3 ∈ S be the respective neighbors
of x1, x2, and x3, and let v1 and v2 be the other neighbors of x1. Note that
y2 6= y3, or we should instead apply a 2-cut reduction (reduction 5.5.10): cutting
on {x1, y2} isolates the set S \{y2}, and 3 ≤ |S \{y2}| ≤ 9 satisfies the conditions
of the 2-cut reduction.

We treat this case by branching on x1, resulting in new instances F1 and F2.
In each we apply a 2-cut on {y2, y3} (not {x2, x3}!), creating a possibly–heavy
edge y2y3. We then 2-reduce on y2 and y3 in turn to create an edge x2x3 which is
heavy only if x2y2 and x3y3 were both heavy. If |S| ≤ 10, the resulting instances
satisfy

µ(F1), µ(F2) ≤ µ(F)− 5a3 − 2h3.

(Recall that for graphs of degree 3, µ and ν are identical.) The term −5a3

accounts for the deletion of x1 and S (at least 5 vertices) with their incident
half–edges. The term −2h3 accounts for deletion of the “other halves” of the
edges from x1 to V \ {S ∪X} and the degree decrease of their incident vertices
(see definition (5.30)); we are using the fact that v1 6= v2, and that X is an
independent set. There is no need for a term accounting for the deletion of
the “other halves” of the edges on x2 and x3 and the addition of the new edge

5.8 Cubic Instances 117

S

x1

x2

x3

y1

y2

y3

v1

v2

Figure 5.3: Illustration of a 3-cut, reduction 5.8.1

x2x3: the new x2x3 is heavy only if both half–edges were heavy, so this change
in measure is −1

2
w(x2y2)− 1

2
w(x3y3) + w(x2x3) ≤ 0, and we are free to ignore it.

(Since it may in fact be 0, there is also no gain including it.) Constraint (5.8′) of
Lemma 5.1 is thus assured if

2−5a3−2h3 + 2−5a3−2h3 ≤ 20 = 1,

that is it has a branching number of at most (see Section 2.6)

(5a3 + 2h3, 5a3 + 2h3). (5.31)

By similar reasoning, if |S| = 10 the branching number is at most

(11a3 + h3, 11a3 + h3).

By (5.29) this constraint is bound to hold “for a sufficiently large value of 10”
(and since h3 ≤ a3, for 10 itself this constraint is dominated by (5.31)), so we will
disregard it. �

5.8.2 Vertex with Independent Neighbors

There is a vertex u such that N(u) is an independent set.
With reference to Figure 5.4, we reduce on u, fixing ϕ(u) to 0 and 1 to generate

u

v1

v2

v3

x3

x4

Figure 5.4: Illustration for reduction 5.8.2, on a vertex with independent neigh-
bors

118 Max 2-Sat, Max 2-CSP, and everything in between

new instances F0 and F1, each with constraint graph G[V \ {u}].
Let N1 := N(u) and N2 := N2(u). Let q be the number of vertices in N1

with a heavy edge to N2, k0 the number of vertices in N1 subject to a super 2-
reduction (deletion) in F0, and k1 the number subject to super 2-reduction in F1.
By Lemma 5.5, each v ∈ N1 falls into at least one of these cases, so q+k0+k1 ≥ 3.

We will argue that µ(F) − µ(Fi) ≥ a3 + 3h3 + q(wh − we) + 2kih3. Deletion
of u and reduction of the degree of each of its neighbors immediately reduces the
measure by a3 + 3h3 (more if any edges incident to u were heavy). In Fi, first
2-reduce on the q vertices in N1 with heavy edges (reducing the measure by a
further q(wh−we)) and on the 3−q−ki vertices subject to only plain 2-reductions
(not increasing the measure). Note that each vertex in N2 still has degree 3.

Finally, reduce out the ki vertices which are set constant by a super 2-
reduction, by deleting their incident edges one by one. No vertex v in N2 has 3
neighbors in N1: if it did there would remain only 3 other edges from N1 to N2,
whence |N2| ≤ 4, N2 \ v would be a cut of size ≤ 3 isolating N1 ∪ {u, v}, and
we would have applied a cut reduction. Thus, deletion of each of the 2ki edges
in N1 × N2 either reduces the degree of a vertex in N2 from 3 to 2 (a good
1-reduction, reducing the measure by h3), or creates a vertex of degree 1.

We wish to show that each degree-1 vertex in the graph G′ = G[V \({u}∪N1)]
must also result in a good 1-reduction, giving the 2kih3 claimed. Note that |N2|
must be 4, 5, or 6 (if it were smaller we would have applied a cut reduction
instead). If |N2| = 6 then every vertex in N2 has degree 2 (in the graph G′)
and there is nothing to prove. If |N2| = 5 then at most one vertex in N2 has
degree 1, and Lemma 5.7 implies that it results in a good 1-reduction. If |N2| = 4,
every degree-1 vertex in N2 also results in a good 1-reduction: If not, then by
Lemma 5.7 a set X of two or more vertices in N2 lies in a small component of G′,
in which case N2 \X is a cut of size 2 or less in the original constraint graph G,
isolating {u} ∪N1 ∪X, and we would have applied a cut reduction instead.

Thus, µ(F)−µ(Fi) ≥ a3 + 3h3 + q(wh−we) + 2kih3. By the Balance property
on page 51, the worst cases come if k0 = 0 and k1 = 3− q (or vice–versa). Thus,
the worst case branching numbers are

(∀q ∈ {0, 1, 2, 3})
(
a3 + 3h3 + q(wh − we),

a3 + 3h3 + q(wh − we) + 2(3− q)h3

)
. (5.32)

�

5.8.3 One Edge in G[N(u)]

Given that we are in this case rather than Case 5.8.2, no vertex of N(u) has an
independent set as neighborhood. Let N(u) = {v1, v2, v3} and suppose without
loss of generality that v2v3 ∈ E. Let N(v1) = {u, x1, x2}. Then, x1x2 ∈ E. To

5.8 Cubic Instances 119

u

v1

v2

v3

x1

x2

x3

x4

y1

y2

Figure 5.5: Illustration of reduction on a vertex with one edge in its neighborhood,
Case 5.8.3

avoid a 3-cut (Case 5.8.1), |N2({u, v1})| = 4 (the 4 rightmost vertices depicted
in Figure 5.5 are truly distinct).

After branching on u, in each of the two instances F0 and F1, first 2-reduce
on v1, then on x1, then continue with 2-reductions (the base case), or super 2-
reductions (if possible), on v2 and v3. In the base case this results in the deletion
of all 5 of these vertices with their incident edges and the decrease of the degree
of x2 to 2, for a measure decrease of 5a3 + h3 (vertex x2 will be 2-reduced, which
does not increase the measure; see 5.5.9).

If v2v3 or v2x3 is heavy, then there is an extra measure decrease of wh − we

beyond that of the base case, for a branching number of at most

(5a3 + h3 + wh − we, 5a3 + h3 + wh − we). (5.33)

Otherwise, v2v3 and v2x3 are both light, and we may super 2-reduce on v2 in
either F0 or F1 (without loss of generality say F1). This reduces the degree of
x3 from 3 to 2, and that of v3 from 2 to 1, setting up a 1-reduction on v3 that
reduces the degree of x4 from 3 to 2. This gives a branching number of at most

(5a3 + h3, 5a3 + 3h3). (5.34)

�
There are no further cases for cubic graphs. If for a vertex u there are 3 edges

in G[N(u)] then N [u] is an isolated component (a complete graph K4) and we
apply component splitting. If there are 2 edges in G[N(u)], then some v ∈ N(u)
(either of the vertices having a neighbor outside {u} ∪ N(u)) has just 1 edge in
G[N(v)] and we are back to Case 5.8.3.

5.8.4 Cubic Results

For results on cubic and other instances, we refer to Theorem 5.4, Table 5.2, and
the discussion in Section 5.12.

120 Max 2-Sat, Max 2-CSP, and everything in between

5.8.5 Remark on Heavy Edges

If the original cubic instance is a pure 2-Sat formula, with no heavy edges, then
(as we show momentarily) any heavy edges introduced by the procedure we have
described can immediately be removed. Thus the “hybrid formula” concept gives
no gain for cubic 2-Sat formulae, but expands the scope to cubic Max 2-CSP,
sacrifices nothing, and is useful for analyzing non cubic instances. We now show
how heavy edges introduced into a cubic 2-Sat formula immediately disappear
again.

In a graph with only light edges, the only two rules that create heavy edges are
2-reductions and 2-cuts (and other reductions that apply these). A 2-reduction
on v introduces a heavy edge only if v’s neighbors x1 and x2 were already joined
by an edge. In that case, though, x1 and x2 have their degrees reduced to 2
(at most). If the remaining neighbors y1 of x1 and y2 of x2 are distinct, then
2-reducing on x1 gives a light edge x2y1: the heavy edge x1x2 is gone. Otherwise,
y1 = y2, and 2-reduction on x1 followed by 1-reduction on x2 deletes x1 and x2

and reduces the degree of y2 to 1, again leaving no heavy edge.

For a 2-cut on x1 and x2 isolating a set S, if there was an edge x1x2 then the
cut reduction reduces the degrees of both x1 and x2 to 2, and, just as above, we
may 2-reduce on x1 to eliminate the heavy edge. If x1 and x2 are nonadjacent
and x1 has just 1 neighbor outside S, then again a follow–up 2-reduction on x1

eliminates the heavy edge x1x2. Dismissing the symmetric case for x2, all that
remains is the case when x1 and x2 are not adjacent and each has 2 neighbors
outside S, and thus just 1 neighbor in S; see Figure 5.6.

S

x1

x2

→

x1

x2

Figure 5.6: 2-cut rule creates a heavy edge

The S-neighbors x′1 of x1 and x′2 of x2 must be distinct, or else we would have
applied a 1-cut reduction on x′1. (This presumes that |S \ {x′1}| ≥ 2, but if it is 0
or 1, we would have 2-reduced on x′1 or 1-reduced on its S-neighbor — either of
which is really a special case of a 1-cut reduction.)

Given that x′1 6= x′2, apply a 2-cut reduction not on x1 and x2 but instead on
x′1 and x′2. Following this with 2-reduction on x′1 and x′2 eliminates the heavy
edge x′1x

′
2, giving a light edge x1x2 instead; see Figure 5.7.

5.9 Instances of Degree 4 121

S

x1

x2

x′1

x′2

→

x1

x2

x′1

x′2

→

x1

x2

Figure 5.7: 2-cut rule avoids creating a heavy edge

5.8.6 Solving the Programs

Every weight constraint we introduce is of the form
∑

i 2Li ≤ 1, where the sum is
finite and each Li is some linear combination of weights. (Some constraints are
simply of the form L ≤ 0, but this can also be written as 2L ≤ 1.) This standard
form (along with the objective of minimizing we) can be provided, through an
interface such as AMPL, as described in Section 2.4.

The convexity of the feasible region makes it relatively easy for a solver to
return a provably optimal solution: convex programs are much easier to solve than
general ones or even the quasiconvex programs like Eppstein’s [Epp06]. IPOPT
solves the nonlinear program for our general algorithm, to optimality, in a second
or two on a typical laptop computer.

To ensure that our solutions are truly feasible, in the presence of finite nu-
merical accuracy, we replace the “1” in the right–hand side of each constraint
with 1 − ε, fixing ε := 10−6; this allows some margin for error. The values we
show for the key parameters we and wh are rounded up (pessimistically) from the
higher–precision values returned by the solver, with the other parameter values
rounded fairly. Ideally we would also verify, in an unlimited–accuracy tool such
as Mathematica, that our rounded values satisfy the original “≤ 1” constraints,
but we have not performed that final check.

5.9 Instances of Degree 4

We first introduce one more bit of notation, generalizing our earlier definition of
h3 (5.30). For any d ≥ 3, we define

hd := min
3≤i≤d

{ai − ai−1}. (5.35)

This is the minimum possible decrease of measure resulting from a half–edge
reduction (reduction 5.5.6) on a vertex of degree i with 3 ≤ i ≤ d. We will find
that such deletions always occur with the same sign in our nonlinear program —
the larger hd, the weaker each constraint is — and therefore the above definition
can be expressed in our mathematical program by simple inequalities

(∀3 ≤ i ≤ d) hd ≤ ai − ai−1. (5.36)

122 Max 2-Sat, Max 2-CSP, and everything in between

We now consider a formula F of (maximum) degree 4. The algorithm chooses
a vertex u of degree 4 with — if possible — at least one neighbor of degree 3.
The algorithm sets u to 0 and 1, simplifies each instance as much as possible (see
Section 5.5), and recursively solves the resulting instances F0 and F1.

The instances F0 and F1 are either 4-regular, of degree at most 3, or nonreg-
ular. By the arguments presented in Section 5.3.6, the case where the degree of
the graph decreases can be safely ignored (the measure decrease C4 − C3 can be
made as large as necessary).

5.9.1 4-regular

If F is 4-regular, first consider the case in which F0 and F1 are 4-regular. Since
branching on u decreases the degree of each vertex in N(u), and none of our
reduction rules increases the degree of a vertex, every vertex in N(u) must have
been removed from F0 and F1 by simplification rules.2 This gives a branching
number of at most

(5a4, 5a4) . (5.37)

If neither F0 nor F1 is 4-regular, then u is removed (a4), the degree of its
neighbors decreases (4h4), and we obtain an additional gain because F0 and F1

are not regular (R4). Thus, the branching number is at most

(a4 + 4h4 + R4, a4 + 4h4 + R4) . (5.38)

If exactly one of F0 and F1 is 4-regular, we obtain a branching number of
(5a4, a4 + 4h4 + R4). By the dominance property on page 51, this constraint is
weaker (no stronger) than (5.37) if 5a4 ≤ a4 + 4h4 + R4, and weaker than (5.38)
if 5a4 > a4 + 4h4 + R4, so we may dispense with it.

5.9.2 4-nonregular

If F is not 4-regular, we may assume that u has at least one neighbor of degree 3.
Let us denote by pi the number degree-i neighbors of u. Thus, 1 ≤ p3 ≤ 4, and

2There is an important subtlety here: the reduced–degree vertices are eliminated, not merely
split off into other components such that Fi has a 4-regular component and a component of
degree 3 (although such an example shares with 4-regularity the salient property that no degree-
4 vertex has a degree-3 neighbor). By definition, the “4-regular case” we are considering at
this point does not include such an Fi, but it is worth thinking about what happens to an Fi

which is not regular but has regular components. No component of Fi is small (simplification
5.5.4 has been applied), so in the recursive solution of Fi, Algorithm max2csp immediately
applies large–component splitting (reduction 5.7.1). This reduces Fi to two connected instances,
and is guaranteed to satisfy constraint (5.8′) (the penalty for one instance’s being 4-regular is
more than offset by its being much smaller than Fi). Our machinery takes care of all of this
automatically, but the example illustrates why some of the machinery is needed.

5.9 Instances of Degree 4 123

p3 + p4 = 4. Further, let us partition the set P3 of degree-3 neighbors into those
incident only to light edges, P ′

3, and those incident to at least one heavy edge,
P ′′

3 . Define p′3 := |P ′
3| and p′′3 := |P ′′

3 | (so p′3 + p′′3 = p3).

For each Fi (F0 and F1), branching on u removes u (for a measure decrease
of a4, compared with F). If Fi is not 4-regular, the degrees of the neighbors of
u all decrease (

∑4
i=3 pihi). If Fi is regular (−R4), all neighbors of u must have

been eliminated as well (
∑4

i=3 piai).

We now argue about additional gains based on the values of p′3 and p′′3, starting
with the heavy edges incident on vertices in P ′′

3 . Identify one heavy edge on each
such vertex. If such an edge is between two vertices in P ′′

3 associate it with
either one of them; otherwise associate it with its unique endpoint in P ′′

3 . This
gives a set of at least dp′′3/2e vertices in P ′′

3 each with a distinct associated heavy
edge, which we may think of as oriented out of that vertex. If such an edge
incident on v ∈ P ′′

3 is also incident on u then it is deleted along with u, for an
additional measure reduction of wh − we we credit to v. This leaves a set of
“out” edges that may form paths or cycles. After deletion of u all the vertices
involved have degree 2, so any cycle is deleted as an isolated component, for a
measure reduction of wh −we per vertex. Super 2-reducing on a vertex v deletes
its outgoing edge, which we credit to v, and possibly also an incoming heavy edge
associated with a different v′ ∈ P ′′

3 , which we credit to v′. Finally, if v is 2-reduced
we consider its outgoing edge (not its other incident edge) to be contracted out
along with v, crediting this to v (and correctly resulting in a light edge if the
other edge incident on v was light, or a heavy one if it was heavy). This means
that if the other edge incident to v was a heavy edge out of a different v′ ∈ P ′′

3 ,
then v′ still has an associated outgoing heavy edge. In short, each of the dp′′3/2e
vertices gets credited with the loss of a heavy edge, for an additional measure
reduction of at least dp′′3/2e (wh − we).

We say that we have a good degree reduction if the degree of a vertex of degree
3 or more decreases by 1: for graphs of degree 4 this decreases the measure by
at least h4. This measure decrease comes in addition to what we have accounted
for so far, unless Fi is regular and the degree reduction is on a vertex in N(u)
(since we have accounted for the deletion of those vertices, counting their degree
reductions as well would be double counting). We will show that a certain number
of additional–scoring degree reductions occur altogether, in F0 and F1 combined,
as a function of p′3.

If p′3 = 1, super 2-reduction on the sole vertex in P ′
3 is possible in at least one

of F0 or F1 — without loss of generality say just F0 — and reduces the degrees
of at least two neighbors. If F0 is nonregular this gives a gain of 2h4, while if F0

is regular there may be no gain.

If p′3 = 2, then again if either vertex is super 2-reduced in a nonregular branch
there is a gain of at least 2h4. Otherwise, each vertex is super 2-reduced in a
regular branch (both in one branch, or in two different branches, as the case may

124 Max 2-Sat, Max 2-CSP, and everything in between

be). At least one of the vertices has at least one neighbor in N2 := N2(u), or else
P3 \ P ′

3 would be 2-cut. In whichever Fi the degree of the neighbor is reduced,
since Fi is regular the neighbor must eventually be deleted, for a gain of at least
a3. So there is either a gain of 2h4 in a nonregular branch or a gain of a3 in a
regular branch. (We cannot hope to replace a3 with 2a3: Figure 5.8 shows an
example where indeed only one good degree reduction occurs outside N [u].)

u

v1

v2

v3

v4

x1

x2

x3

Figure 5.8: The case p′3 = 2 may lead to just one good degree reduction outside
N [u]. If both super 2-reductions on v1 and v2 occur in the same branch (say F1),
the degree of x1 is reduced. The degrees of v3 and v4 become 2, so their edges are
contracted eventually creating an edge x2x3, which does not change the degree
of x2 or x3. The heavy edge v3v4 gives a bonus measure reduction of wh − we

previously accounted for

If p′3 = 3, again either there is a gain of 2h4 in a nonregular branch, or each
super 2-reduction occurs in a regular branch. The 3 vertices in P ′

3 have at least 2
neighbors in N2, or else these neighbors, along with P3 \ P ′

3, would form a cut of
size 2 or smaller. Each of these neighbors has its degree reduced, and thus must
get deleted from a regular Fi, for a gain of at least 2a3. So there is either a gain
of 2h4 in a nonregular branch, or a gain of 2a3 altogether in one or two regular
branches. (We cannot hope to claim 3h4 or 3a3, per the example in Figure 5.9.)

u

v1

v2

v3

v4

x1

x2

x3

x4

Figure 5.9: The case p′3 = 3 (P ′
3 = {v1, v2, v3}) may lead to just two good degree

reductions

If p′3 = 4, we claim that in the two branches together there are at least 4 good
degree reductions on vertices in N2 and N3(u). Each contributes a gain of at

5.9 Instances of Degree 4 125

least h4 if it is in a nonregular branch, a3 in a regular branch. Each vertex in N2

undergoes a good degree reduction in one branch or the other, so if |N2| ≥ 4 we
are done. Since there can be no 2-cut, we may otherwise assume that |N2| = 3.
Since (in F) every vertex in N(u) has degree 3, there is an even number of edges
between N(u) and N2, thus there are at least 4 such edges. Since each vertex in
N2 has an edge from N(u), there must be two such edges incident on one vertex
x1 ∈ N2, and one edge each incident on the other vertices x2, x3 ∈ N2. Again we
guaranteed 4 good degree reductions unless x1 has degree 3 and undergoes both
of its reductions in one branch (so that degree 3 to 2 is a good reduction, but 2
to 1 is not). In that case, though, x1 has degree 1, its remaining neighbor must
be in N3(u) (otherwise {x1, x2} is a 2-cut), and 1-reducing on x1 gives a good
degree reduction on that neighbor. So there is a total gain of 4h4 in a nonregular
branch and 4a3 in a regular branch.

By convexity, the elementwise average of two pairs of branching numbers is a
constraint dominated by one or the other, so it suffices to write down the extreme
constraints, with all the gain from super 2-reductions given to a single nonregular
or regular branch.

Before counting the super 2-reduction gains, if Fi is nonregular the measure
decrease µ(F)− µ(Fi) is at least

∆r(p3, p
′′
3, p4) := a4 +

4∑
i=3

pihi +
⌈

p′′3
2

⌉
(wh − we), (5.39)

and if Fi is 4-regular, at least

∆r(p3, p
′′
3, p4) := a4 +

4∑
i=3

piai +
⌈

p′′3
2

⌉
(wh − we)−R4. (5.40)

The super 2-reductions give an additional gain, in a nonregular branch, of at least

gr :=
⌊

p′3+2

3

⌋
2h4, (5.41)

and in a regular branch, at least

gr :=
(⌊

p′3
2

⌋
+
⌊

p′3
3

⌋
+
⌊

p′3
4

⌋)
a3, (5.42)

where the tricky floor and ceiling expressions are just a way of writing an explicit
expression convenient for passing to the nonlinear solver. The constraints arising
from branching on a vertex of degree 4 with at least one neighbor of degree 3 are
thus dominated by the following, taken over p′3 + p′′3 + p4 = 4, with p4 ≤ 3 and

126 Max 2-Sat, Max 2-CSP, and everything in between

p3 = p′3 + p′′3:

(∆r, ∆r + gr), (5.43)

(∆r, ∆r + gr), (5.44)

(∆r, ∆r + gr), (5.45)

(∆r, ∆r + gr). (5.46)

5.10 Instances of Degree 5

This section considers formulae of maximum degree 5. As an overview, if there
is a 3-cut isolating a set S with 6 or more vertices and S contains at least one
vertex of degree 5, the algorithm branches on any vertex in the cut. Otherwise, the
algorithm chooses a vertex u of degree 5 with — if possible — at least one neighbor
of degree at most 4, and branches on u either as was done in the degree-4 case, or
using clause–learning branching (see Lemma 5.6). We use clause learning when
the neighbors of u have high degrees, because clause learning sets many variables
in N(u), and this is most effective when the degrees are large (since ai ≥ ai−1).
We use normal branching when the neighbors have low degrees, because setting u
reduces their degrees, and this is effective when the degrees are small (hi ≤ hi+1,
with an additional bonus in super 2-reductions for a degree-3 variable). (This
is also why we always prefer to branch on vertices of maximum degree with
neighbors of low degree, and why the regular cases need special attention.)

5.10.1 3-cut

There is a 3-cut C = {x1, x2, x3} isolating a set S of vertices such that 6 ≤
|S| ≤ 10 and S contains at least one vertex of degree 5. Branching on the cut
vertex x1 leaves constraint graphs where {x2, x3} form a 2-cut. Thus S∪{x1} are
removed from both resulting instances (a5 + 6a3), a neighbor of x1 outside S ∪C
has its degree reduced (h5), a heavy edge x2x3 appears (in the worst case) but
at least 2 half–edges incident on x2 and x3 disappear (−wh + we). Additionally,
the resulting instances may become 5-regular (−R5). So, the branching number
is at most(

a5 + 6a3 + h5 − wh + we −R5, a5 + 6a3 + h5 − wh + we −R5

)
. (5.47)

�
In light of reduction 5.10.1 we may henceforth assume that each degree-5

vertex u has |N2(u)| ≥ 4.

5.10 Instances of Degree 5 127

5.10.2 5-regular

If every vertex has degree 5, the same analysis as for 4-regular instances (reduc-
tion 5.9.1, constraints (5.37) and (5.38)) gives a branching number which is at
most one of the following:

(6a5, 6a5), (5.48)

(a5 + 5h5 + R5, a5 + 5h5 + R5). (5.49)

�
Otherwise, let u be a degree-5 vertex with a minimum number of degree-5

neighbors, and as usual let pi be the number of degree-i neighbors of u (since
the instance is not regular, p5 < 5). Let H := Kδ(u is incident to a heavy edge).
Depending on the values of H and pi we will use either the usual 2-way branching
(reduction 5.10.3) or clause–learning 3-way branching (reduction 5.10.4).

5.10.3 5-nonregular, 2-way Branching

In this case, H = 1 or p3 ≥ 1 or p5 ≤ 2.
We use the usual 2-way branching, setting u to 0 and to 1, and simplifying

to obtain F0 and F1. If Fi is not regular, the measure decrease µ(F) − µ(Fi)
is at least a5 +

∑5
i=3 pihi + H(wh − we), and if Fi is 5-regular, it is at least

a5+
∑5

i=3 piai+H(wh−we)−R5. Thus if both branches are regular the branching
number is at most (

a5 +
∑5

i=3 piai+H(wh − we)−R5,

a5 +
∑5

i=3 piai+H(wh − we)−R5

)
, (5.50)

and if one branch is regular and one nonregular, at most(
a5 +

∑5
i=3 piai + H(wh − we)−R5, a5 +

∑5
i=3 pihi + H(wh − we)

)
. (5.51)

If both branches are nonregular, we use that if p3 ≥ 1, any degree-3 neighbor
of u either has a heavy edge not incident to u, giving an additional measure
reduction of at least wh − we, or in at least one branch may be super 2-reduced,
for a measure reduction of at least 2h5. (The latter requires a justification we
give explicitly, although Lemma 5.7 could be invoked. At the start of the first
super 2-reduction, every vertex has degree 2 or more. Each of the two “legs” of
the super 2-reduction propagates through a (possibly empty) chain of degree-2
vertices before terminating either in a good degree reduction or by meeting a
vertex that was reduced to degree 1 by the other leg. In the latter case all the
vertices involved had degree 2, thus were neighbors of u originally of degree 3; also,
there must have been at least three of them to form a cycle, and the remaining

128 Max 2-Sat, Max 2-CSP, and everything in between

2 or fewer vertices in N(u) contradict the assumption that F was simplified.)
Thus, the branching number is at most(

a5 +
∑5

i=3 pihi + H(wh − we) + Kδ(p3 ≥ 1)2h5,

a5 +
∑5

i=3 pihi + H(wh − we)
)

or (5.52)

(
a5 +

∑5
i=3 pihi + H(wh − we) + Kδ(p3 ≥ 1)(wh − we),

a5 +
∑5

i=3 pihi + H(wh − we) + Kδ(p3 ≥ 1)(wh − we)
)
. (5.53)

�

5.10.4 5-nonregular, Clause Learning

In this case, H = 0 and p3 = 0 and p5 ∈ {3, 4}.
Let v be a degree 5 (degree 5 in G) neighbor of u with a minimum num-

ber of degree-5 neighbors in N2 := N2(u). The clause learning branching (see
Lemma 5.6) will set u in the first branch, u and v in the second branch, and all of
N [u] in the third branch. In each of the 3 branches, the resulting instance could
become 5-regular or not.

In the first branch, the measure of the instance decreases by at least

∆51 := min

{
a5 +

∑5
i=4 pihi (5-nonregular case),

a5 +
∑5

i=4 piai −R5 (5-regular case).
(5.54)

In the analysis of the second and third branches we distinguish between the
case where v has at most one neighbor of degree 5 in N2, and the case where v
(and thus every degree-5 neighbor of u) has at least two neighbors of degree 5 in
N2.

In the second branch, if v has at most one neighbor of degree 5 in N2, the
measure of the instance decreases by at least

∆1
52 := min

{
a5 +

∑5
i=4 pihi + a4 + 3h4 + h5 (5-nonregular case),

a5 +
∑5

i=4 piai −R5 (5-regular case).
(5.55)

(The degree reductions 3h4+h5 from the nonregular case do not appear in the reg-
ular case because they may pertain to the same vertices as the deletions

∑
piai.)

If v has at least two neighbors of degree 5 in N2, the measure decreases by at
least

∆2
52 := min

{
a5 +

∑5
i=4 pihi + a4 + 4h5 (5-nonregular case),

a5 +
∑5

i=4 piai + 2a5 −R5 (5-regular case).
(5.56)

5.10 Instances of Degree 5 129

In the third branch, first take the case where v has at most one neighbor of
degree 5 in N2. Since |N2| ≥ 4, there are at least 4 good degree reductions on
vertices in N2. If the instance becomes regular, this implies a measure decrease
of at least 4a3. If the instance remains nonregular, this is a measure reduction
of at least 4h5, and we now show that if p5 = 4 then there is a fifth good degree
reduction. We argue this just as the 4-nonregular case (Section 5.9.2) with p′3 = 4;
we could alternatively apply Lemma 5.7. If |N2| = 5 the desired 5h5 is immediate.
Otherwise, |N2| = 4, and the number of edges between N(u) and N2 is at least 4,
and odd (from p5 = 4 and p4 = 1, recalling that p3 = 0), so at least 5. At
least one edge incident on each vertex in N2 gives a good degree reduction, and
we fail to get a fifth such reduction only if the fifth edge is incident on a vertex
x ∈ N2 of degree 3, leaving it with degree 1. But in that case the remaining
neighbor of x must be in N3(u) (otherwise N2 \ x is a 3-cut, a contradiction by
reduction 5.10.1), and 1-reducing x gives the fifth good degree reduction. Thus
the measure decreases by at least

∆1
53 := min

{
a5 +

∑5
i=4 piai + 4h5 + Kδ(p5 = 4)h5 (5-nonregular case),

a5 +
∑5

i=4 piai + 4a3 −R5 (5-regular case).
(5.57)

Otherwise, in the third branch, v has at least two neighbors of degree 5 in N2.
For the regular case we simply note that each vertex in N2 has its degree reduced
and must be deleted, N2 has at least four vertices of which at least two are of
degree 5, for a measure reduction of at least 2a5 + 2a3. We now address the
nonregular case. Letting P5 be the set of degree-5 vertices in N(u) (so |P5| =
p5), by definition of v every vertex in P5 has at least two degree-5 neighbors
in N2. Let R ⊆ N2 be the set of degree-5 vertices in N2 adjacent to P5, and let
E5 = E ∩ (P5 ×R) be the set of edges between P5 and R. There is one last case
distinction, according to the value of p5. If p5 = 3 there are at least 6 good degree
reductions: |E5| = 6, each vertex in R has at most |P5| = 3 incident edges from
E5, and thus each such incidence results in a good degree reduction (the vertex
degree is reduced at most from 5 to 4 to 3 to 2). Here we have 6h5.

If p5 = 4 we claim that the good degree reductions amount to at least
min{8h5, 5h5 + h4 + h3}. By default the 8 edges in E5 all generate good de-
gree reductions, with fewer only if some of the degree-5 vertices in R have more
than 3 incident edges from E5. The “degree spectrum” on R is thus a partition of
8 (the number of incident edges) into |R| parts, where no part can be larger than
|P4| = 4. If the partition is 4 + 4 this means two reductions that are not good
(2h2), but then this implies that |R| = 2, and the other two vertices in N2 \ R
also have their degrees reduced, restoring the total of 8 good reductions. If the
partition has exactly one 4, on a vertex r ∈ R, then just one of the 8 degree
reductions is not good, and the 7 good reductions include those on r, thus giving
a measure reduction of at least 5h5 + h4 + h3.

130 Max 2-Sat, Max 2-CSP, and everything in between

Considering the difference, which we will denote gp5=4, between these guaran-
teed measure decreases and the guarantee of 6h5 when p5 = 3, we constrain

gp5=4 ≤ 8h5 − 6h5 = 2h5, (5.58)

gp5=4 ≤ (5h5 + h4 + h3)− 6h5 = −h5 + h4 + h3. (5.59)

and we obtain a measure reduction of at least

∆2
53 := min

{
a5 +

∑5
i=4 piai + 6h5 + Kδ(p4 = 1)gp5=4 (5-nonregular case),

a5 +
∑5

i=4 piai + 2a5 + 2a3 −R5 (5-regular case).

(5.60)

Wrapping up this reduction, the case that v has at most 1 degree-5 neighbor in
N , or at least two such neighbors, respectively impose the constraints (branching
numbers)

(∆51,∆
1
52, ∆1

53) and (5.61)

(∆51,∆
2
52, ∆2

53). (5.62)

�

5.11 Instances of Degree 6

This section considers formulae of maximum degree 6. The algorithm chooses a
vertex u of degree 6 with — if possible — at least one neighbor of lower degree,
and branches on u by setting it to 0 and 1.

5.11.1 6-regular

If every vertex has degree 6, the same analysis as for regular instances of degree
4 gives a branching number which is at least one of the following:

(7a6, 7a6), (5.63)

(a6 + 6h6 + R6, a6 + 6h6 + R6). (5.64)

�

5.11.2 6-nonregular

Now, u has at least one neighbor of degree at most 5.

5.12 Tuning the Bounds 131

It is straightforward that the branching number is at least as large as one of
the following (only distinguishing if the instance becomes 6-regular or not):(

a6 +
6∑

i=3

pihi, a6 +
6∑

i=3

pihi

)
, (5.65)

(
a6 +

6∑
i=3

piai −R6, a6 +
6∑

i=3

piai −R6

)
. (5.66)

�

5.12 Tuning the Bounds

For any values of we and wh satisfying the constraints we have set down, we have
shown that any Max 2-CSP instance F is solved in time O∗ (2|E|we+|H|wh

)
.

For a given instance F , the running time bound is best for the feasible values
of we and wh which minimize |E|we + |H|wh. As usual taking |E| = (1 − p)m
and |H| = pm, this is equivalent to minimizing

(1− p)we + pwh, (5.67)

allowing us to obtain a 1-parameter family of running time bounds — pairs
(we, wh) as a function of p — tuned to a formula’s fraction of conjunctive and
general 2-clauses.

Reiterating, if a formula’s “p” value is p(F) = |H|/(|E| + |H|), and if mini-
mizing (5.67) for a given p gives a pair (we, wh)(p), then the optimal bound for
formula F is the one given by (we, wh)(p(F)), but for any (we, wh)(p), the run-
ning time bound O∗ (2|E|we+|H|wh

)
is valid for every formula F , even if p 6= p(F).

This is simply because every such pair (we, wh) is a feasible solution of the non-
linear program, even if it is not the optimal solution for the appropriate objective
function.

For cubic instances, minimizing (5.67) with p small gives we ≈ 0.10209 and
wh ≈ 0.23127, while minimizing with p close to 1 gives we = wh = 1/6 (the tight
constraints are all linear, so the solution is rational), matching the best known
polynomial space running time for general instances of Max 2-CSP (see [SS07a]).
It appears that the first result is obtained for all p ≤ 1/2 and the second for all
p > 1/2.

For instances of degrees 4, 5, and 6 or more, the results of minimizing with
various values of p are shown in Table 5.2, and the most interesting of these is
surely that of degree 6 or more (the general case). Here, taking p small gives we ≈
0.15820 and wh ≈ 0.31174. For instances of Max 2-Sat this gives a running time
bound of O∗ (20.1582m) or O∗ (2m/6.321

)
, improving on the best bound previously

132 Max 2-Sat, Max 2-CSP, and everything in between

0.14

0.16

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

p

Figure 5.10: Plot of we (solid), wh (dashed), and (1− p)we + pwh (dotted) versus
the fraction p of non–simple 2-clauses. The three values are equal (and exactly
0.19) for p > 0.29. Both we and wh appear to be piecewise constant: the resolution
of the graph is in p increments of 0.0001, and all the small changes are meaningful

known, giving the same bound for mixtures of OR and AND clauses, and giving
nearly as good run times when a small fraction of arbitrary integer–weighted
clauses are mixed in. We observe that any p ≥ 0.29 leads to we = wh = 0.19
(as for cubic case with p > 1/2, the tight constraints are linear, so the value
is rational), matching the best known bound (for polynomial space algorithms)
of O∗ (20.19m) from [SS07a]. Figure 5.10 shows the values of we, wh, and the
objective (1 − p)we + (p)wh, as a function of p. Numerically, the values we and
wh meet for some value of p between 0.2899 and 0.29.

5.13 Conclusion

We have seen in this chapter a fast algorithm for Max 2-Sat, Max 2-CSP,
and hybrid Max 2-Sat/Max 2-CSP instances. A rigorous analysis without
much assumptions on the measure enabled us to establish a family of running
time bounds, where the tight cases often depend on the parameter p defining this
family. To draw the graph of Figure 5.10, our convex program with close to 500

5.13 Conclusion 133

constraints was solved 3500 times: p ranges from 0 to 0.35 and the values have
been computed by p increments of 0.0001. To perform these computations was
only a matter of minutes, which shows the power of the convex programming
method to optimize a measure.

If we only look at Max 2-Sat, our main improvement comes from the fact
that we use powerful reductions taking us outside the class of Max 2-Sat in-
stances, account for these by an appropriate measure and carefully analyze the
algorithm. The algorithm we presented sometimes splits off a part of the graph
when it finds a 2-cut in the graph by introducing a CSP–clause between the two
vertices of the 2-cut. CSP clauses are a generalization concerning the type of
clauses. It would be interesting to know if a generalization concerning the size
of the clauses would be useful. One could, for example, split off a part of the
graph that is separated from the rest of the graph by a 3-cut and introduce a
CSP clause involving the 3 vertices of the 3-cut.

134 Max 2-Sat, Max 2-CSP, and everything in between

Chapter 6
Treewidth Bounds

Equations are more important to me, because
politics is for the present, but an equation is
something for eternity.

Albert Einstein

Chapters 7 and 8 present algorithms combining branching algorithms and
tree- or pathwidth based algorithms in different ways. During the execution of
the algorithms, tree decompositions need to be computed. The smaller the width
of these decompositions, the faster the dynamic programming algorithms using
these decompositions perform. In this section, we discuss bounds on the tree de-
compositions of graphs according to the degrees of their vertices. These bounds
are proved constructively and imply polynomial time procedures for finding de-
compositions whose widths do not exceed the respective bounds.

Definition 6.1. A tree decomposition of a graph G = (V, E) is a pair ({Xi : i ∈
I}, T) where each Xi, i ∈ I, is a subset of V , called a bag and T is a tree with
elements of I as nodes such that

1.
⋃

i∈I Xi = V ,

2. for all uv ∈ E, there exists i ∈ I such that {u, v} ⊆ Xi, and

3. for all i, j, k ∈ I, if j is on the path from i to k in T then Xi ∩Xk ⊆ Xj.

The width of a tree decomposition is maxi∈I |Xi|− 1. The treewidth of a graph G
is the minimum width over all its tree decompositions and it is denoted tw(G).
A tree decomposition ({Xi : i ∈ I}, T) is a path decomposition if T is a path. The
pathwidth of a graph G is the minimum width over all its path decompositions and
it is denoted pw(G). A tree decomposition (respectively, a path decomposition)
is called optimal if its width is tw(G) (respectively pw(G)).

136 Treewidth Bounds

Algorithms using tree decompositions often need nice tree decompositions.

Definition 6.2 (Nice tree decomposition). A nice tree decomposition ({Xi : i ∈
I}, T) is a tree decomposition satisfying the following properties:

1. every node of T has at most two children;

2. if a node i has two children j and k, then Xi = Xj = Xk (i is called a Join
Node);

3. if a node i has one child j, then either

(a) |Xi| = |Xj|+ 1 and Xj ⊂ Xi (i is called an Insert Node), or

(b) |Xi| = |Xj| − 1 and Xi ⊂ Xj (i is called a Forget Node).

That a tree decomposition of a graph G can be transformed in linear time
into a nice tree decomposition of the same width and with at most 4 times as
many bags has been shown by Kloks.

Theorem 6.3 ([Klo94]). For a constant k, given a tree decomposition of a graph
G of width k and N bags, one can find a nice tree decomposition of G of width k
with at most 4N bags in O(n) time, where n is the number of vertices of G.

The graph parameters treewidth and pathwidth were introduced by Robertson
and Seymour in their seminal work on graph minors [RS83, RS86]. They play
nowadays a central role in algorithmic graph theory as many NP–hard problems
become polynomial time solvable on graphs of small treewidth. For a survey on
treewidth based exponential time algorithms we refer to [FGK05b].

6.1 Bounds on the Pathwidth of Sparse Graphs

In this section we develop several upper bounds on the pathwidth of sparse graphs.
We need the following known bound on the pathwidth of graphs with maximum
degree 3 to prove the two lemmata of this section. It has been proved by Fomin
and Høie based on the work of Monien and Preis on the bisection width of 3–
regular graphs [MP06].

Theorem 6.4 ([FH06]). For any ε > 0, there exists an integer nε such that for
every graph G with n > nε vertices and maximum degree at most 3, pw(G) ≤
(1/6 + ε)n. Moreover, a path decomposition of the corresponding width can be
constructed in polynomial time.

Using Theorem 6.4 we prove the following bound for general graphs.

6.1 Bounds on the Pathwidth of Sparse Graphs 137

Lemma 6.5. For any ε > 0, there exists an integer nε such that for every graph
G with n > nε vertices,

pw(G) ≤ 1

6
n3 +

1

3
n4 +

13

30
n5 +

23

45
n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6} and n≥7

is the number of vertices of degree at least 7. Moreover, a path decomposition of
the corresponding width can be constructed in polynomial time.

Proof. Let G = (V, E) be a graph on n vertices. It is well known (see for exam-
ple [Bod98]) that if the treewidth of a graph is at least 2, then contracting edges
adjacent to vertices of degree 1 and 2 does not change the treewidth of a graph
and thus increases its pathwidth by at most a logarithmic factor, as shown in
[KS93]. So we assume that G has no vertices of degree 1 and 2 (otherwise we
contract the corresponding edges). Furthermore, adding loops and duplicating
edges does not increase the pathwidth of a graph, so we may at all times assume
that the graph is simple.

First, we prove the lemma for the special case where the maximum degree
of G is at most 4 by induction on the number n4 of vertices of degree 4 in G.
If n4 = 0, then ∆(G) ≤ 3 and we apply Theorem 6.4. Let us assume that the
lemma holds for n4− 1 ≥ 1 and prove it for n4 vertices of degree 4. Let v ∈ V be
a vertex of degree 4. Let i ∈ {0, . . . , 4} be the number of degree 3 neighbors of
v. As every neighbor of v has degree at least 3, v has 4− i neighbors of degree 4.
Adding v to every bag of the tree decomposition increases the width of this tree
decomposition by 1. Thus,

pw(G) ≤ pw(G \ v) + 1

≤ n3 − i + (4− i)

6
+

n4 − 1− (4− i)

3
+ ε(n− 1) + 1

≤ n3

6
+

n4

3
+ εn .

Now, suppose that the maximum degree of G is at most 5. The case where the
graph or some of its connected components is 5-regular needs special considera-
tion. Note that the pathwidth of a graph equals the maximum pathwidth of all
its connected components, so it is sufficient to prove the bound for the connected
component of a graph that has largest pathwidth (or for all connected compo-
nents separately). 5-regular connected components may occur in the following
situations:

(a) the input graph is 5-regular or has 5-regular connected components,

(b) the removal of a vertex of degree at least 6 led to a graph with one or more
5-regular components,

138 Treewidth Bounds

(c) the removal of a vertex of degree 5 produced 5-regular connected compo-
nents by splitting off all vertices of degree at most 4 into different connected
components, and

(d) the removal of a vertex of degree 5 produced a 5-regular graph (by con-
tracting edges incident to vertices of degree 1 and 2).

We have already proved the base case where n5 = 0. Let us assume that the
lemma holds for all graphs with at most n5 − 1 vertices of degree 5, no vertices
of degree at least 6 and at least one vertex of degree at most 4. The case when
the graph is 5-regular is considered later.

Let v be a vertex of degree 5 with at least one neighbor of degree at most 4.
Let G′ be the connected component of largest pathwidth of the graph obtained
from G − v by contracting edges incident to vertices of degree 1 and 2. Let us
first assume that G′ is not 5-regular. It is clear that pw(G) ≤ pw(G \ v) + 1.
For j ∈ {3, . . . , 5} we denote by mj the number of degree j neighbors of v. By
the induction assumption,

pw(G) ≤ pw(G \ v) + 1

≤ n3 −m3 + m4

6
+

n4 −m4 + m5

3
+

13

30
(n5 − 1−m5) + 1 + ε(n− 1).

For all possible values of (m3, m4, m5), we have that

−m3 + m4

6
+
−m4 + m5

3
+

13

30
(−1−m5) + 1 ≤ 0.

(Equality is obtained when (m3, m4, m5) = (0, 1, 4) which corresponds to the case
when v has four neighbors of degree 5 and one of degree 4.) Thus,

pw(G) ≤ n3

6
+

n4

3
+

13

30
n5 + εn.

If the graph G′ is 5-regular, then all neighbors of v in G are removed either (d)
by contracting edges incident to vertices of degree 1 and 2 or (c) by splitting off
vertices of degree at most 4 into a different connected component. In the worst
case, all neighbors of v are of degree 3 in this case. Let u be a vertex of degree 5
in G′. Since G′ \ u is not 5-regular and pw(G) ≤ pw(G′ \ u) + 2, we have that

pw(G) ≤ pw(G′ \ u) + 2

≤ 2 +
n3 − 5

6
+

n4 + 5

3
+

13

30
(n5 − 7) + ε(n− 2)

<
n3

6
+

n4

3
+

13

30
n5 + εn.

Thus the lemma holds for all non 5-regular graphs. Since the removal of one
vertex (for cases (a) and (b)) changes the pathwidth by an additive factor of at

6.1 Bounds on the Pathwidth of Sparse Graphs 139

most 1, for sufficiently large n this additive factor is dominated by εn, and we
conclude that the lemma holds for 5-regular graphs as well.

Using similar arguments one can proceed with the vertices of degree 6 (we
skip the proof here). The critical case here is when a vertex of degree 6 has 5
neighbors of degree 6 and one neighbor of degree 5.

For vertices of degree at least 7 we just use the fact that adding a vertex to a
graph can increase its pathwidth by at most one.

More accurate bounds for vertices of degree at least 7 can be obtained by
a computer program going through all possible cases. The obtained values are
reported in Table 6.1.

d βd d βd d βd

3 0.1667 8 0.6163 13 0.7514
4 0.3334 9 0.6538 14 0.7678
5 0.4334 10 0.6847 15 0.7822
6 0.5112 11 0.7105 16 0.7949
7 0.5699 12 0.7325 17 0.8062

Table 6.1: Numerically obtained constants βd, 3 ≤ d ≤ 17, such that for any
ε > 0, there exists an integer nε such that for every graph G with n > nε vertices,
pw(G) ≤

∑17
d=3 βdnd + n≥18 + εn, where ni is the number of vertices of degree i

in G for any i ∈ {3, . . . , 17} and n≥18 is the number of vertices of degree at least
18

As a corollary, we get the following bound which was proved in [KMRR05]
and [SS07a].

Corollary 6.6. For any ε > 0, there exists an integer nε such that for every
graph G with n > nε vertices and m edges, pw(G) ≤ 13m/75 + εn.

Proof. First, suppose G has maximum degree at most 5. Then every edge in G
contributes at most

max
3≤d≤5

{
2βd

d

}
to the pathwidth of G, where β3 = 1/6, β4 = 1/3, β5 = 13/30 are the values from
Lemma 6.5. The maximum is obtained for d = 5 and is 13/75. Thus, the result
follows for graphs of maximum degree at most 5.

Finally, if G has a vertex v of degree at least 6, then we use induction on the
number of vertices of degree at least 6. The base case has already been proved
and the inductive argument is as follows:

pw(G) ≤ pw(G \ v) + 1 ≤ 13(m− 6)/75 + 1 < 13m/75.

140 Treewidth Bounds

The following result bounds the pathwidth of a graph in terms of both the
number of vertices and the number of edges and is very useful when we only have
information about the average degree of a graph with at most 2n edges.

Lemma 6.7. For any ε > 0, there exists an integer nε such that for every con-
nected graph G with n > nε vertices and m = βn edges, 1 ≤ β ≤ 2, the pathwidth
of G is at most (m − n)/3 + εn. Moreover, a path decomposition of the corre-
sponding width can be constructed in polynomial time.

Proof. First we show the result assuming that the maximum degree ∆(G) of the
graph is bounded by 3, then we extend this result to the general case.

Let n2 be the number of vertices of degree 2 in G and n3 be the number of
vertices of degree 3 in G. Since the contraction of an edge incident to a vertex of
degree one does not change the treewidth of a graph, we assume that n2 = n−n3.
Thus n2 + 3

2
n3 = βn. Since n3 = 2(β − 1)n, by Lemma 6.5 we have that

pw(G) ≤ 1

6
(2β − 2)n + εn

=
β − 1

3
n + εn =

m− n

3
+ εn.

Now we extend the result without any assumptions on the degrees of the
vertices of G. We show this by induction on n≥4, the number of vertices of degree
at least 4. We have already shown that the lemma holds if n≥4 = 0. Let us
assume that for n≥4 ≥ 1, for every ε > 0 there exists nε such that for every graph
with at least nε vertices and at most n≥4 − 1 vertices of degree at least 4 the
lemma holds. Let v ∈ V be a vertex of degree at least 4. Observe that G \ v has
n− 1 vertices and at most m− 4 ≤ β(n− 1) edges. Now we have

pw(G) ≤ pw(G \ v) + 1 ≤ (m− 4)− (n− 1)

3
+ 1 + ε(n− 1)

≤ m− n

3
+ εn.

6.2 Bound on the Treewidth of Circle Graphs

In this section, we present a bound on the treewidth of circle graphs in terms of
their maximum degree: tw(G) ≤ 4∆(G) for every circle graph G.

Definition 6.8. A circle graph is an intersection graph of chords in a circle. More
precisely, G is a circle graph if there is a circle with a collection of chords, such
that one can associate in a one-to-one manner a chord to each vertex of G such

6.2 Bound on the Treewidth of Circle Graphs 141

that two vertices are adjacent in G if and only if the corresponding chords have
a nonempty intersection. The circle and all the chords are called a circle model
of the graph.

We refer to Figure 6.1 for an example of a circle graph and its corresponding
circle model.

e c d

a b
a
b

c

d e

Figure 6.1: A circle model and the corresponding circle graph

Our approach is based on the fundamental ideas of Kloks’ algorithm to com-
pute the treewidth of circle graphs [Klo96]. We start with a brief summary of this
algorithm. Consider the circle model of a circle graph G. Go around the circle
and place a new point (a so-called scanpoint) between every two consecutive end
points of chords. The treewidth of a circle graph can be computed by considering
all possible triangulations of the polygon P formed by the convex hull of these
scanpoints. The weight of a triangle in this triangulation is the number of chords
in the circle model that cross this triangle. The weight of triangulation T is the
maximum weight of a triangle in T . The treewidth of the graph is the minimum
weight minus one over all triangulations T of P . To find an optimal tree decom-
position of G, the algorithm in [Klo96] uses dynamic programming to compute a
minimum weight triangulation of P .

Theorem 6.9 ([Klo96]). There exists an O(n3) algorithm to compute the tree-
width of circle graphs, that also computes an optimal tree decomposition.

We rely on the following technical definitions in our construction of a tree
decomposition of width at most 4∆(G) for each circle graph G. The construction
will be given in the proof of Theorem 6.13.

Definition 6.10. A scanline s̃ = 〈ã, b̃〉 is a chord connecting two scanpoints ã
and b̃.

To avoid confusion, we call vertex chords the chords of the circle model that
represent the vertices of the corresponding circle graph. Scanlines are chords as
defined above and the general term chord refers to both scanlines and vertex
chords. To emphasize the difference between scanlines and vertex chords we use
different notations: A vertex chord v connecting two end points c and d in the

142 Treewidth Bounds

circle model of the graph is denoted v = [c, d]. This notation is also used if we
consider chords in general. We adapt the standard convention that two vertex
chords never intersect on the circle. Moreover, we say that two chords with
empty intersection or intersecting in exactly one point on the circle (scanpoint)
are non-crossing.

Definition 6.11. Let c1 and c2 be two non-crossing chords. A chord c is between
c1 and c2 if every path from an end point of c1 to an end point of c2 along the
circle passes through an end point of c.

Definition 6.12. A set C of chords is parallel if and only if

(i) the chords of C are non-crossing, and

(ii) if |C| > 2, then for every subset of three chords in C, one of these chords is
between the other two.

not parallel not parallel parallel

Figure 6.2: Examples of parallel and non parallel sets of chords

A set S of scanlines is maximal parallel if there exists no vertex chord v such
that S ∪{v} is parallel. Given a maximal parallel set of scanlines S, consider the
maximal size subpolygons of P that do not properly intersect any scanline of S
(but there may be scanlines of S on their boundaries). For such a subpolygon
of P , either one or two edges are scanlines of S. We say that these polygons are
delimited by one or two scanlines of S and we call outer polygon Ps̃ with respect
to S such a polygon delimited by one scanline s̃ ∈ S and inner polygon Ps̃1,s̃2

with respect to S such a polygon that is delimited by two scanlines s̃1, s̃2 ∈ S and
contains at least one scanpoint (otherwise, it is already triangulated). The inner
and outer polygons are defined with respect to a maximal parallel set of scanlines
S, but we allow ourselves to not state this set of scanlines explicitly if it is clear
from the context.

The following theorem shows that the treewidth tw(G) of every circle graph
G can be upper bounded by a linear function of the maximum degree ∆(G) of
the graph.

The idea for the proof is to construct an algorithm that computes a trian-
gulation of P (the triangulation is not necessarily optimal) and to prove that

6.2 Bound on the Treewidth of Circle Graphs 143

each triangle of this triangulation has weight at most 4∆(G). Before presenting
the algorithm in detail, let us mention some of its major ideas. The algorithm
separates P into “slices” by scanning some appropriately chosen vertex chords in
the circle model of the graph, where a vertex chord v is scanned by adding two
sharp triangles to the partly constructed triangulation: two scanlines parallel to
v and one scanline crossing v to form two triangles. The slices are made thinner
and thinner by adding scanlines to the partly constructed triangulation until no
slice can be cut into a pair of slices by scanning a vertex chord any more, and
this procedure gives a maximal parallel set of scanlines. When triangulating the
“middle part” of any slice, we use the property that no vertex chord is paral-
lel to the two scanlines delimiting the slice to show that the algorithm will not
create triangles with a weight exceeding 4∆(G). The borders of the slices are
triangulated recursively by first separating them into slices (in the perpendicular
orientation of the previous slices) by scanning some chords and processing the
resulting slices similarly.

The most interesting procedure of our algorithm is TriangInner, which is
also crucial for our upper bound 4∆(G).

Theorem 6.13. For every circle graph G, tw(G) ≤ 4∆(G).

Proof. The theorem clearly holds for edgeless graphs. Let G be a circle graph
with at least one edge and P be the polygon as previously described. We con-
struct a triangulation of P such that every triangle has weight at most 4∆, that
is it intersects at most 4∆ vertex chords, and therefore the corresponding tree
decomposition has width at most 4∆− 1.

Notice that by the definition of a circle graph, every vertex chord intersects
at most ∆ other vertex chords. The triangulation of the polygon P is obtained
by constructing the corresponding set of scanlines S which is explained by the
following procedures. Along with the description of our algorithm, we also analyze
the number of vertex chords that cross each triangle and show that it is less than
or equal to 4∆.

We say that a procedure is valid if it does not create triangles with weight
higher than 4∆ and if it does not create crossing scanlines.

The validity of Algorithm TriangCircle depends on the validity of the pro-
cedures ScanChord and ParaCuts. Note that no scanline crosses v, which is
a condition for ScanChord. Moreover ScanChord produces a parallel set of
scanlines, which is a condition for ParaCuts.

The procedure ScanChord returns a set X of one or three scanlines. They
form at most two triangles: c̃, d̃, d̃′ and c̃, d̃′, c̃′. Each of them intersects at most
∆ + 1 vertex chords: v and the vertex chords crossing v. Furthermore, at most
∆ vertex chords cross s̃1 and s̃2, precisely the vertex chords that cross v. The
scanlines of X do not intersect any scanline of S as any scanline intersecting a
scanline of X intersects also v.

144 Treewidth Bounds

Algorithm TriangCircle(circle model of a graph G)
Input : A circle model of a graph G.
Output: A triangulation of weight at most 4∆(G) of the polygon defined by

the scanpoints of this circle model.

Choose any vertex chord v in the circle model of G
S ← ScanChord(∅, v)
return ParaCuts(S)

Figure 6.3: Algorithm TriangCircle computing a triangulation of weight
at most 4∆(G) of any circle graph G

Procedure ScanChord(S, v = [a, b])
Input : A set of scanlines S and a vertex chord v = [a, b] such that no

scanline of S crosses v.
Output: A set of scanlines triangulating the polygon defined by the

neighboring scanpoints of the end points of v.

Let c̃ and c̃′ (respectively d̃ and d̃′) be the two scanpoints closest to a
(respectively b) such that the order of the points on the circle is
c̃, a, c̃′, d̃′, b, d̃
Let s̃1 := 〈c̃, d̃〉, s̃2 := 〈c̃′, d̃′〉 and s̃3 := 〈c̃, d̃′〉
if c̃ = d̃ (or c̃′ = d̃′) then

X ← {s̃2} (or {s̃1})
else

X ← {s̃1, s̃2, s̃3}
return X

Figure 6.4: Procedure ScanChord producing a set of scanlines triangulat-
ing the polygon defined by the neighboring scanpoints of a vertex chord

a

b
d̃

c̃
d̃′

c̃′

Figure 6.5: Illustration of ScanChord(S, v = [a, b])

6.2 Bound on the Treewidth of Circle Graphs 145

Procedure ParaCuts(S)
Input : A set of parallel scanlines S.
Output: A triangulation of weight at most 4∆(G) of the polygon defined by

the scanpoints of the circle model.

while S is not maximal parallel do
Choose a vertex chord v such that S ∪ {v} is parallel
S ← S ∪ ScanChord(S, v)

Let s̃1 and s̃2 be the scanlines delimiting the two outer polygons
S ← S ∪TriangOuter(S, s̃1) ∪TriangOuter(S, s̃2)
foreach inner polygon Pt̃1,t̃2 do

S ← S ∪TriangInner(S, t̃1, t̃2)

return S

Figure 6.6: Procedure ParaCuts computing a triangulation of weight at
most 4∆(G) of the polygon defined by the scanpoints of the circle model

outer

inner

inner

inner

outer

Figure 6.7: Illustration of ParaCuts(S)

146 Treewidth Bounds

In the procedure ParaCuts, the notions of inner and outer polygons are used
with respect to S (see Figure 6.7). In the while-loop, the chosen vertex chord
v does not cross a scanline of S since S ∪ {v} is required to be parallel. Thus,
when the procedure ScanChord is called, its conditions are satisfied. After
the while-loop, S is maximal parallel. Every vertex chord intersecting an outer
polygon crosses therefore the scanline delimiting this outer polygon, and there
is no vertex chord between two scanlines delimiting an inner polygon, which are
necessary conditions for TriangOuter and TriangInner. Moreover, at most ∆
vertex chords cross each of the delimiting scanlines and no scanline of S intersects
the inner and outer polygons.

Procedure TriangOuter(S, s̃ = 〈ã, b̃〉)
Input : A set of scanlines S and a scanline s̃ ∈ S satisfying the conditions:

(i) every vertex chord intersecting Ps̃ crosses s̃,
(ii) at most 2∆ vertex chords cross s̃, and
(iii) no scanline of S intersects Ps̃.

Output: A set of scanlines triangulating the outer polygon Ps̃.

X ← ∅
foreach scanpoint p̃i ∈ Ps̃ \ {ã, b̃} do

X ← X ∪ {〈ã, p̃i〉}
return X

Figure 6.8: Procedure TriangOuter computing a set of scanlines triangu-
lating an outer polygon where every vertex chord in this polygon crosses the
delimiting scanline of the outer polygon

ã

b̃

p̃1

p̃2

p̃3

Figure 6.9: Illustration of TriangOuter(S, s̃ = 〈ã, b̃〉)

In the procedure TriangOuter, at most 2∆ vertex chords intersect the outer
polygon Ps̃. So, any triangulation of Ps̃ produces triangles with weight at most

6.2 Bound on the Treewidth of Circle Graphs 147

2∆. As the procedure produces a triangulation of Ps̃, it is valid.

Procedure TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉)
Input : A set of scanlines S and two scanlines s̃1, s̃2 ∈ S satisfying the

conditions:
(i) there is no vertex chord between s̃1 and s̃2,
(ii) at most ∆ vertex chords cross one of s̃1 and s̃2, say s̃2,
(iii) at most 2∆ vertex chords cross the other scanline, s̃1, and
(iv) no scanline of S intersects the inner polygon Ps̃1,s̃2 .

Output: A set of scanlines triangulating Ps̃1,s̃2 .

Let the end points of s̃1 and s̃2 be ordered ã1, b̃1, b̃2, ã2 around the circle.
Assume w.l.o.g., that fewer vertex chords cross the line ã1, ã2 than the line
b̃1, b̃2

Let t̃ := 〈ã1, ã2〉
X ← {t̃}
X ← X ∪OuterParaCuts(X, t̃)
Go around the circle from b̃1 to b̃2 (without passing through ã1 and ã2).
Denote by e1, . . . , ek the encountered end points of those vertex chords
that cross s̃1

foreach ei, i = 1 to k do

Let s̃′i := 〈ã1, d̃i〉 with d̃i being the scanpoint following ei

Let s̃′′i := 〈d̃i, d̃i−1〉 with d̃0 = b̃1

Let s̃′′′i := 〈d̃i−1, d̃
′
i〉 with d̃′i being the scanpoint preceding d̃i

X ← X ∪ {s̃′i, s̃′′i , s̃′′′i }
X ← X ∪OuterParaCuts(X, s̃′′′i)

Let s̃3 := 〈d̃k, b̃2〉 and s̃4 := 〈b̃2, ã1〉
X ← X ∪ {s̃3, s̃4}
X ← X ∪OuterParaCuts(X, s̃3)
return X

Figure 6.10: Procedure TriangInner computing a set of scanlines triangu-
lating an inner polygon

Consider the input of the procedure TriangInner. There are at most 3∆
vertex chords inside the quadrilateral ã1, b̃1, b̃2, ã2 since there is no vertex chord
crossing both the lines ã1, ã2 and b̃1, b̃2 (there is no vertex chord between s̃1 and
s̃2). As fewer vertex chords cross ã1, ã2 than b̃1, b̃2, at most 3∆/2 vertex chords
cross the new scanline t̃ = 〈ã1, ã2〉. So, when OuterParaCuts(S, t̃) is called, the
condition that t̃ intersects at most 2∆ vertex chords is respected. For every end
point ei of a vertex chord vi that crosses s̃1, two triangles are created: ã1, d̃i−1, d̃i

and d̃i, d̃i−1, d̃
′
i.

148 Treewidth Bounds

ã1 s̃1 b̃1

ã2 s̃2 b̃2

d̃1

s̃′′′i

d̃i−1s̃′i

d̃i

s̃′′i

d̃k

. . .

. . .

Figure 6.11: Illustration of TriangInner(S, s̃1 = 〈ã1, b̃1〉, s̃2 = 〈ã2, b̃2〉)

The following claim is both the bottleneck and the crucial point of our argu-
ment.

Claim 6.14. The triangle ã1, d̃i−1, d̃i intersects at most 4∆ vertex chords.

Proof. Observe that every vertex chord intersecting this triangle and not crossing
s̃1 crosses either vi or vi−1. As at most 2∆ vertex chords cross s̃1, at most ∆ cross
vi and at most ∆ cross vi−1, the weight of this triangle is at most 4∆.

Moreover, at most 2∆+1 vertex chords cross s̃′′i and at most 2∆ vertex chords
cross s̃′′′i . So, the weight of the triangle d̃i, d̃i−1, d̃

′
i is at most 2∆ + 1 and when

OuterParaCuts(S, s̃′′′i) is called, the condition that the second parameter of the
procedure is a scanline that crosses at most 2∆ vertex chords is respected.
After adding the scanlines s̃3 and s̃4 we obtain two more triangles: ã1, d̃k, b̃2 and
ã1, b̃2, ã2. The first one intersects at most 4∆ vertex chords: at most 2∆ cross s̃1,
at most ∆ cross vk and at most ∆ cross s̃2. At most 3∆ vertex chords intersect the
triangle ã1, b̃2, ã2: at most 2∆ intersect s̃1 and at most ∆ intersect s̃2. Moreover
at most 2∆ vertex chords cross s̃3. So, the conditions of OuterParaCuts(S, s̃3)
are respected.

The procedure OuterParaCuts is similar to ParaCuts on the outer poly-
gon delimited by s̃. A new set of scanlines X ← {s̃} is created and is made
maximal parallel by calling ScanChord. If {s̃} is already maximal parallel, then
TriangOuter(X, s̃) is called and the conditions of that procedure are respected.
If other scanlines had to be added to X to make it maximal parallel, the pro-
cedure TriangOuter(X, t̃) is called for the outer polygon where t̃ is a scanline
of X intersecting at most ∆ vertex chords. Moreover, the procedure Triang-
Inner(X, t̃1, t̃2) is called for the inner polygons. Every scanline delimiting the

6.3 Conclusion 149

Procedure OuterParaCuts(S, s̃ = 〈ã, b̃〉)
Input : A set of scanlines S and a scanline s̃ ∈ S such that

(i) at most 2∆ vertex chords cross s̃, and
(ii) no scanline of S intersects Ps̃.

Output: A set of scanlines triangulating the outer polygon Ps̃.

X ← {s̃}
while X is not a maximal parallel in Ps̃ do

Choose a chord v ∈ Ps̃ such that X ∪ {v} is parallel
X ← X ∪ ScanChord(X, v)

Let t̃ be the scanline delimiting the recently obtained outer polygon with
respect to X that is a subpolygon of Ps̃

X ← X ∪TriangOuter(X, t̃)
foreach inner polygon Pt̃1,t̃2 in Ps̃ do

X ← X ∪TriangInner(X, t̃1, t̃2)

return X

Figure 6.12: Procedure OuterParaCuts computing a set of scanlines tri-
angulating an outer polygon where not necessarily every vertex chord in this
polygon crosses the delimiting scanline of the outer polygon

inner polygons intersects at most ∆ vertex chords, except s̃ that can intersect
up to 2∆ vertex chords. So, we respect the condition for TriangInner that one
scanline intersects at most ∆ vertex chords and the other one at most 2∆.

We have provided a recursive algorithm to triangulate the polygon P and
have shown that the obtained triangulation does not contain triangles intersecting
more than 4∆ vertex chords. Thus the corresponding tree decomposition of G
has width at most 4∆− 1.

6.3 Conclusion

The treewidth bounds we showed in this chapter are interesting on their own,
but we will also use them in the next two chapters to derive faster exponential
time algorithms for different problems. Concerning the bound on sparse graphs,
it would be interesting to study the treewidth of 4-regular graphs or graphs with
maximum degree 4 more directly. One possible direction could be to try to obtain
better bounds on the bisection width of 4-regular graphs. For circle graphs, it
would be interesting to know if, for large maximum degree ∆, there are infinitely
many graphs with treewidth 4∆ up to a constant additive factor. In other words,
is the bound for circle graphs tight? Other results relating treewidth and the

150 Treewidth Bounds

maximum degree of graphs belonging to special graph classes are obtained in
[BT97, GKLT].

Chapter 7
Domination on Graph Classes

The man who can dominate a London
dinner-table can dominate the world.

Oscar Wilde

The Minimum Dominating Set problem remains NP–hard when restricted
to any of the following graph classes: c-dense graphs, chordal graphs, 4-chordal
graphs, weakly chordal graphs and circle graphs. Developing and using a general
approach, for each of these graph classes we present an exponential time algorithm
solving the Minimum Dominating Set problem faster than the best known
algorithm for general graphs. Our approach combines a branching algorithm for
Minimum Set Cover and dynamic programming algorithms for graphs of small
treewidth to find a minimum dominating set of graphs belonging to these graph
classes. Our algorithms have the following running time: O(1.4124n) for chordal
graphs, O(1.4776n) for weakly chordal graphs, O(1.4845n) for 4-chordal graphs,
O(1.4887n) for circle graphs, and O(1.2273(1+

√
1−2c)n) for c-dense graphs.

7.1 Previous Work

A set D ⊆ V of a graph G = (V, E) is dominating if every vertex of V \D has at
least one neighbor in D. Given a graph G = (V, E), the Minimum Dominating
Set problem asks to compute a dominating set of minimum cardinality.

Exact exponential time algorithms for the Minimum Dominating Set prob-
lem have not been studied until recently. By now there is a large interest
in this particular problem. In 2004 three papers with exact algorithms for
Minimum Dominating Set were published. In [FKW04] Fomin et al. pre-
sented an O(1.9379n) time algorithm for general graphs and algorithms for split
graphs, bipartite graphs and graphs of maximum degree three with running time

152 Domination on Graph Classes

O(1.4143n), O(1.7321n), O(1.5144n), respectively. Exact algorithms for Mini-
mum Dominating Set on general graphs have also been given by Randerath
and Schiermeyer [RS04] and by Grandoni [Gra06]. Their running times are
O(1.8899n) and O(1.8026n), respectively.

These algorithms have been significantly improved by Fomin et al. [FGK05a]
where the authors obtain faster exact algorithms for Minimum Dominating
Set on general graphs. Their simple branching algorithm is analyzed using the
Measure and Conquer approach, and the upper bounds on the worst case running
times are established by the use of non standard measures. Their algorithm has
running time O(1.5263n) and needs polynomial space. Using memorization one
can speed up the running time to O(1.5137n) needing exponential space then.
Both variants are based on algorithms for the Minimum Set Cover problem
where the input consists of a universe U and a collection S of subsets of U , and
the problem requires to find a minimum number of subsets in S such that their
union is equal to U . These algorithms need running time O(1.2354|U|+|S|) and
polynomial space, or running time O(1.2303|U|+|S|) and exponential space.

The currently fastest algorithms for Minimum Dominating Set have been
obtained by van Rooij and Bodlaender [vRB08a], building on the algorithms in
[FGK05a]. These algorithms have running times O(1.5134n) (polynomial space)
and O(1.5063n) (exponential space).

Fomin and Høie used a treewidth based approach to establish an algorithm to
compute a minimum dominating set for graphs of maximum degree three [FH06]
within running time O(1.2010n). The best known algorithm for Minimum Dom-
inating Set on planar graphs has running time O(23.99

√
n) [Dor06]. Liedloff

[Lie08] constructed an O∗(2n/2) time algorithm to solve Minimum Dominating
Set on bipartite graphs beating the best known algorithm for general graphs.

It is known that Minimum Dominating Set is NP–hard when restricted to
circle graphs [Kei93] and chordal graphs [BJ82], and thus also for weakly chordal
and 4-chordal graphs. The NP–hardness of Minimum Dominating Set for
c-dense graphs is shown in Section 7.4.

7.2 Our Results

In this paper we study the Minimum Dominating Set problem for various
graph classes and we obtain algorithms with a running time O(αn) better than
the best known algorithm solving Minimum Dominating Set on general graphs.
Here the value of α depends on the graph class. More precisely α < 1.5 for all
classes except for c-dense graphs. (If c ≥ 0.0202 then α < 1.5 for c-dense graphs.)

In Section 7.4 we give an O(1.2273n(1+
√

1−2c)) time algorithm for c-dense
graphs, that is for all graphs with at least cn2 edges, where c is a constant
between 0 and 1/2. In Section 7.5 we present an exact algorithm solving the

7.3 General Framework 153

graph class running time

c-dense graphs O(1.2273n(1+
√

1−2c))
chordal graphs O(1.4124n)
circle graphs O(1.4887n)
4-chordal graphs O(1.4845n)
weakly chordal graphs O(1.4776n)

Table 7.1: Running time of our algorithms for Minimum Dominating Set on
some graph classes

Minimum Dominating Set problem on chordal graphs in time O(1.4124n). In
Section 7.6 an O(1.4887n) time algorithm for circle graphs is presented, as well
as an O(1.4845n) time algorithm for 4-chordal graphs and an O(1.4776n) time
algorithm for weakly chordal graphs.

We use two general frameworks. “Many vertices of high degree” relies heavily
on the Minimum Set Cover algorithms of van Rooij and Bodlaender [vRB08a].
It is applied to c-dense graphs. Our treewidth based approach uses in fact the
“many vertices of high degree” approach for graphs of large treewidth, and other-
wise it applies the Minimum Dominating Set algorithm using a tree decompo-
sition. This approach is applied to chordal, circle, 4-chordal and weakly chordal
graphs.

The algorithms for circle, 4-chordal and weakly chordal graphs rely on a linear
upper bound of the treewidth in terms of the maximum degree. Such bounds are
interesting in their own. A related result for graphs of small chordality is provided
in [BT97].

7.3 General Framework

Our algorithms solve the NP–hard Minimum Dominating Set problem by
exploiting two particular properties of the input graph G:

• G has many vertices of high degree:
|{v ∈ V : d(v) ≥ t− 2}| ≥ t for some (large) positive integer t
(see Theorem 7.1);

• there is a constant c > 0 such that tw(H) ≤ c ·∆(H) for all induced sub-
graphs H of G, and there is an algorithm to compute a tree decomposition
of H of width at most c ·∆(H) in polynomial time1

(see Theorem 7.4).

1In fact running time 4c·∆(H) · nO(1) suffices.

154 Domination on Graph Classes

We describe methods using and combining those properties to establish exponen-
tial time algorithms solving Minimum Dominating Set for a variety of graph
classes for which the problem remains NP–hard. The designed algorithms are
faster than the best known algorithm for general graphs.

7.3.1 Many Vertices of High Degree

The following theorem shows that graphs with sufficiently many vertices of high
degree allow to speed up any O(α2n) time algorithm solving Minimum Domi-
nating Set for general graphs which is based on an algorithm for Minimum
Set Cover of running time O(α|U|+|S|). This is the case for the currently
best known algorithm solving Minimum Dominating Set which is based on
an O(1.2273|U|+|S|) algorithm for Minimum Set Cover [vRB08a], that is α =
1.2273.

Theorem 7.1. Suppose there is an O(α|U|+|S|) algorithm computing a minimum
set cover of any input (U ,S). Let t(n) : N → R+. Then there is an O(α2n−t(n))
time algorithm to solve the Minimum Dominating Set problem for all input
graphs G fulfilling |{v ∈ V : d(v) ≥ t(n)− 2}| ≥ t(n), where n is the number of
vertices of G.

Proof. Let G = (V, E) be a graph fulfilling the conditions of the theorem and let
t := t(n) ≥ 0. Let T := {v ∈ V : d(v) ≥ t − 2}; thus |T | ≥ t. Notice that for
each minimum dominating set D of G either at least one vertex of T belongs to
D, or T ∩D = ∅.

This allows to find a minimum dominating set of G by the following branching
in two types of subproblems: “v ∈ D” for each v ∈ T , and “T ∩D = ∅”. Thus
we branch into |T | + 1 subproblems and for each subproblem we shall apply
the O(α|U|+|S|) time Minimum Set Cover algorithm to solve the subproblems.
Recall the transformation given in [FGK05a]: the Minimum Set Cover instance
corresponding to the instance G for the Minimum Dominating Set problem
has universe U = V and a collection of sets S = {N [u] : u ∈ V }, and thus
|U|+|S| = 2n. Consequently the running time for a subproblem will be O(α2n−x),
where x is the number of elements of the universe plus the number of subsets
eliminated from the original Minimum Set Cover problem for the graph G.

Now let us consider the two types of subproblems. For every vertex v ∈ T ,
we choose v in the minimum dominating set and we execute the O(α|U|+|S|) time
Minimum Set Cover algorithm on an instance of size at most 2n − (d(v) +
1) − 1 ≤ 2n − t. Indeed, we remove from the universe U the elements of N [v]
and we remove from S the set corresponding to v. When branching into the case
“discard T” we have an instance of set cover of size at most 2n − |T | = 2n − t
since for every v ∈ T we remove from S the set corresponding to each v.

7.3 General Framework 155

Corollary 7.2. Let t(n) : N → R+. Then there is an O(1.22732n−t(n)) time
algorithm to solve the Minimum Dominating Set problem for all input graphs
G fulfilling |{v ∈ V : d(v) ≥ t(n)− 2}| ≥ t(n), where n is the number of vertices
of G.

7.3.2 Treewidth Based Approach

To exploit tree decompositions of small width we rely on the following result of
Alber et al.

Theorem 7.3 ([ABF+02]). There is a 4` · nO(1) time algorithm taking as input
a graph G = (V, E) and a tree decomposition T of G of width at most `, which
computes a minimum dominating set of G.

The following theorem shows how to solve the Minimum Dominating Set
problem on a hereditary class of graphs fulfilling the condition tw(G) ≤ c∆(G)
for all graphs of the class, where c is a fixed constant. The idea is that such
graphs either have many vertices of high degree or their maximum degree is small
and thus their treewidth is small. In the first case the algorithm of the previous
subsection is used. In the second case the 4tw(G) ·nO(1) time algorithm to solve the
Minimum Dominating Set problem of Alber et al. [ABF+02] (Theorem 7.3) is
used. To balance the running time of the two parts, a parameter λ is appropriately
chosen.

Algorithm DS-HighDeg-SmallTw(a graph G = (V, E))
Input : A graph G fulfilling the conditions of Theorem 7.4.
Output: The domination number γ(G) of G.

λ← λ(c, α) // the value of λ is given in Theorem 7.4

X ← {u ∈ V : d(u) ≥ λn/c}
if |X| ≥ λn/c then

use the algorithm of Theorem 7.1 and return the result

else
use the algorithm of Theorem 7.3 and return the result

Figure 7.1: Algorithm for computing the domination number of any graph
belonging to a hereditary graph class such that a tree decomposition of width
at most c · ∆(G) of every graph G in this graph class can be computed in
polynomial time for some constant c

Theorem 7.4. Suppose there is an O∗(α|U|+|S|) algorithm computing a minimum
set cover of any input (U ,S). Let c > 0 be a constant. Let G be a hereditary class
of graphs such that tw(G) ≤ c ·∆(G) for all G ∈ G. Furthermore, suppose that

156 Domination on Graph Classes

there is an algorithm that for any input graph G ∈ G computes a tree decomposi-
tion of width at most c ·∆(G) in polynomial time.
Then there is an O∗(max(α2n−λn/c, 4(c+1)λn/c)) time algorithm to solve the Min-
imum Dominating Set problem for all input graphs of G, where

λ = λ(c, α) =
2

1+d
c

+ d
and d = 1/ log4(α).

Proof. The algorithm first constructs the vertex set X containing all vertices
having a degree larger than λn/c (see algorithm DS-HighDeg-SmallTw).

By definition, for all v ∈ X, d(v) > λn/c. Thus, if |X| ≥ λn/c, then we apply
the algorithm of Theorem 7.1, and thus a minimum dominating set can be found
in time O∗(α2n−λn/c).

Otherwise |X| < λn/c and ∆(G − X) < λn/c. Note that G − X belongs
to the hereditary graph class G since it is an induced subgraph of G. Therefore
tw(G − X) ≤ c∆(G − X). It follows that tw(G − X) < cλn/c = λn. As
adding one vertex to a graph increases its treewidth at most by one, tw(G) ≤
tw(G − X) + |X| < λn + λn/c = (c + 1)λn/c. Now our algorithm computes a
tree decomposition of width at most (c + 1)λn/c in polynomial time, and then it
uses the algorithm of Theorem 7.3. Thus in this case a minimum dominating set
can be found in time 4tw(G) · nO(1) = O∗(4(c+1)λn/c).

As a consequence, a minimum dominating set of G can be found in time
O∗(max(α2n−λn/c, 4(c+1)λn/c)).

Corollary 7.5. Under the assumptions of Theorem 7.4, there is an algorithm
of running time O∗(max(1.22732n−λn/c, 4(c+1)λn/c)) to solve the Minimum Dom-
inating Set problem for all input graphs G fulfilling tw(G) ≤ c∆(G), where c
is a constant, λ = λ(c) = 2

1+d
c

+d
and d = 1/ log4(1.2273).

value of c running time
1.5 O(1.4723n)
2 O(1.4776n)

2.5 O(1.4815n)
3 O(1.4845n)
4 O(1.4887n)
5 O(1.4916n)

Table 7.2: Running time of the algorithm in Corollary 7.5 for some values of c

As we have shown, both methods can be adapted to speed up the algorithms
by using any faster Minimum Set Cover algorithms established by future work.

7.4 Dense Graphs 157

In the rest of the paper we show how the abovementioned general methods
can be applied to dense graphs (Section 7.4), chordal graphs (Section 7.5), circle
graphs, 4-chordal graphs and weakly chordal graphs (Section 7.6).

7.4 Dense Graphs

It is known that problems like Maximum Independent Set, Hamiltonian
Circuit and Hamiltonian Path remain NP–hard when restricted to graphs
having a large number of edges [Sch95]. In this section we first show that Min-
imum Dominating Set also remains NP–hard for c-dense graphs. Then we
present an exponential time algorithm for the Minimum Dominating Set prob-
lem on this graph class. The algorithm uses the “many vertices of high degree”
approach of the previous section.

Definition 7.6. A graph G = (V, E) is c-dense (or simply dense if there is no
ambiguity), if |E| ≥ cn2 where c is a constant with 0 < c < 1/2.

An easy way to show that an NP–hard graph problem remains NP–hard for
c-dense graphs, for any c with 0 < c < 1/2, is to construct a graph G′ by adding
a sufficiently large complete graph as new component to the original graph G
such that G′ is c-dense. This simple reduction can be used to show that various
NP–hard graph problems remain NP–hard for c-dense graphs. To name a few
problems: Maximum Independent Set, Partition into Cliques, Vertex
Cover, Feedback Vertex Set and Minimum Fill-In.

In this way it can be shown that Minimum Dominating Set is NP–hard
for c-dense graphs by a polynomial time many–one reduction from the NP–hard
problem Minimum Dominating Set for split graphs.

Theorem 7.7. For any constant c with 0 < c < 1/2, the problem to decide,
whether a c-dense graph has a dominating set of size at most k is NP–complete,
even when the inputs are restricted to split graphs.

Proof. Let c be any constant with 0 < c < 1/2. Clearly, the problem to decide
whether a graph — and thus also a c-dense graph — has a dominating set of size
at most k is in NP .

It is shown in [Ber84] that the problem of determining whether a split graph
has a dominating set of size at most k is NP–complete. We shall provide a poly-
nomial many–one reduction from Minimum Dominating Set for split graphs
to Minimum Dominating Set for c-dense split graphs.

Let k be an integer and G = (V = I ∪ C, E) a split graph where I and C
form a partition of the vertices of G such that I is an independent set and C is
a clique. First we construct a c-dense graph G′ = (V ′, E ′) with E ′ ≥ c · |V ′|2.
The graph G′ = (V ′, E ′) is obtained from the graph G by adding a clique C ′

158 Domination on Graph Classes

of size
⌈
(1 + 4c|V |+

√
1 + 8c|V |(1 + |V |))/(2− 4c)

⌉
to G and adding all edges

with one end point in C and the other in C ′. Note that this guarantees that G′ is
a split graph with a partition of V ′ into an independent set I and a clique C∪C ′.
Furthermore the number of edges of G′ is greater than c(|V |+ |C ′|)2, and hence
G′ is a c-dense graph.

Now we show that G has a dominating set of size a most k if and only if G′

has a dominating set of size at most k.
First, assume that G′ has a dominating set D with |D| ≤ k. Since NG′ [x′] ⊆

NG′ [x] for all x′ ∈ C ′ and all x ∈ C, we may replace each vertex of C ′ belonging
to D by a vertex of C. In this way we obtain a dominating set D′ ⊆ I ∪ C of G′

such that |D′| ≤ k. Consequently D′ is also a dominating set of G.
Conversely, assume that D is a dominating set of G of size at most k. If D

contains at least one vertex of C then D is also a dominating set of G′ since each
vertex of C ′ is adjacent to all vertices of C. Otherwise, D contains no vertex
of C and thus each vertex in C has at least one neighbor in D ∩ I. In this
second case we replace any vertex s ∈ D ∩ I by a neighbor t ∈ C and obtain
D′ = (D \ {s}) ∪ {t}. Then D′ is a dominating set of G since NG[s] ⊆ NG[t].
Furthermore, since D′ contains a vertex of C it is also a dominating set of G′.
Hence G′ has in each case a dominating set of size at most k.

Thus we obtain that the problem of deciding whether a c-dense split graph
has a dominating set of size at most k is NP–complete.

The main idea of our algorithm is to find a large subset of vertices of large
degree.

Lemma 7.8. For some fixed 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, any graph G = (V, E)

with |E| ≥ 1 +
(t− 1)(n− 1) + (n− t + 1)(t′ − 1)

2
has a subset T ⊆ V such that

(i) |T | ≥ t,

(ii) for every v ∈ T , d(v) ≥ t′.

Proof. Let 1 ≤ t ≤ n, 1 ≤ t′ ≤ n − 1, and a graph G = (V, E) such that there
is no subset T with the previous properties. Then for any subset T ⊆ V of size
at least t, there exists a vertex v ∈ T such that d(v) < t′. Then such a graph
can only have at most k := k1 + k2 edges where k1 = (t − 1)(n − 1)/2 (which
corresponds to t−1 vertices of degree n−1) and k2 = (n− t+1)(t′−1)/2 (which
corresponds to n − (t − 1) vertices of degree t′ − 1). Observe that if one of the
n− (t− 1) vertices has a degree greater than t′ − 1 then the graph has a subset
T with the required properties, a contradiction.

Lemma 7.9. Every c-dense graph G = (V, E) has a set T ⊆ V fulfilling

7.5 Chordal Graphs 159

(i) |T | ≥
⌊
n−
√

9− 4n + 4n2 − 8cn2 − 3

2

⌋
,

(ii) for every v ∈ T , d(v) ≥
⌊
n−
√

9− 4n + 4n2 − 8cn2 − 3

2

⌋
− 2.

Proof. We apply Lemma 7.8 with t′ = t − 2. Since we have a dense graph,
|E| ≥ cn2. Using inequality 1 + ((t − 1)(n − 1) + (n − t + 1)(t − 3))/2 ≤ cn2

we obtain that in a dense graph the value of t in Lemma 7.8 is such that n −
3−

√
9−4n+4n2−8cn2

2
≥ t.

Using the “many vertices of high degree” approach we establish

Theorem 7.10. For any c with 0 < c < 1/2, there is an O
(

1.2273(1+
√

1−2c)n
)

time algorithm to solve the Minimum Dominating Set problem on c-dense
graphs.

Proof. Combining Theorem 7.1, Corollary 7.2 and Lemma 7.9 we obtain an al-
gorithm for solving the Minimum Dominating Set problem in time

O

(
1.2273

2n−
—
n−

√
9−4n+4n2−8cn2−3

2

�)
= O

(
1.2273n+

√
9−4n+4n2−8cn2−3

2

)
= O

(
1.2273n+

√
9+4n2(1−2c)

2

)
= O

(
1.2273n+ 3+2n

√
1−2c

2

)
= O

(
1.2273n(1+

√
1−2c) · 1.2273

3
2

)
= O

(
1.2273n(1+

√
1−2c)

)
.

7.5 Chordal Graphs

In this section we present an exponential time algorithm for the Minimum Domi-
nating Set problem on chordal graphs. We use a treewidth based approach with
a faster algorithm for solving Minimum Dominating Set on chordal graphs us-
ing clique trees.

A graph is chordal if it has no chordless cycle of length greater than three.
Chordal graphs are a well–known graph class with its own chapter in Golumbic’s
monograph [Gol80]. Split graphs, strongly chordal graphs and undirected path
graphs are well–studied subclasses of chordal graphs.

160 Domination on Graph Classes

We shall use the clique tree representation of chordal graphs that we view as
a tree decomposition of the graph. A tree T is as clique tree of a chordal graph
G = (V, E) if there is a bijection between the maximal cliques of G and the nodes
of T such that for each vertex v ∈ V the cliques containing v induce a subtree
of T . It is well–known that tw(G) ≥ ω(G) − 1 for all graphs. Furthermore the
clique tree of a chordal graph G is an optimal tree decomposition of G, that is
its width is precisely ω(G)− 1.

Lemma 7.11. There is a 3tw(G) · nO(1) time algorithm to compute a minimum
dominating set on chordal graphs.

Proof. The algorithm of Alber et al. in Theorem 7.3 uses a nice tree decomposi-
tion (see Definition 6.2) of the input graph and a standard bottom up dynamic
programming on the tree decomposition. The crucial idea is to assign three dif-
ferent “colors” to the vertices of a bag:

• “black”, meaning that the vertex belongs to the dominating set,

• “white”, meaning that the vertex is already dominated,

• “gray”, meaning that the vertex is not yet dominated.

Now let us assume that the input graph is chordal. A clique tree T of G
can be computed in linear time [BP93]. By Lemma 6.3, a nice optimal tree
decomposition of G can be computed from the optimal tree decomposition T in
time O(n) and it has at most 4n nodes. Since G is chordal every bag in the nice
tree decomposition is a clique. Therefore no bag can have both a black vertex
and a gray vertex. Due to this restriction there are at most 2|X| possible so–called
vector colorings of a bag X (instead of 3|X| for general graphs).

Consequently the running time of the algorithm of Alber et al. for chordal
graphs is 3tw(G) · nO(1), where the only modification is to use clique trees and
to restrict allowed vector colorings of a bag such that black and gray vertices
simultaneously are forbidden.

We use the following Corollary of Theorem 7.1.

Corollary 7.12. There is an algorithm taking as input a graph G and a clique C
of G and solving the Minimum Dominating Set problem in time
O(1.22732n−|C|).

Proof. Use Corollary 7.2 and note that every vertex in C has degree at least
|C| − 1.

Our algorithm on chordal graphs works as follow: If the graph has large
treewidth then it necessarily has a large clique and we apply Corollary 7.12.
Otherwise the graph has small treewidth and we use Lemma 7.11.

7.6 Circle Graphs, 4-chordal Graphs, and Weakly Chordal Graphs161

Theorem 7.13. There is an O(1.4124n) time algorithm to solve the Minimum
Dominating Set problem on chordal graphs.

Proof. If tw(G) < 0.3142n, by Lemma 7.11, Minimum Dominating Set is
solvable in time O(30.3142n) = O(1.4124n). Otherwise, tw(G) ≥ 0.3142n and
using Corollary 7.12 we obtain an O(1.22732n−0.3142n) = O(1.4124n) time algo-
rithm.

7.6 Circle Graphs, 4-chordal Graphs, and

Weakly Chordal Graphs

In this section, we present exponential time algorithms for Minimum Domi-
nating Set on circle graphs, 4-chordal graphs and weakly chordal graphs in a
treewidth based approach.

Recall from Section 6.2 that for any circle graph G, tw(G) ≤ 4∆(G) (The-
orem 6.13). Now we simply apply our treewidth based approach of Section 7.3
to circle graphs. Furthermore the class of circle graphs is hereditary and there
is a polynomial time algorithm to compute an optimal tree decomposition of cir-
cle graphs (Theorem 6.9). Consequently Theorem 7.4 and Corollary 7.5 can be
applied and we obtain

Theorem 7.14. There is an O(1.4887n) algorithm to solve Minimum Domi-
nating Set for circle graphs.

The chordality of a graph is the size of its longest chordless cycle. A graph is
4-chordal if its chordality is at most 4. Thus 4-chordal graphs are a superclass of
chordal graphs. We constructively show in [GKLT] that, for any 4-chordal graph
G, its treewidth is at most 3∆(G).

Theorem 7.15 ([GKLT]). For any 4-chordal graph G, tw(G) ≤ 3∆(G). More-
over, there is a polynomial time algorithm computing, for any 4-chordal input
graph G, a tree decomposition of width at most 3∆(G).

Combining Theorem 7.15, Theorem 7.4 and Corollary 7.5 one establishes

Theorem 7.16. There is an O(1.4845n) algorithm to solve Minimum Domi-
nating Set for 4-chordal graphs.

A graph G is weakly chordal if both G and its complement are 4-chordal. It is
easy to check that chordal graphs are a proper subclass of weakly chordal graphs,
which are in turn a proper subclass of 4-chordal graphs. The treewidth of weakly
chordal graphs can be computed in polynomial time [BT01].

We show in [GKLT] that for any weakly chordal graph G its treewidth is at
most 2∆(G).

162 Domination on Graph Classes

Theorem 7.17 ([GKLT]). For any weakly chordal graph G, tw(G) ≤ 2∆(G).

Combining Theorem 7.17, Theorem 7.4 and Corollary 7.5 one establishes

Theorem 7.18. There is an O(1.4776n) algorithm to solve Minimum Domi-
nating Set for weakly chordal graphs.

7.7 Conclusion

We presented several exponential time algorithms to solve the Minimum Dom-
inating Set problem on graph classes for which this problem remains NP–
hard. All these algorithms are faster than the best known algorithm to solve
Minimum Dominating Set on general graphs. We have also shown that any
faster algorithm for the Minimum Set Cover problem, that is of running time
O(α|U|+|S|) with α < 1.2273, could immediately be used to speed up all our algo-
rithms. It is also clear, that a faster treewidth based algorithm with running time
c` ·nO(1), c < 4 taking as input a graph G = (V, E) and a tree decomposition of G
of width at most `, can be used to speed up the presented algorithms. Actually,
an unpublished 3` · nO(1) algorithm has been presented [Ros07] at a Dagstuhl
Seminar, using techniques from [BHKK07]. This algorithm can be used to speed
up the algorithms presented in this chapter.

Besides classes of sparse graphs (as for example cubic graphs [FH06]) two
other graph classes are of interest: split and bipartite graphs. For split graphs,
combining ideas of [FKW04] and [vRB08a] one easily obtains an O(1.2273n) algo-
rithm. In [Lie08], Liedloff uses a preprocessing technique to compute a minimum
dominating set in time 2n−z ·nO(1) of graphs that have an independent set of size
z, which implies an O∗(2n/2) = O(1.4143n) time algorithm to solve Minimum
Dominating Set on bipartite graphs.

The “high degree” and the “treewidth based” method of our paper can most
likely also be applied to other NP–hard problems for constructing fast expo-
nential time algorithms when restricted to graph classes with the corresponding
properties. One example is the Minimum Independent Dominating Set
problem (see [GL06]).

It is likely that bounds on the treewidth in terms of the maximum degree
for circle graphs, 4–chordal graphs, weakly chordal graphs or other graph classes
can be used to construct exponential time algorithms for NP–hard problems on
special graph classes in a way similar to our approach for domination.

Chapter 8
Enumeration and Pathwidth

It’s better to be prepared for an opportunity
and not have one than to have an opportunity
and not be prepared.

Whitney M. Young, Jr

We introduce a generic algorithmic technique based on the enumeration of
independent sets and dynamic programming over a path decomposition of the
graph. Our approach is based on the following idea: either a graph has nice
(from the algorithmic point of view) properties which allow a simple recursive
procedure to find the solution fast, or the pathwidth of the graph is small, which
in turn can be used to find the solution by dynamic programming. By making
use of this technique we obtain algorithms

• running in time O(1.7272n) for deciding if a graph is 4-colorable,

• running in time O(1.6259n) for counting the number of 3-colorings of a
graph, and

• running in time O(1.4082n) for finding a minimum maximal matching in a
graph.

8.1 Considered Problems

The Chromatic Number problem is one of the oldest and most intensively
studied problems in combinatorics and algorithms. The problem is to color the
vertices of a graph such that no two adjacent vertices are assigned the same
color. The smallest number of colors needed to color a graph G is called the
chromatic number , χ(G), of G. The corresponding decision version of the coloring

164 Enumeration and Pathwidth

problem is k-Coloring, where for a given graph G and an integer k we are asked
if χ(G) ≤ k. The k-Coloring problem is one of the classical NP–complete
problems [GJ79]. In fact it is known to be NP–complete for every k ≥ 3. A
lot of effort was also put in designing efficient approximation algorithms for the
optimization version of the problem, namely, given a k-colorable graph to try to
color it with as few colors as possible. Unfortunately, it has been shown that
if certain reasonable complexity conjectures hold then k-Coloring is hard to
approximate within n1−ε for any ε > 0 [FK98, KP06].

The history of exponential time algorithms for graph coloring is rich. Christofi-
des obtained the first non–trivial algorithm computing the chromatic number
of a graph on n vertices running in time n!nO(1) in 1971 [Chr71]. In 1976,
Lawler [Law76] devised an algorithm with running time O(2.4423n) based on
dynamic programming over subsets and enumeration of maximal independent
sets. Eppstein [Epp03] reduced the bound to O(2.4151n) and Byskov [Bys04a] to
O(2.4023n). In two breakthrough papers in 2006, Björklund and Husfeldt [BH06b]
and Koivisto [Koi06a] independently devised O∗(2n) algorithms for Chromatic
Number based on a combination of inclusion–exclusion and dynamic program-
ming.

Apart from the general Chromatic Number problem, the k-Coloring
problem for small values of k like 3 and 4 has also attracted a lot of attention.
The fastest known algorithm deciding if a the chromatic number of a graph is at
most 3 runs in time O(1.3289n) and is due to Beigel and Eppstein [BE05]. For
4-Coloring Byskov [Bys04a] designed the previously fastest algorithm, running
in time O(1.7504n).

The counting version of the k-Coloring problem, #k-Coloring, is to count
the number of all possible k-colorings of a given graph. #k-Coloring (and its
generalization known as Chromatic Polynomial) are among the oldest count-
ing problems. Björklund and Husfeldt [BH06b] and Koivisto [Koi06a] have also
shown that the chromatic polynomial of a graph can be computed in time O∗(2n).
For k = 3, #k-Coloring was also studied in the literature. Angelsmark et
al. [AJ03] provide an algorithm for #3-Coloring with running time O(1.788n).
Fürer and Kashiviswanathan [FK05] show how to solve #3-Coloring with run-
ning time O(1.770n).

In the Minimum Maximal Matching problem, one is asked to find a max-
imal matching of minimum size of a graph. For this problem, several exact algo-
rithms can be found in the literature. Randerath and Schiermeyer [RS04] gave an
algorithm of time complexity O(1.4422m). Raman et al. [RSS07] improved the
running time by giving an algorithm of time complexity O(1.4422n). They also
gave reductions showing that faster algorithms for Minimum Maximal Match-
ing automatically lead to improved running times for a number of other problems,
like Minimum Edge Dominating Set and Matrix Domination.

8.2 Our Results 165

8.2 Our Results

In this chapter we introduce a generic technique to obtain exact algorithms for
several problems for which it is natural to enumerate independent sets. The
technique is based on the following combinatorial property which is proved al-
gorithmically and which is interesting in its own: Either a graph G has a nice
“algorithmic” property which (very sloppily) means that when we apply branch-
ing or a recursive procedure to solve a problem then the branching procedure on
subproblems of a smaller size works efficiently, or (if branching is not efficient)
the pathwidth of the graph is small. This type of technique can be used for a
variety of problems where the sizes of the subproblems on which the algorithm is
called recursively decrease significantly by branching on vertices of high degrees.

In Section 8.3, this technique is presented, along with a general upper bound
on the resulting running time, based on the running times of the subprocedures
that are plugged into the algorithm. In Section 8.4 we use this technique to obtain
exact algorithms for different coloring problems. We show that #3-Coloring
and 4-Coloring can be solved in time O(1.6259n) and O(1.7272n) respectively.
These improve the best known results for these two problems. We also apply
the technique to Minimum Maximal Matching and derive an O(1.4082n)
algorithm for this problem. In [vRB08b], van Rooij and Bodlaender give a faster
O(1.3226n) algorithm for Minimum Maximal Matching.

8.3 Framework Combining Enumeration and

Pathwidth

Let us assume that we have a graph problem for which

(a) we know how to solve it by enumerating independent sets, or maximal
independent sets, of the input graph, and

(b) we also know how to solve the problem using dynamic programming over
the path decomposition of the input graph.

For example, to check whether a graph G is 3-colorable, one can enumerate all
independent sets I of G and for each independent set I can check whether G \ I
is bipartite. It is also easy to obtain a 3` · nO(1) algorithm for checking if a graph
is 3-colorable if a path decomposition of width ` is known for G (see Lemma 8.5).

For some instances, approach (a) might be faster and for other instances, the
path decomposition algorithm might be preferable. One method to get the best
of both algorithms would be to compute a path decomposition of the graph using
Lemma 6.5 on page 137, and choose one of the two algorithms based on the width
of this path decomposition. Unfortunately, this direct method is not very helpful

166 Enumeration and Pathwidth

in obtaining better worst case bounds on the running time of the algorithm as it
is difficult to predict the running time of the enumeration algorithm for graphs
for which the computed path decomposition has large width.

Here in our technique we start by enumerating (maximal) independent sets
and based on the knowledge we gain on the graph by this enumeration step, we
prove that either the enumeration algorithm is fast, or the pathwidth of the graph
is small. This means that either the input graph has a good algorithmic property,
or it has a good graph–theoretic property.

To enumerate (maximal) independent sets of the input graph G, we use a very
standard approach. Two sets I and C are constructed by a recursive procedure,
where I is the set of vertices in the independent set and C the set of vertices not
in the independent set. Let v be a vertex of maximum degree in G \ (I ∪ C),
the algorithm makes one recursive call where it adds v to I and all its neighbors
to C and another recursive call where it adds v to C. This branching into two
subproblems decreases the number of vertices in G \ (I ∪ C) according to the
following recurrence

T (n) ≤ T (n− d(v)− 1) + T (n− 1).

From this recurrence, we see that the running time of the algorithm depends on
how often it branches on a vertex of high degree. This algorithmic property is
reflected by the size of C: frequent branchings on vertices of high degree imply
that |C| grows fast (in one branch).

On the other hand we can exploit a graph–theoretic property if C is small
and there are no vertices of high degree in G \ (I ∪ C). In this case we use
Lemma 6.5 to upper bound the pathwidth of G. If a path decomposition of
G\(I∪C) of size βd|V (G)\(I∪C)| can be computed, then a path decomposition
of G of size βd|V (G) \ (I ∪ C)| + |C| can be computed easily. Here βd is a
constant strictly less than 1 depending on the maximum degree of the graph.
If it turns out that a path decomposition of small width can be computed, the
algorithm enumerating (maximal) independent sets is completely stopped without
any further backtracking and an algorithm based on this path decomposition is
executed on the original input graph.

In the rest of this section, we give a general framework combining

• algorithms based on the enumeration of maximal independent sets, and

• algorithms based on path decompositions of small width,

and discuss the running time of the algorithms based on this framework. This
framework is not problem–dependent and it relies on two black boxes that have
to be replaced by appropriate procedures to solve a specific problem.

Algorithm enumISPw (G, I, C) in Figure 8.1 is invoked with the parame-
ters (G, ∅, ∅), where G is the input graph, and the algorithms enumIS and Pw

8.3 Framework Combining Enumeration and Pathwidth 167

Algorithm enumISPw(G, I, C)
Input : A graph G, an independent set I of G and a set of vertices C such

that N(I) ⊆ C ⊆ V (G) \ I.
Output: An optimal solution which has the problem-dependent properties.

if (∆(G \ (I ∪ C)) ≥ a) or
(∆(G \ (I ∪ C)) = a− 1 and |C| > αa−1|V (G)|) or
(∆(G \ (I ∪ C)) = a− 2 and |C| > αa−2|V (G)|) or
· · · or
(∆(G \ (I ∪ C)) = 3 and |C| > α3|V (G)|)

then
choose a vertex v ∈ V (G) \ (I ∪ C) of maximum degree in G \ (I ∪ C)
S1 ← enumISPw(G, I ∪ {v}, C ∪N(v)) R1
S2 ← enumISPw(G, I, C ∪ {v}) R2
return combine(S1, S2)

else if ∆(G \ (I ∪ C)) = 2 and |C| > α2|V (G)| then
return enumIS(G, I, C)

else
Stop this algorithm and run Pw(G, I, C) instead.

Figure 8.1: Algorithm enumISPw(G, I, C) combining the approach of enu-
merating independent sets and of dynamic programming over a path decom-
position of the graph to solve various problems

are problem–dependent subroutines. The function combine is supposed to take
polynomial time and it is also a problem–dependent subroutine. The values for a,
αa, . . . , α3, and α2 (0 = αa ≤ αa−1 ≤ · · · ≤ α2 < 1) are carefully chosen constants
to balance the time complexities of enumeration and path decomposition based
algorithms and to optimize the overall running time of the combined algorithm.

Algorithm enumIS(G, I, C) is problem–dependent and returns an optimal so-
lution respecting the choice for I and C, where I is an independent set and C is
a set of vertices not belonging to the independent set (set of discarded vertices).
The sets I and C are usually completed into a (maximal) independent set and
a (minimal) vertex cover for G by enumerating (maximal) independent sets of
G \ (I ∪ C), before the problem–specific treatment is done.

Algorithm Pw(G, I, C) first computes a path decomposition based on G, I and
C and the maximum degree of G \ (I ∪ C). It then calls a problem–dependent
algorithm based on this path decomposition of G.

Let n denote the number of vertices of G, T (n) be the running time of Al-
gorithm enumISPw on G, Te(n, i, c) be the running time of Algorithm enumIS

and Tp(n, i, c) be the running time of Algorithm Pw with parameters G, I, C where
i = |I| and c = |C|. We also assume that for any graph with n vertices and max-

168 Enumeration and Pathwidth

imum degree d, a path decomposition of width at most βdn can be computed.
The following lemma is used by Algorithm Pw to compute a path decomposition
of G of small width.

Lemma 8.1. Let βd be a constant such that a path decomposition of width at most
βd|V (H)| can be computed in polynomial time for any graph H with maximum
degree at most d. Then a path decomposition of width at most βd|V (G)\(I∪C)|+
|C| can be computed in polynomial time for a graph G if I is an independent set
in G, N(I) ⊆ C ⊆ V (G) and ∆(G \ (I ∪ C)) ≤ d.

Proof. As I is an independent set in G and C separates I from G \ (I ∪C), every
vertex in I has degree 0 in G \ C. Thus, a path decomposition of G \ C of size
at most βd|V (G) \ (I ∪C)| can be computed. Adding C to each bag of this path
decomposition gives a path decomposition of width at most βd|V (G)\(I∪C)|+|C|
of G.

Given the conditions under which Pw is executed, the following lemma upper
bounds its running time.

Lemma 8.2. If the considered problem can be solved on G in time O∗(t`pw), given
a path decomposition of width ` of G, then

Tp(n, i, c) = O∗
(

max
d∈{2,3,...,a−1}

(
t(βd+(1−βd)αd)n
pw

))
.

Proof. The proof follows from Lemma 8.1 and the conditions on |C| and
∆(G \ (I ∪ C)) under which Algorithm Pw is executed.

To estimate the maximum size of the search tree we assume that Algorithm Pw

is not executed. We denote αd−1−αd by ∆αd. Let tn, ti and tc be constants such
that Te(n, i, c) = O∗(tnnt

i
it

c
c). The next lemma bounds the size of the search tree

when the algorithm based on a path decomposition is not used.

Lemma 8.3. If Algorithm Pw is not executed, then

T (n) = O∗

(
tnnt

α2n
c

a∏
d=3

t∆αdn
d

)

where td = (1 + rd) and rd is the positive real root of

(1 + r)−(d−1) · r−1 · ti − 1.

Proof. Let Td(n, i, c), for d ∈ {2, 3, . . . , a− 1}, be an upper bound on the running
time of Algorithm enumISPw when Algorithm Pw is not executed, and the input
of Algorithm enumISPw is a triple (G, I, C) with |V (G)| = n, |I| = i, and

8.3 Framework Combining Enumeration and Pathwidth 169

|C| = c such that G \ (I ∪C) has maximum degree d. Also, let Ta(n, 0, 0) = T (n)
if Algorithm Pw is not executed. Clearly, T2(n, i, c) = Te(n, i, c) as Algorithm Pw

is executed whenever Algorithm enumIS is not executed and G \ (I ∪ C) has
maximum degree at most 2. Let us now express Td(n, i, c) in terms of Td−1(·, ·, ·)
for d ∈ {3, . . . , a}. Consider the part of the search tree with branchings on vertices
of degree d (or at least d if d = a). Observe that |C| increases in the worst case by
at most (αd−1−αd)n = ∆αdn in this part of the search tree. In each branch of the
type R1, |C| increases by d and in each branch of the type R2, |C| increases by
1. Let r ∈ [0, ∆αdn/d] be the number of times the algorithm branches according
to R1, then it branches ∆αdn− dr times according to R2. We get that

Td(n, i, c) = O∗

∆αdn/d∑
r=0

(
∆αdn− (d− 1)r

r

)
Td−1(n, i + r, c + ∆αdn)

 .

In the general situation the degree d may not change to d−1 but rather jump
to something smaller. But the worst case bounds on the size of the search tree
are achieved when d decreases progressively as considered above.

To prove the lemma, it is sufficient to expand Ta(n, 0, 0) and to prove that

∆αdn/d∑
r=0

(
∆αdn− (d− 1)r

r

)
tri (8.1)

is at most t∆αdn
d . The sum in (8.1) is bounded by (∆αdn/d)B where B is the

maximum term in this sum. Let us assume that B =
(
∆αdn−(d−1)j

j

)
tji for some

j ∈ {0, 1, . . . , ∆αdn/d}. Then,

B =

(
∆αdn− (d− 1)j

j

)
tji ≤

(1 + ri)
∆αdn−(d−1)j

rj
i

tji .

Here we use the well known fact that for any x > 0 and 0 ≤ k ≤ n,(
n

k

)
≤ (1 + x)n

xk
.

By choosing ri to be the positive real root of (1+r)−(d−1)

r
ti − 1, we arrive at B <

(1 + ri)
∆αdn = t∆αdn

d .

The following theorem combines Lemmata 8.2 and 8.3 to upper bound the
overall running time of the algorithms resulting from this framework.

170 Enumeration and Pathwidth

Theorem 8.4. The running time of Algorithm enumISPw on a graph on n
vertices is

T (n) = O∗

(
tnnt

α2n
c

a∏
d=3

t∆αdn
d + max

d∈{2,3,··· ,a−1}

(
t(βd+(1−βd)αd)n
pw

))
where td = (1 + rd) and rd is the positive real root of

(1 + r)−(d−1) · r−1 · ti − 1.

The current best values for βd, 2 ≤ d ≤ 6, are obtained from Lemma 6.5 on
page 137.

8.4 Applications

In this section we use the framework of the previous section to derive algorithms
for #3-Coloring, 4-Coloring and Minimum Maximal Matching.

8.4.1 Counting 3-Colorings

We first describe the problem-dependent subroutines we need to use in our Algo-
rithm enumISPw to solve #3-Coloring in time O(1.6259n).

Algorithm enumISPw returns here an integer, I corresponds to the color
class C1 and C to the remaining two color classes C2 and C3. Algorithm enumIS

with parameters G, I, C enumerates all independent sets of G \ (I ∪ C) and for
each, adds this independent set to I, then checks if G \ I is bipartite. If G \ I is
bipartite, then a counter counting the independent sets is incremented by 2cc(G\I),
where cc(·) denotes the number of connected components of a graph. This takes
time Te(n, i, c) = 2n−i−c. Thus, tn = 2, ti = 1/2 and tc = 1/2.

The function combine corresponds in this case to the addition of two integers.
The running time of Algorithm Pw is based on the following lemma.

Lemma 8.5. Given a graph G with a path decomposition of G of width `, #k-
Coloring can be solved in time k`nO(1).

Now we use Theorem 8.4 and Lemma 6.5 to evaluate the overall complexity
of our #3-Coloring algorithm.

Theorem 8.6. The #3-Coloring problem can be solved in time O(1.6259n).

Proof. We use Theorem 8.4 and Lemma 6.5 with a = 6, α2 = 0.4424, α3 =
0.3308, α4 = 0.1636 and α5 = 0.0160. The pathwidth part of the algorithm
takes time

O∗ (max
(
3α2n, 3(1+5α3)n/6, 3(1+2α4)n/3, 313/30+17·α5/30

))

8.4 Applications 171

= O(1.62585n).

The branching part of the algorithm takes time

O∗ (2n · (1/2)α2n · 1.2972(α2−α3)n · 1.2538(α3−α4)n · 1.2233(α4−α5)n · 1.2006α5n
)

= O(1.62585n).

The constants in the proof of Theorem 8.6 are easily obtained via the Maple
program in Figure 8.2. Note that it would not help to set a = 7, as 1.6259 <
323/45 ' 1.7534.

> for d from 3 to 6 do

> t[d] := 1+max(fsolve((1+r)^(-(d-1))*r^(-1)*2^(-1)-1));

> end do;

t[3] := 1.297156508

t[4] := 1.253724958

t[5] := 1.223284957

t[6] := 1.200511272

> fsolve({3^a2=3^((1+5*a3)/6),

> 3^a2=3^((1+2*a4)/3),

> 3^a2=3^(13/30+(1-13/30)*a5),

> 3^a2=2*(1/2)^a2*t[3]^(a2-a3)*t[4]^(a3-a4)*

> t[5]^(a4-a5)*t[6]^a5});

{a2 = 0.4423901971, a3 = 0.3308682365,

a4 = 0.1635852957, a5 = 0.01598270083}

Figure 8.2: Maple code for obtaining optimal values for the constants α2 to α5 of
Algorithm enumISPw for solving the #3-Coloring problem

8.4.2 4-Coloring

A well known technique [Law76] to check if a graph is k-colorable is to check for
all maximal independent sets I of size at least dn/ke whether G \ I is (k − 1)-
colorable. In the analysis, we use the following theorem to bound the number of
maximal independent sets of a given size.

172 Enumeration and Pathwidth

Theorem 8.7 ([Bys04a]). The maximum number of maximal independent sets
of size at most k in any graph on n vertices for k ≤ n/3 is

N [n, k] := bn/kc(bn/kc+1)k−n(bn/kc+ 1)n−bn/kck.

Moreover, all such sets can be enumerated in time O∗(N [n, k]).

We also need the currently fastest algorithm deciding 3-Coloring.

Theorem 8.8 ([BE05]). 3-Coloring can be solved in time O(1.3289n).

In Algorithm enumISPw, which returns here a boolean, I corresponds to
the color class C1 and C to the remaining three color classes C2, C3 and C4.
Algorithm enumIS with parameters G, I, C enumerates all maximal independent
sets of G \ (I ∪C) of size at least dn/4e− |I| and for each, adds this independent
set to I, then checks if G \ I is 3–colorable using Theorem 8.8. If yes, then G is
4–colorable. This takes time

Te(n, i, c) =
n−i−c∑

`=dn/4e−i

34`−n+c+i4n−c−i−3`1.3289n−i−`.

As
∑b3n/4c−c

`=0 34`4−3`1.3289−` is upper bounded by a constant, tn = 41/41.32893/4,
ti = 42/33 and tc = 3/4.

Theorem 8.9. The 4-Coloring problem can be solved in time O(1.7272n).

Proof. We use Theorem 8.4 and Lemma 6.5 with a = 5, α2 = 0.39418, α3 =
0.27302 and α4 = 0.09127, and the pathwidth algorithm of Lemma 8.5.

8.4.3 Minimum Maximal Matching

Given a graph G = (V, E), any set of pairwise disjoint edges is called a matching
of G. A matching M is maximal if there is no matching M ′ such that M ⊂
M ′. The problem of finding a maximum matching is well studied in algorithms
and combinatorial optimization. One can find a matching of maximum size in
polynomial time but there are many versions of matching which are NP–hard.
Here, we give an exact algorithm for one such version [GJ79]. More precisely, the
problem we study is:

Minimum Maximal Matching: Given a graph G = (V, E) find a maximal
matching of minimum cardinality.

The enumeration phase, Algorithm enumIS, uses the following characterization
of a minimum maximal matching.

8.5 Conclusion 173

Theorem 8.10 ([RSS07]). Let G = (V, E) be a graph and M be a minimum
maximal matching of G. Let

V [M] = {v | v ∈ V and v is an end point of some edge of M}

be a subset of all endpoints of M . Let S ⊆ V [M] be a vertex cover of G. Let M ′

be a maximum matching in G[S] and M ′′ be a maximum matching in G−V [M ′],
where V [M ′] is the set of the endpoints of edges of M ′. Then X = M ′ ∪M ′′ is a
minimum maximal matching of G.

Note that in Theorem 8.10, S does not need to be a minimal vertex cover.
Therefore Algorithm enumIS enumerates all minimal vertex covers of G\ (I ∪C).
For every minimal vertex cover Q of G \ (I ∪ C), S = C ∪Q is a vertex cover of
G and the characterization of Theorem 8.10 is used to find a minimum maximal
matching of G. The running time of this step is within a polynomial factor of the
enumeration of all minimal vertex covers of G \ (I ∪ C), that is O(3(n−i−c)/3) by
Theorem 3.5 on page 61 and the following theorem by Johnson et al. [JYP88].

Theorem 8.11 ([JYP88]). All maximal independent sets of a graph can be enu-
merated with polynomial delay.

For the path decomposition based algorithm, we give a lemma for finding
a minimum maximal matching on graphs of bounded pathwidth. The proof of
the lemma is based on standard dynamic programming on graphs of bounded
pathwidth.

Lemma 8.12. There exists an algorithm to compute a minimum maximal match-
ing of a graph G in time 3`nO(1) when a path decomposition of G of width at most
` is given.

Plugging all this into our framework, we obtain the following theorem.

Theorem 8.13. A minimum maximal matching of a graph on n vertices can be
found in time O(1.4082n).

Proof. We use Theorem 8.4 and Lemma 6.5 with a = 4, α2 = 0.31154 and
α3 = 0.17385, the pathwidth algorithm of Lemma 8.12, and the vertex cover
enumeration described earlier.

8.5 Conclusion

In this chapter, we combined the enumeration of independent sets and pathwidth
based algorithms. The framework we presented is very general in that it suffices
to plug in the appropriate subroutines to solve a problem, and the running time

174 Enumeration and Pathwidth

analysis is almost immediate via the high–level running time analysis, summarized
in Theorem 8.4, that we have provided for the framework. Instead of using
pathwidth algorithms as subroutines, one could also combine the enumeration of
independent sets with other algorithms that are fast when given a graph G =
(V, E) and a small set C ⊆ V such that the maximum degree of G \ C is small.
Replacing the pathwidth based algorithms by other fast algorithms would be
especially interesting if we require only polynomial space usage.

Chapter 9
Iterative Compression and Exact
Algorithms

And now for something completely different.

Monty Python

Iterative Compression has recently led to a number of breakthroughs in para-
meterized complexity. The main purpose of this chapter is to show that iterative
compression can also be used in the design of exact exponential time algorithms.
We exemplify our findings with algorithms for the Maximum Independent Set
problem, Minimum k-Hitting Set, #Minimum k-Hitting Set (a counting
version of Minimum k-Hitting Set) and the Maximum Induced Cluster
Subgraph problem. The algorithms for Minimum k-Hitting Set with k ≥ 4,
#Minimum k-Hitting Set with k ≥ 3 and Maximum Induced Cluster
Subgraph are the fastest known algorithms for these problems in the literature.

9.1 Background

Iterative Compression is a tool that was recently successfully used in solving a
number of problems in the area of Parameterized Complexity. This technique was
first introduced by Reed et al. [RSV04] to solve the Odd Cycle Transversal
problem, where one is interested in finding a set of at most k vertices whose
deletion makes the graph bipartite. Iterative compression was used in obtaining
faster FPT algorithms for Feedback Vertex Set, Edge Bipartization
and Cluster Vertex Deletion on undirected graphs [DFL+05, GGH+06,
HKMN08]. This technique has also led to an FPT algorithm for the Directed
Feedback Vertex Set problem [CLL+08], one of the longest open problems
in the area of parameterized complexity.

176 Iterative Compression and Exact Algorithms

The main idea behind iterative compression for parameterized algorithms is an
algorithm which, given a solution of size k + 1 for a problem, either compresses
it to a solution of size k or proves that there is no solution of size k. This is
known as the compression step of the algorithm. Based on this compression step,
iterative (and incremental) algorithms for minimization problems are obtained.
The most technical part of an FPT algorithm based on iterative compression is
to show that the compression step can be carried out in time f(k) · nO(1), where
f is an arbitrary computable function, k is a parameter and n is the length of
the input.

The presence of a solution of size k + 1 can provide important structural in-
formation about the problem. This is one of the reasons why the technique of
iterative compression has become so powerful. Structures are useful in designing
algorithms in most paradigms. By seeing so much of success of iterative compres-
sion in designing fixed parameter tractable algorithms, it is natural and tempting
to study its applicability in designing exact exponential time algorithms.

For NP–complete problems on graphs on n vertices and m edges whose solu-
tions are either subsets of vertices or edges, the brute–force or trivial algorithms
basically enumerate all subsets of vertices or edges. This mostly leads to algo-
rithms of time complexity 2n or 2m, modulo some polynomial factors, based on
whether we are enumerating vertices or edges. Almost all the iterative compres-
sion based FPT algorithms with parameter k have a factor of 2k+1 in the running
time, as they all branch on all partitions (A, D) of a k + 1 sized solution S and
look for a solution of size k with a restriction that it should contain all elements
of A and none of D. This is why, at first thought, iterative compression is a
quite useless technique for solving optimization problems because for k = n − c
for a constant c, we end up with an algorithm having a factor 2n or 2m in the
running time, while a running time of O∗(2n) or O∗(2m) can often be achieved by
(trivial) brute force enumeration. Luckily, our intuition appears to be wrong here
and with some additional arguments, iterative compression can become a useful
tool in the design of moderately exponential time algorithms as well. We find
it interesting because despite of several exceptions (like the works of Björklund
et al. [BH06b, BHKK07, Koi06a] and Williams [Wil05]), the area of exact al-
gorithms is heavily dominated by branching algorithms, in particular, for subset
problems. It is very often that an (incremental) improvement in the running time
of a branching algorithm requires an extensive case analysis, which becomes very
technical and tedious.

The main advantage of iterative compression is that it provides combinatorial
algorithms based on problem structures. While the improvement in the run-
ning time compared to (complicated) branching algorithms is not so impressive,
the simplicity and elegance of the arguments allow them to be used in a basic
algorithm course.

To our knowledge, the paper [FGK+08] that this chapter is based on is the

9.2 Maximum Independent Set 177

first attempt to use iterative compression outside the domain of FPT algorithms.
We exemplify this approach by the following results:

1. We show how to solve Maximum Independent Set for a graph on n
vertices in time O(1.3196n). While the running time of our iterative com-
pression algorithm is slower than the running times of branching algorithms
[FGK06, Rob86], this simple algorithm serves as an introductory example
to more complicated applications of the method.

2. We obtain the fastest known algorithms counting all minimum hitting sets
of a family of sets of an n-element ground set, when the size of each set is
at most k ≥ 3 (#Minimum k-Hitting Set). For k ≥ 4, our algorithms
are the fastest known algorithms for Minimum k-Hitting Set. See Table
9.1 for the precise running times of these algorithms. For Minimum 4-
Hitting Set, our O(1.8704n) algorithm improves on previously published
algorithms for this problem with running times O(1.9646n) [Fer06, RSS07]
and O(1.9799n) [RSS05].

3. We provide an algorithm to solve the Maximum Induced Cluster Sub-
graph problem in time O(1.6181n). The only algorithm for this problem
we were aware before is the use of a complicated branching algorithm of
Wahlström [Wah07] for solving 3-Hitting Set (let us note that Maxi-
mum Induced Cluster Subgraph is a special case of 3-Hitting Set,
where every subset is a set of vertices inducing a path of length 3), which
results in time O(1.6278n).

9.2 Maximum Independent Set

Maximum Independent Set is one of the well studied problems in the area
of exact exponential time algorithms and many papers have been written on this
problem [TT77, Rob86, Jia86, ST90, Bei99, FGK06]. It is customary that if
we develop a new method then we first apply it to well known problems in the
area. Here, as an introductory example, we consider the NP–complete problem
Maximum Independent Set.

It is well–known that I is an independent set of a graph G if and only if
V \ I is a vertex cover of G, that is every edge of G has at least one end point
in V \ I. Therefore Minimum Vertex Cover is the complement of Maximum
Independent Set in the sense that I is a maximum independent set of G if
and only if V \ I is a minimum vertex cover of G. This fact implies that when
designing exponential time algorithms we may equivalently consider Minimum
Vertex Cover. We proceed by defining a compression version of the Minimum
Vertex Cover problem.

178 Iterative Compression and Exact Algorithms

Comp-MVC: Given a graph G = (V, E) with a vertex cover S ⊆ V , find a
vertex cover of G of size at most |S| − 1 if one exists.

Note that if we can solve Comp-MVC efficiently then we can solve Minimum
Vertex Cover efficiently by repeatedly applying an algorithm for Comp-MVC
as follows. Given a graph G = (V, E) on n vertices with V = {v1, v2, . . . , vn},
let Gi := G[{v1, v2, . . . , vi}] and let Ci be a minimum vertex cover of Gi. By Vi

we denote the set {v1, v2, . . . , vi}. We start with G1 and put C1 = ∅. Suppose
that we already have computed Ci for the graph Gi for some i ≥ 1. We form
an instance of Comp-MVC with input graph Gi+1 and S = Ci ∪ {vi+1}. In this
stage we either compress the solution S which means that we find a vertex cover
S ′ of Gi+1 of size |S|−1 and set Ci+1 := S ′, or (if there is no S ′) we set Ci+1 := S.

Our algorithm is based on the following lemma.

Lemma 9.1. Let Gi+1 and S be given as above. If there exists a vertex cover
Ci+1 of Gi+1 of size |S|−1, then it can be partitioned into two sets A and B such
that

1. A ⊂ S, |A| ≤ |S| − 1 and A is a minimal vertex cover of Gi+1[S].

2. B ⊆ (Vi+1 \ A) is a minimum vertex cover of the bipartite graph Gi+1 \ A.

Proof. Let Ci+1 be a vertex cover of Gi+1 of size |S|−1. Its complement Vi+1\Ci+1

is an independent set. We define A′ = Ci+1 ∩ S and B′ = Ci+1 \ A′. Then A′ is
a vertex cover of Gi+1[S] and |A′| ≤ |S| − 1. Let A ⊆ A′ be a minimal vertex
cover of Gi+1[S]. We define B = B′ ∪ (A′ \A). Since A is a minimal vertex cover
of Gi+1[S], we have that S \ A is an independent set. This in turn implies that
Gi+1 \A is a bipartite graph with bipartition (S \A, Vi+1 \S). Finally, since Ci+1

is a minimum vertex cover of Gi+1, we conclude that B is a minimum vertex
cover of Gi+1 \ A.

Lemma 9.1 implies that the following algorithm solves Comp-MVC correctly.

Step 1 Enumerate all minimal vertex covers of size at most |S| − 1 of Gi+1[S]
as a possible candidate for A.

Step 2 For each minimal vertex cover A find a minimum vertex cover B of the
bipartite graph Gi+1 \ A (via the computation of a maximum matching in
this bipartite graph [HK73]).

Step 3 If we find a vertex cover A∪B of size |S| − 1 in this way, we set Ci+1 =
A ∪B, else we set Ci+1 = S.

9.3 #k-Hitting Set 179

Steps 2 and 3 of the algorithm can be performed in polynomial time, and the
running time of Step 1, which is exponential, dominates the running time of
the algorithm. To enumerate all maximal independent sets or equivalently all
minimal vertex covers of a graph in Step 1, one can use the polynomial–delay
algorithm of Johnson et al. [JYP88]; see Theorem 8.11 on page 173.
For the running time analysis of the algorithm we need the 3n/3 bound on the
number of maximal independent sets or minimal vertex covers due to Moon and
Moser (Theorem 3.5) and the bound of Byskov (Theorem 8.7) stating that the
maximum number of maximal independent sets of size at most k in any graph on
n vertices for k ≤ n/3 is

N [n, k] := bn/kc(bn/kc+1)k−n(bn/kc+ 1)n−bn/kck,

and that they can all be enumerated in time O∗(N [n, k]).
Since

max

{
max

0≤α≤3/4
(3αn/3), max

3/4<α≤1
(N [αn, (1− α)n])

}
= O∗(22n/5),

we have that by Theorems 3.5, 8.11, and 8.7, all minimal vertex covers of Gi+1

of size at most |S| − 1 can be listed in time O∗(22n/5) = O(1.3196n).
Thus, the overall running time of the algorithm solving Comp-MVC is

O(1.3196n). Since the rounding of the base of the exponent dominates the polyno-
mial factor of the other steps of the iterative compression, we obtain the following
theorem.

Theorem 9.2. Maximum Independent Set and Minimum Vertex Cover
can be solved in time O(1.3196n) by a compression based algorithm.

9.3 #k-Hitting Set

The Minimum Hitting Set problem is a generalization of Minimum Vertex
Cover. Here, given a family of sets over a ground set of n elements, the objective
is to hit every set of the family with as few elements of the ground set as possible.
We study a version of the hitting set problem where every set in the family has
at most k elements.

Minimum k-Hitting Set : Given a universe V of n elements and a col-
lection C of subsets of size at most k of V , find a minimum hitting set of C.
A hitting set of C is a subset V ′ ⊆ V such that every subset of C contains
at least one element of V ′.

A counting version of the problem is #Minimum k-Hitting Set that asks
for the number of different minimum hitting sets. We denote an instance of

180 Iterative Compression and Exact Algorithms

#Minimum k-Hitting Set by (V, C). Furthermore we assume that for every
v ∈ V , there exists at least one set in C containing it.

We show how to obtain an algorithm to solve #Minimum k-Hitting Set
using iterative compression which uses an algorithm for #Minimum (k − 1)-
Hitting Set as a subroutine. First we define the compression version of the
#Minimum k-Hitting Set problem.

Comp-#k-Hitting Set: Given a universe V of n elements, a collection C
of subsets of size at most k of V , and a (not necessarily minimum) hitting

set H ′ ⊆ V of C, find a minimum hitting set Ĥ of C and compute the number
of all minimum hitting sets of C.

Lemma 9.3. Let O∗(an
k−1) be the running time of an algorithm solving #Mini-

mum (k− 1)-Hitting Set, where ak−1 > 1 is some constant. Then Comp-#k-
Hitting Set can be solved in time

O∗
(

2|H
′|a

|V |−|H′|
k−1

)
.

Moreover, if |H ′| is greater than 2|V |/3 and the minimum size of a hitting set in
C is at least |H ′| − 1, then Comp-#k-Hitting Set can be solved in time

O∗
((

|H ′|
2|H ′| − |V |

)
a
|V |−|H′|
k−1

)
.

Proof. To prove the lemma, we give an algorithm that, for each possible parti-
tion (N, N̄) of H ′, computes a minimum hitting set HN and the number hN of
minimum hitting sets subject to the constraint that these hitting sets contain all
the elements of N and none of the elements of N̄ .

For every partition (N, N̄) of H ′, we either reject it as invalid or we reduce
the instance (V, C) to an instance (V ′, C ′) by applying the following two rules in
the given order.

(H) If there exists a set Ci ∈ C such that Ci ⊆ N̄ then we refer to such a partition
as invalid and reject it.

(R) For all sets Ci with Ci ∩ N 6= ∅ set C := C \ Ci. In other words, all sets of
C, which are already hit by N , are removed.

If the partition (N, N̄) of H ′ is not invalid based on rule (R) the instance (V, C)
can be reduced to the instance I ′ = (V ′, C ′), where V ′ := V \ H ′ and C ′ :=
{X ∩ V ′ | X ∈ C and X ∩N = ∅}.

9.3 #k-Hitting Set 181

Summarizing, the instance I ′ is obtained by removing all the elements of V
for which it has already been decided if they are part of HN or not and all
the sets that are hit by the elements in N . To complete HN , it is sufficient to
find a minimum hitting set of I ′ and to count the number of minimum hitting
sets of I ′. The crucial observation here is that I ′ is an instance of #Minimum
(k− 1)-Hitting Set. Indeed, H ′ is a hitting set of (V, C) and by removing it we
decrease the size of every set by at least one. Therefore, we can use an algorithm
for #Minimum (k − 1)-Hitting Set to complete this step. When checking all
partitions (N, N̄) of H ′ it is straightforward to keep the accounting information

necessary to compute a minimum hitting set Ĥ and to count all minimum hitting
sets.

Thus for every partition (N, N̄) of H ′ the algorithm solving #Minimum (k−
1)-Hitting Set is called for the instance I ′. There are 2|H

′| partitions (N, N̄) of
the vertex set H ′. For each such partition, the number of elements of the instance
I ′ is |V ′| = |V \H ′| = |V | − |H ′|. Thus, the running time of the algorithm is

O∗
(

2|H
′|a

|V |−|H′|
k−1

)
.

If |H ′| > 2|V |/3 and the minimum size of a hitting set in C is at least |H ′|−1,
then it is not necessary to check all partitions (N, N̄) of H ′ and in this case we
can speed up the algorithm. Indeed, since

• |H ′| ≥ |Ĥ| ≥ |H ′| − 1, and

• |Ĥ ∩ (V \H ′)| ≤ |V | − |H ′|,

it is sufficient to consider only those partitions (N, N̄) of H ′ such that

|N | ≥ |H ′| − 1− (|V | − |H ′|) = 2|H ′| − |V | − 1.

In this case, the running time of the algorithm is

O∗
((

|H ′|
2|H ′| − |V |

)
a
|V |−|H′|
k−1

)
.

Now we are ready to use iterative compression to prove the following theorem.

Theorem 9.4. Suppose there exists an algorithm to solve #Minimum (k − 1)-
Hitting Set in time O∗(an

k−1), 1 < ak−1 ≤ 2. Then #Minimum k-Hitting
Set can be solved in time

O∗
(

max
2n/3≤j≤n

{(
j

2j − n

)
an−j

k−1

})
.

182 Iterative Compression and Exact Algorithms

Proof. Let (V, C) be an instance of #Minimum k-Hitting Set, where V =
{v1, v2, · · · , vn}. For i = 1, 2, . . . , n, let Vi := {v1, v2, . . . , vi} and Ci := {X ∈
C | X ⊆ Vi}. Then Ii := (Vi, Ci) constitutes an instance for the ith stage of the
iteration. We denote by Hi and hi, a minimum hitting set of an instance Ii and
the number of different minimum hitting sets of Ii respectively.

If {v1} ∈ C, then H1 = {v1} and h1 = 1 ; otherwise H1 = ∅ and h1 = 0.
Consider the ith stage of the iteration. We have that |Hi−1| ≤ |Hi| ≤ |Hi−1|+1

because at least |Hi−1| elements are needed to hit all the sets of Ii except those
containing element vi and Hi−1 ∪ {vi} is a hitting set of Ii. Now, use Lemma 9.3
with H ′ = Hi−1 ∪ {vi} to compute a minimum hitting set of Ii. If |H ′| ≤ 2i/3,
its running time is

O∗
(

max
0≤j≤2i/3

{
2jai−j

k−1

})
= O∗

(
22i/3a

i/3
k−1

)
,

as ak−1 ≤ 2. If |H ′| > 2i/3, the running time is

O∗
(

max
2i/3<j≤i

{(
j

2j − i

)
ai−j

k−1

})
.

Since for every fixed j > 2i/3, and i, 1 ≤ i ≤ n,(
j

2j − i

)
ai−j

k−1 ≤
(

j

2j − n

)
an−j

k−1,

the worst case running time of the algorithm is

O∗
(

max

{
max
1≤i≤n

22i/3a
i/3
k−1, max

2n/3≤j≤n

{(
j

2j − n

)
an−j

k−1

}})
.

Finally,
(
2n/3
n/3

)
= 22n/3 up to a polynomial factor, and thus the running time is

O∗
(

max
2n/3≤j≤n

{(
j

2j − n

)
an−j

k−1

})
.

Based on the O(1.2377n) algorithm for #Minimum 2-Hitting Set [Wah07],
the worst-case running time of the algorithm of Theorem 9.4 is obtained for
0.7049n < j < 0.7050n.

Corollary 9.5. #Minimum 3-Hitting Set can be solved in time O(1.7198n).

The same approach can be used design an algorithm for the optimization version
Minimum k-Hitting Set, assuming that an algorithm for Minimum (k − 1)-
Hitting Set is available. Based on the O(1.6278n) algorithm for Minimum
3-Hitting Set [Wah07] this leads to an O(1.8704n) time algorithm for solving
Minimum 4-Hitting Set (in that case, the maximum is obtained for 0.6824n <
j < 0.6825n).

9.3 #k-Hitting Set 183

Corollary 9.6. Minimum 4-Hitting Set can be solved in time O(1.8704n).

In the following theorem we provide an alternative approach to solve #Mini-
mum k-Hitting Set. This is a combination of brute force enumeration (for
sufficiently large hitting sets) with one application of the compression algorithm
of Lemma 9.3. For large values of ak−1, more precisely for ak−1 ≥ 1.6553, this
new approach gives faster algorithms than the one obtained by Theorem 9.4.

Theorem 9.7. Suppose there exists an algorithm with running time O∗(an
k−1),

1 < ak−1 ≤ 2, solving #Minimum (k − 1)-Hitting Set. Then #Minimum
k-Hitting Set can be solved in time

min
0.5≤α≤1

max

{
O∗
((

n

αn

))
,O∗ (2αnan−αn

k−1

)}
.

Proof. First the algorithm tries all subsets of V of size bαnc and identifies those
that are a hitting set of I.

Now there are two cases. In the first case, there is no hitting set of this size.
Then the algorithm verifies all sets of larger size whether they are hitting sets of
I. It is straightforward to keep some accounting information to determine the
number of hitting sets of the smallest size found during this enumeration phase.
The running time of this phase is

O∗

 n∑
i=bαnc

(
n

i

) = O∗
((

n

αn

))
.

In the second case, there exists a hitting set of size bαnc. Then count all
minimum hitting sets using the compression algorithm of Lemma 9.3 with H ′

being a hitting set of size bαnc found by the enumeration phase. By Lemma 9.3,
this phase of the algorithm has running time

O∗ (2αnan−αn
k−1

)
.

By combining the enumeration and compression phases of the algorithm, we
obtain the running time claimed in the theorem.

The best running times of algorithms solving #Minimum k-Hitting Set and
Minimum k-Hitting Set are summarized in Figure 9.1. For #Minimum k-
Hitting Set, k ≥ 4, and Minimum k-Hitting Set, k ≥ 5, we use the al-
gorithm of Theorem 9.7. Note that the Minimum 2-Hitting Set problem is
equivalent to Minimum Vertex Cover and Maximum Independent Set.

184 Iterative Compression and Exact Algorithms

k #Minimum
k-Hitting Set

Minimum
k-Hitting Set

2 O(1.2377n) [Wah07] O(1.2108n) [Rob86]
3 O(1.7198n) O(1.6278n) [Wah07]
4 O(1.8997n) O(1.8704n)
5 O(1.9594n) O(1.9489n)
6 O(1.9824n) O(1.9781n)
7 O(1.9920n) O(1.9902n)

Table 9.1: Running times of the algorithms for #Minimum k-Hitting Set and
Minimum k-Hitting Set

9.4 Maximum Induced Cluster Subgraph

Clustering objects according to given similarity or distance values is an impor-
tant problem in computational biology with diverse applications, for example in
defining families of orthologous genes, or in the analysis of microarray experi-
ments [DLL+06, FLRS07, Guo07, RWB+07, HKMN08]. A graph theoretic for-
mulation of the clustering problem is called Cluster Editing. To define this
problem we need to introduce the notion of a cluster graph . A graph is called a
cluster graph if it is a disjoint union of cliques. In the most common parameterized
version of Cluster Editing, given an input graph G = (V, E) and a positive
integer k, the question is whether the input graph G can be transformed into a
cluster graph by adding or deleting at most k edges in time f(k) · nO(1), where f
is an arbitrary computable function. This problem has been extensively studied
in the realm of parameterized complexity [DLL+06, FLRS07, Guo07, RWB+07].
In this section, we study a vertex version of Cluster Editing. We study the
following optimization version of the problem.

Maximum Induced Cluster Subgraph: Given a graph G = (V, E) on
n vertices, find a maximum size subset C ⊆ V such that G[C] is a cluster
graph.

Due to the following well–known observation, the Maximum Induced Cluster
Subgraph problem is also known as Maximum Induced P3-free Subgraph.

Observation 9.8. A graph is a disjoint union of cliques if and only if it contains
no induced subgraph isomorphic to the graph P3.

Clearly, C ⊆ V induces a cluster graph in G = (V, E) (that is G[C] is a disjoint
union of cliques of G) if and only if S := V \C hits all induced paths on 3 vertices
of G. Thus solving the Maximum Induced Cluster Subgraph problem is

9.4 Maximum Induced Cluster Subgraph 185

equivalent to finding a minimum size set of vertices whose removal produces a
maximum induced cluster subgraph of G. By Observation 9.8, this reduces to
finding a minimum hitting set S of the collection of vertex sets of (induced) P3’s
of G. Such a hitting set S is called a P3-HS.

As customary when using iterative compression, we first define a compression
version of the Maximum Induced Cluster Subgraph problem.

Comp-MICS: Given a graph G = (V, E) on n vertices and a P3-HS S ⊆ V ,
find a P3-HS of G of size at most |S| − 1 if one exists.

Theorem 9.9. Comp-MICS can be solved in time O(1.6181n).

Proof. For the proof we distinguish two cases based on the size of S.

Case 1: If |S| ≤ 2n/3 then the following algorithm which uses matching tech-
niques is applied.

Step 1 Enumerate all partitions of (N, N̄) of S.

Step 2 For each partition, compute a maximum set C ⊆ V such that G[C] is
a cluster graph, subject to the constraints that N ⊆ C and N̄ ∩ C = ∅, if
such a set C exists.

In Step 2, we reduce the problem of finding a maximum sized C to the
problem of finding a maximum weight matching in an auxiliary bipartite graph.1

If G[N] contains an induced P3 then there is obviously no C ⊆ V inducing a
cluster graph that respects the partition (N, N̄). We call such a partition invalid.

Otherwise, G[N] is a cluster graph, and thus the goal is to find a maximum
size subset C ′ of S := V \ S such that G[C ′ ∪N] is a cluster graph. Fortunately,
such a set C ′ can be computed in polynomial time by reducing the problem to
finding a maximum weight matching in an auxiliary bipartite graph.

First we describe the construction of the bipartite graph. Consider the graph
G[N ∪ S] and note that G[N] and G[S] are cluster graphs. Now the following
reduction rule is applied to the graph G[N ∪ S].

(R) Remove every vertex b ∈ S for which G[N ∪ {b}] contains an induced P3.

1Hüffner et al. [HKMN08] obtain among others an FPT algorithm for the vertex weighted
version of Cluster Vertex Deletion using iterative compression. In their compression step
they use the natural idea of reduction to weighted bipartite matching that we also established
independently. For completeness, we present the details of Step 2.

186 Iterative Compression and Exact Algorithms

Clearly all vertices removed by (R) cannot belong to any C ′ inducing a cluster
subgraph of G. Let Ŝ be the subset of vertices of S which are not removed by
(R). Hence the current graph is G[N ∪ Ŝ]. Clearly G[Ŝ] is a cluster graph since
G[S] is one. Further, note that no vertex of Ŝ has neighbors in two different
maximal cliques of G[N] and if a vertex of Ŝ has a neighbor in one maximal
clique of G[N] then it is adjacent to each vertex of this maximal clique. Thus,
every vertex in Ŝ has either no neighbor in N or it is adjacent to all the vertices
of exactly one maximal clique of G[N].

Now we are ready to define the auxiliary bipartite graph G′ = (A, B, E ′).
Let {C1, C2, . . . , Cr} be the maximal cliques of the cluster graph G[N]. Let
{C ′1, C ′2, . . . , C ′s} be the maximal cliques of the cluster graph G[Ŝ]. Let A :=
{a1, a2, . . . , ar, a

′
1, a

′
2, . . . , a

′
s} and B := {b1, b2, . . . , bs}. Here, for all i ∈ {1, 2, . . . ,

r}, each maximal clique Ci of G[N] is represented by ai ∈ A; and for all j ∈
{1, 2, . . . , s}, each maximal clique C ′j of G[Ŝ] is represented by a′j ∈ A and by
bj ∈ B.

Now there are two types of edges in G′: ajbk ∈ E ′ if there is a vertex u ∈ C ′k
such that u has a neighbor in Cj, and a′jbj ∈ E ′ if there is a vertex u ∈ C ′j such
that u has no neighbor in N . Finally we define the weights for both types of
edges in the bipartite graph G′. For an edge ajbk ∈ E ′, its weight w(ajbk) is the
number of vertices in C ′k being adjacent to all vertices of the maximal clique Cj.
For an edge a′jbj, its weight w(a′jbj) is the number of vertices in C ′j without any
neighbor in N .

This transformation is of interest due to the following claim that uses the
above notation.

Claim 9.10. The maximum size of a subset C ′ of Ŝ such that G[N ∪ C ′] is a
cluster subgraph of the graph G∗ = G[N ∪ Ŝ] is equal to the maximum total weight
of a matching in the bipartite graph G′ = (A, B, E ′).

Proof. We first show that any matching in G′ corresponds to a set Y ⊆ Ŝ that
together with N induces a cluster subgraph of G∗, that is, G[N ∪ Y] is a P3-free
graph. To see this, let M := {e1, e2, . . . , et} be a matching in G′. Now if el = ajbk

then Yl is the set of vertices in C ′k which are adjacent to all vertices of the maximal
clique Cj. Otherwise, if el = a′jbj then Yl is the set of vertices in C ′j which have

no neighbor in N . Now let us set Y :=
⋃t

l=1 Yl. Clearly, |Y | =
∑t

l=1 w(el). We
claim that G[N ∪Y] is a disjoint union of cliques. To the contrary, suppose there
exists an induced P3 in G[N ∪ Y], say P = xyz is an induced P3 in G[N ∪ Y].
Then two of the vertices of P are in Y and one in N because of rule (R) and
the fact that G[Ŝ] is a cluster graph. First let x, z ∈ Y , y ∈ N , x ∈ C ′t1 , y ∈ Ct2 ,
and z ∈ C′t3 . This means selecting edges at2bt1 and at2bt3 in M . Secondly, let
x, y ∈ Y and z ∈ N , and thus x and y belong to the same clique C ′t1 , and z ∈ Ct2 .
This means having edges at2bt1 and a′t1bt1 in M . In both cases this contradicts

9.4 Maximum Induced Cluster Subgraph 187

M being a matching. Consequently if there is a matching M ′ in G∗ of weight k
then there is a set Y ⊆ Ŝ of size k such that G[N ∪ Y] is a cluster graph.

To prove the other direction, let {F1,F2, . . . ,Fq} be the maximal cliques of
the cluster graph G[C ′], and let {F ′

1,F ′
2, . . . ,F ′

p} be the maximal cliques of the
cluster graph G[N ∪ C ′]. Clearly, each F ′

j, 1 ≤ j ≤ p, contains at most one of
{F l : 1 ≤ l ≤ q}. Let π(l) be the integer such that Fl ⊆ F ′

π(l). If Fl = F ′
π(l) then

set el := a′lbl. Otherwise, if Fl ⊂ F ′
π(l) then set el := aπ(l)bl. Since π is injective,

M = {e1, e2, . . . , eq} is a matching in G′ and the definition of the weights of the
edges in G′ implies that the total weight of M is

∑q
l=1 w(el) = |C ′|. Thus there

is a matching of G′ of total weight |C ′|.

Note that the construction of the bipartite graph G′, including the application
of (R) and the computation of a maximum weighted matching of G′ can be
performed in time O(n3) [EK72]. Thus, the running time of the algorithm in
Case 1 is the time needed to enumerate all subsets of S (whose size is bounded
by 2n/3) and this is O∗(22n/3) = O(1.5875n).
Case 2: If |S| > 2n/3 then the algorithm needs to find a P3-HS of G of size
|S| − 1, or show that none exists.

The algorithm proceeds as in the first case. Note that at most n−|S| vertices
of V \S can be added to N . Therefore, the algorithm verifies only those partitions
(N, N̄) of S satisfying |N | ≥ |S| − 1 − (n − |S|) = 2|S| − n − 1. In this second
case, the worst case running time is obtained for 0.7236 < α < 0.7237, and it is

O∗
(

max
2/3<α≤1

{(
αn

(2α− 1)n

)})
= O(1.6181n).

Now we are ready to prove the following theorem using iterative compression.

Theorem 9.11. Maximum Induced Cluster Subgraph can be solved in
time O(1.6181n).

Proof. Given a graph G = (V, E) with V = {v1, v2, . . . , vn}, let Gi := G[{v1, v2,
. . . , vi}] and let Ci be a maximum induced cluster subgraph of Gi. Let Si :=
Vi \ Ci.

The algorithm starts with G1, C1 = {v1} and S1 = ∅. At the ith iteration of
the algorithm, 1 ≤ i ≤ n, we maintain the invariant that we have at our disposal
Ci−1, a maximum set inducing a cluster subgraph of Gi−1, and Si−1, a minimum
P3-HS of Gi−1. Note that Si−1 ∪ {vi} is a P3-HS of Gi and that no P3-HS of
Gi has size smaller than |Si−1|. Now use the algorithm of Lemma 9.9 to solve
Comp-MICS on Gi with S = Si−1 ∪ {vi}. Then the worst case running time is
attained at the nth stage of the iteration and the running time is O(1.6181n).

188 Iterative Compression and Exact Algorithms

9.5 Conclusion

Iterative compression is a technique which is successfully used in the design of
FPT algorithms. In this chapter we show that this technique can also be used to
design exact exponential time algorithms. This not only shows closeness between
methods for designing FPT and moderately exponential time algorithms but
also suggests that it might be used in other areas of algorithms as well. For
example, how useful can iterative compression be in the design of approximation
algorithms?

Carrying over techniques from the design of FPT algorithms to the design of
exact exponential time algorithms and vice–versa is a natural and tempting idea.
A challenging question in this regard is whether measure based analyses can fully
be adapted for the analysis of FPT branching algorithms.

A question related to the minimization and counting problems of Minimum
k-Hitting Set is to upper bound the maximum number of minimal k-hitting
sets. A simple branching algorithm [Gas05] shows that this number can be upper
bounded by O(cn

k) where ck is the positive real root of
∑k

i=1 x−i − 1.

Open Question. Upper bound the number of minimal k-hitting sets by c′k where
c′k < ck for all or some values of k ≥ 3.

Chapter 10
Conclusion

With every new answer unfolded, science has
consistently discovered at least three new
questions.

Wernher von Braun

In this thesis we designed exponential time algorithms for various hard prob-
lems and proved upper bounds on the running time of these algorithms. For some
of them we provided lower bounds on their worst–case running time. Besides de-
cision and optimization problems, we also considered counting and enumeration
problems. General methods to design exponential time algorithms have been de-
veloped by combining existing methods, like branching, enumeration of objects
and treewidth based algorithms. Moreover, the technique of iterative compression
has been used for the first time to design faster exponential time algorithms.

As we demonstrated in Section 3.5, methods to analyze exponential time
algorithms can also be used to derive combinatorial bounds on mathematical
objects. Another example of this is an algorithmic proof of the famous Moon–
Moser Theorem (Theorem 3.5) saying that the number of maximal independent
sets in a graph G = (V, E) on n vertices is at most 3n/3. In a Dagstuhl seminar,
Kratsch [Kra07] presented the following outline of an alternative proof for this
theorem by an algorithm for enumerating all maximal independent sets. If V 6= ∅,
then choose a vertex v of minimum degree in G and for each u ∈ N [v], add u
to each set produced by a recursive call on the instance G \N [u]. To bound the
number of leafs in the search tree of the algorithm, the strongest constraint

(∀d : 0 ≤ d ≤ n− 1) T (n) ≥ (d + 1) · T (n− (d + 1))

is obtained for branching on vertices of degree d = 2 and gives the upper bound
of 3n/3 on the maximum number of maximal independent sets in a graph on n
vertices.

190 Conclusion

One possible topic of further research would be the design of exponential or
subexponential time approximation algorithms. By combining ideas from Feige
[Fei00] and Feige and Talwar [FT05], one can easily derive an O∗(3n) factor 2
approximation algorithm for the Bandwidth problem. In this line, the nat-
ural question arises asking which approximation guarantees can be achieved in
subexponential time under some reasonable complexity–theoretic assumptions.

Open Question. Find a subexponential factor 2 approximation algorithm for the
Bandwidth problem, or prove that none can exist under the Exponential Time
Hypothesis.

The obvious difficulty for branching algorithms that was already mentioned
a few times is that the analysis tools that are currently available do usually
not provide provably tight bounds on the running times of algorithms. Both
the derived upper bounds and the lower bounds on the running times of these
algorithms might not be tight. How and if this question will be settled for specific
algorithms, or in general, is difficult to predict and is a real challenge.

Lower bounds for the worst–case running time of branching algorithms are
usually achieved by exhibiting explicit instances, generated from small graphs,
for which the algorithm has high running time. Are there other methods to prove
lower bounds on the running time of these algorithms? Here methods similar
to the measure–based analysis, but working in a best–case scenario instead of a
worst–case scenario, together with constraints saying which local configurations
may be selected after which branching, could maybe help narrowing the gap
between lower and upper bounds on the worst–case running time of an algorithm.

Another further research direction that has been partly pioneered [Rob01,
FK04, Kul05] is automated algorithm design and analysis for branching algo-
rithms. In my opinion, the progress that has been made so far does not yet allow
a measure of problem instances that is flexible enough. By fixing a measure, it is
easy to make a program run through all possible local configurations and identify
the worst ones. By fixing a set of local configurations, it is also easy to make a
program compute an optimal measure. The main problem is here that ideally, we
do not wish to fix either the measure, nor the set of local configurations. A pos-
sibility might however be to fix an initial set of local configurations, compute an
optimal measure for them, identify the worst local configurations, propose better
strategies for these hard cases, and automatically or with human interaction, try
to improve them. A considerable effort would ideally be spent to simplify the case
analysis as much as possible and the correctness of the resulting algorithm and
its analysis would be automatically established, for example using the B Method
[Abr96].

Glossary

biclique: Given a graph G = (V, E) and a vertex set V ′ ⊆ V , V ′ is an (induced)
biclique of G if and only if G[V ′] is complete bipartite.

bipartite: A graph G = (V, E) is bipartite if and only if its vertex set can
be partitioned into two independent sets. A partition (A, B) of V into
independent sets is called a bipartition of G. G is then often denoted by
G = (A, B, E).

bipartite complement: The bipartite complement of a bipartite graph G =
(A, B, E) is a bipartite graph having the vertices of G as its vertex set and
the non-edges of G with an endpoint in A and another in B as its edge set.

clique: Given a graph G = (V, E), a clique in G is a subset V ′ ⊆ V of vertices
such that G[V ′] induces a complete graph.

clique number: The clique number ω(G) of a graph G is the size of the largest
clique in G.

closed k-neighborhood: The closed k-neighborhood of a vertex v in a graph
G is Nk

G[v] :=
⋃

i=0..k N i
G(v).

closed neighborhood: The closed neighborhood of a vertex v in a graph G is
NG[v] := {u} ∪NG(v).

coloring: Given a graph G = (V, E), a coloring of V is a function from V to a set
of colors (integers) such that every two adjacent vertices in G are mapped
to a different color. A k-coloring is a coloring using exactly k colors.

complete: A graph G is complete if and only if there is an edge between each
pair of vertices in G. A complete graph on n vertices is denoted by Kn.

complete bipartite: A graph is complete bipartite if and only if it is bipartite
with bipartition (A, B) and every vertex of A is adjacent to every vertex

192 Glossary

of B. A complete bipartite graph such that the sets of its bipartition have
size x and y is denoted Kx,y.

connected: A graph G is connected if there is a walk between every two vertices
of G.

connected component: Maximal connected subgraph.

cycle: 2-regular connected graph. A cycle on n vertices is denoted Cn.

degree: The degree of a vertex v in a graph G is dG(v) := |NG(v)|.

distance: Given a graph G and two vertices u, v ∈ V , the distance between u
and v is the length of the shortest walk minus one between u and v, that
is the minimum number of edges needed to be traversed to reach v from u
and is denoted by distG(u, v).

dominating set: Given a graph G = (V, E) and a vertex set V ′ ⊆ V , V ′ is a
dominating set of G if and only if every vertex in V \ V ′ has a neighbor in
V ′.

domination number: The domination number γ(G) of a graph G is the size of
the smallest dominating set in G.

dual degree: The dual degree of a vertex v in a graph G is the sum of the
degrees of its neighbors

∑
u∈N(v) dG(u).

feedback vertex set: Given a graph G = (V, E) and a vertex set V ′ ⊆ V , V ′ is
a feedback vertex set of G if and only if G \ V ′ is a forest.

forest: Acyclic graph.

graph: A (simple, undirected) graph G is an ordered pair (V, E) of a set V of
vertices and a set E of edges, where E is a set of unordered pairs of distinct
vertices. Its vertex set is V (G) = V and its edge set is E(G) = E.

independent set: Given a graph G = (V, E) and a vertex set V ′ ⊆ V , V ′ is an
independent set of G if and only if G[V ′] has no edges.

induced subgraph: Given a graph G = (V, E) and a vertex set V ′ ⊆ V , the
subgraph of G induced on V ′ is the graph G[V ′] := (V ′, {uv ∈ E : u, v ∈
V ′}).

isomorphism: An isomorphism of two graphs G and H is a bijection between
their vertex sets f : V (G) → V (H) such that uv ∈ E(G) if and only if
f(u)f(v) ∈ E(H).

Glossary 193

logical Kronecker delta: Kδ(·) returns 1 if its argument is true and 0 other-
wise.

maximum degree: The maximum degree of a graph G = (V, E) is ∆(G) :=
maxv∈V dG(v).

minimum degree: The minimum degree of a graph G = (V, E) is δ(G) :=
minv∈V dG(v).

open k-neighborhood: The (open) k-neighborhood of a vertex v in a graph
G = (V, E) is Nk

G(v) := {u ∈ V : u is at distance k from v}.

open neighborhood: The (open) neighborhood of a vertex v in a graph G =
(V, E) is NG(v) := {u ∈ V : uv ∈ E}.

path: Tree with maximum degree 2. A path on n vertices is denoted Pn. The
word path may also refer to a walk with no repeated vertices.

regular: A graph is d-regular if each of its vertices has degree d. A graph is
regular if it is d-regular for some d.

subgraph: A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and E(H) ⊆
E(G).

tree: Acyclic, connected graph.

vertex cover: Given a graph G = (V, E), a vertex set V ′ ⊆ V is a vertex cover
of G if and only if each edge of G is incident to at least one vertex of V ′.

vertex removal: Given a graph G = (V, E) and a vertex set V ′ ⊆ V , the graph
obtained from removing V ′ from G is G \ V ′ := G[V \ V ′]. If V ′ = {u}, we
may write G \ u instead of G \ {u}.

walk: Sequence of vertices, with each vertex being adjacent to the vertices im-
mediately preceding and succeeding it in the sequence.

194 Glossary

Problem Definitions

(d, l)-CSP
Given a set of variables V , a domain D of cardinality d, and a set of l-
constraints C, that is relations between the values of the variables specifying
the allowed combinations of values for a subset of size at most l of variables,
determine if there exists a satisfying assignment for the variables.

k-Coloring
Given a graph G, determine if there is a coloring of G with at most k colors.

k-Sat
Given a boolean formula in conjunctive normal form where each clause has
at most k literals, determine if there is an assignment of its variables such
that the formula evaluates to true.

Bandwidth
Given a graph G = (V, E) on n vertices, find a linear arrangement L : V →
{1, . . . , n} of its vertices such that the maximum stretch max{u,v}∈E{|L(u)−
L(v)|} of the edges is minimized.

Binary Knapsack
Given a knapsack of capacity c > 0 and n items where each item u has
a value v(u) > 0 and a weight w(u) > 0, find a subset of items S that
fit into the knapsack,

∑
u∈S w(u) ≤ c, and the total value,

∑
u∈S v(u), is

maximized.

CSP
Given a set of variables V , a domain D, and a set of constraints C, that is
relations between the values of the variables specifying the allowed combina-
tions of values for a subset of variables, determine if there exists a satisfying
assignment for the variables.

196 Problem Definitions

Chromatic Number
Given a graph G, find the minimum number of colors needed for a coloring
of G.

Exact Hitting Set
Given a universe U of elements and a collection S of subsets of U , determine
if there exists a subset of elements in U such that each set of S contains
exactly one of these elements.

Feedback Vertex Set
Given a graph G, find a feedback vertex set of G of minimum cardinality.

Graph Homomorphism
Given two graphs G and H on at most n vertices each, determine if there
exists a mapping ϕ : V (G) → V (H) such that for every x, y ∈ V (G),
uv ∈ E(G) implies ϕ(u)ϕ(v) ∈ E(H).

Hamiltonian Cycle
Given a graph G, determine if G has a cycle that visits each vertex exactly
once and returns to the starting vertex.

Hamiltonian Path
Given a graph G, determine if G has a path that visits each vertex exactly
once.

Max k-Sat
Given a boolean formula in conjunctive normal form where each clause has
at most k literals, find an assignment of its variables satisfying a maximum
number of clauses.

Max 2-CSP
Given a (2, 2)-CSP instance, find an assignment of the variables satisfying
a maximum subset of the constraints.

Max Cut
Given a graph G = (V, E), find a subset of vertices A ⊆ V with a maximum
number of edges from A to V \ A.

Maximum Independent Set
Given a graph G, find an independent set of G of maximum cardinality.

Minimum k-Hitting Set
Given a universe U of elements and a collection S of subsets of size at most
k of U , find a minimum number of elements in U such that each set of S
contains at least one of these elements.

Problem Definitions 197

Minimum Dominating Set
Given a graph G, find a dominating set of G of minimum cardinality.

Minimum Hitting Set
Given a universe U of elements and a collection S of subsets of U , find a
minimum number of elements in U such that each set of S contains at least
one of these elements.

Minimum Independent Dominating Set
Given a graph G, find a set of vertices that is an independent set and a
dominating set of G of minimum cardinality.

Minimum Set Cover
Given a universe U and a collection S of subsets of U , find a minimum
number of subsets in S such that their union is equal to U .

Minimum Vertex Cover
Given a graph G, find an vertex cover of G of minimum cardinality.

Quadratic Assignment
Given a set P of n facilities, a set L of n locations, a weight function
w : P ×P → R, and a distance function d : L×L→ R, find an assignment
f : P → L such that the cost

∑
a,b∈P w(a, b) · d(f(a), f(b)) is minimized.

Sat
Given a boolean formula, determine if there is an assignment of its variables
such that the formula evaluates to true.

Subgraph Isomorphism
Given two graphs G1 and G2 where n is the number of vertices of G2,
determine whether G1 is isomorphic to a subgraph of G2.

Subset Sum
Given a set of integers S, determine if there is a non–empty subset of S
that sums up to zero.

Travelling Salesman
Given a set {1, . . . , n} of n cities and the distance d(i, j) between every two
cities i and j, find a tour visiting all cities with minimum total distance. A
tour is a permutation of the cities starting and ending in city 1.

Treewidth
Given a graph, determine its treewidth. The notion of treewidth is defined
in Chapter 6.

198 Problem Definitions

Bibliography

[AAC+04] Gabriela Alexe, Sorin Alexe, Yves Crama, Stephan Foldes, Peter L.
Hammer, and Bruno Simeone, Consensus algorithms for the gener-
ation of all maximal bicliques, Discrete Applied Mathematics 145
(2004), 11–21.

[ABF+02] Jochen Alber, Hans L. Bodlaender, Henning Fernau, Ton Kloks,
and Rolf Niedermeier, Fixed parameter algorithms for dominating
set and related problems on planar graphs, Algorithmica 33 (2002),
no. 4, 461–493.

[Abr96] Jean-Raymond Abrial, The B-book: Assigning programs to mean-
ings, Cambridge University Press, 1996.

[ACG+99] Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann,
Alberto Marchetti-Spaccamela, and Marco Protasi, Complexity and
approximation : combinatorial optimization problems and their ap-
proximability properties, Springer, 1999.

[AJ03] Ola Angelsmark and Peter Jonsson, Improved algorithms for count-
ing solutions in constraint satisfaction problems., Proceedings of the
9th International Conference on Principles and Practice of Con-
straint Programming (CP 2003), Lecture Notes in Computer Sci-
ence, vol. 2833, Springer, Berlin, 2003, pp. 81–95.

[Alb02] Jochen Alber, Exact algorithms for NP-hard problems on networks:
Design, analysis, and implementation, Ph.D. thesis, Universität
Tübingen, Germany, 2002.

[Ang05] Ola Angelsmark, Constructing algorithms for constraint satisfac-
tion and related problems: Methods and applications, Ph.D. thesis,
Linköping University, Sweden, 2005.

200 BIBLIOGRAPHY

[AT06] Ola Angelsmark and Johan Thapper, Partitioning based algo-
rithms for some colouring problems, Recent Advances in Con-
straints, Revised Selected and Invited Papers of the 10th Joint
ERCIM/CoLogNET International Workshop on Constraint Solving
and Constraint Logic Programming (CSCLP 2005), Lecture Notes
in Computer Science, vol. 3978, Springer, Berlin, 2006, pp. 44–58.

[AVAD76] Georgi Adel’son-Vel’skii, Vladimir Arlazarov, and Mikhail Don-
skoi, Programirovanie igr (programming of games), Nauka, Moscow,
1976, in Russian.

[AVJ98] Jérôme Amilhastre, Marie-Catherine Vilarem, and Philippe
Janssen, Complexity of minimum biclique cover and minimum bi-
clique decomposition for bipartite domino-free graphs, Discrete Ap-
plied Mathematics 86 (1998), 125–144.

[BBF99] Vineet Bafna, Piotr Berman, and Toshihiro Fujito, A 2-
approximation algorithm for the undirected feedback vertex set prob-
lem, SIAM Journal on Discrete Mathematics 12 (1999), no. 3, 289–
297.

[BE95] Richard Beigel and David Eppstein, 3-coloring in time O(1.3446n):
A no-MIS algorithm, Proceedings of the 36th Symposium on Foun-
dations of Computer Science (FOCS 1995), IEEE, 1995, pp. 444–
452.

[BE05] , 3-coloring in time O(1.3289n), Journal of Algorithms 54
(2005), no. 2, 168–204.

[BECF+06] Kevin Burrage, Vladimir Estivill-Castro, Michael R. Fellows,
Michael A. Langston, Shev Mac, and Frances A. Rosamond, The
undirected feedback vertex set problem has a poly(k) kernel, Proceed-
ings of the 2nd International Workshop on Parameterized and Exact
Computation (IWPEC 2006), Lecture Notes in Computer Science,
vol. 4169, Springer, Berlin, 2006, pp. 192–202.

[Bei70] Lowell W. Beineke, Characterizations of derived graphs, Journal of
Combinatorial Theory, Series B 9 (1970), 129–135.

[Bei99] Richard Beigel, Finding maximum independent sets in sparse and
general graphs, Proceedings of the 10th ACM-SIAM Symposium on
Discrete Algorithms (SODA 1999), ACM and SIAM, 1999, pp. 856–
857.

BIBLIOGRAPHY 201

[Ber84] Alan A. Bertossi, Dominating sets for split and bipartite graphs,
Information Processing Letters 19 (1984), 37–40.

[BFH94] Hans L. Bodlaender, Michael R. Fellows, and Michael T. Hallett,
Beyond NP-completeness for problems of bounded width: Hardness
for the W hierarchy, Proceedings of the 26th Annual ACM Sym-
posium on the Theory of Computing (STOC 1994), ACM, 1994,
pp. 449–458.

[BH06a] Andreas Björklund and Thore Husfeldt, Exact algorithms for exact
satisfiability and number of perfect matchings, Proceedings of the
33nd International Colloquium on Automata, Languages and Pro-
gramming (ICALP 2006), Lecture Notes in Computer Science, vol.
4051, Springer, Berlin, 2006, pp. 548–559.

[BH06b] , Inclusion-exclusion algorithms for counting set partitions,
Proceedings of the 47th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2006), IEEE, 2006, pp. 575–582.

[BHK] Andreas Björklund, Thore Husfeldt, and Mikko Koivisto, Set parti-
tioning via inclusion–exclusion, SIAM Journal on Computing, spe-
cial issue dedicated to selected papers from FOCS 2006, to appear.

[BHKK07] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko
Koivisto, Fourier meets Möbius: fast subset convolution, Proceed-
ings of the 39th Annual ACM Symposium on Theory of Computing
(STOC 2007), ACM, 2007, pp. 67–74.

[BHKK08a] , Computing the tutte polynomial in vertex-exponential time,
Proceedings of the 49th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 2008), IEEE, 2008, to appear.

[BHKK08b] , The travelling salesman problem in bounded degree graphs,
Proceedings of the 35th International Colloquium on Automata,
Languages and Programming (ICALP 2008), Lecture Notes in Com-
puter Science, vol. 5125, Springer, Berlin, 2008, pp. 198–209.

[BHKK08c] , Trimmed moebius inversion and graphs of bounded degree,
Proceedings of the 25th Annual Symposium on Theoretical Aspects
of Computer Science (STACS 2008), Dagstuhl Seminar Proceed-
ings, vol. 08001, Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2008,
pp. 85–96.

202 BIBLIOGRAPHY

[BJ82] Kellogg S. Booth and J. Howard Johnson, Dominating sets in
chordal graphs, SIAM Journal of Computing 11 (1982), no. 1, 191–
199.

[Bjö07] Andreas Björklund, Algorithmic bounds for presumably hard combi-
natorial problems, Ph.D. thesis, Lund University, Sweden, 2007.

[BK04] Tobias Brueggemann and Walter Kern, An improved deterministic
local search algorithm for 3-SAT, Theoretical Computer Science 329
(2004), no. 1-3, 303–313.

[BMS05] Jesper M. Byskov, Bolette A. Madsen, and Bjarke Skjernaa, On the
number of maximal bipartite subgraphs of a graph, Journal of Graph
Theory 48 (2005), no. 2, 127–132.

[BMT00] Lorenzo Brunetta, Francesco Maffioli, and Marco Trubian, Solving
the feedback vertex set problem on undirected graphs, Discrete Ap-
plied Mathematics 101 (2000), no. 1-3, 37–51.

[Bod98] Hans L. Bodlaender, A partial k-arboretum of graphs with bounded
treewidth, Theoretical Computer Science 209 (1998), no. 1-2, 1–45.

[Bod07] Hans L. Bodlaender, A cubic kernel for feedback vertex set, Pro-
ceedings of the 24th Annual Symposium on Theoretical Aspects of
Computer Science (STACS 2007), Lecture Notes in Computer Sci-
ence, vol. 4393, Springer, Berlin, 2007, pp. 320–331.

[BP93] Jean R. S. Blair and Barry W. Peyton, Graph theory and sparse
matrix computation, IMA Volumes in Mathematics and its Appli-
cations, vol. 56, ch. An introduction to chordal graphs and clique
trees, pp. 1–27, Springer, 1993.

[BR99] Nikhil Bansal and Venkatesh Raman, Upper bounds for MaxSat:
Further improved, Proceedings of the 10th International Symposium
on Algorithms and Computation (ISAAC 1999), Lecture Notes in
Computer Science, vol. 1741, Springer, Berlin, 1999, pp. 247–258.

[BT97] Hans L. Bodlaender and Dimitrios M. Thilikos, Treewidth for graphs
with small chordality, Discrete Applied Mathematics 79 (1997), 45–
61.

[BT01] Vincent Bouchitté and Ioan Todinca, Treewidth and minimum fill-
in: grouping the minimal separators, SIAM Journal on Computing
31 (2001), 212–232.

BIBLIOGRAPHY 203

[BYGNR98] Reuven Bar-Yehuda, Dan Geiger, Joseph Naor, and Ron M. Roth,
Approximation algorithms for the feedback vertex set problem with
applications to constraint satisfaction and Bayesian inference, SIAM
Journal on Computing 27 (1998), no. 4, 942–959.

[Bys04a] Jesper M. Byskov, Enumerating maximal independent sets with
applications to graph colouring, Operations Research Letters 32
(2004), no. 6, 547–556.

[Bys04b] , Exact algorithms for graph colouring and exact satisfiability,
Ph.D. thesis, Aarhus University, Denmark, 2004.

[CB94] Ramon Carbó and Emili Besalú, Definition, mathematical examples
and quantum chemical applications of nested summation symbols
and logical kronecker deltas, Computers & Chemistry 18 (1994),
no. 2, 117–126.

[CDZ02] Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang, A min-max the-
orem on feedback vertex sets, Mathematics of Operations Research
27 (2002), no. 2, 361–371.

[CFL+07] Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve
Villanger, Improved algorithms for the feedback vertex set problems,
Proceedings of the 10th International Workshop on Algorithms and
Data Structures (WADS 2007), Lecture Notes in Computer Science,
vol. 4619, Springer, Berlin, 2007, pp. 422–433.

[CGHW98] Fabián A. Chudak, Michel X. Goemans, Dorit S. Hochbaum,
and David P. Williamson, A primal-dual interpretation of two 2-
approximation algorithms for the feedback vertex set problem in
undirected graphs, Operations Research Letters 22 (1998), no. 4-
5, 111–118.

[Chr71] Nicos Christofides, An algorithm for the chromatic number of a
graph, The Computer Journal 14 (1971), 38–39.

[CKJ01] Jianer Chen, Iyad A. Kanj, and Weijia Jia, Vertex cover: further
observations and further improvements, Journal of Algorithms 41
(2001), no. 2, 280–301.

[CKX05] Jianer Chen, Iyad A. Kanj, and Ge Xia, Labeled search trees and
amortized analysis: improved upper bounds for NP-hard problems,
Algorithmica 43 (2005), no. 4, 245–273.

204 BIBLIOGRAPHY

[CKX06] , Improved parameterized upper bounds for vertex cover, Pro-
ceedings of the 31st International Symposium on Mathematical
Foundations of Computer Science (MFCS 2006), Lecture Notes in
Computer Science, vol. 4162, Springer, Berlin, 2006, pp. 238–249.

[CLL07] Jianer Chen, Yang Liu, and Songiian Lu, Directed feedback vertex
set problem is FPT, Structure Theory and FPT Algorithmics for
Graphs, Digraphs and Hypergraphs, Dagstuhl Seminar Proceedings,
no. 07281, Internationales Begegnungs- und Forschungszentrum für
Informatik (IBFI), Schloss Dagstuhl, Germany, Dagstuhl, Germany,
2007.

[CLL+08] Jianer Chen, Yang Liu, Songjian Lu, Barry O’Sullivan, and Igor
Razgon, A fixed-parameter algorithm for the directed feedback vertex
set problem, Proceedings of the 40th Annual ACM Symposium on
Theory of Computing (STOC 2008), ACM, 2008, pp. 177–186.

[Coo71] Stephen A. Cook, The complexity of theorem proving procedures,
Proceedings of the 3rd Annual ACM Symposium on Thoery of Com-
puting (STOC 1971), ACM, 1971, pp. 151–158.

[CP08] Marek Cygan and Marcin Pilipczuk, Faster exact bandwidth, Pro-
ceedings of the 34th International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2008), LNCS, Springer, Berlin,
2008, to appear.

[DdFS05] Vânia M. F. Dias, Celina M. H. de Figueiredo, and Jayme L. Szwar-
cfiter, Generating bicliques of a graph in lexicographic order, Theo-
retical Computer Science 337 (2005), 240–248.

[DdFS07] , On the generation of bicliques of a graph, Discrete Applied
Mathematics 155 (2007), 1826–1832.

[DF92] Rodney G. Downey and Michael R. Fellows, Fixed-parameter in-
tractability, Proceedings of the Seventh Annual IEEE Structure in
Complexity Theory Conference (SCT 1992), IEEE, 1992, pp. 36–49.

[DF99] , Parameterized complexity, Springer-Verlag, New York,
1999.

[DFL+05] Frank K. H. A. Dehne, Michael R. Fellows, Michael A. Langston,
Frances A. Rosamond, and Kim Stevens, An O(2O(k)n3) FPT algo-
rithm for the undirected feedback vertex set problem, Proceedings of
the 11th Annual International Conference on Computing and Com-
binatorics (COCOON 2005), Lecture Notes in Computer Science,
vol. 3595, Springer, Berlin, 2005, pp. 859–869.

BIBLIOGRAPHY 205

[DGH+02] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, Ravi Kannan,
Jon Kleinberg, Christos Papadimitriou, Prabhakar Raghavan, and
Uwe Schöning, A deterministic (2−2/(k+1))n algorithm for k-SAT
based on local search, Theoretical Computer Science 289 (2002),
no. 1, 69–83.

[DHIV01] Evgeny Dantsin, Edward A. Hirsch, Sergei Ivanov, and Maxim
Vsemirnov, Algorithms for SAT and upper bounds on their complex-
ity, Electronic Colloquium on Computational Complexity (ECCC)
8 (2001), no. 12.

[DHW06] Evgeny Dantsin, Edward A. Hirsch, and Alexander Wolpert, Clause
shortening combined with pruning yields a new upper bound for de-
terministic SAT algorithms, Proceedings of the 6th Italian Confer-
ence on Algorithms and Complexity (CIAC 2006), Lecture Notes in
Computer Science, vol. 3998, Springer, Berlin, 2006, pp. 60–68.

[DJ02] Vilhelm Dahllöf and Peter Jonsson, An algorithm for counting maxi-
mum weighted independent sets and its applications, Proceedings of
the 13th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2002), ACM and SIAM, 2002, pp. 292–298.

[DJW02] Vilhelm Dahllöf, Peter Jonsson, and Magnus Wahlström, Count-
ing satisfying assingments in 2-SAT and 3-SAT, Proceedings of the
8th Annual International Computing and Combinatorics Conference
(COCOON 2002), Lecture Notes in Computer Science, vol. 2470,
Springer, Berlin, 2002, pp. 535–543.

[DJW05] , Counting models for 2SAT and 3SAT formulae, Theoretical
Computer Science 332 (2005), no. 1-3, 265–291.

[DKST01] Milind Dawande, Pinar Keskinocakc, Jayashankar M. Swaminat-
hand, and Sridhar Tayur, On bipartite and multipartite clique prob-
lems, Journal of Algorithms 41 (2001), 388–403.

[DLL+06] Frank K. H. A. Dehne, Michael A. Langston, Xuemei Luo, Sylvain
Pitre, Peter Shaw, and Yun Zhang, The cluster editing problem:
Implementations and experiments, Proceedings of the Second Inter-
national Workshop on Parameterized and Exact Computation (IW-
PEC 2006), Lecture Notes in Computer Science, vol. 4169, Springer,
Berlin, 2006, pp. 13–24.

[Dor06] Frederic Dorn, Dynamic programming and fast matrix multiplica-
tion, Proceedings of the 14th Annual European Symposium on Al-

206 BIBLIOGRAPHY

gorithms (ESA 2006), Lecture Notes in Computer Science, vol. 4168,
Springer, Berlin, 2006, pp. 280–291.

[Dor07] , Designing subexponential algorithms: Problems, techniques
& structures, Ph.D. thesis, University of Bergen, Norway, 2007.

[DP02] Limor Drori and David Peleg, Faster exact solutions for some NP-
hard problems, Theoretical Computer Science 287 (2002), no. 2,
473–499.

[Edm65] Jack Edmonds, Paths, trees, and flowers, Canadian Journal of
Mathematics 17 (1965), 449–467.

[EK72] Jack Edmonds and Richard M. Karp, Theoretical improvements
in algorithmic efficiency for network flow problems, Journal of the
ACM 19 (1972), no. 2, 248–264.

[ENSZ00] Guy Even, Joseph Naor, Baruch Schieber, and Leonid Zosin, Ap-
proximating minimum subset feedback sets in undirected graphs with
applications, SIAM Journal on Discrete Mathematics 13 (2000),
no. 2, 255–267.

[Epp03] David Eppstein, Small maximal independent sets and faster exact
graph coloring, Journal of Graph Algorithms and Applications 7
(2003), no. 2, 131–140.

[Epp04] , Quasiconvex analysis of backtracking algorithms, Proceed-
ings of the 15th ACM-SIAM Symposium on Discrete Algorithms
(SODA 2004), ACM and SIAM, 2004, pp. 781–790.

[Epp06] , Quasiconvex analysis of multivariate recurrence equations
for backtracking algorithms, ACM Transactions on Algorithms 2
(2006), no. 4, 492–509.

[Fei00] Uriel Feige, Coping with the NP-hardness of the graph bandwidth
problem, Proceedings of the 7th Scandinavian Workshop on Algo-
rithm Theory (SWAT 2000), Lecture Notes in Computer Science,
vol. 1851, Springer, Berlin, 2000, pp. 10–19.

[Fer06] Henning Fernau, Parameterized algorithms for hitting set: The
weighted case, Proceedings of the 6th Italian Conference on Algo-
rithms and Complexity (CIAC 2006), Lecture Notes in Computer
Science, vol. 3998, Springer, Berlin, 2006, pp. 332–343.

BIBLIOGRAPHY 207

[FG06] Jörg Flum and Martin Grohe, Parameterized complexity theory,
Texts in Theoretical Computer Science. An EATCS Series, Springer,
Berlin, 2006.

[FGK03] Robert Fourer, David M. Gay, and Brian W. Kernighan, AMPL:
A modeling language for mathematical programming, second ed.,
Duxbury Press/Brooks/Cole Publishing Co., 2003.

[FGK05a] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch, Measure
and conquer: Domination – a case study, Proceedings of the 32nd
International Colloquium on Automata, Languages and Program-
ming (ICALP 2005), Lecture Notes in Computer Science, vol. 3580,
Springer, Berlin, 2005, pp. 191–203.

[FGK05b] , Some new techniques in design and analysis of exact (ex-
ponential) algorithms, Bulletin of the EATCS 87 (2005), 47–77.

[FGK06] , Measure and conquer: A simple O(20.288 n) independent set
algorithm, 17th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2006), ACM and SIAM, New York, 2006, pp. 18–25.

[FGK+07a] Fedor V. Fomin, Petr A. Golovach, Jan Kratochv́ıl, Dieter Kratsch,
and Mathieu Liedloff, Branch and recharge: Exact algorithms for
generalized domination, Proceedings of the 10th International Work-
shop on Algorithms and Data Structures (WADS 2007), Lecture
Notes in Computer Science, vol. 4619, Springer, Berlin, 2007,
pp. 507–518.

[FGK07b] Fedor V. Fomin, Fabrizio Grandoni, and Dieter Kratsch, A measure
& conquer approach for the analysis of exact algorithms, Reports in
Informatics 359, University of Bergen, July 2007.

[FGK+08] Fedor V. Fomin, Serge Gaspers, Dieter Kratsch, Mathieu Liedloff,
and Saket Saurabh, Iterative compression and exact algorithms, Pro-
ceedings of the 33rd International Symposium on Mathematical
Foundations of Computer Science (MFCS 2008), Lecture Notes in
Computer Science, vol. 5162, Springer, Berlin, 2008, pp. 335–346.

[FGP06] Fedor V. Fomin, Serge Gaspers, and Artem V. Pyatkin, Finding a
minimum feedback vertex set in time O(1.7548n), Proceedings of the
2nd International Workshop on Parameterized and Exact Computa-
tion (IWPEC 2006), Lecture Notes in Computer Science, vol. 4169,
Springer, Berlin, 2006, pp. 184–191.

208 BIBLIOGRAPHY

[FGPR08] Fedor V. Fomin, Serge Gaspers, Artem V. Pyatkin, and Igor Razgon,
On the minimum feedback vertex set problem: Exact and enumera-
tion algorithms, Algorithmica 52 (2008), no. 2, 293–307.

[FGPS05] Fedor V. Fomin, Fabrizio Grandoni, Artem V. Pyatkin, and
Alexey A. Stepanov, Bounding the number of minimal dominat-
ing sets: a measure and conquer approach, Proceedings of the
16th Annual International Symposium on Algorithms and Compu-
tation (ISAAC 2005), Lecture Notes in Computer Science, vol. 3827,
Springer, Berlin, 2005, pp. 573–582.

[FGS06] Fedor V. Fomin, Serge Gaspers, and Saket Saurabh, Branching and
treewidth based exact algorithms, Proceedings of the 17th Annual
International Symposium on Algorithms and Computation (ISAAC
2006), Lecture Notes in Computer Science, vol. 4288, Springer,
Berlin, 2006, pp. 16–25.

[FGS07] , Improved exact algorithms for counting 3- and 4-colorings,
Proceedings of the 13th Annual International Computing and Com-
binatorics Conference (COCOON 2007), Lecture Notes in Computer
Science, vol. 4598, Springer, Berlin, 2007, pp. 65–74.

[FGSS] Fedor V. Fomin, Serge Gaspers, Saket Saurabh, and Alexey A.
Stepanov, On two techniques of combining branching and treewidth,
Algorithmica, to appear.

[FH77] Stephan Földes and Peter L. Hammer, Split graphs, Proceedings of
the 8th Southeastern Conference on Combinatorics, Graph Theory
and Computing, 1977, pp. 311–315.

[FH06] Fedor V. Fomin and Kjartan Høie, Pathwidth of cubic graphs and
exact algorithms, Information Processing Letters 97 (2006), no. 5,
191–196.

[FK98] Uriel Feige and Joe Kilian, Zero knowledge and the chromatic num-
ber, Journal of Computer and System Sciences 57 (1998), no. 2,
187–199.

[FK04] Sergey S. Fedin and Alexander S. Kulikov, Automated proofs of up-
per bounds on the running time of splitting algorithms, Proceed-
ings of the 1st International Workshop on Parameterized and Exact
Computation (IWPEC 2004), Lecture Notes in Computer Science,
vol. 3162, Springer, Belin, 2004, pp. 248–259.

BIBLIOGRAPHY 209

[FK05] Martin Fürer and Shiva P. Kasiviswanathan, Algorithms for count-
ing 2-SAT solutions and colorings with applications, Tech. report,
Electronic Colloquium on Computational Complexity (ECCC),
2005.

[FKW04] Fedor V. Fomin, Dieter Kratsch, and Gerhard J. Woeginger, Exact
(exponential) algorithms for the dominating set problem, Proceed-
ings of the 30th Workshop on Graph Theoretic Concepts in Com-
puter Science (WG 2004), Lecture Notes in Computer Science, vol.
3353, Springer, Berlin, 2004, pp. 245–256.

[FLRS07] Michael R. Fellows, Michael A. Langston, Frances A. Rosamond,
and Peter Shaw, Efficient parameterized preprocessing for cluster
editing, Proceedings of the 16th International Symposium on Fun-
damentals of Computation Theory (FCT 2007), Lecture Notes in
Computer Science, vol. 4639, Springer, Berlin, 2007, pp. 312–321.

[FP05] Fedor V. Fomin and Artem V. Pyatkin, Finding minimum feedback
vertex set in bipartite graph, Reports in Informatics 291, University
of Bergen, 2005.

[FPR99] Paola Festa, Panos M. Pardalos, and Mauricio G. C. Resende, Feed-
back set problems, Handbook of combinatorial optimization, Sup-
plement Vol. A, Kluwer Academic Publishers, Dordrecht, 1999,
pp. 209–258.

[FR96] Meinrad Funke and Gerhard Reinelt, A polyhedral approach to the
feedback vertex set problem, Integer programming and combinato-
rial optimization, Lecture Notes in Computer Science, vol. 1084,
Springer, Berlin, 1996, pp. 445–459.

[FT05] Uriel Feige and Kunal Talwar, Approximating the bandwidth of
caterpillars, Proceedings of the 8th International Workshop on Ap-
proximation Algorithms for Combinatorial Optimization Problems
(APPROX 2005), Lecture Notes in Computer Science, vol. 3624,
Springer, Berlin, 2005, pp. 62–73.

[Fuk96] Komei Fukuda, Complexity of enumeration - evaluating the hard-
ness of listing objects, presented at ETH Zurich, May 1996, also
at International Symposium on Mathematical Programming 1997,
1996, http://www.ifor.math.ethz.ch/~fukuda/old/ENP_home/

ENP_note.html.

http://www.ifor.math.ethz.ch/~fukuda/old/ENP_home/ENP_note.html
http://www.ifor.math.ethz.ch/~fukuda/old/ENP_home/ENP_note.html

210 BIBLIOGRAPHY

[FV08] Fedor V. Fomin and Yngve Villanger, Treewidth computation and
extremal combinatorics, Proceedings of the 35th International Collo-
quium on Automata, Languages and Programming (ICALP 2008),
LNCS, no. 5125, Springer, Berlin, 2008, pp. 210–221.

[Gas02] William I. Gasarch, Guest column: The P=?NP poll, SIGACT News
33 (2002), no. 2, 34–47.

[Gas05] Serge Gaspers, Algorithmes exponentiels, Master’s thesis, University
of Metz, France, 2005, in French.

[GGH+06] Jiong Guo, Jens Gramm, Falk Hüffner, Rolf Niedermeier, and Se-
bastian Wernicke, Compression-based fixed-parameter algorithms for
feedback vertex set and edge bipartization, Journal of Computer and
System Sciences 72 (2006), no. 8, 1386–1396.

[GHNR03] Jens Gramm, Edward A. Hirsch, Rolf Niedermeier, and Peter Ross-
manith, Worst-case upper bounds for MAX-2-SAT with an appli-
cation to MAX-CUT, Discrete Applied Mathematics 130 (2003),
no. 2, 139–155.

[GJ79] Michael R. Garey and David S. Johnson, Computers and intractabil-
ity, a guide to the theory of NP-completeness, W.H. Freeman and
Company, New York, 1979.

[GKL06] Serge Gaspers, Dieter Kratsch, and Mathieu Liedloff, Exponential
time algorithms for the minimum dominating set problem on some
graph classes, Proceedings of the 10th Scandinavian Workshop on
Algorithm Theory (SWAT 2006), Lecture Notes in Computer Sci-
ence, vol. 4059, Springer, Berlin, 2006, pp. 148–159.

[GKL08] , On independent sets and bicliques in graphs, Proceedings of
the 34th International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2008), Lecture Notes in Computer Science,
Springer, Berlin, 2008, to appear.

[GKLT] Serge Gaspers, Dieter Kratsch, Mathieu Liedloff, and Ioan Todinca,
Exponential time algorithms for the minimum dominating set prob-
lem on some graph classes, submitted.

[GL06] Serge Gaspers and Mathieu Liedloff, A branch-and-reduce algorithm
for finding a minimum independent dominating set in graphs, Pro-
ceedings of the 32nd International Workshop on Graph-Theoretic
Concepts in Computer Science (WG 2006), Lecture Notes in Com-
puter Science, vol. 4271, Springer, Berlin, 2006, pp. 78–89.

BIBLIOGRAPHY 211

[GNW05] Jiong Guo, Rolf Niedermeier, and Sebastian Wernicke, Parameter-
ized complexity of generalized vertex cover problems, Proceedings
of the 9th International Workshop on Algorithms and Data Struc-
tures (WADS 2005), Lecture Notes in Computer Science, vol. 3608,
Springer, Berlin, 2005, pp. 36–48.

[Gol78] Martin C. Golumbic, Trivially perfect graphs, Discrete Mathematics
24 (1978), 105–107.

[Gol80] , Algorithmic graph theory and perfect graphs, Academic
Press, New York, 1980.

[Gra04] Fabrizio Grandoni, Exact algorithms for hard graph problems, Ph.D.
thesis, Università di Roma “Tor Vergata”, Roma, Italy, 2004.

[Gra06] , A note on the complexity of minimum dominating set, Jour-
nal of Discrete Algorithms 4 (2006), no. 2, 209–214.

[GRS06] Sushmita Gupta, Venkatesh Raman, and Saket Saurabh, Fast ex-
ponential algorithms for maximum r-regular induced subgraph prob-
lems, Proceedings of the 26th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS
2006), Lecture Notes in Computer Science, no. 4337, Springer,
Berlin, 2006, pp. 139–151.

[GS87] Yuri Gurevich and Saharon Shelah, Expected computation time for
Hamiltonian path problem, SIAM Journal on Computing 16 (1987),
no. 3, 486–502.

[GS09] Serge Gaspers and Gregory Sorkin, A universally fastest algorithm
for Max 2-Sat, Max 2-CSP, and everything in between, Proceedings
of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2009), ACM and SIAM, 2009, to appear.

[GSB95] Mark K. Goldberg, Thomas H. Spencer, and David A. Berque, A
low-exponential algorithm for counting vertex covers, Graph Theory,
Combinatorics, Algorithms, and Applications, vol. 1, Wiley, New
York, 1995, pp. 431–444.

[Guo07] Jiong Guo, A more effective linear kernelization for cluster edit-
ing, Proceedings of the First International Symposium on Com-
binatorics, Algorithms, Probabilistic and Experimental Methodolo-
gies (ESCAPE 2007), Lecture Notes in Computer Science, vol. 4614,
Springer, Berlin, 2007, pp. 36–47.

212 BIBLIOGRAPHY

[GW96] Bernhard Ganter and Rudolf Wille, Formal concept analysis, math-
ematical foundations, Springer, Berlin, 1996.

[Hir00] Edward A. Hirsch, A new algorithm for MAX-2-SAT, Proceedings of
the 17th Annual Symposium on Theoretical Aspects of Computer
Science (STACS 2000), Lecture Notes in Computer Science, vol.
1770, Springer, Berlin, 2000, pp. 65–73.

[HK62] Michael Held and Richard M. Karp, A dynamic programming ap-
proach to sequencing problems, Journal of SIAM 10 (1962), 196–210.

[HK73] John E. Hopcroft and Richard M. Karp, An n5/2 algorithm for max-
imum matching in bipartite graphs, SIAM Journal on Computing 2
(1973), no. 4, 225–231.

[HKMN08] Falk Hüffner, Christian Komusiewicz, Hannes Moser, and Rolf Nie-
dermeier, Fixed-parameter algorithms for cluster vertex deletion,
Proceedings of the 8th Latin American Theoretical Informatics Sym-
posium (LATIN 2008), Lecture Notes in Computer Science, vol.
4957, Springer, Berlin, 2008, pp. 711–722.

[Hoc98] Dorit S. Hochbaum, Approximating clique and biclique problems,
Journal of Algorithms 29 (1998), 174–200.

[HS74] Ellis Horowitz and Sartaj Sahni, Computing partitions with applica-
tions to the knapsack problem, Journal of the ACM 21 (1974), no. 2,
277–292.

[HT93] Mihály Hujter and Zsolt Tuza, The number of maximal independent
sets in triangle-free graphs, SIAM Journal on Discrete Mathematics
6 (1993), 284–288.

[IP99] Russell Impagliazzo and Ramamohan Paturi, Complexity of k-SAT,
Proceedings of the 14th Annual IEEE Conference on Computational
Complexity, IEEE, 1999, pp. 237–240.

[IPZ01] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane, Which
problems have strongly exponential complexity, Journal of Computer
and System Sciences 63 (2001), no. 4, 512–530.

[Iwa04] Kazuo Iwama, Worst-case upper bounds for k-SAT, Bulletin of the
EATCS 82 (2004), 61–71.

[Jia86] Tang Jian, An O(20.304n) algorithm for solving maximum indepen-
dent set problem, IEEE Transactions on Computers 35 (1986), no. 9,
847–851.

BIBLIOGRAPHY 213

[JRR03] Michael Jünger, Gerhard Reinelt, and Giovanni Rinaldi, Preface,
Combinatorial Optimization - Eureka, you shrink!, Lecture Notes
in Computer Science, vol. 2570, Springer, Berlin, 2003.

[JS99] David S. Johnson and Mario Szegedy, What are the least tractable
instances of max independent set?, Proceedings of the 10th ACM-
SIAM Symposium on Discrete Algorithms (SODA 1999), ACM and
SIAM, 1999, pp. 927–928.

[JYP88] David S. Johnson, Mihalis Yannakakis, and Christos H. Papadim-
itriou, On generating all maximal independent sets, Information
Processing Letters 27 (1988), no. 3, 119–123.

[Kar72] Richard M. Karp, Reducibility among combinatorial problems, Com-
plexity of computer computations, Plenum Press, New York, 1972,
pp. 85–103.

[Kar82] , Dynamic programming meets the principle of inclusion and
exclusion, Operations Research Letters 1 (1982), no. 2, 49–51.

[Kei93] J. Mark Keil, The complexity of domination problems in circle
graphs, Discrete Applied Mathematics 42 (1993), no. 1, 51–63.

[KK01] Jon Kleinberg and Amit Kumar, Wavelength conversion in optical
networks, Journal of Algorithms 38 (2001), no. 1, 25–50.

[KK06] Arist Kojevnikov and Alexander S. Kulikov, A new approach to
proving upper bounds for MAX-2-SAT, Proceedings of the 17th An-
nual ACM–SIAM Symposium on Discrete Algorithms (SODA 2006),
ACM and SIAM, New York, 2006, pp. 11–17.

[KK07] Alexander S. Kulikov and Konstantin Kutzkov, New bounds for
MAX-SAT by clause learning, Proceedings of the 2nd International
Symposium on Computer Science in Russia (CSR 2007), LNCS, vol.
4649, Springer, Berlin, 2007, pp. 194–204.

[Klo94] Ton Kloks, Treewidth, computations and approximations, Lecture
Notes in Computer Science, vol. 842, Springer, 1994.

[Klo96] , Treewidth of circle graphs, International Journal of Foun-
dations of Computer Science 7 (1996), 111–120.

[KMRR05] Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith,
Algorithms based on the treewidth of sparse graphs, Proceedings of
the 31st International Workshop on Graph-Theoretic Concepts in
Computer Science (WG 2005), Lecture Notes in Computer Science,
vol. 3787, Springer, Berlin, 2005, pp. 385–396.

214 BIBLIOGRAPHY

[Koi06a] Mikko Koivisto, An O(2n) algorithm for graph coloring and other
partitioning problems via inclusion-exclusion, Proceedings of the
47th Annual IEEE Symposium on Foundations of Computer Sci-
ence (FOCS 2006), IEEE, 2006, pp. 583–590.

[Koi06b] , Optimal 2-constraint satisfaction via sum-product algo-
rithms, Information Processing Letters 98 (2006), no. 1, 24–28.

[KP06] Subhash Khot and Ashok K. Ponnuswami, Better inapproximability
results for MaxClique, Chromatic Number and Min-3Lin-Deletion,
Proceedings of the 33rd International Colloquium on Automata,
Languages and Programming (ICALP 2006), Lecture Notes in Com-
puter Science, vol. 4051, Springer, Berlin, 2006, pp. 226–237.

[KPS08] Graham Kendall, Andrew Parkes, and Kristian Spoerer, A survey
of NP-complete puzzles, International Computer Games Association
Journal 31 (2008), no. 1, 13–34.

[KR05] Joachim Kneis and Peter Rossmanith, A new satisfiability algorithm
with applications to Max-Cut, Tech. Report AIB-2005-08, Depart-
ment of Computer Science, RWTH Aachen, 2005.

[Kra07] Dieter Kratsch, In: Open problem session, presented at Dagstuhl
Seminar 07211 on Exact, Approximative, Robust and Certifying
Algorithms on Particular Graph Classes, May 2007.

[KS93] Ephraim Korach and Nir Solel, Tree-width, path-width, and
cutwidth, Discrete Applied Mathematics 43 (1993), no. 1, 97–101.

[Kul99] Oliver Kullmann, New methods for 3-SAT decision and worst-case
analysis, Theoretical Computer Science 223 (1999), no. 1–2, 1–72.

[Kul05] Alexander S. Kulikov, Automated generation of simplification rules
for SAT and MAXSAT, Proceedings of the 8th International Con-
ference on Theory and Applications of Satisfiability Testing (SAT
2005), Lecture Notes in Computer Science, vol. 3569, Springer,
Berlin, 2005, pp. 430–436.

[KVZ01] Andrew B. Kahng, Shailesh Vaya, and Alexander Zelikovsky, New
graph bipartizations for double-exposure, bright field alternating
phase-shift mask layout, Proceedings of the 6th Asia and South Pa-
cific Design Automation Conference (ASP-DAC 2001), ACM, New
York, 2001, pp. 133–138.

BIBLIOGRAPHY 215

[KW05] Bettina Klinz and Gerhard J. Woeginger, Faster algorithms for com-
puting power indices in weighted voting games, Mathematical Social
Sciences 49 (2005), no. 1, 111–116.

[Law76] Eugene L. Lawler, A note on the complexity of the chromatic number
problem, Information Processing Letters 5 (1976), no. 3, 66–67.

[Lev73] Leonid A. Levin, Universal search problems, Problemy Peredaci In-
formacii 9 (1973), 265–266, In Russian; English translation in: Boris
A. Trakhtenbrot, A survey of russian approaches to perebor (brute-
force search) algorithms, Annals of the History of Computing 6
(1984), no. 4, 384–400.

[Lie07] Mathieu Liedloff, Algorithmes exacts et exponentiels pour les
problèmes NP-difficiles : domination, variantes et généralisations,
Ph.D. thesis, University of Metz, France, 2007, in French.

[Lie08] , Finding a dominating set on bipartite graphs, Information
Processing Letters 107 (2008), 154–157.

[MM65] John W. Moon and Leo Moser, On cliques in graphs, Israel Journal
of Mathematics 3 (1965), 23–28.

[MP06] Burkhard Monien and Robert Preis, Upper bounds on the bisection
width of 3- and 4-regular graphs, Journal of Discrete Algorithms 4
(2006), no. 3, 475–498.

[MS85] Burkhard Monien and Ewald Speckenmeyer, Solving satisfiability in
less than 2n steps, Discrete Applied Mathematics 10 (1985), no. 3,
287–295.

[MU04] Kazuhisa Makino and Takeaki Uno, New algorithms for enumerating
all maximal cliques, Proceedings of the 9th Scandinavian Workshop
on Algorithm Theory (SWAT 2004), Lecture Notes in Computer
Science, vol. 3111, Springer, Berlin, 2004, pp. 260–272.

[Nie06] Rolf Niedermeier, Invitation to fixed-parameter algorithms, Oxford
Lecture Series in Mathematics and its Applications, vol. 31, Oxford
University Press, Oxford, 2006.

[NR99] Lhouari Nourine and Olivier Raynaud, A fast algorithm for building
lattices, Information Processing Letters 71 (1999), 199–204.

[NR00] Rolf Niedermeier and Peter Rossmanith, New upper bounds for max-
imum satisfiability, Journal of Algorithms 36 (2000), no. 1, 63–88.

216 BIBLIOGRAPHY

[NR02] Lhouari Nourine and Olivier Raynaud, A fast incremental algorithm
for building lattices, Journal of Experimental and Theoretical Arti-
ficial Intelligence 14 (2002), 217–227.

[OUU05] Yoshio Okamoto, Takeaki Uno, and Ryuhei Uehara, Linear-time
counting algorithms for independent sets in chordal graphs, Proceed-
ings of the 31st International Workshop on Graph-Theoretic Con-
cepts in Computer Science (WG 2005), Lecture Notes in Computer
Science, vol. 3787, Springer, Berlin, 2005, pp. 433–444.

[Pee03] René Peeters, The maximum edge biclique problem is NP-complete,
Discrete Applied Mathematics 131 (2003), 651–654.

[PI00] Pavel Pudlák and Russel Impaglazzio, A lower bound for DLL al-
gorithms for k-SAT, Proceedings of the 11th ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA 2000), ACM and SIAM, 2000,
pp. 128–136.

[PKS04] Mihai Pop, Daniel S. Kosack, and Steven L. Salzberg, Hierarchical
scaffolding with bambus, Genome Research 14 (2004), 149–159.

[PQR99] Panos M. Pardalos, Tianbing Qian, and Mauricio G. C. Resende, A
greedy randomized adaptive search procedure for the feedback vertex
set problem, Journal of Combinatorial Optimization 2 (1999), no. 4,
399–412.

[Pri00] Erich Prisner, Bicliques in graphs I: Bounds on their number, Com-
binatorica 20 (2000), 109–117.

[Raz06] Igor Razgon, Exact computation of maximum induced forest, Pro-
ceedings of the 10th Scandinavian Workshop on Algorithm The-
ory (SWAT 2006), Lecture Notes in Computer Science, vol. 4059,
Springer, Berlin, 2006, pp. 160–171.

[RF08] Daniel Raible and Henning Fernau, A new upper bound for Max-2-
SAT: A graph-theoretic approach, Proceedings of the 33rd Interna-
tional Symposium on Mathematical Foundations of Computer Sci-
ence 2008 (MFCS 2008), Lecture Notes in Computer Science, vol.
5162, Springer, Berlin, 2008, pp. 551–562.

[Rie06] Tobias Riege, The domatic number problem: Boolean hierarchy
completeness and exact exponential-time algorithms, Ph.D. thesis,
Heinrich-Heine University Düsseldorf, Germany, 2006.

BIBLIOGRAPHY 217

[RO07] Igor Razgon and Barry O’Sullivan, Directed feedback vertex set is
fixed-parameter tractable, Structure Theory and FPT Algorithmics
for Graphs, Digraphs and Hypergraphs, Dagstuhl Seminar Proceed-
ings, no. 07281, Internationales Begegnungs- und Forschungszen-
trum für Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[Rob86] John M. Robson, Algorithms for maximum independent sets, Jour-
nal of Algorithms 7 (1986), no. 3, 425–440.

[Rob01] , Finding a maximum independent set in time O(2n/4)?,
manuscript, http://www.labri.fr/perso/robson/mis/techrep.

ps, 2001.

[Ros07] Peter Rossmanith, Using fast set convolutions to compute minimal
dominating sets, presented at Dagstuhl Seminar 07281 on Structure
Theory and FPT Algorithmics for Graphs, Digraphs and Hyper-
graphs, July 2007, slides available online.

[RS83] Neil Robertson and Paul D. Seymour, Graph minors. I. Excluding a
forest, Journal of Combinatorial Theory, Series B 35 (1983), 39–61.

[RS86] , Graph minors. II. Algorithmic aspects of tree-width, Journal
of Algorithms 7 (1986), no. 3, 309–322.

[RS04] Bert Randerath and Ingo Schiermeyer, Exact algorithms for MIN-
IMUM DOMINATING SET, Technical Report zaik-469, Zentrum
für Angewandte Informatik Köln, Germany, 2004.

[RSS02] Venkatesh Raman, Saket Saurabh, and C. R. Subramanian, Faster
fixed parameter tractable algorithms for undirected feedback vertex
set, Proceedings of the 13th International Symposium on Algorithms
and Computation (ISAAC 2002), Lecture Notes in Computer Sci-
ence, vol. 2518, Springer, Berlin, 2002, pp. 241–248.

[RSS05] Venkatesh Raman, Saket Saurabh, and Somnath Sikdar, Improved
exact exponential algorithms for vertex bipartization and other prob-
lems, Proceedings of the 9th Italian Conference on Theoretical Com-
puter Science (ICTCS 2005), Lecture Notes in Computer Science,
vol. 3701, Springer, Berlin, 2005, pp. 375–389.

[RSS07] , Efficient exact algorithms through enumerating maximal in-
dependent sets and other techniques, Theory of Computing Systems
41 (2007), no. 3, 563–587.

[RSV04] Bruce A. Reed, Kaleigh Smith, and Adrian Vetta, Finding odd cycle
transversals, Operations Research Letters 32 (2004), no. 4, 299–301.

http://www.labri.fr/perso/robson/mis/techrep.ps
http://www.labri.fr/perso/robson/mis/techrep.ps

218 BIBLIOGRAPHY

[RWB+07] Sven Rahmann, Tobias Wittkop, Jan Baumbach, Marcel Martin,
Anke Truss, and Sebastian Böcker, Exact and heuristic algorithms
for weighted cluster editing, Proceedings of the 2005 IEEE Computa-
tional Systems Bioinformatics Conference 6 (2007), no. 1, 391–401.

[Sax80] James B. Saxe, Dynamic-programming algorithms for recognizing
small-bandwidth graphs in polynomial time, SIAM Journal on Alge-
braic and Discrete Methods 1 (1980), no. 4, 363–369.

[Sch95] Ingo Schiermeyer, Problems remaining NP-complete for sparse or
dense graphs, Discussiones Mathematicae. Graph Theory 15 (1995),
33–41.

[Sch01] Uwe Schöning, New algorithms for k-SAT based on the local search
principle, Proceedings of the 26th International Symposium on
Mathematical Foundations of Computer Science (MFCS 2001), Lec-
ture Notes in Computer Science, vol. 2136, Springer, Berlin, 2001,
pp. 87–95.

[Sch05] , Algorithmics in exponential time, Proceedings of the 22nd
International Symposium on Theoretical Aspects of Computer Sci-
ence (STACS 2005), Lecture Notes in Computer Science, vol. 3404,
Springer, Berlin, 2005, pp. 36–43.

[Sch08] Dominik Scheder, Guided search and a faster deterministic algo-
rithm for 3-SAT, Proceedings of the 8th Latin American Sympo-
sium on Theoretical Informatics (LATIN 2008), Lecture Notes in
Computer Science, vol. 4957, Springer, Berlin, 2008, pp. 60–71.

[SS81] Richard Schroeppel and Adi Shamir, A T = O(2n/2), S = O(2n/4)
algorithm for certain NP-complete problems, SIAM Journal on Com-
puting 10 (1981), no. 3, 456–464.

[SS02] Benno Schwikowski and Ewald Speckenmeyer, On enumerating all
minimal solutions of feedback problems, Discrete Applied Mathe-
matics 117 (2002), no. 1-3, 253–265.

[SS03] Alexander D. Scott and Gregory B. Sorkin, Faster algorithms for
MAX CUT and MAX CSP, with polynomial expected time for sparse
instances, Proceedings of the 7th International Workshop on Ran-
domization and Approximation Techniques in Computer Science
(RANDOM 2003), Lecture Notes in Computer Science, vol. 2764,
Springer, Berlin, 2003, pp. 382–395.

BIBLIOGRAPHY 219

[SS04] , A faster exponential-time algorithm for Max 2-Sat, Max
Cut, and Max k-Cut, Tech. Report RC23456 (W0412-001), IBM
Research Report, December 2004.

[SS07a] , Linear-programming design and analysis of fast algorithms
for Max 2-CSP, Discrete Optimization 4 (2007), no. 3–4, 260–287.

[SS07b] , Polynomial constraint satisfaction: A framework for
counting and sampling CSPs and other problems, Tech. Report
cs:DM/0604079v3, arxiv.org, February 2007.

[ST90] Miklo Shindo and Etsuji Tomita, A simple algorithm for finding a
maximum clique and its worst-case time complexity, Systems and
Computers in Japan 21 (1990), no. 3, 1–13.

[Tho09] Stéphan Thomassé, A quadratic kernel for feedback vertex set, Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2009), ACM and SIAM, 2009, to appear.

[Tra84] Boris A. Trakhtenbrot, A survey of russian approaches to perebor
(brute-force search) algorithms, Annals of the History of Computing,
vol. 6, IEEE, 1984, pp. 384–400.

[Tra08] Patrick Traxler, The time complexity of constraint satisfaction, Pro-
ceedings of the 3rd International Workshop on Parameterized and
Exact Computation (IWPEC 2008), Lecture Notes in Computer
Science, vol. 5018, Springer, Berlin, 2008, pp. 190–201.

[TT77] Robert E. Tarjan and Anthony E. Trojanowski, Finding a maximum
independent set, SIAM Journal on Computing 6 (1977), no. 3, 537–
546.

[Ung98] Walter Unger, The complexity of the approximation of the bandwidth
problem, Proceedings of the 39th Annual Symposium on Founda-
tions of Computer Science (FOCS 1998), IEEE, 1998, pp. 82–91.

[Val79] Leslie G. Valiant, The complexity of computing the permanent, The-
oretical Computer Science 8 (1979), no. 2, 189–201.

[vRB08a] Johan M. M. van Rooij and Hans L. Bodlaender, Design by measure
and conquer, a faster exact algorithm for dominating set, Proceed-
ings of the 25th Annual Symposium on Theoretical Aspects of Com-
puter Science (STACS 2008), Dagstuhl Seminar Proceedings, vol.
08001, Internationales Begegnungs- und Forschungszentrum fuer In-
formatik (IBFI), 2008, pp. 657–668.

220 BIBLIOGRAPHY

[vRB08b] , Exact algorithms for edge domination, Proceedings of the
3rd International Workshop on Parameterized and Exact Computa-
tion (IWPEC 2008), Lecture Notes in Computer Science, vol. 5018,
Springer, Berlin, 2008, pp. 214–225.

[VWW06] Virginia Vassilevska, Ryan Williams, and Shan Leung Maverick
Woo, Confronting hardness using a hybrid approach, Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2006), ACM, 2006, pp. 1–10.

[Wah04] Magnus Wahlström, Exact algorithms for finding minimum trans-
versals in rank-3 hypergraphs, Journal of Algorithms 51 (2004),
no. 2, 107–121.

[Wah07] , Algorithms, measures and upper bounds for satisfiability
and related problems, Ph.D. thesis, Department of Computer and
Information Science, Linköping University, Sweden, 2007.

[Wah08] , A tighter bound for counting max-weight solutions to 2SAT
instances, Proceedings of the 3rd International Workshop on Para-
meterized and Exact Computation (IWPEC 2008), Lecture Notes
in Computer Science, vol. 5018, Springer, Berlin, 2008, pp. 202–213.

[Wil05] Ryan Williams, A new algorithm for optimal 2-constraint satisfac-
tion and its implications, Theoretical Computer Science 348 (2005),
no. 2-3, 357–365.

[Wil07] , Algorithms and resource requirements for fundamental
problems, Ph.D. thesis, Carnegie Mellon University, USA, 2007.

[Woe03] Gerhard J. Woeginger, Exact algorithms for NP-hard problems: A
survey, Combinatorial Optimization - Eureka, you shrink!, Lec-
ture Notes in Computer Science, vol. 2570, Springer, Berlin, 2003,
pp. 185–207.

[Woe04] , Space and time complexity of exact algorithms: Some open
problems, Proceedings of the 1st International Workshop on Para-
meterized and Exact Computation (IWPEC 2004), Lecture Notes
in Computer Science, vol. 3162, Springer, Berlin, 2004, pp. 281–290.

[Woe08] , Open problems around exact algorithms, Discrete Applied
Mathematics 156 (2008), 397–405.

[Yan78] Mihalis Yannakakis, Node and edge deletion NP-complete problems,
Proceedings of the 10th Annual ACM Symposium on Theory of
Computing (STOC 1978), ACM, 1978, pp. 253–264.

BIBLIOGRAPHY 221

[Zha96] Wenhui Zhang, Number of models and satisfiability of sets of clauses,
Theoretical Computer Science 155 (1996), no. 1, 277–288.

[Zuc07] David Zuckerman, Linear degree extractors and the inapproximabil-
ity of max clique and chromatic number, Theory of Computing 3
(2007), no. 1, 103–128.

222 BIBLIOGRAPHY

Appendix A
Detailed running time analysis of
Algorithm #MaximalIS

In this appendix we outline a detailed running time analysis of Algorithm
#MaximalIS. The branching corresponding to the selection of a marked vertex
of degree 2 has already been analyzed in detail in our high level analysis in Sub-
section 4.4.3. Here we give a list of cases, corresponding to the analysis in Case
2 in Subsection 4.4.3. Each case has a number, a condition telling us in which
case we are, a picture and a constraint on the measure of an instance based on
the measure of the created subinstances in this case. For those cases, where it
is not immediate how the constraint is obtained, a comment is added observing
facts needed to obtain it.

Denote the neighbors of u by v1, v2, . . . , vd(u). For a selected vertex u, we say
that x is an external neighbor of a vertex v ∈ N(u) if x is a vertex of N(v)\N [u].

Note that the algorithm can apply the branching rule on a d-regular graph,
2 ≤ d ≤ 4. However, when dealing with such a d-regular graph any subsequent
recursive calls will never be again on a d-regular graph. Thus, these graphs are
not relevant to establish the running time (see Subsection 2.8.1). If the graph is
1-regular, then the algorithm would treat it in polynomial time since the size of
each connected component is bounded by a constant.

In the following case analysis, cases number 1 (with d(x1) = 4), 18 and 21
correspond to the tight cases.

1) d(u) = 1, d(v1) = 2

u
v1 x1

T (µ) ≥ T (µ−w1−w2−∆wd(x1))+T (µ−w1−w2−wd(x1))

224 Detailed running time analysis of Algorithm #MaximalIS

2) d(u) = 1, d(v1) ≥ 3

u
v1

T (µ) ≥ T (µ− w1 − wd(v1)) + T (µ− wd(v1) − (d(v1)− 1) ·
w1 − w2)

Comment: v1 has a neighbor of degree at least 2, otherwise N [v1] is a
connected component.

3) d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) = 2, x1 being the other neighbor of
v1

u

v1

v2

x1

T (µ) ≥ T (µ+w1− 3w2−w3) +T (µ− 2w2−w3) +T (µ−
5w2 − w3)

Comment: v1v2 6∈ E, as d(x1) 6= d(v2). In the branch where v2 is selected,
x1 is also selected as v1 becomes marked and has a unique neighbor. As
N(u) 6= N(x1), x1 and v2 are not adjacent.

4) d(u) = 2, d(v1) = 2, d(v2) = 3, d(x1) ≥ 3

u

v1

v2

x1

T (µ) ≥ T (µ−2w2−w3)+T (µ−w2−2w3)+T (µ−2w2−
4w3)

Comment: v1v2 6∈ E, otherwise N [u] = N [v1]. When v2 is selected, x1 is
also selected. By the selection rule of u, d(x1) = 3 and no common neighbor
of v2 and x1 has degree 2. If v2 and x1 are adjacent, ignore the last branch.

5) d(u) = 2, d(v1) = 3, d(v2) = 3

u

v1

v2
T (µ) ≥ T (µ− w2 − 2w3) + 2T (µ− 4w3)

Comment: The vertices of degree 2 in N2(u) are not adjacent to both v1

and v2 (otherwise they have the same open neighborhood as u). Moreover,
two adjacent vertices in N2(u) of degree 2 are not adjacent to the same vertex
in N(u) due to the simplification rules. So, they have neighbors outside N [u]
of degree at most 3.

225

6) d(u) = 2, d(v1) = 2, d(v2) ≥ 4

u

v1

v2
T (µ) ≥ T (µ− 2w2−w4) + T (µ− 3w2) + T (µ− 6w2−w4)

Comment: v1 and v2 are not adjacent. If they have a common neighbor,
ignore the last branch. In the last branch, v2 and the external neighbor of v1

are selected.

7) d(u) = 2, d(v1) ≥ 3, d(v2) ≥ 4

u

v1

v2
T (µ) ≥ T (µ−w2−w3−w4) + T (µ− 3w2−w3) + T (µ−
4w2 − w4)

8) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 adjacent

u

v1

v2

v3

T (µ) ≥ T (µ−3w3−w4)+2T (µ−4w3)+T (µ−9w3−w4)

Comment: v1 and v2 are not adjacent to v3, otherwise they have the same
closed neighborhood as u. Moreover, v1 and v2 do not share the same external
neighbor otherwise v1 and v2 have the same closed neighborhood. If v3 has
a common neighbor in N2(u) with v1 or v2, then ignore the last branch,
otherwise v3 and both external neighbors of v1 and v2 are selected.

9) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, N(u) independent, in the last
branch, v1 and v2 disappear by simplification rules

u

v1

v2

v3

T (µ) ≥ T (µ − 3w3 − w4) + 2T (µ + w2 − 5w3) + T (µ −
7w3 − w4)

Comment: In this case, when v3 is selected, at least v1 and v2 are removed
by recursively applying the simplification rules.

226 Detailed running time analysis of Algorithm #MaximalIS

10) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, N(u) independent, in the last
branch, v1 (or v2) does not disappear by simplification rules

u

v1

v2

v3

T (µ) ≥ T (µ − 3w3 − w4) + 2T (µ + w2 − 5w3) + T (µ +
2w2 − 7w3 − w4 −M2)

Comment: In the last branch v1 and v2 are marked and become of degree
2. Therefore a marked vertex of degree 2 appears (−M2).

11) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 not adjacent, v3

adjacent to v1 and v2

u

v1

v2

v3

T (µ) ≥ T (µ + 2w2− 5w3−w4) + T (µ + w1− 4w3−w4) +
2T (µ− 5w3 − w4)

Comment: The external neighbors of v1 and v2 have degree 3 and are
distinct.

12) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) ≥ 5, v1 and v2 not adjacent, v3

adjacent to v2 (or v1)

u

v1

v2

v3

T (µ) ≥ 2T (µ + w2− 4w3−w4) + T (µ + w2− 6w3−w4) +
T (µ− 6w3)

Comment: The external neighbor of v2 has degree 3.

13) d(u) = 3, d(v1) ≥ 3, d(v2) ≥ 4, d(v3) ≥ 5

u

v1

v2

v3

T (µ) ≥ T (µ − 2w3 − 2w4) + T (µ − 4w3) + T (µ − 4w3 −
w4) + T (µ− 5w3 − w4)

227

14) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 adjacent

u

v1

v2

v3

T (µ) ≥ T (µ − w3 − 3w4) + 2T (µ − 2w3 − 2w4) + T (µ −
8w3 − w4)

Comment: v1 and v2 are not adjacent to v3 and have distinct external
neighbors of degree 3 or 4. If v3 has a common neighbor with v1 or v2 (except
u), ignore the last branch.

15) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 not adjacent, v3

adjacent to v1 and v2

u

v1

v2

v3

T (µ) ≥ T (µ + 2w2− 5w3−w4) + T (µ + w1 + w2− 5w3−
w4) + T (µ + 2w2 − 6w3 − w4) + T (µ− 5w3 − w4)

Comment: v1 and v2 have distinct external neighbors of degree 3.

16) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, v1 and v2 not adjacent, v3

adjacent to v2 (or v1)

u

v1

v2

v3

T (µ) ≥ T (µ + 2w2 − 4w3 − 2w4) + T (µ + 2w2 − 5w3 −
w4) + T (µ + 2w2 − 6w3 − w4) + T (µ + 2w2 − 7w3 − w4)

Comment: The external neighbor of v2 has degree 3 and neighbors of
degree 3 and 3/4. In the third branch where v3 is selected, N [v3] is deleted
(−4w3−w4), v1 has its degree decreased (+w2−w3), and another vertex has
its degree decreased from 3 to 2 (+w2 − w3): the external neighbor x of v2

if it is not adjacent to v3, or a neighbor of x if x and v3 are neighbors and
N [x] 6⊆ N [v3], or the vertex in N2(x) \N2[u] in the remaining case.

228 Detailed running time analysis of Algorithm #MaximalIS

17) d(u) = 3, d(v1) = 3, d(v2) = 3, d(v3) = 4, N(u) independent

u

v1

v2

v3

T (µ) ≥ T (µ+2w2−3w3−3w4)+T (µ+w2−2w3−3w4)+
T (µ+w2−2w3−3w4−M2)+T (µ+2w2−6w3−w4−M2)

Comment: The external neighbors of v1 and v2 have degree 3 and 3/4. In
the last two branches, a marked vertex of degree 2 is created.

18) d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is not adjacent to v2 and v3

u

v1

v2

v3

T (µ) ≥ T (µ − w3 − 3w4) + T (µ − 2w3 − 2w4) + 2T (µ +
w2 − 4w3 − 2w4)

19) d(u) = 3, d(v1) = 3, d(v2) = 4, d(v3) = 4, v1 is adjacent to v2 (or v3)

u

v1

v2

v3

T (µ) ≥ T (µ − w3 − 3w4) + T (µ − 2w3 − 2w4) + T (µ −
3w3 − 2w4) + T (µ− 5w3 − 2w4)

20) d(u) = 3, d(v1) = 4, d(v2) = 4, d(v3) = 4

u

v1

v2

v3

T (µ) ≥ T (µ− w3 − 3w4) + 3T (µ− 2w3 − 3w4)

Comment: Consider the branch where v1 is selected. A total of 5 vertices
disappear and at least 3 vertices of degree 4 either disappear or have their
degree reduced from 4 to 3: the vertices in N(u).

229

21) d(u) = 4, d(v1) = 4, d(v2) = 4, d(v3) = 4, d(v4) = 5

u

v1

v2

v3

v4

T (µ) ≥ 4T (µ− 5w4) + T (µ + 3w3 − 9w4)

Comment: Consider the branch where v4 is selected. A total of 6 vertices
disappear and at least 3 vertices have their degree reduced from 4 to 3. We
use the same argument for v1, v2 and v3. Consider v1.
If v4 is not adjacent to v1: the degree of v4 is reduced.
If v4 is adjacent to v1 and N [v1] 6⊆ N [v4]: a neighbor of v1 has its degree
reduced from 4 to 3.
If v4 is adjacent to v1 and N [v1] ⊆ N [v4]: let y1 and y2 be the two common
neighbors of v1 and v4 (except u). y1 and y2 have degree 4 and neighbors
of degree 4, 4, 4 and 5. At least one of y1 and y2 has a neighbor of degree 4
outside N [v4], otherwise N [y1] = N [y2].

22) d(u) = 4, d(v3) = 5, d(v4) = 5

u

v1

v2

v3

v4

T (µ) ≥ 3T (µ− 5w4) + 2T (µ− 6w4)

23) d(u) = 4, d(v4) ≥ 6

u

v1

v2

v3

v4

T (µ) ≥ 4T (µ− 5w4) + T (µ− 7w4)

24) d(u) ≥ 5

u T (µ) ≥ 6T (µ− 6w4)

230 Detailed running time analysis of Algorithm #MaximalIS

Appendix B
Convex Program for the 2-CSP
Algorithm

maximum degree
param maxd integer >=3;
fraction of non simple clauses
param p;
param margin;
set DEGREES := 0..maxd;
weight for edges
var We >= 0;
weight for degree reductions from degree at most i
var h {DEGREES} >= 0;
vertex of degree i + i/2 surrounding half edges
var a {DEGREES};
weight for heavy edges
var Wh;
Regular weights
var R4 >= 0; (5.14)
var R5 >= 0; (5.14)
var R6 >= 0; (5.14)
additional degree reductions in the 3rd branch (nonregular)
of the clause learning branching for p5=4 vs p5=3
var nonreg53;
change in measure for the 3 branches
1st argument is the nb of deg-4 nbs of u
2nd argument distinguishes (if present) if v has at most 1 deg-5 nb
in N^2 (1) or at least 2 (2)
set TWO := 1..2;
var f1 {TWO};
var f2 {TWO,TWO};
var f3 {TWO,TWO};
var D4r {0..4, 0..4};
var D4n {0..4, 0..4};
var g4r {0..4};

232 Convex Program for the 2-CSP Algorithm

var g4n {0..4};

analysis in terms of the number of edges
minimize Obj: (1-p)*We + p*Wh + 0*R4 + 0*R5 + 0*R6;

Some things we know
subject to Known:
a[0] = 0; (5.24)

Constrain W values non-positive
subject to Wnonpos {d in DEGREES : d>=1}:
a[d] - d*We/2 <= 0 - margin; (5.16)(5.12)

a[] value positive
subject to MeasurePos {d in DEGREES : d>=1}:
a[d] >= 0 + margin; (5.17)

Intuition: weight for heavy edges >= weight for light edges
subject to HeavyEdge:
We - Wh <= 0 - margin; (5.19)

collapse parallel edges
subject to parallel {d in DEGREES : d >= 3}:

Wh - We - 2*a[d] + 2*a[d-1] <= 0 - margin; (5.22)

decomposable edges
subject to Decomposable {d in DEGREES : d >= 1}:

- a[d] + a[d-1] <= 0 - margin; (5.25)

constraints for the values of h[]
subject to hNotation {d in DEGREES, i in DEGREES : 3 <= i <= d}:
h[d] - a[i] + a[i-1] <= 0 - margin; (5.30)(5.35)

#######################################
constraints for cubic
#######################################

3-cut
subject to Cut3:
2*2^(-5*a[3] - 2*h[3]) <= 1 - margin; (5.31)

Independent neighborhood
subject to Indep {q in 0..3}:
2^(-a[3] - 3*h[3] -q*(Wh-We)) + 2^(-a[3] -3*h[3] - q*(Wh-We) - 2*(3-q)*h[3])
<= 1 - margin; (5.32)

One edge in neighborhood
subject to OneEdge1:
2^(-5*a[3]-h[3]) + 2^(-5*a[3] -3*h[3]) <= 1 - margin; (5.34)

subject to OneEdge2:

233

2^(-5*a[3] -h[3] -Wh +We) + 2^(-5*a[3] -h[3] -Wh +We) <= 1 - margin; (5.33)

#######################################
constraints for degree 4
#######################################

4-regular

regular becomes nonregular
subject to Regular41:

2* 2^(-a[4] - 4*h[4]-R4) <= 1 - margin; (5.38)

regular becomes regular
subject to Regular42:

2* 2^(-5*a[4]) <= 1 - margin; (5.37)

4 non-regular

subject to 4nonregularBase
{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
D4n[p3p,p3pp] = -a[4] -(p3p+p3pp)*h[3] -p4*h[4] -ceil(p3pp/2)*(Wh-We); (5.39)

subject to 4regularBase
{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
D4r[p3p,p3pp] = -a[4] -(p3p+p3pp)*a[3] -p4*a[4] -ceil(p3pp/2)*(Wh-We)

+R4; (5.40)

subject to 4nonregularBonus
{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
g4n[p3p] = - floor((p3p+2)/3) * (2*h[4]); (5.41)

subject to 4regularBonus
{p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
g4r[p3p] = - (floor(p3p/2)+floor(p3p/3)+floor(p3p/4)) * a[3]; (5.42)

subject to Nonregular41 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
2^(D4n[p3p,p3pp]) + 2^(D4n[p3p,p3pp] + g4n[p3p])
<= 1 - margin; (5.43)

subject to Nonregular42 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
2^(D4n[p3p,p3pp]) + 2^(D4r[p3p,p3pp] + g4r[p3p])
<= 1 - margin; (5.44)

subject to Nonregular43 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
2^(D4r[p3p,p3pp]) + 2^(D4n[p3p,p3pp] + g4n[p3p])
<= 1 - margin; (5.45)

subject to Nonregular44 {p3p in 0..4, p3pp in 0..4, p4 in 0..3: p3p+p3pp+p4=4}:
2^(D4r[p3p,p3pp]) + 2^(D4r[p3p,p3pp] + g4r[p3p])
<= 1 - margin; (5.46)

234 Convex Program for the 2-CSP Algorithm

#######################################
constraints for degree 5
#######################################

3-cut for degree 5
subject to Cut5_3:

2* 2^(-a[5] - 6*a[3] + R5 +(Wh-We)) <= 1 - margin; (5.47)

5-regular

regular becomes nonregular
subject to Regular51:

2* 2^(-a[5] - 5*h[5]-R5) <= 1 - margin; (5.48)

regular stays regular
subject to Regular52:

2* 2^(-6*a[5]) <= 1 - margin; (5.49)

5 non-regular

clause learning

first branch
subject to Cf1 {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f1[p4] >= -a[5]-p4*h[4]-p5*h[5]; (5.54)
subject to Cf1reg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f1[p4] >= -a[5]-p4*a[4]-p5*a[5]+R5; (5.54)

second branch, v has at most 1 deg-5 neighbor in N^2
subject to Cf2a {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,1] >= -a[5]-p4*h[4]-p5*h[5]-a[4]-3*h[4]-h[5]; (5.55)
subject to Cf2areg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,1] >= -a[5]-p4*a[4]-p5*a[5]+R5; (5.55)

second branch, v (and all other deg-5 nbs of u) has >=2 deg-5 nbs in N^2
subject to Cf2b {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,2] >= -a[5]-p4*h[4]-p5*h[5]-a[4]-4*h[5]; (5.56)
subject to Cf2breg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f2[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-2*a[3]+R5; (5.56)

additional degree reductions in the 3rd branch (nonregular) for p5=4 vs p5=3
subject to addDegRedNR53_1:
nonreg53 <= 2*h[5]; (5.58)

subject to addDegRedNR53_2:
nonreg53 <= h[4]+h[3]-h[5]; (5.59)

third branch, v has at most 1 deg-5 neighbor in N^2
subject to Cf3a {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,1] >= -a[5]-p4*a[4]-p5*a[5]-(4+((4*p4+5*p5-5) mod 2))*h[5]; (5.57)

235

subject to Cf3areg {p4 in 1..2, p5 in 3..4: p4+p5=5}:
f3[p4,1] >= -a[5]-p4*a[4]-p5*a[5]-4*a[3]+R5; (5.57)

third branch, v (and all other deg-5 nbs of u) has >=2 deg-5 nbs in N^2
subject to Cf3b {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-6*h[5]-floor(p5/4)*nonreg53; (5.60)
subject to Cf3breg {p4 in 1..2, p5 in 3..4: p4+p5=5}:

f3[p4,2] >= -a[5]-p4*a[4]-p5*a[5]-2*a[3]-2*a[5]+R5; (5.60)

the clause learning splitting
subject to Nonregular5cl {p4 in 1..2, nb5 in 1..2}:

2^(f1[p4]) + 2^(f2[p4,nb5]) + 2^(f3[p4,nb5]) <= 1; (5.61)(5.62)

2-way splitting

2-way splitting, non-reg in both branches, if p3>0, then additional h-e
subject to Nonregular51a {p3 in 0..5, p4 in 0..5,

p5 in 0..4, H in 0..1: p3+p4+p5=5
and ((H=1) or (p5 < 3 or p3>0))}:

2* 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We) -ceil(p3/5)*(Wh-We))
<= 1 - margin; (5.53)

2-way splitting, non-reg in both branches, if p3>0, then additional super-2
subject to Nonregular51b {p3 in 0..5, p4 in 0..5, p5 in 0..4,

H in 0..1: p3+p4+p5=5
and ((H=1) or (p5 < 3 or p3>0))}:

2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We) -ceil(p3/5)*2*h[5])
+ 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We))
<= 1 - margin; (5.52)

2-way splitting, becomes reg in both branches
subject to Nonregular52 {p3 in 0..5, p4 in 0..5, p5 in 0..4,

H in 0..1: p3+p4+p5=5
and ((H=1) or (p5 < 3 or p3>0))}:

2* 2^(-a[5] - p3*a[3] - p4*a[4] - p5*a[5] -H*(Wh-We) + R5)
<= 1 - margin; (5.50)

2-way splitting, becomes reg in 1 branch
subject to Nonregular52b {p3 in 0..5, p4 in 0..5, p5 in 0..4,

H in 0..1: p3+p4+p5=5
and ((H=1) or (p5 < 3 or p3>0))}:

2^(-a[5] - p3*a[3] - p4*a[4] - p5*a[5] -H*(Wh-We) + R5)
+ 2^(-a[5] - p3*h[3] - p4*h[4] - p5*h[5] -H*(Wh-We))
<= 1 - margin; (5.50)

#######################################
constraints for degree 6
#######################################

236 Convex Program for the 2-CSP Algorithm

6-regular

regular becomes nonregular
subject to Regular61:

2* 2^(-a[6] - 6*h[6]-R6) <= 1 - margin; (5.64)

regular stays regular
subject to Regular62:

2* 2^(-7*a[6]) <= 1 - margin; (5.63)

6 non-regular

nonregular stays nonregular
subject to Nonregular61 {p3 in 0..6, p4 in 0..6, p5 in 0..6, p6 in 0..5:

p3+p4+p5+p6=6}:
2* 2^(-a[6] - p6*h[6] - p5*h[5] - p4*h[4] - p3*h[3]) <= 1 - margin; (5.65)

nonregular becomes regular
subject to Nonregular62 {p3 in 0..6, p4 in 0..6, p5 in 0..6, p6 in 0..5:

p3+p4+p5+p6=6}:
2* 2^(-a[6] - p6*a[6] - p5*a[5] - p4*a[4] - p3*a[3] +R6) <= 1 - margin; (5.66)

Index

algorithm
#3-Coloring, 170
4-Coloring, 172
enumISPw, 167
max2csp, 95
#MaximalIS, 79
Maximum Independent Set, 179
Maximum Induced Cluster Subgraph,

187
mif, 62
Minimum Dominating Set, 155
#Minimum k-Hitting Set, 181, 183
Minimum Maximal Matching, 173
mis, 39

analysis
measure based, 43
simple, 39

bag, 135
biclique

counting algorithm, 76
optimization algorithm, 76
property A, 75
property B, 75

bounds on mathematical objects, 24
branching, 38
branching algorithm, 37
branching number, 51

balance property, 51
dominance property, 51

brute force, 23

chordality, 161
chromatic number, 163
clause learning, 110
clique tree, 160
combination, 38

dynamic programming, 25

exhaustive search, see brute force

feedback vertex set, 57

graph
C5 � P2, 69
Gl, 85
P 2

n , 42
graph class

4-chordal, 161
c-dense, 157
chordal, 71, 159
circle, 140
cluster, 70, 184
cograph, 70
d-regular, 70
k-colorable, 70
line, 70
outerplanar, 71
path, 70
planar, 71
split, 70
trivially perfect, 70
weakly chordal, 161

inclusion–exclusion, 29
inspection, 37
iterative compression, 175

local search, 27
logical kronecker delta, 45
lower bound

running time, 41
#MaximalIS, 84
mis, 42

matching, 172
mathematical programming

convex, 49

238 INDEX

quasiconvex, 47
maximal biclique

counting algorithm, 86
number of, 77

measure, 45
optimize, 47
state based, 55

memorization, 26
minimal feedback vertex sets

number of, 65
lower bound, 69
upper bound, 66

nice tree decomposition, 136

O∗(·), 21

parameter bounded subroutines, 31
parameterized complexity, 31
partitioning based algorithms, 29
path decomposition, 135
pathwidth, 135

bound for sparse graphs, 137, 139, 140
preprocessing, 26

random local search, 47
rare structures, 53
recursion, 38
recursion tree, see search tree
reduction, 38

scanline, 141
search tree, 50
selection, 37
simplification, 38
split and list, 28
splitting, 38
subroutine, 52
super 2-reduction, 110

T·(·), 39
transformation, 38
tree decomposition, 135
treewidth, 135

bound for circle graphs, 143

	Abstract
	Preface
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Negative Results
	1.2 Overview of Techniques
	1.3 On Space and on Time
	1.4 Outline of Thesis

	2 Branching Algorithms
	2.1 Simple Analysis
	2.2 Lower Bounds on the Running Time of an Algorithm
	2.3 Measure Based Analysis
	2.4 Optimizing the Measure
	2.5 Search Trees
	2.6 Branching Numbers and their Properties
	2.7 Exponential Time Subroutines
	2.8 Towards a Tighter Analysis
	2.9 Conclusion

	3 Feedback Vertex Sets
	3.1 Motivation and Previous Work
	3.2 Discussion of Results
	3.3 Preliminaries
	3.4 Computing a Minimum Feedback Vertex Set
	3.5 On the Number of Minimal Feedback Vertex Sets
	3.6 Conclusion

	4 On Bicliques in Graphs
	4.1 Introduction
	4.2 Polynomial Time Reductions
	4.3 Improving Prisner's Bound
	4.4 Counting Algorithms
	4.5 Conclusion

	5 Max 2-Sat, Max 2-CSP, and everything in between
	5.1 Introduction
	5.2 Definitions
	5.3 Algorithm and Outline of Analysis
	5.4 Some Initial Constraints
	5.5 Simplification Rules and their Weight Constraints
	5.6 Some Useful Tools
	5.7 Branching Reductions and Preference Order
	5.8 Cubic Instances
	5.9 Instances of Degree 4
	5.10 Instances of Degree 5
	5.11 Instances of Degree 6
	5.12 Tuning the Bounds
	5.13 Conclusion

	6 Treewidth Bounds
	6.1 Bounds on the Pathwidth of Sparse Graphs
	6.2 Bound on the Treewidth of Circle Graphs
	6.3 Conclusion

	7 Domination on Graph Classes
	7.1 Previous Work
	7.2 Our Results
	7.3 General Framework
	7.4 Dense Graphs
	7.5 Chordal Graphs
	7.6 Circle Graphs, 4-chordal Graphs, and Weakly Chordal Graphs
	7.7 Conclusion

	8 Enumeration and Pathwidth
	8.1 Considered Problems
	8.2 Our Results
	8.3 Framework Combining Enumeration and Pathwidth
	8.4 Applications
	8.5 Conclusion

	9 Iterative Compression and Exact Algorithms
	9.1 Background
	9.2 Maximum Independent Set
	9.3 #k-Hitting Set
	9.4 Maximum Induced Cluster Subgraph
	9.5 Conclusion

	10 Conclusion
	Glossary
	Problem Definitions
	Bibliography
	A Detailed running time analysis of Algorithm #MaximalIS
	B Convex Program for the 2-CSP Algorithm
	Index

