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Process theo,y. A process is the behaviour of a system. The system can be a machine, an elementary 
particle, a communication protocol, a network of falling dominoes, a chess player, or any other sys
tem. Process theory is the study of processes. Two main activities of process theory are modelling 
and verification . Modelling is the activity of representing processes, mostly as elements of a 
mathematical domain or as expressions in a system description language. Verification is the activity 
of proving statements about processes, for instance that the actual behaviour of a system is equal to 
its intended behaviour. Of course, this is only possible if a criterion has been defined, determining 
whether or not two processes are equal, i.e. two systems behave similarly. Such a criterion constitutes 
the semantics of a process theory. (To be precise, it constitutes the semantics of the equality concept 
employed in a process theory.) Which aspects of the behaviour of a system are of importance to a 
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certain user depends on the environment in which the system will be running, and on the interests of 
the particular user. Therefore it is not a task of process theory to find the 'true' semantics of 
processes, but rather to determine which process semantics is suitable for which applications. 

Comparative concurrency semantics. This paper aims at the classification of process semantics. 1 The 
set of possible process semantics can be partially ordered by the relation 'makes strictly more 
identifications on processes than', thereby becoming a complete lattice2

• Now the classification of 
some useful process semantics can be facilitated by drawing parts of this lattice and locating the posi
tions of some interesting process semantics, found in the literature. Furthermore the ideas involved in 
the construction of these semantics can be unraveled and combined in new compositions, thereby 
creating an abundance of new process semantics. These semantics will, by their intermediate posi
tions in the semantic lattice, shed light on the differences and similarities of the established ones. 
Sometimes they also turn out to be interesting in their own right. Finally the semantic lattice serves 
as a map on which it can be indicated which semantics satisfy certain desirable properties, and are 
suited for a particular class of applications. 

Most semantic notions encountered in contemporary process theory can be classified along four 
different lines, corresponding with four different kinds of identifications. First there is the dichotomy 
of linear time versus branching time: to what extent should one identify processes differing only in the 
branching structure of their execution paths? Secondly there is the dichotomy of interleaving seman
tics versus partial order semantics: to what extent should one identify processes differing only in the 
causal dependencies between their actions (while agreeing on the possible orders of execution)? 
Thirdly one encounters different treatments of abstraction from internal actions in a process: to what 
extent should one identify processes differing only in their internal or silent actions? And fourthly 
there are different approaches to infinity: to what extent should one identify processes differing only 
in their infinite behaviour? These considerations give rise to a four dimensional representation of the 
proposed semantic lattice. 

However, at least three more dimensions can be distinguished. In this paper, stochastic and real
time aspects of processes are completely neglected. Furthermore it deals with uniform concurrency3 
only. This means that processes are studied, performing actions4 a,b,c, ... which are not subject to 
further investigations. So it remains unspecified if these actions are in fact assignments to variables or 
the falling of dominoes or other actions. If also the options are considered of modelling (to a certain 
degree) the stochastic and real-time aspects of processes and the operational behaviour of the elemen
tary actions, three more parameters in the classification emerge. 

Process domains. In order to be able to reason about processes in a mathematical way, it is common 
practice to represent processes as elements of a mathematical domain. Such a domain is called a pro
cess domain. The relation between the domain and the world of real processes is mostly stated infor
mally. The semantics of a process theory can be modelled as an equivalence on a process domain, 
called a semantic equivalence. In the literature one finds among others: 

graph domains, in which a process is represented as a process graph, or state transition diagram, 
net domains, in which a process is represented as a Oabelled) Petri net, 
event structure domains, in which a process is represented as a Oabelled) event structure, 
explicit domains, in which a process is represented as a mathematically coded set of its properties, 
projective limit domains, which are obtained as projective limits of series of finite term domains, 

l . lbis field of research is called comparative concurrency semantics, a terminology first used by MEYER in (24). 
2. The supremum of a set of process semantics is the semantics identifying two processes whenever they are identified by every 
semantics in this set. 
3. The term uniform concurrency is employed by DE BAKKER et al (5). 
4. Strictly speaking processes <lo not perform actions, but systems do. However, for reasons of convenience, this paper some
times uses the word process, when actually referring to a system of which the process is the behaviour. 
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and term domains, in which a process is represented as a term in a system description language. 

Action relations. Write p ~ q if the process p can evolve into the process q, while performing the 

action a. The binary predicates ~ are called action relations. The semantic equivalences which are 
treated in this paper will be defined entirely in terms of action relations. Hence these definitions 
apply to any process domain on which action relations are defined. Furthermore they will be defined 
uniformly in terms of action relations, meaning that all actions are treated in the same way. For rea
sons of convenience, even the usual distinction between internal and external actions is dropped in 
this paper. 

Finitely branching, concrete, sequential processes. Being a first step, this paper limits itself to a very 
simple class of processes. First of all only sequential processes are investigated: processes capable of 
performing at most one action at a time. Moreover the main interest is infinitely branching processes: 
processes having in each state only finitely many possible ways to proceed. Finally, instead of drop
ping the usual distinction between internal and external actions, one can equivalently maintain to 
study concrete processes in which no internal actions occur (and also no internal choices as in CSP 
[21]). For this simple class of processes, when considering only semantic equivalences that can be 
defined uniformly in terms of action relations, the announced semantic lattice collapses in six out of 
seven dimensions and covers only the linear time - branching time spectrum. 

Literature. In the literature on uniform concurrency 11 semantics can be found, which are uniformly 
definable in terms of action relations and different on the domain of finitely branching, sequential 
processes (see Figure I). The coarsest one (i.e. the semantics making the most identifications) is trace 
semantics, as presented in HOARE [20]. In trace semantics only partial traces are employed. The finest 
one (making less identifications than any of the others) is bisimulation semantics, as presented in 
MILNER [27]. Bisimulation semantics is the standard semantics for the system description language 
CCS (MILNER [25]). The notion of bisimulation was introduced in PARK [29]. Bisimulation 
equivalence is a refinement of observational equivalence, as introduced by HENNESSY & MILNER in [17]. 
On the domain of finitely branching, concrete, sequential processes, both equivalences coincide. Also 
the semantics of DE BAKKER & ZUCKER, presented in [6], coincides with bisimulation semantics on 
this domain. Then there are nine semantics in between. First of all a variant of trace semantics can 
be obtained by using complete traces besides (or instead of) partial ones. In this paper it is called 
completed trace semantics. Failure semantics is introduced in BROOKES, HOARE & ROSCOE [9], and 
used in the construction of a model for the system description language CSP (HOARE [ 19, 21 ]). It is 
finer than completed trace semantics. The semantics based on testing equivalences, as developed in DE 
NICOLA & HENNESY [12], coincides with failure semantics on the domain of finitely branching, con
crete, sequential processes, as do the semantics of KENNAWAY [22] and DARONDEAU [IO]. This has 
been established in DE NICOLA [11]. In OLDEROG & HOARE [28] readiness semantics is presented, 
which is slightly finer than failure semantics. Between readiness and bisimulation semantics one finds 
ready trace semantics, as introduced independently in PNuELI [31] (there called barbed semantics), BAE
TEN, BERGSTRA & KLoP [4] and POMELLO [32] (under the name exhibited behaviour semantics). The 
natural completion of the square, suggested by failure, readiness and ready trace semantics yields 
failure trace semantics. For finitely branching processes this is the same as refusal semantics, intro
duced in PHILLIPS [30]. Simulation equivalence, based on the classical notion of simulation (see e.g. 
PARK [29]), is independent of the last five semantics. Ready simulation semantics was introduced in 
BLOOM, IsTRAIL & MEYER [8] under the name GSOS trace congruence. It is finer than ready trace as 
well as simulation equivalence. In LARSEN & SKou [23] a more operational characterization of this 
equivalence was given under the name 2/2-bisimulation equivalence. This characterization resembles the 
one used in this paper. Finally 2-nested simulation equivalence, introduced in GROOTE & V AAN
DRAGER [15], is located between ready simulation and bisimulation equivalence, and possiblefutures 
semantics, as proposed in ROUNDS & BROOKES [33], can be positioned between 2-nested simulation 
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bisimulation semantics 
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2-nested simulation semantics 
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ready simulation semantics 
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FIGURE I. The linear time - branching time spectrum 

and readiness semantics. Among the semantics which are not definable in terms of action relations 
and thus fall outside the scope of this chapter, one finds semantics that take stochastic properties of 
processes into account, as in VAN GLABBEEK, SMOLKA, STEFFEN & ToFTs [ 14] and semantics that 
make almost no identifications and are hardly used for system verification. 

About the contents. In the first section of this paper all semantics are defined, and motivated by 
several testing scenarios, which are phrased in terms of button pushing experiments. In Section 2 the 
semantics are partially ordered by the relation 'makes at least as many identifications as'. This yields 
the infinitary linear time - branching time spectrum. Counterexamples are provided, showing that on 
a graph domain this ordering cannot be further expanded. However, for deterministic processes the 
spectrum collapses, as was first observed by PARK [29]. Finally, in Section 3, ten of these semantics 
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are applied to a simple language for finite, concrete, sequential, nondeterministic processes, and for 
each of them a complete axiomatization is provided. 

1. SEMANTIC EQUIVALENCES ON LABELLED TRANSITION SYSTEMS 

I .I . La,be/led transition systems. In this paper processes will be investigated, that are capable of per
forming actions from a given set Act. By an action any activity is understood that is considered as a 
conceptual entity on a chosen level of abstraction. Actions may be instantaneous or durational and 
are not required to terminate, but in a finite time only finitely many actions can be carried out. Any 
activity of an investigated process should be part of some action a EAct performed by the process. 
Different activities that are indistinguishable on the chosen level of abstraction are interpreted as 
occurrences of the same action a EAct. 

A process is sequential if it can perform at most one action at the same time. In this paper only 
sequential processes will be considered. A domain of sequential processes can often be conveniently 
represented as a labelled transition system. This is a domain A on which infix written binary predi-

cates ➔ are defined for each action a EAct. The elements of A represent processes, and p ➔ q 
means that p can start performing the action a and after completion of this action reach a state where 

q is its remaining behaviour. In a labelled transition system it may happen that p ➔ q and p ~ r 
for different actions a and b or different processes p and q. This phenomena is called branching. It 
need not be specified how the choice between the alternatives is made, or whether a probability distri
bution can be attached to it. 

NOTATION: For any alphabet }:, let }:• be the set of strings over }:_ Write £ for the empty string, ap 
for the concatenation of a and p E }:• , and a for the string, consisting of the single symbol a E}:. 

DEFINITION: A labelled transition system is a pair (A,➔) with A a class and ➔ kAXAct X A, such 

that for p EA and a EA ct the class { q EA IP ➔ q} is a set. 

Let for the remainder of this section (A ,➔) be a labelled transition system, ranged over by p,q,r, .... 

Write p ➔ q for (p,a,q) E➔. The binary predicates ➔ are called action relations. 

DEFINITIONS (Remark that the following concepts are defined in terms of action relations only): 

The generalized action relations ➔ for aEAct• are defined inductively by: 
( 

1. p ➔ p, for any process p. 

2. (p, a, q) E➔ with a EA ct implies p ➔ q with a EAct•. 

3. p ➔ q 4 r implies p .!!..4 r . 

In words: the generalized action relations ➔ are the reflexive and transitive closure of the 

ordinary action relations ➔ . p ➔ q means that p can evolve into q, while performing the 

sequence a of actions. Remark that the overloading of the notion p ➔ q is quite harmless. 

The set of initial actions of a process p is defined by: I (p) = { a EA ct I 3q: p ➔ q}. 

A process p EA is finitely branching if for each q EA with p ➔ q for some a EA ct•, the set 

{(a,r)lq ➔ r, a EAct, r EA} is finite. 

In the following, several semantic equivalences on A will be defined in terms of action relations. 
Most of these equivalences can be motivated by the observable behaviour of processes, according to 
some testing scenario. (Two processes are equivalent if they allow the same set of possible 
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observations, possibly in response on certain experiments.) I will try to capture these motivations in 
terms of button pushing experiments (cf. MILNER [25), pp. 10-12). 

1.2. Trace semantics. a EA ct• is a trace of a process p, if there is a process q, such that p ~ q. Let 
T(p) denote the set of traces ofp. Two processesp and q are trace equivalent if T(p)=T(q). In trace 
semantics two processes are identified iff they are trace equivalent. 

Trace semantics is based on the idea that two processes are to be identified if they allow the same 
set of observations, where an observation simply consists of a sequence of actions performed by the 
process in succession. 

1.3. Completed trace semantics. aEAct* is a complete trace of a process p, if there is a process q, such 

that p ~ q and I(q)= 0. Let CT(p) denote the set of complete traces of p. Two processes p and q 
are completed trace equivalent if T (p) = T ( q) and CT (p) = CT ( q ). In completed trace semantics two 
processes are identified iff they are completed trace equivalent. 

Completed trace semantics can be explained with the following (rather trivial) completed trace 
machine. 

FIGURE 2. The completed trace machine 

The process is modelled as a black box that contains as its interface to the outside world a display on 
which the name of the action is shown that is currently carried out by the process. The process auto
nomously choses an execution path that is consistent with its position in the labelled transition system 
(A, ➔). During this execution always an action name is visible on the display. As soon as no further 
action can be carried out, the process reaches a state of deadlock and the display becomes empty. 
Now the existence of an observer is assumed that watches the display and records the sequence of 
actions displayed during a run of the process, possibly followed by deadlock. It is assumed that an 
observation takes only a finite amount of time and may be terminated before the process stagnates. 
Two processes are identified if they allow the same set of observations in this sense. 

The trace machine can be regarded as a simpler version of the completed trace machine, were the 
last action name remains visible in the display if deadlock occurs ( unless deadlock occurs in the 
beginning already). On this machine traces can be recorded, but stagnation can not be detected, since 
in case of deadlock the observer may think that the last action is still continuing. 

1.4. Failure semantics. The failure machine contains as its interface to the outside world not only the 
display of the completed trace machine, but also a switch for each action a EAct (as in Figure 3). By 
means of these switches the observer may determine which actions are free and which are blocked. 
This situation may be changed any time during a run of the process. As before, the process auto
nomously choses an execution path that fits with its position in (A, ➔), but this time the process may 
only start the execution of free actions. If the process reaches a state where all initial actions of its 
remaining behaviour are blocked, it can not proceed and the machine stagnates, which can be recog
nized from the empty display. In this case the observer may record that after a certain sequence of 
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a b z 

FIGURE 3. The failure trace machine 

actions a, the set X of free actions is refused by the process. X is therefore called a refusal set and 
<a,X> a failure pair. The set of all failure pairs of a process is called its failure set, and constitutes 
its observable behaviour. 

DEFINITION: <a,X> EAct* X~(Act) is a failure pair of a process p, if there is a process q, such that 

p ➔ q and / ( q) n X = 0 . Let F (p) denote the set of failure pairs of p. Two processes p and q are 
failure equivalent if F(p)=F(q). In failure semantics two processes are identified iff they are failure 
equivalent. 

This version of failure semantics is taken from HOARE [21]. In BROOKES, HOARE & RoscoE [9], where 
failure semantics was introduced, the refusal sets are required to be finite. It is not difficult to see 
that for finitely branching processes the two versions yield the same failure equivalence. In fact this 
follows immediately from the following proposition, that says that, for finitely branching processes, 
the failure pairs with infinite refusal set are completely determined by the ones with finite refusal set. 

PROPOSITION 1.1 : LetpEA and aET(p). Put Cont(a)={aEActlaaET(p)}. 
i. Then,forXsAct, <a,X>EF(p) <c? <a,XnCont(a)>EF(p). 
ii. If p is finitely branching then Cont(a) is finite. 
PROOF: Straightforward. D 

In DE NICOLA [11] several equivalences, that were proposed in KENNAWAY [22], DARONDEAU [10] and 
DE NICOLA & HENNESY [12], are shown to coincide with failure semantics on the domain of finitely 
branching transition systems without internal moves. For this purpose he uses the following alterna
tive characterization of failure equivalence. 

DEFINITION: Write p after a MUST X if for each q EA with p ➔ q there is an r EA and a EX such 

that q ➔ r. Putr~q if for all aEAct* and XsAct: p after a MUST X <c? q after a MUST X. 

PROPOSITION 1.2: Letp,qEA. Then pc::!.q # F(p)=F(q). 
PROOF: p after a MUST X <c? (a,X)fl_F(p) [11]. D 

In HENNESSY [ 16], a model for nondeterministic behaviours is proposed in which a process is 
represented as an acceptance tree. An acceptance tree of a finitely branching process p without inter
nal moves or internal nondeterminism can be represented as the set of all pairs 

<a,X>EAct* X~(Act) for which there is a process q, such thatp ➔ q and Xsl(q). It follows that 
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for such processes acceptance tree equivalence coincides with failure equivalence. 

1.5. Failure trace semantics. The failure trace machine has the same layout as the failure machine, but 
is does not stagnate permanently if the process cannot proceed due to the circumstance that all 
actions it is prepared to continue with are blocked by the observer. Instead it idles - recognizable 
from the empty display - until the observer changes its mind and allows one of the actions the process 
is ready to perform. What can be observed are traces with idle periods in between, and for each such 
period the set of actions that are not blocked by the observer. Such observations can be coded as 
sequences of members and subsets of Act. 

EXAMPLE: The sequence {a,b}cdb{b,c}{b,c,d}a(Act) is the account of the following observation: 
At the beginning of the execution of the process p, only the actions a and b were allowed by the 
observer. Apparently, these actions were not on the menu of p, for p started with an idle period. 
Suddenly the observer canceled its veto on c, and this resulted in the execution of c, followed by d 
and b. Then again an idle period occurred, this time when b and c were the actions not being blocked 
by the observer. After a while the observer decided to allow d as well, but the process ignored this 
gesture and remained idle. Only when the observer gave the green light for the action a, it happened 
immediately. Finally, the process became idle once more, but this time not even one action was 
blocked. This made the observer realize that a state of eternal stagnation had been reached, and 
disappointed he terminated the observation. 

A set X ~Act, occurring in such a sequence, can be regarded as an offer from the environment, that 
is refused by the process. Therefore such a set is called a refusal set. The occurrence of a refusal set 
may be interpreted as a 'failure' of the environment to create a situation in which the process can 
proceed without being disturbed. Hence a sequence over Act U 0'(Act), resulting from an observation 
of a process p may be called a failure trace of p. The observable behaviour of a process, according to 
this testing scenario, is given by the set of its failure traces, its failure trace set. The semantics in 
which processes are identified iff their failure trace sets coincide, is called failure trace semantics. 

DEFINITIONS: 

The refusal relations 4 for X CA ct are defined by: p 4 q iff p = q and I (p) n X = 0 . 

p 4 q means that p can evolve into q, while being idle during a period in which Xis the set of 
actions allowed by the environment. 

The failure trace relations ➔ for a E(Act U 0'(Act))* are defined as the reflexive and transitive 
closure of both the action and the refusal relations. Again the overloading of notation is harm
less. 

aE(Act U 0'(Act))* is a failure trace of a process p, if there is a process q, such that p ➔ q. Let 
FT(p) denote the set of failure traces of p. Two processes p and q are failure trace equivalent if 
FT(p)=FT(q). 

EXERCISES: 

I. Explain why a { a, b }a can never be a failure trace of a process p EA. 
2. Can { a }b and { b }a be two failure traces of such a process? And a { a }b and a { b }a ? 
3. {a,b}cc, {a}c{b}c, {b}c{a}c, c{a,b}c, c{a}{b}c and care failure traces of a process pEA. 

Which selections from this series provide the same information about p? 

1.6. Ready trace semantics. The Ready trace machine is a variant of the failure trace machine that is 
equipped with a lamp for each action a EAct. Each time the process idles, the lamps of all actions the 
process is ready to engage in are lit. Of course all these actions are blocked by the observer, other
wise the process wouldn't idle. Now the observer can see which actions could be released in order to 
let the process proceed. During the execution of an action no lamps are lit. An observation now 
consists of a sequence of members and subsets of Act, the actions representing information obtained 
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FIGURE 4. The ready trace machine 

from the display, and the sets of actions representing information obtained from the lights. Such a 
sequence is called a ready trace of the process, and the subsets occurring in a ready trace are referred 
to as menus. The information about the free and blocked actions is now redundant. The set of all 
ready traces of a process is called its ready trace set, and constitutes its observable behaviour. 

DEFINITIONS: 

The ready trace relations H for a E(Act U 0'(Act))* are defined inductively by: 
( 

1. p tt p, for any process p. 

2. p ➔ q implies p ~ q. 

3. p h qwithX~Actwheneverp=qandJ(p)=X. 

4. p B q ~ rimpliesp i4 r. 
The special arrow ~ had to be used, since further overloading of ~ would cause confusion 
with the failure trace relations. 

aE(Act U 0'(Act))* is a ready trace of a process p, if there is a process q, such that p B q. Let 
RT(p) denote the set of ready traces of p. Two processes p and q are ready trace equivalent if 
RT(p)=RT(q). In ready trace semantics two processes are identified iff they are ready trace 
equivalent. 

In BAETEN, BERGSTRA & KLoP [4], PNUELI [31] and POMELLO [32] ready trace semantics was defined 
slightly differently. By the proposition below, their definition yields the same equivalence as mine. 

DEFINITION: X 0a 1X 1a 2 • • • anXnE0'(Act)X(ActX0'(Act))* is a normal ready trace of a processp, if 
a1 a2 a. 

there are processes p 1, • • • ,Pn such that p ➔p 1 ➔ · · · ~Pn and I(p;)=X; for i = 1, · · · ,n. Let 
RTN(p) denote the set of normal ready traces of p. Two processes p and q are ready trace equivalent 
in the sense of [4, 31, 32] if RTN(p)=RTN(q). 

PROPOSITION 1.3: Letp,qEA. Then RTN(p) = RTN(q) # RT(p)=RT(q). 
PRooF: The normal ready traces of a process are just the ready traces which are an alternating 
sequence of sets and actions, and vice versa the set of all ready traces can be constructed form the set 
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of normal ready traces by means of doubling and leaving out menus. D 

I. 7. Readiness semantics. The readiness machine has the same layout as the ready trace machine, but, 
like the failure machine, can not recover from an idle period. By means of the lights the menu of ini
tial actions of the remaining behaviour of an idle process can be recorded, but this happens at most 
once during an observation of a process, namely at the end. An observation either results in a trace 
of the process, or in a pair of a trace and a menu of actions by which the observation could have 
been extended if the observer wouldn't have blocked them. Such a pair is called a ready pair of the 
process, and the set of all ready pairs of a process is its ready set. 

DEFINITION: <a,X> EAct• X0'(Act) is a ready pair of a process p, if there is a process q, such that 

p ~ q and I(q)=X. Let R(p) denote the set of ready pairs ofp. Two processesp and q are ready 
equivalent if R (p) = R ( q ). In readiness semantics two processes are identified iff they are ready 
equivalent. 

Two preliminary versions of readiness semantics were proposed in ROUNDS & BROOKES (33]. In 
possiblefutures semantics the menu consists of the entire trace set of remaining behaviour of an idle 
process, instead of only the set of its initial actions; in acceptance-refusal semantics a menu may be 
any finite subset of initial actions, while also the finite refusal sets of Subsection 1.4 are observable. 

DEFINITION: <a,X > EAct• X 0'(Act*) is a possiblefuture of a process p, if there is a process q, such 

that p ➔ q and T(q)= X. Let PF(p) denote the set of possible futures of p. Two processes p and q 
are possiblefutures equivalent if PF (p) =PF (q ). 

DEFINITION: <a,X, Y> EAct• X'5'(Act)X0'(Act) is a acceptance-refusal triple of a process p, if X and 

Y are finite and there is a process q, such that p ➔ q, X c:;J ( q) and Y n J ( q) = 0. Let AR (p) denote 
the set of acceptance-refusal triples of p. Two processes p and q are acceptance-refusal equivalent if 
AR(p)=AR(q). 

It is not difficult to see that for finitely branching processes acceptance-refusal equivalence coincides 
with readiness equivalence: <a,X> is a ready pair of a process p iff p has an acceptance-refusal tri
ple <a,X, Y> with XU Y=Cont(a) (as defined in the proof of Proposition 1.1). 

1.8. Infinite observations. All testing scenarios up till now assumed that an observation takes only a 
finite amount of time. However, they can be easily adapted in order to take infinite behaviours into 
account. 

DEFINITION: 

For any alphabet ~. let ~"' be the set of infinite sequences over ~-
a I a2 · · · EA ct"' is an infinite trace of a process p EA, if there are processes p 1,p 2, • • • such that 

a1 a2 
p ➔ p 1 ➔ · · · . Let T"'(p) denote the set of infinite traces of p. 
Two processes p and q are infinitary trace equivalent if T (p) = T ( q) and T"' (p) = T"' ( q ). 
p and q are infinitary completed trace equivalent if CT(p)= CT(q) and T"'(p)= T"'(q). Note that 
in this case also T(p) = T(q). 
p and q are infinitary failure equivalent if F(p)=F(q) and T"'(p) = T"'(q). 
p and q are infinitary ready equivalent if R (p) =R (q) and T"'(p )= T"'(q). 
Infinitary failure traces and infinitary ready traces a E(Act U 0'(Act))"' and the corresponding sets 
FT"'(p) and RT"'(p) are defined in the obvious way. Two processes p and q are infinitary failure 
trace equivalent if FT"'(p)=FT"'(q), and likewise for infinitary ready trace equivalence. 

With Konigs lemma one easily proves that for finitely branching processes all infinitary equivalences 
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coincide with the corresponding finitary ones. 

1.9. Simulation semantics. The testing scenario for finitary simulation semantics resembles that for 
trace semantics, but in addition the observer is, at any time during a run of the investigated process, 
capable of making arbitrary (but finitely) many copies of the process in its present state and observe 
them independently. Thus an observation yields a tree rather than a sequence of actions. Such a tree 
can be coded as an expression in a simple modal language. 

DEFINITIONS: 
The set es of simulation formulas over Act is defined inductively by: 
1. TEes. 
2. If cf>,t/lEes then cpAt/lEes. 
3. If cf>Ees and a EAct then acf>Ees. 
The satisfaction relation I=~ A X es is defined inductively by: 
1. pi=TforallpEA. 
2. p 1=cpAi/l if p 1=cp and p l=t/1. 
3. p l=acp if for some q EA: p ➔ q and q l=cp. 
Let S (p) denote the set of all simulation formula that are satisfied by the process p: 
S (p) = { cf> E es IP 1= cf>}. Two processes p and q are finitary simulation equivalent if S (p) = S ( q ). 

The following concept of simulation, occurs frequently in the literature (see e.g. PARK [29]). The 
derived notion of simulation equivalence coincides with finitary simulation equivalence for finitely 
branching processes. 

DEFINITION: A simulation is a binary relation R on processes, satisfying, for a EAct: 

if pRq and p ➔ p', then 3q': q ➔ q' and p'Rq'. 
Process p can be simulated by q, notation s St, if there is a simulation R with pRq. 
p and q are similar, notation p ~ q, if p S q and q SP· 

PROPOSITION 1.4: Similarity is an equivalence on the domain of processes. 
PROOF: It has to be checked that p SP, and p Sq & q Sr ~ p Sq. 

The identity relation is a simulation with pRp. 
If R is a simulation with pRq and Sis a simulation with qSr, then the relation R 0 S, defined by 
x (R 0 S)z iff 3y: xRy & ySz, is a simulation with p (R 0 S)r. □ 

Hence the relation will be called simulation equivalence. 

PROPOSITION 1.5: Letp,qEA be finitely branching processes. Then p~q ¢9 S(p)=S(q). 
PROOF: See HENNESSY & MILNER [18]. □ 

The testing scenario for simulation semantics differs from that for finitary simulation semantics, in 
that both the duration of observations and the amount of copies that can be made each time are not 
required to be finite. 

1.10. Ready simulation semantics. Of course one can also combine the copying facility with any of the 
other testing scenarios. The observer can then plan experiments on one of the generative machines 
from the Subsections 1.3 to 1.7 together with a duplicator, an ingenious device by which one can 
duplicate the machine whenever and as often as one wants. In order to represent observations, the 
modal language from the previous subsection needs to be slightly extended. 
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DEFINITIONS: 
The completed simulation formulas and the corresponding satisfaction relation are defined by 
means of the extra clauses: 
4. OEl;:,s-
4. p 1=0 if l(p)= 0. 
For the failure simulation formulas one needs: 
4. If X <;;:;Act then X EEps-
4. p 1= X ifl (p) n X = 0 . 
For the ready simulation formulas: 
4. If X<;;:;Act then XEERs• 
4. p 1=Xif l(p)=X. 
For the failure trace simulation formulas: 
4. If cf,EErrs and X<;;:;Act then XcpEErrs-
4. p 1= X cf> if J (p) n X = 0 and p 1= cf>. 
And for the ready trace simulation formulas : 
4. If cpEERTS and X<;;:;Act then XcpEERTS· 
4. p1=Xcpifl(p)=Xandp1=cf>. 

Note that traces, complete traces, failure pairs, etc. can be obtained as the corresponding kind of 
simulation formulas without the operator/\. 

By means of the formulas defined above one can define the finitary versions of completed simulation 
equivalence, ready simulation equivalence, etc. It is obvious that failure trace simulation equivalence 
coincides with failure simulation equivalence and ready trace simulation equivalence with ready simu
lation equivalence (p 1= Xcp # p 1= X /\cf>). Also it is not difficult to see that failure simulation 
equivalence and ready simulation equivalence coincide. So two different equivalences remain. For 
finitely branching processes the finitary versions of these two equivalences coincide with the following 
infinitary versions. 

DEFINITION: A complete simulation is a binary relation R on processes, satisfying, for a EAct: 

if pRq and p ➔ p', then 3q': q ➔ q' and p'Rq'; 
ifpRq then l(p)= 0 # J(q)= 0. 

Two processes p and q are completed simulation equivalent if there exists a complete simulation R with 
pRq and a complete simulation S with qSp. 

DEFINITION: A ready simulation is a binary relation R on processes, satisfying, for a EA ct: 

ifpRq andp ➔ p', then 3q': q ➔ q' andp'Rq'; 
ifpRq then l(p)=l(q). 

Two processes p and q are ready simulation equivalent if there exists a ready simulation R with pRq 
and a ready simulation S with qSp. 

An alternative and maybe more natural testing scenario for finitary ready simulation semantics (or 
simulation semantics) can be obtained by exchanging the duplicator for an undo-button on the (ready) 
trace machine (Figure 5). It is assumed that all intermediate states that are past through during a run 
of a process are stored in a memory inside the black box. Now pressing the undo-button causes the 
machine to shift one state backwards. In case the button is pressed during the execution of an action, 
this execution will be interrupted and the process assumes the state just before this action began. In 
the initial state pressing the button has no effect. An observation now consists of a (ready) trace, 
enriched with undo-actions. Such observations can easily be translated in (ready) simulation formulas. 
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FIGURE 5. The ready simulation machine 

I.I I. Refusal (simulation) semantics. In the testing scenarios presented so far, a process is considered 
to perform actions and make choices autonomously. The investigated behaviours can therefore be 
classified as generative processes. The observer merely restricts the spontaneous behaviour of the gen
erative machine by cutting off some possible courses of action. An alternative view of the investigated 
processes can be obtained by considering them to react on stimuli from the environment and be pas
sive otherwise. Reactive machines can be obtained out of the generative machines presented so far by 
replacing the switches by buttons and the display by a green light. 
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a b z undo 

FIGURE 6. The reactive ready simulation machine 

Initially the process waits patiently until the observer tries to press one of the buttons. If the observer 
tries to press an a-button, the machine can react in two different ways: if the process can not start 
with an a-action the button will not go down and the observer may try another one; if the process 
can start with an a-action it will do so and the button goes down. Furthermore the green light 
switches on. During the execution of a no buttons can be pressed. As soon as the execution of a is 
completed the light switches off, so that the observer knows that the process is ready for a new trial. 
Reactive machines as described above originate from MILNER [25, 26]. 

Next I will discuss the equivalences that originate from the various reactive machines. First con
sider the reactive machine that resembles the failure trace machine, thus without menu-lights and 
undo-button. An observation on such a machine consists of a sequence of accepted and refused 
actions. Such a sequence can be modelled as a failure trace where all refusal sets are singletons. For 
finitely branching processes the resulting equivalence is exactly the equivalence that originates from 
PHILLIPS notion of refusal testing [30]. There it is called refusal equivalence. The following 
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proposition shows that for finitely branching processes refusal equivalence coincides with failure 
equivalence. 

PROPOSITION 1.6: Let p EA and aEFT(p). Put Cont(a)= {a EA ct I aa EFT(p)}. 
i. Then, for X<;;;;Act, aXpEFT(p) ~ a(XnCont(a))pEFT(p). 
ii. If pis finitely branching then Cont(a) is finite. 
111. a(XU Y)pEFT(p) ~ aXYpEFT(p). 
PROOF: Straightforward. □ 

If the menu-lights are added to the reactive failure trace machine considered above one can observe 
ready trace sets, and the green light is redundant. If the green light (as well as the menu-lights) are 
removed one can only test trace equivalence, since any refusal may be caused by the last action not 
being ready yet. Reactive machines seem to be unsuited for testing completed trace and failure 
equivalence. If the menu-lights and the undo-button are added to the reactive failure trace machine 
one gets ready simulation again and if only the undo-button is added one obtains an equivalence that 
may be called refusal simulation equivalence and coincides with ready simulation equivalence on the 
domain of finitely branching processes. The following refusal simulation formulas originate from 
BLOOM, ISTRAIL & MEYER [8]. 

DEFINITION: The refusal simulation formulas and the corresponding satisfaction relation are defined by 
adding to the definitions of Subsection 1.9 the following extra clauses: 
4. If aEAct then ,aEecs-
4. p'F-,aif.ar;.I(p). 

An alternative family of testing scenarios with reactive machines can be obtained by allowing the 
observer to try to depress more than one button at a time. In order to influence a particular choice, 
the observer could already start exercising pressure on buttons during the execution of the preseeding 
action (when no button can go down). When this preseeding action is finished, at most one of the 
buttons will go down. These testing scenarios are equipotent with the generative ones: putting pres
sure on a button is equivalent to setting the corresponding switch on 'free'. 

1.12. 2-nested simulation semantics. 2-nested simulation equivalence popped up naturally in GROOTE & 
V AANDRAGER [ 15] as the coarsest congruence with respect to a large and general class of operators 
that is finer than completed trace equivalence. In order to obtain a testing scenario for this 
equivalence one has to introduce the rather unnatural notion of a lookahead [15]: The 2-nested simula
tion machine is a variant of the ready trace machine with duplicator, where in an idle state the 
machine not only tells which actions are on the menu, but even which simulation formulas are 
satisfied in the current state. 

DEFINITION: A 2-nested simulation is a simulation contained in simulation equivalence(~)- p and q 
are 2-nested simulation equivalent if there exists a 2-nested simulation R with pRq and a 2-nested simu
lation S with qSp. 

1.13. Bisimulation semantics. The testing scenario for bisimulation semantics, as presented in MILNER 
[25] is the oldest and most powerful testing scenario, from which most others have been derived by 
omitting some of its features. It was based on a reactive failure trace machine with duplicator, but 
additionally the observer is equipped with the capacity of global testing. Global testing is described in 
ABRAMSKY [l] as: "the ability to enumerate all (of finitely many) possible 'operating environments' at 
each stage of the test, so as to guarantee that all nondeterministic branches will be pursued by various 
copies of the subject process". MILNER [25] implemented global testing by assuming that 
(i) It is the weather which determines in each state which a-move will occur in response of pressing 



the a-button (if the process under investigation is capable of doing an a-move at all); 
(ii) The weather has only finitely many states - at least as far as choice-resolution is concerned; 
(iii) We can control the weather. 

15 

Now it can be ensured that all possible moves a process can perform in reaction on an a-experiment 
will be investigated by simply performing the experiment in all possible weather conditions. Unfor
tunately, as remarked in MILNER [26], the second assumption implies that the amount of different a
moves an investigated process can perform is bounded by the number of possible weather conditions; 
so for general application this condition has to be relaxed. 

A different implementation of global testing is given in LARSEN & SKou [23]. They assumed that 
every transition in a transition system has a certain probability of being taken. Therefore an observer 
can with an arbitrary high degree of confidence assume that all transitions have been examined, sim
ply by repeating an experiment many times. 

As argued among others in BLOOM, IsTRAIL & MEYER [8], global testing in the above sense is a 
rather unrealistic testing ability. Once you assume that the observer is really as powerful as in the 
described scenarios, in fact more can be tested then only bisimulation equivalence: in the testing 
scenario of Milner also the correlation between weather conditions and transitions being taken by the 
investigated process can be recovered, and in that of Larsen & Skou one can determine the relative 
probabilities of the various transitions. 

An observation in the global testing scenario can be represented as a formula in Hennessy-Milner 
logic [17] (HML). An HML formula is a simulation formula in which it is possible to indicate that 
certain branches are not present. 

DEFINITION: The HMLformulas and the corresponding satisfaction relation are defined by adding to 
the definitions in Subsection 1.9 the following extra clauses: 
4. If q,E I:. then -,lf,E I:.. 
4. p l=-,q, if p ~ qi. 

Let HML(p) denote the set of all HML-formula that are satisfied by the process p: 
HML(p) = { q, E!:. Jp l=q,}. Two processes p and q are HML-equivalent if HML(p) = HML(q). 

For finitely branching processes HENNESSY & MILNER [ 17] provided the following characterization of 
this equivalence. 

DEFINITION: Let p,q EA be finitely branching processes. Then: 
p ~ 0 q is always true. 
p ~n + l q if for all a EAct: 

p ➔ p' implies 3q': q ➔ q' and p' ~n q'; 

q ➔ q' implies 3p': p ➔ p' and p' ~n q'. 
p and q are observational equivalent, notation p ~ q, if p ~ nq for every n EJN. 

PROPOSITION 1.7: Let p ,q EA be finitely branching processes. Then p ~ q <=> HML(p)=HML(q). 
PROOF: In HENNESSY & MILNER [18]. 0 

As observed by PARK [29], for finitely branching processes observation equivalence can be reformu
lated as bisimulation equivalence. 

DEFINITION: A bisimulation is a binary relation R on processes, satisfying, for a EAct: 

ifpRq andp ➔ p', then 3q': q ➔ q' andp'Rq'; 

ifpRq and q ➔ q', then 3p': p ➔ p' andp'Rq'. 
Two processes p and q are bisimilar, notation p ~ q, if there exists a bisimulation R with pRq. 
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The relation ~ is again a bisimulation. As for similarity, one easily checks that bisimilarity is an 
equivalence on A. Hence the relation will be called bisimulation equivalence. Finally note that the 

concept of bisimulation does not change if in the definition above the action relations ➔ were 

replaced by generalized action relations ~ . 

PROPOSITION 1.8: Let p,q EA be finitely branching processes. Then p ~ q ¢9 p ~ q. 
PROOF: "=}" : Straightforward with induction. "¢=" follows from Theorem 5.6 in MILNER [25]. D 

For infinitely branching processes ~ is coarser then ~ and will be called finitary bisimulation 
equivalence. 

Another characterization of bisimulation semantics can be given by means of AczEL's universe CV of 
non-well-founded sets [3]. This universe is an extension of the Von Neumann universe of well
founded sets, where the axiom of foundation (every chain x 0 3x 13 · · · terminates) is replaced by an 
antifoundation axiom. 

DEFINITION: Let B denote the unique function qB:A➔CV satisfying qB(p)= { <a, qB(q)> IP ➔ q} for 
allp EA. Two processesp and q are branching equivalent if B(p)=B(q). 

It follows from Aczel's anti-foundation axiom that such a solution exists. In fact the axiom amounts 
to saying that systems of equations like the one above have unique solutions. In [3] there is also a 
section on communicating systems. There two processes are identified iff they are branching 
equivalent. 

A similar idea underlies the semantics of DE BAKKER & ZUCKER [6], but there the domain of 
processes is a complete metric space and the definition of B above only works for finitely branching 
processes, and only if = is interpreted as isometry, rather then equality, in order to stay in well
founded set theory. For finitely branching processes the semantics of De Bakker and Zucker coin
cides with the one of Aczel and also with bisimulation semantics. This is observed in VAN GLABBEEK 
& RUTTEN [13], where also a proof can be found of the next proposition, saying that bisimulation 
equivalence coincides with branching equivalence. 

PROPOSITION 1.9: Letp,q EA. Then p ~ q ¢9 B(p)=B(q). 
PROOF: "¢=". Let B be the relation, defined by pBq iff B(p) = B(q), then it suffices to prove that Bis 

a bisimulation. SupposepBq andp ➔ p'. Then <a,B(p')> EB(p) = B(q). So by the definition of 

B(q) there must be a process q' with B(p') = B(q') and q ➔ q'. Hence p'Bq', which had to be 
proved. Of course the second requirement for B being a bisimulation can be proved likewise. 

"=}". Let B* denote the unique solution of 'ffi *(p)= { <a, 'ffi* (r')> J 3r: r ~ p & r ➔ r'}. As for B 
it follows from the anti-foundation axiom that such a unique solution exists. From the symmetry and 
transitivity of ~ it follows that 

(*) 

Hence it remains to be proven that B • = B. This can be done by showing that B • satisfies the equa

tions 'ffi (p) = { <a, 'ffi(q) > IP ~ q}, which have B as unique solution. So it has to be established 

that B*(p) ={ < a, B*(q) > IP ➔ q}. The direction"-;;)_" follows directly from the reflexivity of ~. 

For "<.:", suppose < a,X >EB.(p). Then 3r: r ~ p, r ➔ r' and X = B*(r'). Since t:t is a bisimu

lation, 3p': p ➔ p' and r' ~ p'. Now from (*) it follows that X = B*(r') = B*(p'). Therefore 

< a,X> E{ <a, B *(q)> IP ➔ q}, which had to be established. D 
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2. THE SEMANTIC LATTICE 

2.1. Ordering the equivalences for finitely branching processes. In Section I twelve semantics were 
defined that are different for finitely branching processes. These will be abbreviated by T, CT, F, R, 
FT, RT, S, CS, RS, PF, 2S and B. Write & ~ '5if semantics & makes at least as much identifications 
as semantics 'J. This is the case if the equivalence corresponding with & is equal to or coarser than 
the one corresponding with '5. 

THEOREM 2.1: T ,< CT ,< F ,< R ,< RT, F ,<FT,< RT,< RS ,< 2S ,< B, T ,< S ,< CS ,< RS, 
CT ,< CS and R ,< PF ,< 2S. 

PROOF: The first statement is trivial. For the next five statements it suffices to show that CT(p) can 
be expressed in terms of F(p), F(p) in terms of R(p), R(p) in terms of RT(p), F(p) in terms of FT(p) 
and FT(p) in terms of RT(p). 

CT(p)= { a EAct* I < a,Act> EF(p)} . 
< a,X >EF(p) tj 3Yc;Act : <a,Y> ER(p) & XnY=0 . 
< a,X >ER(p) tj aX ERT(p). 
< a,X >EF(p) tj aX EFT(p) . 
a= a1a2 · · · an EFT(p) (a; EActU '!J'(Act)) tj 3p= p1P2 · · · PnERT(p) (p; EActU'!J'(Act)) such 
that for i = 1, ... ,n either a;= P; EA ct or a;,P; c;Act and a; n P; = 0. 

The remaining statements are (also) trivial. □ 

Theorem 2.1 is illustrated in Figure 1. There, however, completed simulation semantics is Inissing, 
since it did not occur in the literature. 

2.2. Ordering the equivalences for infinitely branching processes. When the restriction to finitely branch
ing processes is dropped, there exists a finitary and an infinitary variant of each of these semantics, 
depending on whether or not infinite observations are taken into account. These versions will be 
notationally distinguished by means of superscripts '*' and 'w' respectively; the unsubscripted abbrevi
ation will, for historical reasons, refer to the infinitary versions in case of 'simulation' -like semantics 
and to the finitary versions otherwise. For the semantics that are based on refusal sets, there exists 
even a third version, namely when also the refusal sets are required to be finite. These will be 
denoted by means of a superscript '-'. So F - denotes failure semantics as defined in [9] (see Sub
section 1.4), R - denotes acceptance-refusal semantics [33] (Subsection 1.7), FT - denotes refusal 
semantics (Subsection 1.11), RS - denotes refusal simulation semantics {also Subsection 1.ll) and B 
denotes HML-semantics (Subsection 1.13). Now the ,<-relation is represented by arrows in Figure 7. 

THEOREM 2.2: Let &, '5 be any two of the semantics mentioned above. Then &,<'5 whenever this is 
indicated in Figure 7. 

Again the proof is straightforward. If the labelled transition system A on which these semantic 
equivalences are defined is large enough, then they are all different and & ,< '5 holds only if this fol
lows from Theorem 2.2 (and the fact that ,< is a partial order), as will be shown in Subsection 2.8. 
However, for certain labelled transition systems much more identifications can be made. Is has been 
remarked already that for finitely branching processes all semantics that are connected by dashed 
arrows in Figure 7 coincide. This result will be slightly strengthened in the next subsection. In the 
subsequent subsection a class of processes will be defined on which all the semantics coincide. 
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FIGURE 7. The infinitary linear time - branching time spectrum 

2.3. Image finite processes. 

DEFINITION: A process p EA is image finite if for each aEAct• the set { q EA IP ~ q} is finite. 

Note that finitely branching processes are image finite, but the reverse does not hold. 

THEOREM 2.3: On a domain of image finite processes, semantics that are connected with a dashed 
arrow in Figure 7 coincide. 

PROOF: For the upper two arrows, connecting HML-semantics with finitary bisimulation semantics 
and finitary bisimulation semantics with bisimulation semantics, the proof has been given in HEN
NESSY & MILNER [18). For the other simulation-like semantics the proof goes likewise. For the trace
like semantics the correspondence between the finitary and infinitary versions (the arrows on the 
right) follows directly from Konig's lemma. Here I only prove the correspondence between F - and 
F; the remaining cases can be proved likewise. 

It has to be established that, for image finite processesp and qEA, F - (p)=F - (q) ~ F(p)=F(q), 
where F - (p) denotes the set of failure pairs <a,X> of p with finite refusal set X. The reverse impli
cation is trivial. For finitely branching processes F(p) is completely determined by F - (p) (Proposi
tion 1.1), from which the implication follows. For arbitrary image finite processes this is no longer 
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the case, but the implication still holds. 
Let p and q EA be two image finite processes with F(p )o:/=F(q). Say there is a failure pair 

<a,X > EF(p) - F(q). By image finiteness of q there are only finitely many processes r; with 

q ➔ r;, and for each of those there is an action a; EI(r;)nX (otherwise <a,X> would be a failure 
pair of q). Let Y be the set of all those a/s. then Yis a finite subset of X, so <a, Y> EF - (p). On 
theotherhanda; El(r;)nYforallr;, so < a,Y > f!cF - (q). □ 

2. 4. Deterministic processes. 

DEFINITION: A process p is deterministic if p ➔ q & p ➔ r =9 q = r. 

REMARK: If pis deterministic and p ➔ p' then also p' is deterministic. Hence any domain of processes 
on which action relations are defined, has a subdomain of deterministic processes with the inherited 
action relations. (A similar remark can be made for image finite processes.) 

PROOF: Suppose p' 4 q and p' 4 r. Then p ~ q and p ~ r, so q =r. □ 

THEOREM 2.4 (PARK [29]): On a domain of deterministic processes all semantics on the infinitary linear 
time - branching time spectrum coincide. 

PROOF: Because of Theorem 2.2 it suffices to show that BS~TS. This is the case if T(p)=T(q) =9 

p ~ q for any two deterministic processes p and q. Let R be the relation, defined by pRq iff 

T(p) = T(q), then it suffices to prove that Risa bisimulation. Suppose pRq and p ➔ p'. Then 

a ET(p) = T(q) . So there is a process q' with q ➔ q'. Now let pET(p'). Then 3r: p' 4 r. Hence 

p ~ rand ap ET(p) = T(q). So there must be a process s with q ~ s. By the definition of the 

generalized action relations 3t: q ➔ t 4 s, and since q is deterministic, t = q'. Thus pET(q'), and 
from this it follows that T(p') c:; T(q'). Since also pis deterministic the converse can be established in 
the same way, and together this yields T(p')= T(q'), or p'Rq'. This finishes the proof. □ 

2.5. Process graphs. In process theory it is common practice to represent processes as elements in a 
mathematical domain. The semantics of a process theory can then be modelled as an equivalence on 
such a domain. In Section 1 several semantic equivalences were defined on any domain of sequential 
processes which is provided with action relations. Such a domain was called a labelled transition sys
tem. In Section 3 a term domain IJJ> with action relations will be presented for which these definitions 
apply. The present subsection introduces one of the most popular labelled transition systems: the 
domain G of process graphs or state transition diagrams. 

DEFINITION: A process graph over a given alphabet Act is a rooted, directed graph whose edges are 
labelled by elements of Act. Formally, a process graph g is a triple (NODES (g),EDGES (g),R00T (g)), 
where 

NODES (g) is a set, of which the elements are called the nodes or states of g, 
ROOT (g) EN0DES (g) is a special node: the root or initial state of g, 
and EDGES(g)CNODES(g) X Act X N0DES(g) is a set of triples (s,a,t) with s, t EN0DES(g) and 
a EA ct: the edges or transitions of g. 

If e = (s,a,t) EEDGES(g), one says that e goes from s tot. A (finite)path 7T in a process graph is an 
alternating sequence of nodes and edges, starting and ending with a node, such that each edge goes 
from the node before it to the node after it. If 7r=so(so,a1,s1)s1(s1,a2,s2) · · · (sn - 1,an,sn)sn, also 
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denoted as 7T: so ➔ s 1 ➔ · · · ~ s n, one says that 7T goes from s O to s n; it starts in s O and ends in 
end(7T)=sn. Let PATHS (g) be the set of paths in g starting from the root. Ifs and t are nodes in a 
process graph then t can be reached from s if there is a path going from s to t. A process graph is said 
to be connected if all its nodes can be reached from the root; it is a tree if each node can be reached 
from the root by exactly one path. Let G be the domain of connected process graphs over a given 
alphabet Act. 

DEFINITION: For g EG ands ENODES (g), let gs be the process graph defined by 
NODES (gs)= {t ENODES (g) J there is a path going from s tot}, 
ROOT (gs)=s ENODES (gs), 
and (t,a,u)EEDGES(gs) iff t,uENODES(gs) and (t,a,u)EEDGES(g). 

Of course gsEG. Remark that gRoor(g)=g. Now on G action relations ➔ for aEAct are defined 

by g ➔ h iff (ROOT(g),a,s)EEDGEs(g) and h =gs. This makes G into a labelled transition system. 
Hence all semantic equivalences of Section 1 are well-defined on G. Below the sets of observations 
O(g) for OE{T, CT, R, F, RT, FT} and gEG, are characterized in terms of the paths of g, rather 
than the generalized action relations between graphs. 

a, a2 a 
DEFINITION: Let gEG and let 7T: s 0 ➔s 1 ~ • • • 4snEPATHs(g). Consider the following 
notions: 

the trace associated to 7T: T(7r)=a 1a 2 · · · anEAct*; 
the menu of a nodes ENODES (g): I(s)= {a EA ct J 3t: (s,a,t)EEDGES (g)}; 
the ready pair associated to 7T: R(7r)= <T(7r),l(sn)>; 
the failure set of 7T: F(7r)= { <T(7r),X> J J(sn) n X = 0 }; 
the ready trace set of 7T: RT(7r) is the smallest subset of (Act U '3'(Act))* satisfying 

l(so)a1I(s1)a2 · · · anl(sn)ERT(7r), 
aXpERT(7r) ==} apERT(7r), 
aXpERT(7r) ==} aXXpERT(7r); 

and the failure trace set of 7T: FT(7r) is the smallest subset of (Act U ~(Act))* satisfying 
(A -I(so))a1(A -I(s1))a2 · · · an(A -I(sn))EFT(7r), 
aXpEFT(7r) ==} apEFT(7r), 
aXpEFT(7r) ==} aXXpEFT(7r), 
aXpEFT(7r)/\Yc;;,_X ==} aYpEFT(7r). 

PROPOSITION 2.5: 

T(g)= {T(7r) j 7TEPATHS (g)} 

CT(g)= {T(7r) j 7TEPATHS (g)/\l(end(7r))= 0} 

R(g)= {R (7T) j 7TEPATHS (g)} 

F(g)= U F(7r) 
'IT E PATHS (g) 

RT(g) = LJ RT(11) 
'IT E PATHS (g) 

FT(g)= U FT(7r) 
'IT E PATHS (g) 

PROOF: Straightforward. □ 

Analogously, the simulation-like equivalences can be characterized by means of simulation relations 
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between the nodes of two process graphs, rather than between process graphs themselves. Below this 
is done for bisimulation equivalence. 

DEFINITION: Let g,h EG. A bisimulation between g and h is a binary relation 
R C NODES (g) X NODES (h ), satisfying: 
1. ROOT (g)RROOT (h). 
2. If sRt and (s,a,s') EEDGES (g), then there is an edge (t,a,t') EEDGES (h) such thats' Rt'. 
3. If sRt and (t,a,t')EEDGES (h), then there is an edge (s,a,s')EEDGES (g) such that s'Rt'. 
This definition is illustrated in Figure 8. Now it follows easily that two graphs g and h are bisiinilar 
iff there exists a bisimulation between them. 

al 

t ______ --------

FIGURE 8 

Proposition 2.5 yields a technique for deciding that two process graphs are ready trace equivalent, c.q. 
failure trace equivalent, without calculating their entire ready trace or failure trace set. 

a 1 a 2 a. a 1 a 2 a. 
Let g,hEG, 'TT: So ➔s1 ➔ · · · ➔snEPATHS(g) and 'TT': to ➔t1 ➔ · · · ➔tmEPATHS(h). 
Path 'TT' is a failure trace augmentation of 'TT, notation 'TT,,;;;;,_n'TT', if FT('TT) c;FT('TT'). This is the case 
exactly when n =m and I(t;)Cl(s;) for i=l, ... ,n. Write 'TT=n'TT' for 'TT,,;;;;,_n'TT'/\'TT',,;;;;,_n'TT. It follows 
that 'TT= rr'TT' # FT('TT)=FT('TT') # RT('TT)=RT('TT'). From this the following can be concluded. 

COROLLARY 2.5: Two process graphs g,h EG are ready trace equivalent ifJ 
for any path 'TTEPATHS (g) in g there is a 'TT' EPATHS (h) such that 'TT= n'TT' 
and for any path 'TTEPATHS (g) in h there is a 'TT' EPATHS (g) such that 'TT= n'TT'. 

They are failure trace equivalent ifJ 
for any path 'TTEPATHS (g) in g there is a 'TT' EPATHS (h) such that 'TT,,;;;;,_n'TT' 
and for any path 'TTEPATHS (g) in h there is a 'TT' EPATHS (g) such that 'TT,,;;;;,_n'TT'. 

If g and h are moreover without infinite paths, then it suffices to check the requirements above for maxi
mal paths. 

2. 6. Drawing process graphs. 

DEFINITION: Let g,h EG. A graph isom01phism between g and h is a bijective function 
f :NODES (g)➔NODES (h) satisfying 

f(ROOT(g))=ROOT(g) and 
(s,a,t)EEDGES (g) # (f (s),a,f (t))EEDGES (h). 

Graphs g and h are isomorphic, notation g~h, if there exists a graph isomorphism between them. 
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In this case g and h differ only in the identity of their nodes. Remark that graph isomorphism is an 
equivalence on G. 

PROPOSITION 2.6: For g,h EG, g~h ifJ there exists a bisimulation R between g and h, satisfying 
4. If sRt and uRv then s =u ~ t = v. 

PROOF: Suppose g~h. Let f :NODES (g)➔NODES (h) be a graph isomorphism. Define 
R kNODES (g)XNODES (h) by sRt iff f (s) = t. Then it is routine to check that R satisfies clauses I, 2, 
3 and 4. Now suppose R is a bisimulation between g and h, satisfying 4. Define 
f:NODES(g)➔NODES(h) by f(s) = t iff sRt. Since g is connected it follows from the definition of a 
bisimulation that for each s such a t can be found. Furthermore direction "=9" of clause 4 implies 
that f(s) is uniquely determined. Hence f is well-defined. Now direction "~" of clause 4 implies 
that f is injective. From the connectedness of h if follows that f is also surjective, and hence a bijec
tion. Finally clauses I, 2 and 3 imply that f is a graph isomorphism. □ 

COROLLARY: If g~h then g and hare equivalent according to all semantic equivalences of Section 1. 

Finitely branching connected process graphs can be pictured by using open dots (0 ) to denote nodes, 
and labelled arrows to denote edges, as can be seen in Subsection 2.8. There is no need to mark the 
root of such a process graph if it can be recognized as the unique node without incoming edges, as is 
the case in all my examples. These pictures determine process graphs only up to graph isomorphism, 
but usually this suffices since it is virtually never needed to distinguish between isomorphic graphs. 

2. 7. Embedding labelled transition sy stems in G. Let A be an arbitrary labelled transition system and 
let p EA. The canonical graph G (p) of p is defined as follows: 

NODES (G(p)) = {q EA I 3a EA •: p ➔ q}, 
ROOT (G(p)) =p ENODES (G(p)), 
and (q,a,r) EEDGES (G(p)) iff q,r ENODES (G(p)) and q ➔ r . 

Of course G (p) E G. This means G is a function from A to G. 

PROPOSITION 2.7: G:A➔G is an injective/unction, satisfying.for a EAct: G(p) ➔ G(q) ~ p ➔ q. 
PROOF: Trivial. □ 

COROLLARY: Forp EA andO E{T, CT, F, R, FT, RT, S, CS, RS, PF, 2S, B}, O(G(p)) = O(p). 

Proposition 2.7 says that G is an embedding of A in G. It implies that any labelled transition system 
over Act can be represented as a subclass G(A) = {G(p) EG IP EA} of G. 

Since G is also a labelled transition system, G can be applied to G itself. The following proposition 
says that the function G : G➔G leaves its arguments intact up to graph isomorphism. 

PROPOSITION 2.8: For. g EG, G (g)~g. 
PROOF: Remark that NODES (G(g)) = {gs Is ENODES (g)}. Now the function 
f :NODES (G(g))➔NODES (g) defined by f (gs)= s is a graph isomorphism. □ 

2. 8. Counterexamples. In this subsection a number of examples will be presented, showing that on G 
all semantic notions mentioned in Theorem 2.2 are different and ~ ~ '5" holds only if this follows from 
that theorem. Moreover, apart from the examples needed to show the difference between semantics 
that are connected by a dashed arrow in Figure 7, all examples will use finite processes only. Thus it 
follows that neither the ordering of Theorem 2.1 nor the ordering of Theorem 2.2 can be further 
expanded. Let H be the set of finite connected process graphs. Here a process graph g is finite if 
PATHS (g) is finite. Finite graphs are acyclic and have only finitely many nodes and edges. They 
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represent finite processes. 

THEOREM 2.9: Let~ and ':r be semantics on H from the series T, CT, F, R, FT, RT, S, CS, RS, PF, 2S, 
B. Then ~ ~ ':r only if this fallows from Theorem 2.1. ( and the fact that ~ is a partial order). 

PROOF: The following counterexamples provide for any statement ~~'3", not following from Theorem 
2.1 and the fact that ~ is a partial order, two finite connected process graphs that are identified in ~ 
but distinguished in ~-

b0 -T 

:j =l=cr 

-s 

ab +a ab 

FIGURE 9 

1. T':k= CT. For the graphs of Figure 9, T(left)= T(right)= { £, a, ab}, whereas CT(left)=j=CT(right) 
(since a ECT(/ejt)- CT(right)). Hence they are identified in trace semantics but distinguished in 
completed trace semantics. Furthermore the two graphs are simulation equivalent (the construction 
of the two simulations is left to the reader). Since ~ is a partial order, the same example shows that 
~~'3"for ~E{CT, CS, F, R, FT, RT, RS, PF, 2S, B} and ':J'E{T, S}. 

-CT 

~ =l=F 
b C 

-cs 

ab +a(b +c) a(b+c) 

FIGURE 10 

2. CT':k= F. For the graphs of Figure 10, CT(/eft) = CT(right) = { ab, ac }, whereas F(left)=j=F(right) 
(since <a, { b} > EF(/ejt)- F(right)). Hence they are identified in completed trace semantics but dis
tinguished in failure semantics. Furthermore the two graphs are completed simulation equivalent (the 
construction of the two completed simulations is again left to the reader). Since ~ is a partial order, 
the same example shows that ~~ '3" for ~ E { F, R, FT, RT, RS, PF, 2S, B} and '3" E { CT, CS}. 



24 

A 
bi le 

ab +ac 

-F 

=FR 
-FT 

=FRT 

FIGURE 11 

~ 
b~c 

ab +a(b +c)+ac 

3. FT~ R. For the graphs of Figure 11, FT(left)= FT(right), whereas R (left)=faR (right). The first 
statement follows from Corollary 2.5, since the new maximal paths at the right-hand side are both 
failure trace augmented by the two maximal paths both sides have in common. The second one fol
lows since <a, { b, c} > ER (right) - R (left). Hence these processes are identified in failure trace 
semantics but distinguished in readiness semantics. Since ~ is a partial order, the same example 
shows that §~~Tfor any §~FT and ~R, so in particular F~R and FT~RT. 

a 

d e e d 

a(b +cd)+a(f +ce) a(b +ce)+a(f +cd) 

FIGURE 12 

4. R ~ FT. For the graphs of Figure 12, R (left)= R (right), whereas FT(left)=faFT(right). The first 
statement follows since in the second graph only 4 ready pairs swopped places. The second one fol
lows since a{ b }ce EFT(lejt)- FT(right). Hence these processes are identified in readiness semantics 
but distinguished in failure trace semantics. Since ~ is a partial order, the same example shows that 
§~':Jfor any §~Rand ~FT, so in particular F~FT and R~RT. Since PF(lejt)=faPF(right) this 
example does not show that PF~ FT. It it left as an exercise to the reader to adapt the example so 
that also that is established. 
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a 

b b 

C d C d 

abc +abd a(bc +bd) 

FIGURE 13 

5. RT':k=S. For the graphs of Figure 13, RT(left)=RT(right), whereas S(left)=/=S(right). The first 
statement follows immediately from Corollary 2.5. The second one follows since 
a(bcT/\bdT)ES(right)-S(left). Hence these processes are identified in ready trace semantics but 
distinguished in simulation semantics. Since ~ is a partial order, the same example shows that ~':k='5" 
for any ~~RT and ~S, so in particular T':k= S, CT':k= CS and RT':k= RS. 

a 

b b 

C C d C d 

abc +a(bc +bd) a(bc +bd) 

FIGURE 14 

6. RS':k=2S. The graphs of Figure 14 are ready simulation equivalent, but not 2-nested simulation 
equivalent. There exists exactly one simulation from right by left, namely the one mapping right on 
the right-hand side of left, and this simulation is a ready simulation as well as a 2-nested simulation. 
There also exists exactly one simulation from left by right, which maps the black node on the left on 
the black node on the right. This simulation is a ready simulation (related nodes have the same menu 
of initial actions) but not a 2-nested simulation (the two subgraphs originating from the two black 
nodes are not simulation equivalent). Hence RS ':k= 2S. Furthermore PF (left)=/=P F (right), since 
<a,{£, b, be}> EPF(left)-PF(right). Hence ~':k=PF for any ~~RS. 
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a a 

b 

=l=n 
C C C 

abc + a(bc + b) a(bc +b) 

FIGURE 15 

7. 2S':it= B. The graphs of Figure 15 are 2-nested simulation equivalent, but not bisimulation 
equivalent. There now exists 2-nested simulations in both directions since the two subgraphs originat-
ing from the two black nodes are simulation equivalent. However, 
a-,b-,cT EHML (left) - HML (right) . □ 

THEOREM 2.10: Let ~ and ~ be semantics on G mentioned in Subsection 2.2. Then ~~ ~ only if this fol
lows from Theorem 2.2. (and the fact that ~ is a partial order). 

PRooF: The following counterexamples, together with the ones used in the previous proof, provide for 
any statement ~~ ~. not following from Theorem 2.2 and the fact that ~ is a partial order, two con
nected process graphs that are identified in ~ but distinguished in ~-

a a a -B a a a a 

a a =l='f a a 
t 

a a 

' 
FIGURE 16 

8. B • ':it= T"'. The graphs of Figure 16 are finitary bisimulation equivalent (as follows straightforward 
with induction) but not infinitary trace equivalent (since only the graph at the right has an infinite 
trace). Since~ is a partial order it follows that ~':it= ~ for ~~B• and ~ T"' . 
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=/=er 

FIGURE 17 

9. B - ':k=CT. For the graphs of Figure 17, HML(lejt) = HML(right) , whereas CT(/eft)=/=CT(right). 
The first statement follows since by means of HML-formulas one can only say that a finite set of 
actions can not take place in a certain state. The second one follows since a ECT(lejt)- CT(right). 
Since ~ is a partial order it follows that ~~ '5 for ~~B - and ~CT. □ 

One could say that a semantics ~ respects deadlock behaviour iff ~~CT. The example above then 
shows that non of the semantics on the left in Figure 7 respects deadlock behaviour; only the left
hand process of Figure 17 can deadlock after an a-move. 

3. COMPLETE AXIOMA TIZA TIO NS 

3.1. A language for finite, concrete, sequential processes. Consider the following basic CCS- and CSP
like language BCCSP for finite, concrete, sequential processes over a finite alphabet Act: 

inaction: 0 (called nil or stop) is a constant, representing a process that refuses to do any action. 
action : a is a unary operator for any action a EAct. The expression ap represents a process, starting 

with an a-action and proceeding with p. 
choice : + is a binary operator. p + q represents a process, first being involved in a choice between 

its summands p and q, and then proceeding as the chosen process. 

The set I? of (closed) process expressions or terms over this language is defined as usual: 
OE I?, 

ap El? for any a EAct and p El?, 
p + q E I? for any p,q EI?. 

Sub terms a O may be abbreviated by a. 

On I? action relations ➔ for a EA ct are defined as the predicates on I? generated by the action 
rules of Table I. Here a ranges over Act and p and q over I?. 

a 
ap ➔ p 

a 
p ➔ p' 

a 
q ➔ q' 

a 
p+q ➔ p' 

a 
p+q ➔ q' 

TABLE 1 

Now all semantic equivalences of Section 1 are well-defined on I?, and for each of the semantics it is 
determined when two process expressions denote the same process. 
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3.2. Axioms. In Table 2 complete axiomatizations for ten from the twelve semantics of this paper that 
differ on BSSCP can be found. Axioms for 2-nested simulation and possible-futures semantics are 
more cumbersome, and the corresponding testing notions are less plausible. Therefore they have been 
omitted. In order to formulate the axioms, variables have to be added to the language as usual. In 
the axioms they are supposed to be universally quantified. Most of the axioms are axiom schemes, in 
the sense that there is one axiom for each substitution of actions from Act for the parameters a,b,c. 
Some of the axioms are conditional equations, using an auxiliary operator I. Thus provability is 
defined according to the standards of either first-order logic with equality or conditional equational 
logic. I is a unary operator that calculates the set of initial actions of a process expression, coded as a 
process expression again. 

THEOREM 3.1: For each of the semantics O E{T, S, CT, CS, F, R, FT, RT, RS, B} two process expres
sions p,q ErP are O-equivalent ifJ they can be proved equal from the axioms marked with '+' in the 
column for O in Table 2. The axioms marked with 'v' are valid in O-semantics but not needed for the 
proof 

B RS RT FT R F cs CT s T 
x+y=y+x + + + + + + + + + + 
(x +y)+z = x +(y +z) + + + + + + + + + + 
x+x = x + + + + + + + + + + 
x+0 = x + + + + + + + + + + 

I(x) = I(y) ~ a(x +y) = ax +a(x +y) + V V V V V V V V 

I(x) = I(y) ~ ax +ay = a(x +y) + + V V V V 

ax +ay = ax +ay +a(x +y) + V V V 

a(bx +u)+a(by +v) = a(bx +by +u)+a(bx +by +v) + + V V 

ax +a(y +z) = ax +a(x +y)+a(y +z) + V V 

a(bx +u +y) = a(bx +u)+a(bx +u +y) + V V V 

a(bx + u)+a(ry +v) = a(bx +ry +u +v) + V 

a(x +y) = ax +a(x +y) + V 

ax +ay = a(x +y) + 

1(0) = 0 + + + + + + + + + + 
/(ax) = a0 + + + + + + + + + + 
I (x + y) = I (x) + I (y) + + + + + + + + + + 

TABLE 2 

PROOF: For F, R and B the proof is given in BERGSTRA, KLOP & OLDEROG [7] by means of graph 
transformations. A similar proof for RT can be found in BAETEN, BERGSTRA & KLoP [4]. For the 
remaining semantics a proof can be given along the same lines. □ 

CONCLUDING REMARKS 
In this paper various semantic equivalences for concrete sequential processes are defined, motivated, 
compared and axiomatized. Of course many more equivalences can be given then the ones presented 
here. The reason for selecting just these, is that they can be motivated rather nicely and/ or play a 
role in the literature on semantic equivalences. In ABRAMSKY & VICKERS [2] the observations which 
underly many of the semantics in this paper are placed in a uniform algebraic framework, and some 
general completeness criteria are stated and proved. 
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It is left for a future occasion to give (and apply) criteria for selecting between these equivalences 
for particular applications (such as the complexity of deciding if two finite-state processes are 
equivalent, or the range of useful operators for which they are congruences). The work in this direc
tion reported so far, includes [8] and [15]. 

Also the generalization of this work to a setting with silent moves and/ or with parallelism is left for 
the future. In this case the number of equivalences that are worth classifying is much larger. How
ever, in many papers parts of a classification can be found already (see for instance [32]). 

A generalization to preorders, instead of equivalences, can be obtained by replacing conditions like 
O(p)=O(q) by O(p)<;;;O(q). Since preorders are often useful for verification purposes, it seems to be 
worthwhile to have to classify them as well. 

Furthermore it would be interesting to give explicit representations of the equivalences, by 
representing processes as sets of observations instead of equivalence classes of process graphs, and 
defining operators like action prefixing and choice directly on these representations, as has been done 
for failure semantics in [9] and for readiness semantics in [28]. 
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