
Equivalence Notions for Concurrent Systems

and Refinement of Actions
(Extended Abstract)

Rob van Glabbeek
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Ursula Goltz
Gesellschaft fiir Mathematik und Datenverarbeitung

Postfach 1240, D-5205 Sankt Augustin 1, German Federal Republic

Abstract We investigate equivalence notions for concurrent systems. We consider "linear time" ap
proaches where the system behaviour is characterised as the set of possible runs as well as "branching
time" approaches where the conflict structure of systems is taken into account. We show that the
usual interleaving equivalences, and also the equivalences based on steps (multisets of concurrently
executed actions) are not preserved by refinement of atomic actions. We prove that "linear time"
partial order semantics, where causality in runs is explicit, is invariant under refinement. Finally, we
consider various bisimulation equivalences based on partial orders and show that the strongest one
of them is preserved by refinement whereas the others are not.

Introduction
A large body of research is devoted to equivalence notions for concurrent systems. Most of the equiv
alence notions currently being considered are based on a semantics where concurrency is modelled by
arbitrary interleaving of atomic actions. In [Pratt] and in [CDP] it is pointed out that this approach
has a severe drawback. It leads to complications when changing the level of atomicity of events;
" ... we would like a theory of processes to be just as usable for events having a duration or structure,
where a single event can be atomic from one point of view and compound from another" ([Pratt]).
In [CDP], an example is given, showing that the usual interleaving equivalence is not invariant under
refinement of actions when this is simply modelled by textual replacement. Both [Pratt] and [CDP]
claim that modelling concurrency by expressing causal dependencies explicitly using partial orders
could help to solve this problem. However, the two systems considered in [CDP] can already be
distinguished by considering interleavings of "steps" {multisets of concurrently executable actions).
So their example does not show that it is indeed necessary to consider partially ordered executions.
Furthermore, their proof of the claim that partial order equivalence is preserved by refinement is
only valid for "linear time" partial order semantics, where the set of all possible executions of a
system is considered, without taking into account where conflkts are resolved. This is also the model
considered by Pratt.

In this paper, we will consider various equivalence notions based on steps and on partial orders.
We will discuss "linear time" semantics, but we will also take the conflict structure of systems into
account by considering various forms of bi simulation ("branching time" semantics). We will show
that the known equivalences based on steps are not invariant under action refinement. We will
rephrase in our framework the proof of [CDP], showing that "linear time" partial order semantics is
indeed robust against changing the level of atomicity. Then we consider several equivalence notions
based on "branching time" partial order semantics. We give examples, showing that pomset bisim
ulation equivalence [BC] and also the NMS partial ordering equivalence suggested in [DDM], are
not preserved by refinement of atomic actions. An equivalence notion for Petri nets which coincides

238

with the notion of NMS partial ordering equivalence was suggested in [Devillers] where the refine
ment problem has also been discussed. We also show that NMS partial ordering equivalence does
not imply pomset bisimulation (and vice versa); hence these notions are incomparable. Finally we
show that a stronger equivalence notion, first suggested in [TRH] under the name BS-bisimulation,
is indeed preserved by refinement. This equivalence does respect pomset bisimulation.

We do not intend to advocate any particular equivalence notion here, the purpose of this inves
tigation is to find out about the consequences of the different approaches. There will certainly be a
tradeoff between simplicity and distinguishing power. We just want to illustrate that the appropriate
notion has to be chosen carefully with regard to the questions considered.

1 Concurrent systems

In this paper we consider systems that are capable of performing actions from a given set Act of action
names. As our model for this kind of systems we have chosen event structures here (prime event
structures with a binary conflict relation as introduced in [NPW]); we could have chosen other models
like Petri nets or behaviour structures [TRH] as well. We will frequently give CCSP-expr~ssions for
our examples, to make them easier to understand: + will denote choice (as in CCS), I will denote
parallel composition (without communication), a.P performs action a and then behaves like P and
nil denotes the empty process; a abbreviates a.nil and the unary prefixing operator binds stronger
than the binary ones, as usual. Dots in expressions a.P will be omitted. However, this notation
is only used for intuition; formally our results are established for event structures. We will not
distinguish external and internal actions here, we do not consider abstraction by hiding of actions.

Definition A (labelled) event structure (over an alphabet Act) is a 4-tuple

£ = (E, ::;, #, l) where

- E is a set of events,

- S~ Ex Eis a partial order (the causality relation) satisfying the principle of finite causes:
'ie EE: {e' E Ele' Se} is finite.

- # s E x E is an irreflexive, symmetric relation (the conflict relation) satisfying the
principle of conflict heredity: Ve1, e;, es E E: e1 ::C: e2 /\ e1 #ea=? e2#e3.

- l : E _, Act is a labelling function.

The components of an event structure £ will be denoted by Et, ::C:t, #t: and lt:. If clear from the
context, the index £ will be omitted. As usual, we write e < e' for e S e' /\ e f e', etc.

An event structure represents a concurrent system in the following way: action names a E Act
represent actions the system might perform, an event e E E labelled with a represents an occurrence
of a. during a possible run of the system, e' < e means that e' is a prerequisite for e and e#e' means
that e and e' cannot happen both in the same run. We will later assume that in a finite period the
system performs only finitely many actions.

Throughout the paper, we assume a fixed set Act of action names as labelling set. Let IE denote
the domain of event structures labelled over Act.

Causal independence (concurrency) of events is expressed by the derived relation co ~ E x E :
e co e' iff --.(e < e' V e' < e V e#e'). By definition, <, >, # and co form a partition of E x E.

239

An event structure Eis finite if Ee is finite; Eis conflict-free if #e = 0.
0 denotes the empty event structure (0, 0, 0, 0).

For X ~Ee, the restriction of E to Xis defined as EfX = (X, :S n(X x X), # n (X x X), lfX).

Two event structures E and :Fare isomorphic (E =:: :F) iff there exists a bijection between their
sets of events preserving :S, # and labelling. Generally, we will not distinguish isomorphic event
structures.

Isomorphism classes of conflict-free event structures are called pomsets [Pratt]. They have also
been considered under the name partial words in [Grabowski]. Pomsets generated by certain subsets
of events may be considered as possible "executions" of the system represented by the event structure.
The partial order between action occurrences then represents causal dependencies in the execution.
Subsets of events representing executions (called configurations) have to be conflict-free; furthermore
they must be left-closed with respect to ::::; (all prerequisites for any event occurring in the "execution"
must also occur). We will consider only finite executions when comparing the behaviour of systems.
It is assumed that in a finite period only finitely many actions are performed.

Definition

i. A subset X ~ Ee of events in an event structure E is left-closed in E iff, for all
e, e' E Ee, e E X /\ e' ::=:; e::::? e' EX.
X is conflict-free in E iff E f X is conflict-free.

ii. A subset C ~ Ee will be called a (finite) configuration of an event structure E iff C is
finite1 , left-closed and conflict-free in £. C(E) denotes the set of all configurations of E.
A configuration C E C(£) is called complete iff C is a maximal conflict.free set of events
in£.

Configurations may be considered as possible states of the system; they determine the remaining be
haviour of the system as being the set of all events which have not yet occurred and are not excluded
because of conflicts.

Example 1.1

Let us consider the event. structure E corresponding to the expression ajb + ab.

In graphical representations, only immediate conflicts · not the inherited conflicts - are
indicated. The :=;-relation is represented by arcs, omitting those derivable by transitivity.
Furthermore, instead of events only their labels are displayed; if a label occurs twice it
represents two different events. Thus these pictures determine event structures only up
to isomorphism.

a

Following these conventions, E is represented as a -. b • The possible executions of E

b

a
are represented by the pomsets 0 (the empty pomset), a , b , b and a -+ b . The

latter two correspond to complete configurations.

1 [Winskel] does not require configurations to be finite.

240

We may now ask which actions may occur in a configuration and which configuration is then obtained.

Definition Let £ be an event structure,

1. C ___,, C' if C,C' EC(£) and C r,;; C'.

11. C ~ C' iff a E Act, C ---+t C' and C' \ C = {e} with l(e) =a.

Note that C -"EC' implies that t'[(C' \ C) is finite and conflict-free.

Here c___!!:__ C' says that if£ is in the state represented by C, then it may perform an action a
and reach a state represented by C'. Likewise, C ~£ C' says that £may evolve from C to C'.

Considering transitions c___!!:__ C' only, one can define the usual interleaving semantics. The
simplest form is that of comparing just the possible sequences of action occurrences.

Definition w = a1 • ··an E Act* is a (sequential} trace of an event structure £ iff there

exist configurations C0 , • • ·, Cn of£ such that C0 = 0 and C;-1 ~ C; (i = 1, · · ·, n).
SeqTraces (£) denotes the set of all sequential traces of an event structure£.
Two event structures £,Fare called interleaving trace equivalent (£~it F) iff
SeqTraces (£) = SeqTraces (F).

With the concept of labelled transition systems, we obtain a stronger equivalence notion based on
the idea of bisimulation [Park, Milner]. For example, the systems a(b + c) and ab + ac have the same
traces but are distinguished by bisimulation equivalence.

Definition Let £, F be event structures.

A relation R s;; C(£) x C(F) is called an interleaving bisimulation between £ and F iff
(0,0) ER and if (C,D) ER then
- C ~ C' =;. :JD' with D ~ D' and (C',D') ER,
- D ~ D' ~:JC' with C ~ C' and (C',D') ER.
£ and Fare interleaving bisimulation equivalent (£ ~ib F) iff there exists an interleaving
bisimulation between £ and F.

Clearly, £ "=ib F implies £ ~it F.

In the following section, after introducing the notion of refinement, we will recall the example of
[CDP], showing that both ~it and ~ib are not preserved by refinement.

2 Refinement of actions

In [CDP] it is shown that equivalence notions based on interleaving are not preserved when replacing
an action in a system by a sequence of two actions. We consider here a more general version of
this operation: replacing actions by "computations", finite conflict-free event structures. Replacing
actions by infinite computations could in general invalidate the principle of finite causes for event
structures. Replacing actions by event structures containing conflicts would require a more sophisti
cated notion of refinement or, alternatively, a more general form of event structures where the axiom

of conflict. heredity is dropped, e.g. flow event structures [BCa]. (Consider £ =1. Replacing a by c#d
b

violates the axiom of conflict heredity, as long as the event labelled by b is not duplicated in some

241

way.) Fo'r sake of simplicity, we will also not allow to replace actions by the empty event structure.
In the conclusion, we will discuss possible extensions of our results to these cases.

A refinement will be a function r specifiying, for each action a, an event structure r(a) which is to
be substituted for a. Interesting refinements (and also the refinements in our examples) will mostly
refine only certain actions, hence replace most actions by themselves. However, for uniformity (and
for simplicity in proofs) we consider all actions to be refined.

Given an event structure [and a refinement function r, we construct the refined event structure
r(t:) as follows. Each event e labelled by a is replaced by a disjoint copy, e., of r(a). The causality
and conflict structure is inherited from £: every event which was causally before e will be causally
before all events of £,, all events which causally followed e will causally follow all the events of [,,
and all events in conflict with e will be in conflict with all the events of[,.

Definition A refinement r : Act -> IE - { O} is a function that takes any action

a E Act into a finite, conflict-free, non-empty event structure r(a) E JE.
For an event structure [and a refinement r, the event structure r(t:) is defined by

- Er(e) = {(e, e')le E £;:, e' E Er(le(•))},

- (d, d') :Sr(!) (e, e') iff d <c e or (d = e /\ d' '.Sr(lc(d)) e'),
- (d, d')#r(EJ(e, e') iff d#;:e,
- 1,(£)(e, e') = lr(le(•))(e').

As one can easily check, r(£) is an event structure indeed.

Since we do not distinguish isomorphic event structures, replacing actions by conflict-free event
structures corresponds to replacing actions by pomsets. It is easy to see that replacing actions by
different representatives of a pomset leads to isormophic refined event structures.
As the lemma below will show, the behaviour of a refined event structure r(£) may be deduced from
the behaviour of£ and from the behaviour of the event structures which are substituted for actions.
On the other hand, we may derive information about the behaviour of£ from the behaviour of r(£).

Lemma Let £ be an event structure, r a refinement.

1. c<; E,(tJ is a configuration of r(£) iff

C= {(e,e')le E C,e' E c.} where

C is a configuration of£,
C, is a configuration of r(l;:(e)) for e E C,
C, is complete if e not maximal in C with respect to :S;:.

ii. If C->r(t:)C' then pr1(C) ->e pr1(C') (pr 1 denotes projection to the first component).

Proof straightforward (see the full version of this paper [GG]).

Example 2.1

We now recall the example of [CDP]. They considered the two systems P
Q = ab + ba, representable by the following event structures.

a b a # b

l l
b a

Ill

alb and

242

In all known interleaving semantics, P and Q are considered equivalent; we have
£p ::::::;b £Q. However, if we allow to refine the action a into the pomset a1 ---+ a2, this gives
rise to the two systems

£p• a1 b , £Q, a1 # b

l l l
a2 a2 a1

l l
b a2

and they a.re not interleaving equivalent; indeed they are not even interleaving trace
equivalent: £p• allows for the sequence a1 ba2 whereas £Q, doesn't.

This shows that both interleaving trace equivalence and interleaving bisimula.tion equivalence are not
preserved by action refinement. Even more, the same can be said for a.II equivalences identifying P
and Q a.nd respecting interleaving trace equivalence, e.g. failure equivalence [BHR], testing equiva
lence [DH].

An event structure equivalence which is indeed preserved by refinement is event structure iso
morphism. However, the ma.in purpose of introducing an equivalence notion is to abstract from
certain details in a. system representation. For example, we would like to express that the pro
cesses a and a + a exhibit the same behaviour. Furthermore, we would like to identify processes
like (al(b + c)) + (alb) +((a+ c)lb) and (al(b + c)) +((a+ c)lb) (absorption law, see [BC]). This is
not possible when using event structure isomorphism. Hence, in the sequel we will consider various
equivalence notions in between these two extremes (interleaving trace equivalence and event struc
ture isomorphism), ta.king into account the concurrency and the conflict structure ("branching-time"
semantics) in more and more detail.

3 Step semantics

A more discriminating view of concurrent systems than that offered by interleaving semantics is
obtained by modelling concurrency a.s either arbitrary interleaving or simultaneous execution. This
view is ta.ken in calculi like SCCS [Milner a.], CIRCAL [Milne] a.nd MEIJE [AB]. In [TV], this idea is
applied to give a non-interleaving semantics to theoretical CSP, ea.lied step failure semantics. The
word step originates from Petri net theory where it denotes a. set (or multiset) of concurrently exe
cutable transitions. Recently, a. step semantics for CCS has been defined [DDMa.], inspired by [AB].
Step semantics give a. more precise account of concurrency than interleaving semantics, e.g. the
systems alb and ab + baa.re distinguished. This means that the example given in [CDP] constitutes
an argument against interleaving semantics but not against step semantics. We will formalise some
step equivalence notions and then discuss an example which shows that even these equivalences a.re
not preserved by refinement.

Step semantics a.re defined by generalising the single action transitions c-'!:._ C' frnm section I

to transitions of the form C~ C' where A is a multiset over Act, representing actions occurring
concurrently. In particular, we allow actions to occur concurrently with themselves ("autoconcur
rency"). Using this new kind of transitions, step trace equit•alence and step bisimulation equivalence
are straightforward generalisations of the corresponding interleaving equivalences, see e.g. [Pomella].

243

Definition Let E be an event structure.

C ~ C' iff A E JNAct (A is a multiset over Act), C ->c C',C' \ C
'ie,e'EG ecoe' and l(G)=A where l(G}(a)=i{eEGIZ(e)=a}i.

G such that

Using this form of transitions, we obtain step trace equivalence, :::::,0 and step bisimulation equiva
lence, :::::,b, exactly as the corresponding interleaving equivalences in section 1. Like for interleaving,
E ;:::,b :F implies E :::::,1 :F. Moreover (as far as we know) all other interesting step equivalence no
tions are positioned somewhere in between (recall that we do not consider abstraction from internal
actions).

Considering the two systems P = ajb and Q = ab+ba from [CDP], represented as event structures
ep and Eq in example 2.1, we find that Ep and Eq are not equivalent in step semantics. The step
{a, b} is possible in Ep but not in Eq. So the example in [CDP] is not adequate for step semantics.
Here we give an example showing that both :::::,1 and :::::,b are not invariant under refinement of actions,
as well as all equivalences included between them, e.g. step failure equivalence (for both :::::,1 and :::::,b

there exist even simpler examples [GG]).

Example 3.1

First consider the following three systems:

a c

"" / b

a
, Ea= l c

b

Now we consider the two composed systems E = £1 + £2 and :F = £1 + £2 +Ea.
The +sign is supposed to indicate that a system behaves alternatively like one of its com
ponents. It may easily be "implemented" by indicating that all events in one component
are in conflict with all events in the others. (For representing E and :Fas terms, we would
need to use a sequential composition operator or a TCSP-like parallel composition.)

We have E ~.b :F [GV]. However, when refining c into c1 -> c2 only the refinement of :F
may perform the sequence of actions c1 a b c2• The resulting systems £' and :F' are not
even interleaving trace equivalent.
So let ::::: be an equivalence included between :::::,1 and :::::,b, then also E ::::: :F, but £' ~ :F'.

Thus we have shown that all the currently known versions of step equivalence are not preserved by
refinement.

4 Partial order semantics

In [CDP] it was claimed that equivalence based on considering partially ordered executions is pre
served by refinement. In this section we will make this claim more precise.

In "linear time" semantics, when considering only the sets of all possible executions of systems,
the claim is indeed true. As explained in section 1, the set of possible executions of an event structure
is represented as the set of all pomsets derivable from its configurations. We call two event structures
E and :F pomset trace equivalent (E ~pt :F) if their sets of pomsets are equal. The refinement theo
rem for :::::pt then follows from the lemma about the behaviour of refined event structures in section 2
([GG), formalising the proof sketch from [CDP]).

244

Next, we discuss several suggestions to define equivalence notions based on partial orders and
recording where choii:es are made. We show that most of these fail in general to be preserved by
refinement. Finally we show that the last and strongest notion is indeed invariant with respect to
refinement.

In [BC] it was suggested to generalise the idea of bisimulation by considering transitions labelled

by pomsets. So we consider now transitions c_!!:_.. C' where u is a pomset over Act.

Definition Let £ be an event structure.

C ~ C' iff C ~e C' and u is the isomorphism class of £f(C' \ C).

Using this kind of transitions, pomset bisimulation equivalence, ~pb, is obtained exactly as ~ib·

This equivalence notion is clearly stronger than both step bisimulation equivalence and pomset
trace equivalence: £ ~pb :F implies£~.& :F and£ ~pt :F; moreover, the processes alb and (alb) + ab
are sb--equivalent but not pb--equivalent; a(b + c) and ab + ac are pomset trace equivalent but not
pb--equivalent.

However, pb--equivalence is not preserved by refinement.

Example 4.1

Consider a(b + c) + (alb) and a(b+ c) + (alb) + ab. We have P ;;::pb Q. However, when
refining a into a1 -+ a2 and executing a1 , we may arrive in a situation in the second
system where a 2 and b may be only executed sequentially and where c is excluded. This
is not possible in the first system.

In [GGJ we also showed that the generalised pomset bisimulation equivalence of [GV] is not preserved
by refinement.

Another equivalence notion based on the idea of bisimulation with partial orders that might be
preserved by refinement was suggested in [Devillers]. It turned out that this notion coincides with
the NMS partial ordering equivalence suggested earlier in [DDM]. We rephrase the definition here in
terms of event structures as follows.

Definition Let £, :F be event structures.

A relation R i;; C(£) x C{.1") is called a weak history preserving bisimulation between
£and :F iff (0,0) ER and if (C,D) ER then
- f[C and :Ff Dare isomorphic,
- C -+e C' =>:ID' with D -+:F D' and (C',D') ER,
- D -+:F D' =>:IC' with C -+e C' and (C',D') ER.
£ and :F are weakly history preserving equivalent (£ ~wh :F) iff there exists a weak history
preserving bisimulation between £ and :F.

Note that the isomorphism requirement guarantees that the labels of the events in C' \ C and D' \ D
correspond as well.

As observed in [Devillers], it is sufficient to consider only those transitions C -+e C', (resp.
D -+:F D1

) where C'(D') is obtained from C(D) by executing exactly one event.

The two systems considered in example 4.1 are pomset bisimulation equivalent but not weakly
history preserving equivalent. However, wh-equivalence is not stronger than pomset bisimulation, as

245

shown by the following example; the two notions are in general incomparable. We will show later
that wh-equivalence does respect pomset bisimulation for systems without autoconcurrency.

The following example will also show that wh-equivalence is in general not preserved by refine
ment. This example was suggested to us by Rabinovich. He used it for showing that -;:;wh is not a
congruence with respect to a TCSP-like parallel composition.

Example 4.2

Let£=
a # a a

l l
b # b

a #
and :F =

a a
(''# l
b "-b

It is straightforward to check that £ -;:;wh :F. However, £ and :F are not pomset bisimu
lation equivalent. After executing a, it is always possible to execute a--> bin£, in :Fit
may be impossible to execute a --> b after a. When refining a into a 1 --> a2, the resulting
systems are no longer wh-equivalent, not even interleaving bisimulation equivalent. This
can be proven by providing a formula in Hennessy-Milner logic [HM] that is satisfied by
the refinement of :F, but not by the refinement of£. Such a formula is:

<S> 0 ((£> TA 0> ~ 0 T).

An equivalence respecting both pomset bisimulation and wh-equivalence may be considered by ex
tending the definition of pomset bisimulation with the requirement that, for any (C,D) ER, £fC
and :Ff D should be isomorphic. However, in [GG] we showed that also this equivalence would not
preserve refinement.

We finally define a stronger version of history perserving equivalence which will respect pomset
bisimulation. This notion was first suggested in [TRH] in terms of behaviour structures. We w.ill
show that this equivalence is preserved by refinement. For systems without autoconcurrency, this
equivalence coincides with -;:;wh· This will imply the result that ~wh is invariant against refinement
for systems without autoconcurrency.

Definition Let £, :F be event structures.

A relation R ~ C(£) x C(:F) x P(Ec x Ey) is called a history preserving bisimulation
between£ and :F if (0, 0, 0) E R and whenever (C, D, f) E R then

- f: C-+ D is an isomorphism between £f C and Ff D,

- C -+c C' =;. 3D',j' with D->:F D', (C',D',f') ER and f'fC = f,
- D -->:F D' =;. 3C',f' with C --+c C', (C',D',f') ER and j'fC=f.

£ and :F are history preserving equivalent (£ ;:,;h :F) iff there exists a history preserving
bisimulation between £ and F.

Again it is sufficient to consider only those transitions C ->c C' (resp. D __,:!' D') where C' (resp. D')
is obtained from C (resp. D) by executing exactly one event, as can be proved straightforwardly.

Clearly, we have£ ;::c:;h :F =;. £ ""wh :F. However the two systems of example 4.2 are not h-equivalent.

Proposition

Proof
We show that any history preserving bisimulation between £ and :F is also a pomset bisimulation

246

between£ and F(after leaving out the isomorphism component). Let R be a h-bisimulation, and
suppose (C,D,f) ER and C ~ C'. Then C _,EC', thus 3D',J' with D _,:i= D',(C',D',f') ER
and f'rc =f. Since f' is an isomorphism and f'rC = f, range (f'r(c' \ C)) = range (f')\ range
(!) = D' \ D, so f'r(C' \ C) is an isomorphism between C' \ C and D' \D. Hence D ~ D', so R
satisfies the first clause of a pomset bisimulation. The second clause follows by symmetry. Iii

From this proof we learn that h-bisimulation not only respects pomset bisimulation but even the
previous proposal combining weak history preserving equivalence and pomset bisimulation. Thus ~h
is the strongest equivalence considered so far (except for event structure isomorphism of course). Nev
ertheless it is possible to abstract from certain details in a system representation: we have a ~h a+ a
and (af(b + c)) + (afb) +((a+ c)fb) ~h (af(b + c)) +((a+ c)fb) (absorption law).

We now show that ~h is preserved by refinement.

Theorem Let £, F be event structures, let r be a refinement.

Sketch of Proof
Let R <;;: C(E) x C(F) x P(EE x E:i=) be a history preserving bisimulation between£ and F.

Let R = {(c,iS,]) E C(r(£)) x C(r(F)) x P(Er(t) x E.(:F))i

3(C,D,/) ER such that pr1(C) = C, pr1(D) = D

and f:C->D is a bijection, satisfying f (e,e') = (f(e),e')}
Using again the Lemma about the behaviour of refined event structures from section 2, it may be
shown that Risa history preserving bisimulation between r(£) and r(F) [GGJ. 11

Finally we show that ~wh and ~h coincide for event structures where concurrent events may not
carry the same label. As a corrollary we then have that also ~wh is preserved by refinement in this
case and respects pomset bisimulation.

Definition £ is an event structure without autoconcurrency iff

'efd,e E EE: d co e and l(d) = l(e) => d =e.

Theorem For event structures £,F without autoconcurrency, £ ~wh F # £ ~h F.

Proof see [GG]. Hint: For configurations C E C(£) and D E C(F) there can be at most one
isomorphism between E[C and .rrn. II

Conclusion
In this paper we have shown that equivalences based on interleaving of atomic actions or of steps

(multi sets of concurrently executable actions) are not preserved when changing the level of atomicity
of actions. However, we could show that certain equivalences based on modelling causal relations ex
plicitly by partial orders are indeed preserved by refinement of actions. We considered "linear time"
approaches, where the behaviour of a system is equated to the set of possible runs, and "branching
time" approaches, where the conflict structure of systems is taken into account. We could show the
negative results about the interleaving approaches regardless of the level of detail in modelling the
conflict behaviour. However, for the positive results about the partial order approaches, the conflict
structure turned out to be crucial. An interesting topic for further research would be to investigate
testing equivalences based on partial orders, taking the conflict structure in a weaker form into ac
count. For an overview consider the following diagram:

runs
conflict
structure

paths

: e.g. testing

bisimulation

247

sequences
of actions

.,, means: not preserved by refinement

sequences
of steps,

pomsets

This diagram is not at all complete. A naturally arising question is to what extent it is actually

necessary to move to partial orders to achieve invariance of equivalence under refinement (here we

have only shown that steps are not sufficient). In fact, also ST-bisimulation [GV] is preserved by

refinement. ST-bisimulation does not respect pomset trace equivalence. Another equivalence being

preserved by refinement was proposed by Hennessy [AH]; however it is defined on a syntactic level

and is not applicable to such a wide class of systems as considered here, e.g. it is not possible to

treat full CCS.

The refinement operation we have considered replaced actions by non-empty, conflict-free event

structures. It is debatable whether one should consider refinements where replacing actions by the

empty event structure is allowed (forgetful refinements). Such refinements can drastically change the

structure of processes, they can not be explained by a change in the level of abstraction at which

processes are regarded. Nevertheless, our results hold also for forgetful refinements (with slightly

more complicated proofs). On the other hand, relaxing the condition that replacements have to be

conflict-free seems very natural and fits nicely with the concept of flow event structures as introduced

in [BCa]. We expect that our results may then be generalised.

Acknowledgements

This paper was initiated by a dicussion with Albert Meyer and Ernst-Rudiger Olderog at ICALP 87

in Karlsruhe. Alex Rabinovich helped us by supplying the two systems considered in example 4.2.

Many thanks also to Ilaria Castellani, Rocco De Nicola and Frits Vaandrager for helpful discussions

and comments, and to Gertrud Jacobs for her patience and careful preparation of the manuscript.

References

[AB] D. Austry, G. Boudol: Algebre de processus et synchronisations, Theoretical Computer Science, Vol.

30, pp. 91-131, 1984

[AH] L. Aceto, M. Hennessy: Towards Action-Refinement in Process Algebras, Report 3/88, Computer

Science, University of Sussex, Brighton, 1988

[BC] G. Boudol, I. Castellani: On the Semantics of Concurrency: Partial Orders and Transition Systems,

Proc. TAPSOFT 87, Vol. I, LNCS 249, Springer-Verlag, pp 123-137, 1987

248

[BCa] G. Boudol, I. Castellani: Permutation of Transitions: An Event Structure Semantics for CCS and
SCCS, handout at the REX School/Workshop on Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, Noordwijkerhout, The Netherlands, May 30 - June 3, 1988

[BHR] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe: A Theory of Communicating Sequential Processes,
Journal of the ACM, Vol. 31, No. 3, pp 560-599, 1984

(CDP] L. Castellano, G. De Michelis, L. Pomello: Concurrency vs Interleaving: An Instructive Example,
Bulletin of the EATCS 31, pp 12-15, 1987

[DDM] P. Degano, R. De Nicola, U. Montanari: Observational Equivalences for Concurrency Models,
in : Formal Description of Programming Concepts - Ill, Proc. of the third IFIP WG 2.2 working
conference, ed. M. Wirsing, Elsevier Science Publishers B.V. (North Holland), pp 105-129, 1987

[DDMa] P. Degano, R. De Nicola, U. Montanari: A Distributed Operational Semantics for CCS Based on
Condition/Event Systems, Acta Informatica Vol. 26, pp. 59-91, 1988

[Devillers] R. Devillers: On the Definition of a Bisimulation Notion Based on Partial Words, Petri Net
Newsletter 29, pp 16-19, April 1988

[DH] R. De Nicola, M. Hennessy: Testing Equivalences for Processes, Theoretical Computer Science, Vol.
34, pp. 83-133, 1984

[GG] R.J. van Glabbeek, U. Goltz: Equivalence Notions for Concurrent Systems and Refinement of Actions,
Arbeitspapiere der GMD 366, February 1989

[Grabowski] J. Grabowski: On Partial Languages, Fundamenta Informatica IV.2, pp 427-498, 1981

[GV) R.J. van Glabbeek, F.W. Vaandrager: Petri Net Models for Algebraic Theories of Concurrency, Proc.
PARLE, Vol. II, LNCS 259, Springer-Verlag, pp 224-242, 1987

[HM] M. Hennessy, R. Milner: Algebraic Laws for Nondeterminism and Cocurrency, Journal of the ACM,
pp 137-161, 1985

[Milne) G.J. Milne: CIRCAL and the Representation of Communication, Concurrency and Time, Trans
actions on Programming Languages and Systems (ACM), Vol. 7, No. 2, pp 270-298, 1985

[Milner) R. Milner: A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980

[Milner a] R. Milner: Calculi for Synchrony and Asynchrony, Theoretical Computer Science, Vol. 25, No.
3, pp 267-310, 1983

[NPW] M. Nielsen, G.D. Plotkin, G. Winskel: Petri Nets, Event Structures and Domains, Part I, Theo
retical Computer Science, Vol. 13, No. 1, pp 85-108, 1981

[Park] D. Park: Concurrency and Automata on Infinite Sequences, Theoretical Computer Science (5th
GI-Conference), LNCS 104, Springer-Verlag, pp 167-183, 1981

[Pomella] L. Pomello: Some Equivalence Notions for Concurrent Systems. An Overview, in: Advances in
Petri Nets 1985, LNCS 222, Springer-Verlag, pp 381-400, 1986

[Pratt] V.R. Pratt: Modelling Concurrency with Partial Orders, International Journal of Parallel Program
ming, Vol. 15, No. 1, pp 33-71, 1986

[TRH] B.A. Trakktenbrot, A. Rabinovich, J. Hirschfeld: Nets of Processes, Technical Report 97 /88, Tel
Aviv Univ., 1988

[TV) D. Taubner, W. Vogler: The Step Failure Semantics, Proc. STACS 87, LNCS 247, Springer-Verlag,
pp 348-359, 1987

[Winskel) G. Winskel: Event Structures, in: Petri Nets: Applications and Relationships to Other Models
of Concurrency, LNCS 255, Springer-Verlag, pp 325-392, 1987

