
Modular Specifications in Process Algebra
With Curious Queues

(extended abstract)

Rob van Glabbeek and Frits Vaandrager
Centre for Mathematics and Computer Science

P+O. Box 4079, 1009 AB Amsterdam, The Netherlands

In recent years a wide variety of process algebras has been proposed in the literature. Often these
process algebras are closely related: they can be viewed as homomorphic images, submodels or
restrictions of each other. The aim of this paper is to show how the semantical reality, consisting of
a large number of closely related process algebras, can be reflected, and even used, on the level of
algebraic specifications and in process verifications. This is done by means of the notion of a
module. The simplest modules are building blocks of operators and axioms, each block describing
a feature of concurrency in a certain semantical setting These modules can then be combined by
means of a union operator +, an export operator O, allowing to forget some operators in a module,
an operator H, changing semantics by taking homomorphic images, and an operator S which takes
subalgebras. These operators enable us to combine modules in a subtle way, when the direct com-
bination would be inconsistent. We show how auxiliary process algebra operators can be hidden
when this is needed. Moreover it is demonstrated how new process combinators can be defined in
terms ot the more elementary ones in a clean way. As an illustration of our approach, a methodol-
ogy is presented that can be used to specify FIFO-queues, and that facilitates verification of con-
current systems containing these queues.

Key Words & Phrases: process algebra, concurrency, modular algebraic specifications, export
operator, union of modules, homomorphism operator, subalgebra operator, FIFO+queues, chaining
operator, communication protocols.
1985 Mathematical Subject Classification: 68Q10, 68Q55, 68Q60.
1980 Mathematical Subject Classification: 68B10, 68C01, 68D25, 68F20.
1982 CR Categories: C.2.2, D.1.3, D.2.t, D.2.2, F.1 +1, F.1.2, F.3.2.
Note: The research of the authors was supported by ESPRIT project no. 432, An Integrated Formal
Approach to Industrial Software Development (METEOR). The research of the second author was
also supported by RACE project no. 1046, Specification and Programming Environment for Com-
munication Software (SPECS). A full version of this paper appeared as [23].

466

INTRODUCTION
During the last decade, a lot of research has been done on process algebra: the branch of
theoretical computer science concerned with the modelling of concurrent systems as elements of
an algebra. Besides the Calculus of Communicating Systems (CCS) of MILNER [31,32], several
related formalisms have been developed, such as the theory of Communicating Sequential
Processes (CSP) of HOARE [17,25], the MEI.m calculus of AUSTRY & BOUIX)L [2] and the Alge-
bra of Communicating Processes (ACP) of BERGSTRA & KLOP [11-14].

When work on process algebra started, many people hoped that it would be possible to come
up, eventually, with the 'ultimate' process algebra, leading to a 'Church thesis' for concurrent
computation. This process algebra, one imagined, should contain only a few fundamental
operators and it should be suited to model all concurrent computational processes. Moreover
there should be a calculus for this model making it possible to prove the identity of processes
algebraically, thus proving correctness of implementations with respect to specifications. As far
as we know, the ultimate process algebra has not yet been found, but we will not exclude that it
will be discovered in the near future.

Two things however, have become clear in the meantime: (1) it is doubtful whether algebraic
system verification, as envisaged in [31], will be possible in this model, and (2) even if the ulti-
mate process algebra exists, this certainly does not mean that all other process algebras are no
longer interesting. We elaborate on this below.

A central idea in process algebra is that two processes which cannot be distinguished by
observation should preferably be identified: the process semantics should be fully abstract with
respect to some notion of testing (see [20,31]). This means that the choice of a suitable process
algebra may depend on the tools an environment has to distinguish between certain processes.
In different applications the tools of the environment may be different, and therefore different
applications may require different process algebras. A large number of process semantics are
not fully abstract with respect to any (reasonable) notion of testing (bisimulation semantics and
partial order semantics, for instance). Still these semantics can be very interesting because they
have simple definitions or correspond to some strong operational intuition. Our hypothetical
ultimate process algebra will make very few identifications, because it should be resistant
against all forms of testing. Therefore not many algebraic laws will be valid in this model and
algebraic system verification will presumably not be possible (specification and implementation
correspond to different processes in the model).

Another factor which plays a role has to do with the operators of process algebras. For
theoretical purposes it is in general desirable to work with a single, small set of fundamental
operators. We doubt however that such a unique optimal and minimal collection exists. What
is optimal depends on the type of result one likes to prove. This becomes even more clear if we
look towards practical applications. One could say that the main message of sections 4 and 5
of this paper is that chaining operators (which are not considered to be fundamental theoreti-
cally) are extremely useful for the specification of various types of queues and for the
verification of properties of concurrent systems containing these queues. Some operators in pro-
tess algebra can be used for a wide range of applications, but we agree with JIFENG & HOARE
[26] that we may have to accept that each application will require derivation of specialised laws
(and operators) to control its complexity.

Many people are embarrassed by the multitude of process algebras occurring in the literature.
They should be aware of the fact that there are close relationships between the various process
algebras: often one process algebra can be viewed as a homomorphic image, subalgebra or res-
triction of another one. The aim of this paper is to show how the semantical reality, consisting
of a large number of closely related process algebras, can be reflected, and even used, on the
level of algebraic specifications and in process verifications.

This paper is about process algebras, their mutual relationships, and strategies to prove that a
formula is valid in a process algebra. Still, we do not present any particular process algebra in
this paper. We only define classes of models of process modules. One reason for doing this is

467

that a detailed description of particular process algebras would make this paper too long.
Another reason is that there is often no clear argument for selecting a particular process alge-
bra. In such situations we are interested in assertions saying that a formula is valid in all alge-
bras satisfying a certain theory. A number of times we need results stating that some formulas
cannot be proven from a certain module. A standard way to prove this is to give a model of the
module where the formulas are not true. For this reason we will often refer to particular pro-
cess algebras which have been described elsewhere in the literature.

The discussion of this paper takes place in the setting of ACP. We think however that the
results can be carried over to CCS, CSP, M_EI~, or any other process algebra formalism.

Modularisation.
The creation of an algebraic framework suitable to deal with realistic applications, gives rise to
the construction of building blocks, or modules, of operators and axioms, each block describing
a feature of concurrency in a certain semantical setting. These modules can then be combined
by means of a module combinator +. We give some examples:
i) A kernel module, that expresses some basic features of concurrent processes, is the module

ACP. For a lot of applications however, ACP does not provide enough operators. Often the
use of renaming operators makes specifications shorter and more comprehensible. These
renaming operators can be defined in a separate module RN. Now the module ACP+RN
combines the specification and verification power of modules ACP and RN.

ii) The axioms of module ACP correspond to the semantical notion of bisimulation. For
some applications bisimulation semantics does not make enough identifications. In these
cases one would like to deal with processes on the level of, for example, failure semantics.
Now one can define a module F, corresponding to the identifications made in failure
semantics on top of the identifications of bisimulation semantics. The module ACP+F
then corresponds to the failure model.

Once a number of modules have been defined, they can be combined in a lot of ways. Some
combinations are interesting (for example the module ACP+ RN + F), for other combinations
no interesting applications exist (the module RN + F). Didactical aspects aside, a major advan-
tage of the modular approach is that results which have been proved from a module M, can
also be proved from a module M + N. This means that process verifications become reusable.

It turns out that certain pairs of modules are incompatible in a very strong sense: with the
combination of two modules strange and counter-intuitive identities can be derived. In B~TL~q,
Bv.aosrgA & KI.op [6], for example, it is shown that the combination of failure semantics and
the priority operator is inconsistent in the sense that an identity can be derived which says that
a process that can do a b-action after it has done an a-action, equals a process that cannot do
this. Another example can be found in BERGSTRA, KLOP & OLDEROG [15], where it is pointed
out that the combination of failure semantics and Koomen's Fair Abstraction Rule (KFAR) is
inconsistent.

In the first section of this paper we present, beside the combinator +, some other operators
on modules. We discuss an export operator [7, allowing to forget some operators in a module,
an operator H, changing semantics by tald~g homomorphic images, and an operator S which
takes subalgebras. These operators enable us to combine modules in a subtle way, when the
direct combination would be inconsistent. In section 2 we describe all the basic process
modules used in the rest of the paper. Section 3 contain.~ two examples of applications of the
new module operators in process algebra:
1. The axiom system ACP contains auxiliary operators tL and I (left-merge and

communication-merge) which drastically simplify computations and have some desirable
'metamathematical' consequences (finite axiomatisabilityl; greater suitability for term

1. Recently, Faron Molle~ from Edinburgh showed that the merge operator cannot be finitely axiomatised without aux-
iliary operators.

468

rewriting analysis). These auxiliary operators can be defined in a large class of process
algebras. However, it turns out that in a setting with the silent step ~- the left-merge cannot
be added consistently to all algebras (for instance not to the usual variants of failure
semantics). Now one may think that this result means that someone who is doing failure
semantics with Ys cannot profit from the nice properties of the left-merge. However, we
will show in this paper that use of the module approach makes it possible to do failure
semantics with ~'s but still benefit from the left-merge in verifications. The idea is that
verifications take place on two levels: the level of bisimulation semantics where the left-
merge can be used, and a level of for instance failure semantics, where no left-merge is
present. The failure model can be obtained from the bisimulation model by removing the
auxiliary operators and taking a homomorphic image. Now we use the observation that cer-
tain formulas (the 'positive' ones without auxiliary operators) are preserved under this pro-
cedure. A consequence of this application is that even if bisimulation semantics is not con-
sidered to be an appropriate process semantics (since it is not fully abstract with respect to
any reasonable notion of testing), it still can be useful as an expedient for proving formulas
in failure semantics.

2. As already pointed out above, one would like to have, from a theoretical point of view, as
few operators or combinators as possible. On the other hand, when dealing with applica-
tions, it is often very rewarding to introduce new operators. This paradox can be resolved
if the new operators are definable in terms of the more elementary ones. In that case the
new operators can be considered as notations which are useful, but do not complicate the
underlying theory. A problem with defining operators in terms of other operators is that
often auxiliary atomic actions are needed in the definition. These auxiliary actions can
then not be used in any other place, because that would disturb the intended semantics of
the operator. In the laws that can be derived for the defined operator, the auxiliary actions
occur prominently. These 'side effects' are often quite unpleasant. One may think that side
effects are unavoidable and that someone who really does not like them should define new
operators directly in the algebras (even though this is in conflict with the desire to have as
few operators as possible). However, we will show that the module approach can be used
to solve also this problem: with the restriction operator we remove the auxiliary actions
from the signature and then we apply the subalgebra operator in order to 'move' to alge-
bras where the auxiliary actions are not present at all.

The concept of hiding auxiliary operators in a module in some formal way is quite familiar in
the literature (see BEaGSTaA, H~V,~G & I~n, rr [9] for example), but the use of module opera-
t o r s / / a n d S, and their application in combining modules that would be incompatible other-
wise, is, as far as we know, new. The H and S operations are in spirit related to the abstraet
operation of Shm, mta.~ & Wmsn~o [38] and S ~ u . x & Txata~cra [37], which also extends the
model class of a module.

In previous papers on ACP, the underlying logic used in process verifications was not made
explicit. The reason for this was that a long definition of the logic would distract the reader's
attention from the more essential parts of the paper. It was felt that .filling in the details of the
logic would not be too difficult and that moreover different options were equivalent. In K s
paper we generalise the classical notion of a formal proof of a formula from a theory to the
notion of a formal proof of a formula from a module. The definition of this last notion is
parametrised by the underlying logic. What is provable from a module really depends on the
logic that is used, and this makes it necessary to consider in more detail the issue of logics. In
an appendix we present three alternatives: (1) Equational logic. This logic is suited for dealing
with finite processes, but not strong enough for handling infinite processes; (2) lnfinitary condi-
tional equational logic. This is the logic used in the process verifications of this paper; (3) First
order logic with equality.

Our investigations into the precise nature of the calculi used in process algebra, led us to
alternative formulations of some of the proof principles in ACP which fit better in our formal

469

setup. We present a reformulation of the Recursive Specification Principle (RSP) and also an
alphabet operator which returns a process instead of a set of actions.

Queues.
As an illustration of the techniques developed in sections 1 to 3, we present in secfion 4 an alge-
braic treatment of FIFO-queues. FIFO-queues play an important role in the description of
languages with asynchronous message passing, the modelling of communication channels occur-
ring in computer networks and the implementation of languages with synchronous communica-
tion. We show how the chaining operator can be used to give short specifications of various
(faulty) queues and simple proofs of numerous identifies, for example of the fact that the chain-
hag of a queue with unbounded capacity and a one datum buffer is again a queue.

We give an example of an identity that holds intuitively (there is no experiment that distin-
guishes between the two processes) but is not valid in bisimulation semantics. We use the
machinery developed in section 1-3 to extend the axiom system in a neat way (avoiding incon-
sistencies) so that we can prove the processes identical.

A protocol verification.
The usefulness of the proof technique for queues is illustrated in section 5, where we sketch a
modular vefificafion of a concurrent alternating bit protocol The complete verification, which is
presented in [23], takes 4 pages (or 5 if the proof of the standard facts about the queues is
included) and is thereby considerably shorter than the proof of similar protocols in papers by
KOYMANS & MULDER [27] and LAm~N & M_ILNER [28] (15 and 11 pages respectively). The
verification shows that the protocol is correct if the channels behave as faulty FIFO-queues with
unbounded capacity. However, a minor change in the proof is enough to show that the protocol
also works if the channels behave as n-buffers, faulty n-buffers, etc. In our view the basic merit
of our way of dealing with queues is that it becomes possible to use inductive argunm~ts when
dealing with the length of queues in protocol systems.

§1 MODULE LOGIC
In this paper, as in many other papers about process algebra, we use formal calculi to prove
statements about concurrent systems. In this section we answer the following questions:
- Which kind of calculi do we use?
- What do we understand by a proof?.
In the next sections we will apply this general setup to the setting of concurrent systems.

1.1. Statements about concurrent systems. In many theories of concurrency it is common practice
to represent processes - the behaviours of concurrent systems - as elements in an algebra. Tiffs is
a mathemafical domain, on which some operators and predicates are defined. Algebras, which
are suitable for the representafion of processes are called process algebras. Thus a statement
about the behaviour of concurrent systems can be regarded as a statement about the elements of
a certain process algebra. Such a statement can be represented by a formula in a suitable
language which is interpreted in this process algebra. Sometimes we consider several process
algebras at the same time and want to formulate a statement about concurrent processes
without choosing one of these algebras. In this case we represent the statement by a formula in
a suitable language which has an interpretation in all these process algebras. Hence we are
interested in assertions of the form: 'Formula #, holds in the process algebra ~, notation ~ ~ ~,
or 'Formula ~ holds in the class of process algebras C, notation C g ~. Now we can formulate
the goal that is pursued in the present section: to propose a method for proving assertions ~ ~ ~,
oread.

470

1.2. Proving formulas from theories. Classical logic gave us the notion of a formal proof of a for-
mula q~ from a theory T. Here a theory is a set of formulas. We write T ~ q~ if such a proof
exists. The use of this notion is revealed by the following soundness theorem: I f T ~ ¢ then
holds in all algebras satisfying T. Here an algebra ~ satisfies T, notation ~ ~ T, if all formulas of
T hold in this algebra. Thus if we want to prove ~ k ~ it suffices to prove T ~ ~ and ~ ~ T for a
suitable theory T. Likewise, if we want to prove e g ~, with ~ a class of algebras, it suffices to
prove T ~ ~ and ~ g T.

At first sight the method of proving ~ ~ ~ by means of a formal proof of ~ out of T seems
very inefficient. Instead of verifying ~g ~, one has to verify ~g 6 for all 6~T, and moreover the
formal proof has to be constructed. However, there are two circumstances in which this method
is efficient, and in most applications both of them apply. First of all it might be the case that
is more complicated than the formulas of T and that a direct verification of ~ ~ ~ is much more
work than the formal proof and all verifications ~ ~ ~ together. Secondly, it might occur that a
single theory T with ~ ~ T is used to prove many formulas ¢, so that many verifications ~ ~ ¢
are balanced against many formal proofs of ¢ out of T and a single set of verifications ~ ~ q~.
Especially when constructing formal proofs is considered easier then making verifications ~ ~ ¢,
this reusability argument is very powerful. It also indicates that for a #oven algebra ~ we want to
find a theory T from which most interesting formulas ~ with ~ ~ ¢ can be proved.

Often there are reasons for representing processes in an algebra that satisfies a particular
theory T, but there is no clear argument for selecting one of these algebras. In this situation we
are interested in assertions ~ g ¢ with ~ the dass of all algebras satisfying T. Of course asser-
tions of this type can be conveniently proved by means of a formal proof of ~ from T.

1.3. Proving formulas from modules. In process algebra we often want to modify the process
algebra currently used to represent processes. Such a modification might be as simple as the
addition of another operator, needed for the proper modelling of yet another feature of con-
currency, but it can also be a more involved modification, such as factoring out a congruence, in
order to identify processes that should not be distinguished in a certain application. It is our
explicit concern to organise proofs of statements about concurrent systems in such a way that,
whenever possible, our results carry over to modifications of the process algebra for which they
were proved.

Now suppose ~ is a process algebra satisfying the theory T and a statement ~ g ~, has been
proved by means of a formal proof of ~, out of T. Furthermore suppose that ~ is obtained from

by factoring out a congruence relation on ~ (so ~ is a homomorphic image of ~ and for a cer-
tain application ~ is considered to be a more suitable model of concurrency than & Then in
general • g ~, cannot be concluded, but if 4, belongs to a certain class of formulas (the positive
ones) it can. So if ~ is positive we can use the following theorem: 'If ~ ~ T, T ~ ~, ~ is positive,
and • is a homomorphic image of ~, then ~ ~ ~'. This saves us the trouble of finding another
theory U, verifying that ~ g U and proving U ~ ~, for many formulas ~ that have been proved
from T already. Another way of formulating the same idea is to introduce a module H(T). We
postulate that one may derive 'H(T) ~ ~' from 'T ~ ¢' and '¢ is positive', and H(T) ~ ¢ implies
that 0 holds in all homomorphic images of algebras satisfying T.

Thus we propose a generalisation of the notion of a formal proof. Instead of theories we use
the more general notion of modules. Like a theory a module characterises a class C of algebras,
but besides the class of all algebras satisfying a #oven set of formulas, C can for instance also be
the class of homomorphic images or subalgebras of a class of algebras specified earlier. Now a
proof in the framework of module algebra is a sequence or tree of assertions M ~ ¢ such that in
each step either the formula ~ is manipulated, as in classical proofs, or the module M is mani-
pulated. Of course we will establish a soundness theorem as before, and then an assertion ~ ~ ~,
can be proved by means of a module M with C ~ M and a formal proof of 0 out of M. We will
now turn to the formal definitions.

471

1.4. Signatures. Let NAMES be a given set of names.
A sort declaration is an expression S :S with S ~ N ~ s .
A function declaration is an expression F : f :S l × " " " × Sn--->S with f , S l, " " • ,Sn,S ~ NA_MI~S.
A,predicate declaration is an expression R :,p C_ S l × " " " X S, with,p, S l, " • " ,S, ~ NAMES.
A signature a is a set of sort, function and predicate declarations, satisfying:

F ~ : f : S l × ' " X S n - - * S =0 So:Si (i = I , " " , n) A S~:S

R o . T C _ S I X - " × S n ~ S , : S i (i = l , " ' , n)

Here S , : S is an abbreviation for (S :S)Ea and likewise for Fo and Re. A function declaration
F :f:-->S of arity 0 is sometimes called a constant declaration and written as F : fES.

1.5. o-Algebras. Let o be a signature. A o-algebra A is a function on o that maps

S~:S to a set S ~

Fa: f :S1 X - - . XS.-->S to a func t i on f~ ,x ... xs--,s:S~X " ' " XS~.-->S ~ and

Ro:pC_SI X • •. X S , to a predicate,p~,x ... xs. C_S~X . . • XS , ~.

Let ~ and • be o-algebras.

is a subalgebra of ~ if S~C_S ~ for all So:S, if moreover ~ , x . . . xs.- ,s restricted to
S ~ X . . . XS~,--,S ~ is just f ~ , x . . , x s - , s for all Fo:f:S~ X - - - XS,-- ,S, and i f ,p~,x . . , xs.
restricted to S~ × - - - × S , ~ is justp~,x ... xs. for all RoTC_SI × . . . × S , .

A homomorphism h :~--,~ consists of mappings hs :S ~ S ~ for all ~ , :S , such that

hsO~,x . . . xs.-,s(X l, " " ,x ,)) =)~ ,x . . . x s -,s(hs, (X]), " " ,hs. (X,))

for all l=,:f :S~ X . . • XS,--->S and all x i~S~(i =1, • • • ,n)

,p~ ,x - - -Xs . (Xh""" ,Xn) ¢=~ "p~,X... xs . (hs , (x |) , " " , h s . (x n))

f o r a l l R ° T C _ S l × " ' " XSn and all x i ~ S ~ (i = l, " " ,n)

q~ is a homomorphic image of ~ if there exists a surjective homomorphism h :~-->~.

Let 8 be a a-algebra. The restriction #rq#~ of (~ to the signature # is the #No-algebra ~, defined
by

S ~ = S ~ for all S~n, :S

J~,× ... xs.-.,s = J~,x ... xs.--,s for all F~no:f:S~ X - . . ×S,--*S

,P~ ,x . . . xs . : _ P ~ , x . . - x s . f o r a l l ~ # n , T C - S I X " ' " XSn

1.6. Logics. A logic ~is a complex of prescriptions, defining for any signature o

a set F~, of formulas over o such that F~, NF~p =F~,np,

a bin _ary relation ~o e on o - a l g e b r a s × ~ such that for all p-algebras • and q~F~onp:

H
and a set ~ of inference rules --~ with H C_l~, and O~oo.

If ~ v,¢ ¢ we say that the a-algebra ~ satisfies the formula 4, or that ~ holds in 6L A theory over a
is a set of formulas over o. If T i s a theory over o and ~ e q> for all O c T we say that ~ satisfies
T, notation A ~o e T. We also say that ~ is a model of T.

H A logic ~ is sound if -~- ~ implies ~ ~o e H ~ (~ g e q~ for any a-algebra A,

472

A formula ¢~F~, is preserved under subalgebras if ~ ro e 4' implies ~ ro e ¢, for any subalgebra ~ of
&
A formula ¢~F~, is preserved under homomorphisms if ~ro e ~ implies • ro e ~, for any
homomorphic image ~ of

Without doubt, the definition of a 'logic' as presented above is too general for most applica-
tions. However, it is suited for our purposes and anyone can substitute his/her favourite (and
more restricted) definition whenever he/she likes.

In the process algebra verifications of this paper we will use infinitary conditional equational
logic. The definition of this logic can be found in the appendix. For comparison, the definitions
of equational logic and first order logic with equality are included too.

I.Z Classical logic.
DERIVABILITY. A o-proof of a formula g}~F~o from a theory TC_F~o using the logic f, is a well-
founded, upwardly branching tree of which the nodes are labelled by o-formulas, such that

the root is labelled by ~,
and if ~ is the label of a node q and H is the set of labels of the nodes directly above q
then

either ~ T and H = ~,
H

- or --~- ~ .

If a o-proof of ~, from T using e exists, we say that ~ is o-provable from T by means of ~ nota-
tion T po e ¢.

TRtrrri. Let C be a class of o-algebras and CeF~o. Then 0 is said to be true in ~ notation C to e ¢,
if 0 holds in all o-algebras t~eC Let Alg(o, T) be the class of all o-algebras satisfying T.

SOtmONESS TI-IEO~M: I f ~ is sound then T re, 0 implies Alg(o, T) re, O.
PROOF: Straightforward with induction. []

If no confusion is likely to result, the sub- and superscripts of r and ~ may be dropped without
further warning.

1.8. Module logic. The set 91L of modules is defined inductively as follows:
- If o is a signature and T a theory over o, then (o,T)~gL
- I fMandN~gg thenM+N~91L
- If o is a signature and MeglL then o[]M egL
- If Me~)lC then H(M)~)L
- If M~91L then S(M)~gZ

Here + is the composition operator, allowing to organise specifications in a modular way, and
[] is the export operator, restricting the visible signature of a module, thereby hiding auxiliary
items. These operators occur in some form or other frequently in the literature on software
engineering. Our notation is taken from BERGSTRA, HEERING & KLINT [9] in which also addi-
tional references can be found. The homomorphism operator H and the subalgebra operator S
axe, as far as we know, new in the context of algebraic specifications. Of course they are well
known in model theory, see for instance MONK [33].

The visible signature X(M) of a module M is defined inductively by:
- X (o , T) = o,
- X(M + N) = X(M) U X(N),
- Y,,(oDM) = onX(M),
- Y(H(M)) = Y.(M),
- x (S (M)) = X(M).

473

Tluyr~. The class Alg(M) of models of a module M is defined inductively by:
is a model of (o, T) if it is a o-algebra, satisfying T;

~is a model of M +N if it is a ~.(M +N)-algebra, such that E(M)E]~ is a model of M and
Z(N)[]~ is a model of N;

is a model of oDM if it is the restriction of a model • of M to the signature o;
is a model of H(M) ff it is a homomorphic image of a model ~ of M;
is a model of S (M) if it is a subalgebra of a model ~ of M.

Note that AIg(M) is a generalisation of Alg(o,T) as defined earlier. All the elements of Alg(M)
are E(M)-algebras. A ~.(M)-algebra ~EAIg(M) is said to satisfy M. A formula ¢~/Tf)4M) is
satisfied by a module M, notation M r e ¢, if Alg(M) ~) ¢, thus if ¢ holds in all Z(M)-
algebras satisfying M.

DEItlWdlILrI~. A proof of a formula e e T ~ i) from a module M using the logic F., is a well-
founded, upwardly branching tree of which the nodes are labelled by assertions N ~ ~, such that

the root is labelled by M v ¢
and if N ~ ~ is the label of a node q and H is the set of labels of the nodes directly above q

H then ~ is one of the inference rules of table 1.

(o,T) ,- cp if g}~T

M t- ¢1 q ~J) whenever ~b/ q E J)
M t- ¢ ¢ ~/~(M)

M ~ , N ~ ,
M +N ~ ck M +N ~ ck

g ~ ed if epEt~,
oDM ~ ¢

M ~ ~ if ~ is positive
H(M) ~ ¢

M ~ ~ if ~ is universal
S(M) ~ ep

T~a3t~ 1.

Here positive and universal are syntactic criteria, to be defined for each logic ~ separately, ensur-
ing that a formula is preserved under homomorphisms and subalgebras respectively. We write

N ~ ~ for -~--~ , and omit braces in the conditions of inference rules. If a proof of ¢ from M

using ~ exists, we say that ¢ is provable from M by means of F., notation M ~e g}.

LE/~tA: If M ~e ¢ then e p i l o g .
PRooF: With induction. The only nontrivial cases are the rules for + and [3. These follow from
F~o C_F~oup and F~o NF~p E_b~onp respectively. []

SOUNDNESS TI~OR~M: I f ~ is sound then M ~e ~ implies M ~e ~b.
PROOF: With induction. Again the only nontrivial cases are the rules for + and D. These fol-
low since for all p-algebras ~ and ¢~oon0: oDA~¢ ~ ~ ¢ and o D ~ ¢ ~ ~ g ,

474

respectively. []

§2 PRocr.ss AtG~P.A
This is not an introductory paper on process algebra. We only give a listing of the process
modules used in the rest of the paper. For an introduction to the ACP formalism we refer the
reader to [11-14].

2.1. ACP,. In this paper a central role will be played by the module ACP, the Algebra of
Communicating Processes with abstraction. ACP, has two parameters. The lirst parameter is a
finite set A of atomic actions. For each atomic action a cA there is a constant a in the language,
representing the process, starting with an a-step and terminating after some time. Furthermore
we have a special constant ~, denoting deadlock, the acknowledgement of a process that it can-
not do anything anymore. We write A 6 = A U{8}. The second parameter of ACP~ is a binary
communication function y:AsXAv--.>As, which is commutative, associative and has 8 as zero
element:

y(a,b) = y(b,a) 7(a,y(b,c)) = ~(y(a,b),c) y(a,8) = 8

If ~(a,b)=c:#8 this means that actions a and b can synchronise. The synchronous performance
of a and b is then regarded as a performance of the communication action c. Formally we
should add the parameters to the name of a module: ACP~(A, Y). However, in order to keep
notation simple, we will always omit the parameters if this can be done without causing confu-
sion.

In table 2 we give the signature of module ACP,.

~. (ACP~): S (sort):
F (functions):

P the set of processes
+: P × P-->P alternative composition (sum)
• : P ×P-->P sequential composition (product)
I1: P × P ~ P parallel composition (merge)
II : P ×P-- ,P left-merge
I: P × P-oP communication-merge
0n: P-->P encapsulation, for any H C_A
• l: P ~ P abstraction, for any I CA
a ~P for any atomic action a cA
8 ~P deadlock
T ~ P silent action

T.~t~ 2.

Table 3 contains the theory of the module ACPT. In this paper we present ACP, as a monol-
ithic module. In [13,14] however, it has been shown that ACP, can be viewed as the sum of a
large number of sub-modules which are interesting in their own fight. The module consisting of
axioms A1-5 only is called BPA (from Basic Process Algebra). If we add axioms A6-7 we
obtain BPAs, and BPA8 plus axioms T1-3 gives BPA¢. The module ACP consists of the
axioms A1-7, CF, CM1-9 and D1-4, i.e. the left column of table 3. All axioms in table 3 are in
fact axiom schemes in a, b, H and L Here a and b range over A8 (unless further restrictions are
made in the table) and H,I C_A. In a product x ;v we will often omit the -. We take. to be more
binding than other operations and + to be less binding than other operations. In case we are
dealing with an associative operator, we also leave out parentheses.

475

ACP, x + y = y + x A1
x +(v +z) = (x +y)+z
x + x = x A3
(x + y) z = xz + y z A4
(xy)z = xO,z) A5
x + 8 = x A6
8x = 8 A7

a l b = y(a,b) CF

xlly = xll y +yll x + x ly CM1
all x = ax CM2
(ax)ll y = a (x l~) CM3
(x + y) l l z = xll z + y l l z CM4
(ax)lb = (a lb)x CM5
a I(bx) = (a I b)x CM6
(ax) l(by) = (a I b)(x Ily) CM7
(x + y) l z = x l z + y l z CM8
x l 0 , + z) = x l y + x l z CM9

OH(a) = a if aq~H D1
0 n (a) = 8 i f a ~ H D2
Ohr(x + y) = On(x)+Ou0,) D3
~H(Xy) ~- OH(X)'OH(y) D4

x¢ = x T1
'IX + X = "iX T 2

a('ix + y) = a (rx + y) + a x T3

"iII x = "ix TM1
(' i x) l l y = ¢(xl~v) TM2
• i I x = 8 TC1
x I'i = 8 TC2
(rx)ly = x ly TC3
xl (ry) = x l y TC4

an0") = "i DT
• ii('i) = "i TI1
• i t (a) = a if a ~ I TI2
• i t (a) = "i if a ~ I TI3
• ~(x + y) = "i~(x)+'i~0,) TI4
"rl(Xy) = TI(X)'IIO~) TI5

TABLE 3.

2.1.1. Note. Let n > 0 . Let D = { d I dn} be a finite set. Let xa x 4 be processes. We
will use the notation ~ xa for the sum xa, + • • • + x a . ~ xa = 8 by definition.

d~D de

2.1.2. Summand inclusion. In process verifications the summand inclusion predicate C_ turns out
to be a useful notation. It is defined by: xC__y ¢ , x + y = y . From the ACP,-axioms A1, A2
and A3 respectively it follows that C_ is antisymmetrical, transitive and reflexive, and hence a
partial order.

The following proposition will play an important role in sections 4 and 5.

2.1.3. PROPOSmON: ACP, ~ "ixl~v = ~(xlly).
Paoor: "ixlly 3_ "ixll y = ~(xlb') = "ixll y = ~'rxll y = ~('ixl[v) _3 "ixl[v.
that C_ is a partial order. E3

N o w use the fact

2.1.4. Monotony. Most of the operators of ACP, are monotonous with respect to the summand
inclusion ordering. Using essentially the distributivity of the operators over + , one can show
that if x C__y, ACP~ proves:

x + z C _ y + z ,
X'g C.~'g,
xll zc_yll z,
x l z C _ y l z ,

476

aH(X) ~_~H(Y),

Due to branching time, in general z.x ~ z.y, xllz ~ yllz and zll x ~ zll y. However, we do
have monotony of the merge for the case were x is of the form ~'x'. If ~x'C_y, then ACP,
• x'llz C_yllz:

2.1.3
• x'llz = ~(x'llz) = ~x'lLz c y l l z c_yllz.

2.2. Standard Concurrency. Often we add to the module ACP, the following module SC of
Standard Concurrency (aeA.~), which is parametrised by A. A proof that these axioms hold for
all dosed recursion-free terms can be found in [12].

SC (x l l y) l l z = xll (yllz) SC1
(xlay)ll z = xl(ayl lz) SC2
x ly = y I x SC3
xlly =yllx SCA
x l O ' l z) = (x l y) l z SC5
xll(vllz) = (xl[v)llz SO6

TABLE 4.

2.3. Renamings. Let A,s = AaU{~}. For every function f : A , ~ A , s with the property that
f (8)=8 and f 0")=~ ", we define an operator pf: P->P. Axioms for pf are given in table 5 (Here
a eA, t and id is the identity). Module RN is parametrised by A.

ILN oj(a) = f (a) RN1

p/(x +y) = p/(x)+oj~v) RN2

pid(x) = x RN4

pfop~(x) = pfog(X) mq5

TABLE 5.

For t eA,~ and H C_A we define mappings rt,~ : A , ~ A ~ t as follows:

ta if a e H
r t, lt(a) = otherwise

In the following we will implicitly identify the operators au and p,~, and also the operators ~z
and &j: encapsulation is just renaming of actions into & and abstraction is renaming of actions
into the silent step ~.

2.4. Chaining operators. A basic situation we will encounter is one in which processes input and
output values in a domain D. Often we want to 'chain' two processes in such a way that the
Output Of the first one becomes the input of the second. In order to describe this, we define
chaining operators >:~ and >>. In the process x >>>y the output of process x serves as input of
process y. Operator >> is identical to operator >>>, but hides in addition the commqnications
that take place at the internal communication port. The reason for introducing two operators is
a technical one: the operator >> (in which we are interested most) often leads to unguarded
recursion (cf. sections 2.8.1 and 2.12.1). We will define the chaining operators in terms of the

477

operators of ACP, + RN. In this way we obtain a simple, finite axiomatisation of the operators.
The operator ~, occurs (in a different notation) already in I-Ioma~ [24] and MILN~R [31]. In the
context of ACP the operators ~ and >> were introduced in VAANDRAGER [40].

Let for d~D, ~l be the action of reading d, and I'd be the action of sending d. Furthermore
let ch (1)) be the following set

ch(D) = {td, Vl, s(d),r(d),c(d)ld~D }

Here r(d), s(d) and c(d) (d~D) are auxiliary actions which play a role in the definition of the
chaining operators. The module for the chaining operators is parametrised by an action alpha-
bet A satisfying ch(D)C_A. The module should occur in a context with a module ACP,(A,7)
where range(7) f3 { ~,d, l'd, s (d), r (d) I d ~ D } = O and communication on ch (D) is defined by

"~(s(d),r(d)) = c(d)

(all other communications give 8). The renaming functions l's and ~r are defined by

~s(td) = s(d) and ~r(~l) : r(d) (d~D)

and ts(a)=~r(a)=a for every other a~A~. Now the 'concrete' chaining of processes x andy,
notation x:~,y, is defined by means of the axiom (H = (s(d),r(d)ld~D}):

[x::~y = ~n(Pts(x)llg~(y)) CHI]

The 'abstract' chaining of processes x and y, notation x:~y, is defined by means of the axiom
(1 = {c(d)ldED}):

[x>>y = tT(x:~y) C m [

The module CH + consists of axioms CH1 and CH2, and is parametrised by A. The ' + ' in
CI-I + refers to the auxih'ary actions in the module, which will be removed in section 3.

2.5. Recumion~ A recumive specification E is a set of equations { x =txl x E VE } with VE a set of
variables and tx a process expression for x ~ VE. Only the variables of VE may appear in tx. A
solution of E is an interpretation of the variables of VE as processes (in a certain domain), such
that the equations of E are satisfied.

Recursive specifications are used to define (or specify) infinite processes. For each rec~sive
specification E and xeVE, the module REC introduces a constant < x l E > , denoting the x-
component of a solution of E.

In most applications the variables X~ IrE in a recursive specification E will be chosen fresh,
so that there is no need to repeat E in each occurrence of <XIE>. Therefore the convention
will be adopted that once a recursive specification has been declared, < X I E > can be abbrevi-
ated by X. If this is done, X is called a format variable. Formal variables are denoted by capital
letters. So after the declaration X =aX, a statement X =aaX should be interpreted as an abbre-
viation of < X l X = a X > = a a < X I X = a X > .

Let g = {x = txlXeVE} be a recursive specification, and t a process expression. Then
< t i E > denotes the term t in which each free occurrence of x~VE is replaced by <xJE>.
In a reenrsive language we have for each E as above and x ~ Ire an axiom

I < x l E > = < t x l E > REC[

If the above convention is used, these formulas seem to be just the equations of E. The module
REC is parametrised by the signature in which the recursive equations are written. In the pres-
ence of module REC each system of recursion equations over this signature has a solution.

478

2.6. Projection. The operator ~r n :P-->P (n~l~) stops processes after they have performed n
atomic actions, with the understanding that r-steps are transparent. The axioms for ¢tn are given
in table 6. Module PR is parametrised by A.

PR ~rn(r) = • PR1

~ro(ax) = 8 PR2

¢tn+l(ax) = a.~r,(x) PR3

~rn(~X) = r'~rn(X) PR4

~.(x +y) = ~.(x)+,,.~v) PR5

T ~ I ~ 6.

In this paper, as in other papers on process algebra, we have an infinite collection of unary pro-
jection operators. Another option, which we do not pursue here, but which might be more
fruitful if one is interested in finitary process algebra proofs, is to introduce a single binary pro-
jection operator g: :~r: N×P-)P .

2.7. Boundedness. The predicate Bn C_P (nEl~l) states that the nondeterminism displayed by a
process before its n th atomic step is bounded. If for all n~l~l: Bn(x), we say x is bounded.
Axioms for B, are in table 7 (a~As). Module B is parametrised by A.

B Bo(x) BI

B~(r) B2

B,(x)
B3 B.(rx)

B.(x)
B4

B~+l(ax)

B,(x), BnO')
B~(x +y)

B5

TABLE 7.

Boundedness predicates were introduced in [22].

2.8. Approximation Induction Principle. AIP- is a proof rule which is vital if we want to prove
things about infinite processes. The rule expresses the idea that if two processes are equal to any
depth, and one of them is bounded then they are equal.

AIP-) Vn~l~ ~n(x) = ~r.(y), B.(x)
x = y

The " - " in ALP-, distinguishes the rule from a variant without predicates Bn.

2.8.1. DEFINITION. Let t be an open ACP:term without abstraction operators. An occurrence
of a variable X in t is guarded if t has a subterm of the form a.M, with a~A~, and tl~s X
occurs in M. Otherwise, the occurrence is unguarded.

Let E = {x=tx lx~Vz} be a reeursive specification in which all tx are ACP:terms without
abstraction operators. For X, Y~ Ve we define:

479

X ~ Y ~ Y occurs unguarded in tx

We call E guarded if relation - ~ is well-founded (i.e. there

r z . . .).

is no infinite sequence

2.8.2. Trmom~ (Recursive Specification Principle (RSP)):
ACP, + REC + PR + B + AIP- F

i (RSP) E Eguarded I x = < x l E >

In plain English the RSP rule says that every guarded recursive specification has at most one
solution.

Example. Let E = {X=(a+b).X} and F = {Y=a.(a+b).Y+b.Y} be two reeursive
specifications. Since

< X I E > = (a+b) .<XIE> = a . < X I E > + b . < X I E > =

=a.(a +b) .<XIE> +b.<XIE >,

the constant < X I E > satisfies the equation of F. Because the specification F is guarded, RSP
now gives that < X I E > = < Y I F > .

2.9. Kooraen's Fair Abstraction Rule (KFAR). In the verification of communication protocols we
often use the following rule, called Koomen's Fair Abstraction Rule (I C_A). Module KFAR is
parametrised by A.

x=ix +y (i~I) (KFAR) ~1(x)=~-~(r)

Fair abstraction here means that ~1(x) will eventually exit the hidden/-cycle. Below we will for-
mulate a generalisation of KFAR, the Cluster Fair Abstraction Rule (CFAR), which can be
derived from KFAR.

2.9.1. DEFr~rrioN: Let E = {X=tx I X~VE} be a recursive specification, and let IC_A. A sub-
set C of Ve is called a cluster (of I) in E iff for all X~C:

m n

tx = ~ ik'Xk + ~ Yt
k = l I = l

(For m~>0, il ,im~IU{~}, XI ,Xm~C, n~O and Y I , . . . , Y n ¢ V e - C) . Variables
X ~ C are called cluster variables. For XE C and Y ~ Ve we say that

X,,,~ Y ,~ Y occurs in tx

We define

e(C) = { Y a V e - C I] X e C : X , ~ Y }

Variables in e(C) are called exits. ,~,¢ is the transitive and reflexive closure of ,,~. Ouster C is
conservative iff every exit can be reached from every cluster variable via a path in the cluster:

VX~C VY~e(C) : X,,,** Y

480

Example. In the transition diagram of figure 1, the sets {1,2,3}, {4,5,6,7}, {8} and
{1,2,3,4,5,6,7,8} are examples of conservative dusters. Cluster {1,2,3,4,5,6,7} is not conserva-
tive since exit Z cannot be reached from cluster variables 4, 5, 6 and 7.

X

- N -

z

X

:'% -T'

T

FIGURE 1.

2.9.2. DEFINITION: The Cluster Fair Abstraction Rule (CFAR) reads as follows:

(CFAR) Let E be a guarded recursive speotication; let I C_A with
11192; let C be a finite conservative cluster of I in E; and
let X,X'~C with X,,~X'. Then: ~I(X) = ~. ~. ~I(Y)

YEe(C)

2.9.3. THEOREM: ACP, + RN + REC + RSP + KFAR ~ CFAR.
PROOF: See [39]. []

2.10. Alphabets. Intuitively the alphabet of a process is the set of atomic actions which it can
perform. This idea is formalised in [4], where an operator a:P~2 A is introduced, with axioms
such as:

a(a) = o

a(ax) : {a) 13 a(x)

~(x +y) = a(x) u a(y)

In this approach the question arises what axioms should be adopted for the set-operators U, N,
etc. One option, which is implicitly adopted in previous papers on process algebra, is to take the
equalities which are true in set theory. This collection is unstructured and too large for our pur-
poses. Therefore we propose a different, more algebraic solution. We view the alphabet of a pro-
tess as a process; the alphabet operator a goes from sort P to sort P. Process a(x) is the alter-
native composition of the actions which can be performed by x. In this way we represent a set
of actions by a process. A set B of actions is represented by the process expression B=d,f~,b.

beB
So the empty set is represented by $, a singleton-set {a} by the expression a, and a set {a,b} by
expression a + b. Set union corresponds to alternative composition. The process algebra axioms
A1-3 and A6 correspond to similar axioms for the set union operator. The notation C_ for sum-
mand inclusion between processes (section 2.1.2), fits with the notation for the subset predicate
o n sets.

The following axioms in table 8 define the alphabet of finite processes (a cA). Module AB is

481

parametrised by A.

AB
a(ax) = a+a(x) AB2
a(x+y) = a(x)+a(y) AB3
a(r) = 8 AB4
a(~x) = a(x) AB5

TABLE 8.

In order to compute the alphabet of infinite processes, we introduce an additional module AA
which is parametrised by A.

AA a(x) CA AA1

a(x ILv) = a(x) + a(y) + a(x) I a~v) AA2

aopf(X) C_ pfo0hroa(x) AA3
(where H = {a ~A If(a)=¢})

Vn E]N a(*rn(x)) C y AA4
a(x) c_.y

T~L~ 9.

It is not hard to see that the axioms of AA hold for all dosed recursion-free terms.

Example. (from [4]). Let p = <Xt {X=aX}>, and define q = ~{a)(P), r = q.b (with b~r=a).
What is the alphabet of r? We derive:

a(r) = a(qb) = a(~.~,~,) .b) = a(~'~a~)~r~.}(b)) ----

AA3 RN~
= ~ - ~ ,) (~ b)) c_ ~-{a)O~{a)Oa~b) = O{,}oa~b).

Since
,,182

a(pb) = a(apb) -- a+a(pb),

w e have that aC_a(pb). On the other hand we derive for neIg:

a(¢n(pb)) = a(a".O)Ca

and therefore, by application of axiom AA4, a(pb)C_a. Consequently a(pb) = a and

a(r) = ~){a)oa(pb) = a{a}(a) = &

Information about alphabets must be available if we want to apply the following rules. These
rules, which are a generalisation of the conditional axioms of [4], occur in a slightly different
form also in [40]. Rules like these are an important tool in system verifications based on pro-
cess algebra. Module RR is parametrised by ,4 and "/. Observe that axioms AAI and RR1
together imply axiom RN4 of table 5. Axiom RR2, which describes the interaction between
renaming and parallel composition, looks complicated, but that is only because it is so general.
The axioms RR are derivable for dosed rec~ursion-free terms.

482

RR a(x)C_B Vb~B : f (b)=b pj(x)=

a(x)CB, aO,)cC
p x l~) p x l l~))vc~C :f(c)=fl(c)AOlb~B :f~(b,c)=fov(b,f(c)))

RR1

RR2

T~LE 10.

2.11. ACP~. The combination of all modules presented thus far, except for K F A K will be
called ACP~ (the system ACP$ as presented here slightly differs from a system with the same
name occurring in [13]). The module is defined by:

ACP~ ~ = A C P , + S C + R N + C H + + R E C + P R + B + A I P - + A B + A A + R R

Bisimulation semantics, as described in for instance [5], gives a model for the module ACP~ +
KFAR. Work of BmtGs'raA, I~OV & OZX>mOG [15] showed that in a large number of interest-
ing models KFAR is not valid. Therefore we have chosen not to include KFAR in the 'stan-
dard' module ACP~.

2.12. Generalised Recursive Specification Principle. For many applications the RSP is too restrie-
five. Therefore we will present below a more general version of this rule, called RSP + .

2.12.1. DEFINITION: Let ~ be the set of closed expressions in the signature of ACP[. A process
expression p ~ is called guardedly specifiable if there exists a guarded recursive specification F
with Y~ VF such that

ACP~, ~ p=<YIF>.

We have the following theorem:

2.12.2. THEOREM (Generalised Recursive Specification Principle (RSP +)): ACP~

t E <xlE>guardedlyspef-fiablel (R-SP+) x = < x l E >

2.12.3. Remarks. In the defimtion of the notion 'guardedly specifiable', it is essential that the
identity p = < Y i F > is provable. If we would only require that p=<Y]F>, then the
corresponding version of RSP + would not be provable from ACP[, since this rule would then
not be valid in the action relation model of [22]. In this model we have the identity
<XI{X=X}>=8.1 Hence <XI{X=X}>=<YI{Y=8}>=& Since the specification
{Y=8} is guarded, this would mean that expression <X[{X=X}> is guardedly specifiable.

+ But then RSP gives that for arbitrary x: x = < X [{X = X} > =& This is dearly false.
We conjecture that an expression p is guardedly specifiable iff it is provably bounded, i.e. for

all n s l~ : ACH ~ B,(x).

1. Strictly speaking, this is not correct In [22], a reeursion construct <XIE> is viewed as a kind of variable which
ranges ovcx the X-components of the solutions of E. Since any process X satisfies X=X, the identity
<XI{X=-X}>=8 does not hold under this interpretation. However, if one interprets the construct <XIE> as a
constant in the model of [22], then the most natural choice is to relate to <XIE> the bisimulation equivalence class of
the term < X I E >. Under this interpretation <XJ { X = X } > = &

483

§3 APPLICATIONS OF THE MODULE APPROACH IN PROCESS ALGEBRA

3.1. The auxiliary status of the left-merge.

3.1.1. Semantics. Sometimes it happens that our 'customers' complain that they do not succeed
in proving the identity of two processes in ACI~, whose behaviour is considered 'intuitively the
same'. Often, this is because there are many intuitions possible, and ACId, happens not to
represent the particular intuitions of these customers. Therefore we have defined some auxiliary
modules that should bridge the gaps between intuitions.

In general a user of process algebra wants that his system proves p =q (here p and q are
closed process expressions in the signature of ACP~), whenever p and q have the same interest-
ing properties. So it depends on what properties are interesting for a particular user, whether his
system should be designed to prove the equality of p and q or not. For this reason the semanti.
cad branch of process algebra research generated a variety of process algebras in which different
identitieation strategies were pursued. In bisimulation semantics we find algebras that distinguish
between any two processes that differ in the precise timing of internal choices; in trace semantics
only processes are distinguished which can perform different sequences of actions; and, some-
where in between, the algebras of failure semantics identify processes if they have the same
traces (can perform the same sequences of actions) and have the same deadlock behaviour in
any context. A lot of these process algebras can be organised as homomorphic images of each
other, as indicated in figure 2.

bisimulation semantics with explicit divergence [15]

ready trace semantics [6]

readiness semantics [34] failure trace semomics [35]

failure semantics [15, 17,20,25]

bisimulation semantics
with fair abstraction [5]

trace semantics [24]

FIGURE 2. The linear time - branching time spectrum

If two process expressions p and q represent the same process in b '~u la t ion semantics with
exphcit divergence, they have many properties in common; if they only represent the same pro-
cess in trace semantics, this only guarantees that they share some of these properties; and, des-
rending from bisimulation semantics with explicit divergence to trace semantics, less and less
distinctions are made. Now a user should state exactly in which properties of processes he is
interested. Suppose he is only interested in traces and deadlock behaviour, then we can tell him

484

that for his purposes failure semantics suffices. This means that if processes p and q are proven
equal in failure semantics, this gnarantees that they have the same relevant properties. If they
are only identified in trace semantics (somewhere in the lattice below failure semantics) such a
conclusion cannot be drawn, but if they are identified in a semantics finer than failure semantics
(such as bisimulation semantics with explicit divergence), then they certainly have the same
interesting properties, and probably some uninteresting ones as well. Hence a proof in b'~Smula-
lion semantics with explicit divergence is just as good as one in failure semantics (or even
better).

This is the reason that we do our proofs mostly in bisimulation semantics: the entire module
ACP,) is sound with respect to bisimulation semantics with explicit divergence. However, if two
processes are different in bisimulation semantics, we will never succeed in proving them equal
from ACP~. In such a case we might add some axioms to the system, that represent the extra
identifications made in a less discriminating semantics. If we find a proof from this enriched
module, it can be used by anyone satisfied with the properties of this coarser semantics.

It is in the light of the above considerations that one should judge the appearance of the fol-
lowing module T4:

T4 I ~(,x + y) = , x +y I

The law of this module does not hold in bisimulation semantics, but it does hold in all other
semantics of figure 2. Thus any identity derived from ACP[+ T4 holds in ready trace seman-
tics and hence also in the courser ones like failure and trace semantics, or so it seems

3.1.2. An inconsistency.

3.1.2.1. DEriNrnot~: Let M be a process module with E(M)_3 Y.(BPA~). We call M consistent if
for all closed expressions x and y in the signature of BPA~ with

M ~ x=y ,

the sets of complete traces agree:

trace(x)=trace O,).

A complete trace is a finite sequence of actions, ending with a symbol ~/or 8 indicating success-
ful resp. unsuccessful termination. A formal definition of the set trace(x) is given in [15]. Here
we only give some examples, which should make the notion sufficiently clear:

trace(abc +adS+a(~bc+d)) = {abcv/, adS, ad~/}

trace(r) = { ~/} =/: {8, ~/} = trace(r+rS)

A model ~ of M is consistent if for all closed expressions x and y in the signature of BPA~ with

(~ ~ x =y,

the sets of complete traces agree. The module ACP~ + KFAR is consistent because bisimula-
tion semantics with fair abstraction, as described in [5], gives a consistent model for this
module. However, KFAR is not valid in any of the other semantics of figure 2.

3.1.2.2. PROPOSITION: ACP~ + T4 ~ T(ac +ca)+bc = ~(~(ac +ca)+bc +c(~a +b)).
PROOF:

• (~a+b)[l_c = (~a+b)[l_c = ~(allc)+bc = ~(ac +ca)+bc

• (~a+b)ll_c = T((ra+b)llc) = ~(~(ac +ca)+bc+c(~a+b)) []

Proposition 3.1.2.2 shows that module ACP~ +T4 is not consistent. This sudden inconsistency
must be the result of a serious misunderstanding. And indeed, what's wrong is the use of ACP~

485

in the less discriminating models (say in failure semantics). It happens that, in a setting with ~-,
failure equivalence (or ready trace equivalence for that matter) is not a congruence for the left-
merge {l, and this causes all the trouble.

£1.3. Solution. In applications we do not use the operators [[_ and { directly. In specifications
we use the merge operator [[, and l{ and { are only auxiliary operators, needed to give a com-
plete axiomatisation of the merge.

Let sacp~ be the signature obtained from X(ACP,) by stripping the left-merge and
communication-merge:

sacp, = Y~(ACP,) - {F:[[_:P×P->P, [::[:P×P--->P}

Failure equivalence as in [15], etc. are congruences for the operators of sacp~. However, the
operators U_ and { in ACP, are needed to axiomatise the [[-operator, and without them even the
most elementary equations cannot be derived. Our solution to this problem is based on the fol-
lowing idea. Suppose we want to prove an equation p =q in the signature sacp~ that holds in
ready trace semantics (and hence in failure semantics) but not in bisimulation semantics. Then
we first prove an intermediate result from ACP~: one or more equations holding in bisimdation
semantics (with explicit divergence) and in which no [L and [appear. This intermediate result is
preserved after mapping the bisimulation model homomorphically on the ready trace or failure
model, and can be combined consistently with the axiom T4. Thus the proof of p =q can be
completed. In our language of modules we can describe this as follows. The module

SACP~ = H(sacp~iq(ACP~ +SC))

does not contain the operators [L and { in its visible siguature and since failure semantics can
be obtained as a homomorphic image of bisimulation semantics, considering that ACP~ + SC is
sound w.r.t, bisimulation semantics and that the operators of sacp, carry over to failure seman-
tics, we conclude that this module is sound w.r.t, failure semantics. Hence it can be combined
consistently with 'I"4, and SACP, is a suitable framework for proving statements in failure
semantics.

We would like to stress that the use of the H-operator is essential here. The H-operator
makes that from module SACP, only positive formulas are provable. The following example
shows what goes wrong if we also allow non-positive formulas. From the proof of proposition
3.1.2.2 it follows that:

,(~x +y)=~'x+y
sacp, [:](ACP, + SC) ~ cO'a + b) C ~(ac + ca) + bc

Consequently we can prove an inconsistency if we add law T4:

sacpT [](ACP, + SC)+ <,(*;x +y)=Tx +y > ~ c(~a + b)C ,(ac + ca)+ bc

So although the formulas provable from module sacp,[2(ACP~ + SC) contain no left-merge,
some of them (which are non-positive) cannot be combined consistently with the laws of ready
trace semantics and failure semantics.

3.2. Definition of the chaining operator. ACP~ is a universal specification formalism in the sense
that in bisimulation semantics every finitely branching, effectively presented process can be
specified in ACP, by a finite system of r~ursion equations (see [5,14]). Still it often turns out
that adding new operators to the theory facilitates specification and verification of concurrent
systems. In general, adding new operators and laws can have far reaching consequences for the
underlying mathematical theory. Often however, new operators are definable in terms of others
operators and the axioms are derivable from the other axioms. In that case the new operators
can be considered as notations which are useful, but do not complicate the underlying theory in
any way. Examples of definable operators are the projection operators, the process creation
operator of [8] and the state operators of [3].

486

Just like the left-merge and the communication-merge are needed in order to axiomatise the
parallel composition operator, new atomic actions are often needed if we want to define a new
operator in terms of more elementary operators. As an example we mention the actions s(d)
and r(d) which we need in the definition of the chaining operators. These auxiliary atoms will
never be used in process specifications. Unfortunately they have the unpleasant property that
they occur in some important algebraic laws for the new operators. One of the properties of the
chaining operators we use most is that they are associative under some very weak assumptions.
In the model of bisimulation semantics, the following law is valid (here H = {s(d) ,r(d)ld~D }):

an(X)=X, an(y)=y,~n(Z)=Z CC
(x >~y)>>>z=x~(v>>>z)

We do not have general assoeiativity in the model. Counterexample:

(r(d)>:~(s(tO+ s(e)))>~.>r(e) = c(d).*

r(tOr:~((s(d)+ s(e))>:>>r(e)) = c(e).8

It would be much nicer if we somehow could 'hide' the auxiliary atoms, and, for the :~>-
operator, have assoeiativity in general. In this section we will see how this can be accomplished
by means of the module approach.

3.2.1. The associativi O, of the chaining operators. Although the rule CC holds in the model of
bisimulation semantics, we have not been able to prove it algebraically from module ACP~.
However, we can prove algebraically a weaker version of rule CC if we make some additional
assumptions about the alphabet. We assume that besides actions ch(D), the alphabet A con-
taim actions:

= {~'(d),~(d)ld~D} ell H = {s(d),r(d)ld~D}

One may think about these actions as special fresh atoms which are added to A only in order to
l~rove the associativity of the chaining operators. 1 Let H={r (d) , s (d) ld~D} and let
H = H U.~ U H. We assume that actions f r o m / / d o not synchronise with the other actions in
the alphabet, Trod that range(7)AH = 0 . On H communication is given by (d~D):

vf~(d), ~(d)) = ~(y(a), r(d)) = y(s(a), ~(d)) = v(s(d), r(d)) =

= y(s(d), r(d)) = y(s(d), r(d)) = ~s(d), r(d)) = c(d)

We define for v,w~{t,,[,s,r,-i,-i,s,r_} the renaming function vw:

= ~w(d) if a=v(d) for some d ~ D
lrw(a) [o otherwise

3.2.1.1. LEMMA: SACP, + RN + CH + + AB + AA + RR F

ah(x)=x, a~(y)=y, a~(z)=z
0~(pt~x)llp~-(v))=x >>>y = a__H(P~(X)IIP~(V))

PROOF: The proof of the first equality in this lemma has been spelled out in VAN GLAeB~K &
VAANVRAGeR [231, the full version of this paper. In this proof it is essential that

1. The Fresh Atom Princ~le (FAP) says that we can use new (or 'fresh') atomic actions in proofs. In [7], it is shown
that FAP holds in b'k~imulafion semantics. We have not included FAP in the ~ framework of this pa]x~.
Therefore, if we need certain 'flesh' atoms in a proof, we have to assume that they were in the alphabet right from the
be~j'..in$.

487

y(~(d), ?(d)) = y(~(d), r(d)) = y(s(d), ?(d)) = y(s(d), r(d)) = c(d)

The second equality then follows by symmetry. D

3.2.1.2. THEO~: SACP, + RN + CH + + AB + AA + RR

Oh(x)=x, oh(y)=y, ~b(z)=z
x >>>(v ~ > z) = (x >>>y)>>>z

Paoor: This is essentially theorem 1.t2.2 of [40]. A sketch of the proof is given in [23]. There
x:~.:~(y>>>z) is written as Ofi(pt,-(x)llp~-o~H(pts(y)llpl,(z))), using lemma 3.2.1.1. Now a crucial
element in the proof is the observation th-~t [here-~ no communication possible between ele-
ments of H and H. This is the reason that the sets H and H had to be introduced both. []

3.2.1.3. Trmosr_M: SACP, + RN + CH + + AB + AA + RR

a~(x)=x, ~h(v)=y, Oh(z)=z
x>>(r>>z) = (x>>y)~,z

Paoor: See [23]. []

3.2.2. Removing auxiliary atoms. We will now apply the module approach to remove completely
the auxiliary atoms which where used in the definition of the chaining operators and in the
proofs of their associativity. Below we will employ the notation:

oAM=(~(M)-o)fq M.

Consider the module:
^

CH- = ({F :a~Pla~H}U{F : p f : P ~ P I f : A ~ A ~ })

A(SACP, +RN+CH + +AB+AA+RR).

This module cannot be used to prove any formula containing atoms in f/. But unfortunately
module CH- still does not prove the general associativity of the chaining operators:

CH- V x >>> (y >>> z) = (x >>>y) >>> z

The reason is that the auxiliary atoms, although removed from the language, are still present in
the models of module CH-. Th~ the counterexample (r(d)>>>(s(d)+s(e)))>>>r(e) still
works in the models. Let A - =A - H . We are interested in consistent models which only con-
tain actions of A - The module CH- + < a (x) C A - > does not denote such models: all con-
sistent models of CH- contain the process A with a(A)=A g A- . Adding the law a(x)C_A-
therefore throws away all consistent models. The right class of models can be denoted with the
help of operator S. We consider the module

CH = S (C H -) + <a(x)C_A- >.

Some models of module CH- have consistent submodels which do not contain auxiliary atoms.
In these models the law a(x)C_A- holds. Thus module CH has consistent models.

From theorems 3.2.1.2 and 3.2.1.3, together with axiom RR1, it follows that:

a(x)CA- , a(y)C_A-, a(z)C_A-
C H - ~ (x >>>y) >>> z = x >>> (v >>> z)

CH- ~ ct(x) CA - , ct(y) CA - , a(z) CA -
(x>>y)>>z = x >>(y >>z)

From this we can easily see that module CH proves the general associativity of the chaining
operators:

CH v x :~- (y >>>z) = (x >>>y)>>>x and

488

CH I- x>>(y>>z)=(x>>y)>>x.

3.2.3. The following laws can be easily proven from module CH (here d,e~D):

l'd'x>>(~ J, ey ') = v(x>>y a)
eED

?d'x>>te'y = te.(?cl.x>>y)

(~ ,~d'xd)>>(~ J, eY ~) = y, ~d.(xd>>(~ ,~eY~))

L1

L2

L3

L4

deD e~D d~D eED

('~, ,],d.xd)>>'~e..v = ~. ,[,d'(xd>>'~e'y) + '~e'((~ ~,d'xd)>>y)
d~D deD d~D

The laws are equally valid when the operator >> is replaced by ~.~, except for law L1 where in
addition the I- has to be replaced by c(d).

3.3. SACP~. Module SACP~[is an 'improved' version of module ACP~. It is defined by:

SACP~ = SACP,+I~N+CH+I~C+PR+B+AIP- +AB+AA+RR.

If modules in the above equation have an alphabet as parameter, this is A - , and if they are
parametrised by a communication function this is the restriction 7- of 7 to
(A - U {8})×(A - U {8}). All proofs in the rest of this paper, unless stated otherwise, are proofs
from the module SACP~. The rules RSP, RSP + and CFAR can still be used in a setting with
module SACP~. We have SACP~ ~ RSP, SACP~ ~ RSP + and SACP~ + KFAR ~ CFAR.

~4 QUEUES
In the specitication of concurrent systems FIFO queues with unbounded capacity often play an
important role. We give some examples:

The semantical description of languages with asynchronous message passing such as
CHILL (see [19]),
The modelling of communication channels occurring in computer networks (see LASSEN &
MILNER [28] and V~RAOF_g [39]),
The implementation of languages with many-to-one synchronous communication, such as
POOL (see A m ~ c ^ [1] and V~'I)RXOEg [40]).

Consequently the questions how queues can be specified, and how one can prove properties of
systems containing queues, are important. For a nice sample of queue-specificatious we refer to
the solutions of the first problem of the STL/SERC workshop [21]. Some other references are
BsoY [18], HOARE [25] and PRA~ [36].

4.1. Also in the setting of ACP a lot of attention has been paid to the specification of queues.
Below we give an infinite specification of the process behaviour of a queue. Here D is a finite
set of data, D* is the set of finite sequences o of elements from D, the empty sequence is ¢,
Sequence o*o' is the concatenation of sequences o and o'. The sequence, only consisting of d~D
is denoted by d as well.

QUEUE = Qe = ~.,[,d'Qd
dcD

Qo.a = ~,l,e "Qe.o.a + ~d'Qo
ecD

Note that this infinite specification uses only the signature of BPA~ (see section 2.1). We have
the following fact:

489

4.1.1. TI~OItEM: Using read~send communication, the process QUEUE cannot be specified in ACP
by finitely many recursion equations.
PROOF: See BATTEN & BERGSTRA [3] and BERGSTRA & TIURYN [16]. []

It turns out that if one allows an arbitrary communication function, or extends the signature
with an (almost) arbitrary additional operator, the process QUEUE can be specified by finitely
many recursion equations. For some nice examples we refer to BERGS~ & K.toe [13].

4.2. Definition of the queue by means of chaining. A problem we had with all ACP-specifications
of the queue is that they are difficult to deal with in process verifications. For example, let
BUF1 be a buffer with capacity one:

BUFf = ~ ,I,d'BUFI a
deD

BUF1 a = td.BUF1

In process verifications we need propositions like QUEUE~,BUF1 = QUEUE (in section 5 we
present a protocol verification where a similar fact is actually used). However, the proof of this
fact starting from the infinite specification is rather complicated. Now the following
specification of a queue by means of the (abstract) chaining operator allows for a simple proof
of the proposition and numerous other useful identities involving queues. This specification is
also described by H o w [25] (p. 158).

IQ=Y (Q'"UFI')I, oo
The first thing we have to prove is that the process described above really is a queue.

4.2.1. Trmor, r.M: Q = QUEUE.
PROOF: Define for every n e f f and o=dl dm ~D" processes Do n as follows:

Dn, = Q:~BUF1 " " n from ~'BUF1 a >>BUF1 a"

So by defimtion D o = Q. Using the laws of section 3.2.3, we derive the following recursion
equations:

d a d

D~,a = ~ ~e "D~,o.d + td "D n + l
ecD

In this derivation, which has been worked out in [23], we use the equation

BUFld:~BUF1 = ~.(BUFI>>BUF1 d)

which is an instance of law L1 of section 3.2.3. Furthermore we use that a(p >>~q) = a(p ~q),
which follows from proposition 2.1.3 and T1. Define the process Q0 by:

Q0 =
d a d

Q~d : ~,e'Q~.o.d q- td'Q~, +1
eeD

The specification of process Q0 is clearly guarded. Applying RSP gives us on the one hand that
QUEUE=Q °, and on the other hand that Q= D O =Q~. Consequently QUEUE =Q. []

The proof above shows the 'view of a queue' that lies behind the specification of Q. During

490

execution there is a long chain of I-datum buffers passing messages from 'the left to the fight'.
After the input of a new datum on the left, a new buffer is created, containing the new datum
and placed at the leftmost position in the chain. Because no buffer is ever removed from the
system, the number of empty buffers increases after every output of a datum.

4.2.2. LEMMA: Q>BUF1 = Q.
PROOF:

Q>>BUF1 = ~,,[d.((Q>>BUFla)>>BUF1) =
daD

= ~, ,I,d'(Q>>(BUFla>>BUF1)) =
daD

= ~ ~d.(Q >>?.(BUF 1 >>BUF la)) =
daD

2.1.3
= ~,[d'(Q>>(BUFI>>BUFId)) =

daD

= ~ ~d.((Q>>BUFI)>>BUF1 a)
daD

Now apply lISP + (from the proof of theorem 4.2.1 it follows that Q is guardedly specifiable).
[]

By means of an inductive argument we can easily prove the following corollary of lemma 4.2.2.

4.2.3. COROLLARY: Let for o~D*, QO be a queue with content o:

I I Q~a = Q.>>BUF1 a

Then: ~'.(Q*>>BUF1) = ~'Q*.

4.2.4. PROPOSITION: Q>>Q = Q.
PROOF: Like the proof of proposition 4.2.2. A new ingredient is the identity

B U F l a ~ Q = BUFI>>(Q>>BUF1 d)

which is again an instance of L1. Details can be found in [23]. []

4.2.5. CORO~Y; Let o,p~D*. Then: ~r(QC'>>Q °) = ~.QO,p.

4.2.6. Remark. It will be clear that the implementation which is suggested by the specification
of process Q is not very efficient: at each time the number of empty storage elements equals the
number of data that have left the queue. But we can do it even more inet~cieufly: the following
queue doubles the number of empty storage elements each time a datum is written.

A standard proof ~ves that -0 = QUEUE. From the point of view of process algebra this
specification is very ettieient. It is the shortest specification of a FIFO-queue known to the
authors, except for a 5-character spectti" cation of PRA~ [36]: ~1' × D'. A problem with Pratt's
specification is that a neat axiomatisation of the orthoeurrence operator × is not available. Our
Q-specification has the disadvantage that it does not allow for simple proofs of identities like

491

Q>Q = Q.

4.3. Bags. In [10] a bag over data domain D is defined by:

] B A G : deDY~d'(tdHBAG) I
In our full paper ([23]) it has been proved that Q>>BAG=BAG. However, the identity
BAG>>Q=BAG does not hold. The intuitive argument for this is as follows: if a bag contains
an apple and an orange, and the environment wants an apple, then it can just take this apple
from the bag. In the case where a system, consisting of the chaining of a bag and a queue, con-
talus an apple and an orange, it can occur that the first element in the queue is an orange. In
this situation the environment has to take the orange first. The argument that processes
Q>>BAG and BAG are different, because in the first process the environment is not able to pick
an apple that is still in the queue, does not hold. In ACP~ we abstract from the real-time
behaviour of concurrent systems. If the environment waits long enough then the apple will be in
the bag.

4.4. A queue that can lose dat~ In the specification of communication protocols, we often
encounter transmission channels that can make errors: they can lose, damage or duplicate data.
All process algebra specifications of these channels we have seen thus far were lengthy and often
incomprehensible. Consequently it was difficult to prove properties of systems containing these
queues. Now, interestingly, the same idea that was used to specify the normal queue by means
of the chaining operator, can also be used to specify the various faulty queues. One just has to
replace the process BUF1 in the definition by a process that behaves like a buffer but can lose,
damage or duplicate data.

First we describe a queue FQ that can lose every datum contained in it at every moment,
without any possibilities for the environment to prevent this from happening. The basic com-
ponent of this queue is the following Faulty Buffer with capacity one:

FBUF1 = ~ ~,d.FBUF1 d
deD

FBUF1 d = (td+ ~.FBUF1

If the faulty buffer contains a datum, then this can get lost at any moment through the
occurrence of a T-action. In the equation for FBUF1 d there is no ~-action before the td-action
because this would make it possible for the buffer to reach a state where datum d could not get
lost.

We use the above specification in the definition of the faulty queue FQ:

[FQ=~'[d'(FQ>>FBUFld) t d ~ o

492

The idea behind this specification of the faulty queue is illustrated in figure 3.

~ i l i i / / / l l l i / / [[I i / [[l [[[[l l I I i l l l i l l l [l l l l l l i l l l i / l l l l l j ' |

FiGtrr~ 3. The faulty queue

4.4.1. Lmo_A: FBUF Ia>>FBUF 1 = ~.(FBUF 1 >>FBUF la).
PROOF:

FBUFla>>FBUF1 = r.(FBUFI~FBUF1 a) + ~.(FBUFI>>FBUF1) =

= ~..(FBUFlr~FBUF1 a)

In the last step we use that: ~.(FBUFI~FBUF1)C_FBUFI>>FBUF1 a C_~.(FBUFI>>FBUFla).
[]

Compare the simple definition of FQ with the following BPA~-spezSfication of the same pro-
C~SS.

4.4.2. Let o, peD' . We write o--,p if p can be obtained from o by deleting one datum. Let
R(o) = {plo--->p} be the finite set of residues of o after one deletion. Now FQUEUE is the fol-
lowing process.

r Q V e V e = FQ, = Y~ .FQ~
d~D

eQo.d = Y ~ e . e Q , o.d + ?a.eQ, + E ~.eQp
eED p~R(o*d)

4.4.3. Tt-mo~M: FQ = FQUEUE.
PaooF: Analogously to the proof of theorem 4.2.1. Use lemma 4.4.1 instead of the correspond-
ing equation for BUF1. []

Analogous versions of the identifies we derived for the normal queue can be derived for the
faulty queue in the same way.

4.4.4. PROPOSITION:
i) FQ>>FBUFI=FQ,
ii) Let for o~D*, FQ ° be a faulty queue with content o:

493

FQ c = FQ

FQ ~d = FQa>>FBUF1 d

Then: ,.(FQ~:~FBUFI) = ,.FQ ~,
i~) Q>>FQ = FQ:~FQ = FQ,
iv) Let o,p~D*. Then: ~'.(FQ°~,FQ p) = ~'.FQ a*p.
PROOF: Exactly as in section 4.2. Use lemma 4.4.1 instead of the corresponding equation for
BUF1 and in the proof of FQ:~FQ =FQ use

FB UF 1 d >>FQ =,.(FBUF 1 :~(FQ >>FBUF ld))

instead of the corresponding equation for BUFld>>Q. This identity can be proved in the same
way as lemma 4.4.1. []

4.5. An identiOp that does ndt hold In this subsection we will discuss the identity

FQ = Q,'~FBUF1.

'Intuitively' the processes FQ and Q:~FBUF1 are equal since both behave like a FIFO-queue
that can lose data. Furthermore, with both processes the environment cannot prevent in any
way that a datum gets lost. Unlike the situation with the processes BAG:~Q and BAG which
we discussed in section 4.3, we can think of no 'experiment' that distingu~hes between the two
processes. Still the identity cannot be proved with the axioms presented thus far.

4.5.1. THEOIt~.M: I f parameter D of operator >> contains more than one element, then SACP~ V
FQ = Q>>FBUF1.
PROOV: We show that the identity is not valid in the model of process graphs modulo bisimula-
tion congruence as presented in BAETEN, BEROSTRA & KLOP [5]. Suppose that there exists a
bisimulation between processes FQ and Q>>FBUF1. Suppose that process FQ reads succes-
sively two different data, starting from the initial state. Because of the bisimulation it must be
possible for the process Q:~FBUF1 to read the same data in such a way that the resulting state
is bi~milar to the state process FQ has reached. Now process FQ executes a ,-step and forgets
the second datum. We claim that process Q:~FBUF1 is not capable to perform a correspond-
ing sequence of zero or more ,-step. This is because there are only two possibilities:
1) Q>>FBUF1 forgets the second datum. But this means that also the first datum is forgotten.

In the resulting state Q~FBUF1 cannot output any datum (before reading one), whereas
process FQ can do this.

2) Q:~FBUF1 does not forget the second datum. In the resulting state Q>>FBUF1 can out-
put this datum. Process FQ cannot do that. []

The argument is illustrated in figure 4.

494

U

FQ Q >> FBUFI

FlOtr~ 4.

The next theorem shows that, if we add law T4, the two faulty queues can be proven equivalent.

4.5.2. Ti-mom~M: SACP, ~ + T4 v FQ=Q>>FBUFI.
Paoor: The rather complicated proof of this theorem can be found in [23]. []

4.6. The faulty and damaging queue. In the specification of certain link layer protocols we have
to deal with a communication channel that behaves like a FIFO-queue with unbounded capa-
city (this is of course a simplifying assumption), but has some additional properties: (1) a datum
can be damaged at every moment it is in the queue; the environment cannot prevent this event,
and (2) a datum can be lost at every moment it is in the queue. We give a process algebra
specification of this process in two steps. First we specify the Faulty and Damaging Buffer with
capacity one (FDBUF1). We assume that the domain of data D contains a special dement er,
representing a damaged datum.

FDBUF1 = d~D~I'FDBUFld

FDBUF 1 a = ~d .FDBUF 1 + ~.(~er + ~') .FDBUF 1

With the help of this process we can now easily define the Faulty and Damaging Queue (FDQ):

IFDQ=~d'(FDQ>>FDBUFld) l , t ~

4.6.1. ~MMA: FDBUF la:~ FDBUF1 = ~'.(FDBUF I >> FDB UF la).
PROOF: By means of T2, as in lemma 4.4.1, but more complicated. See [23]. []

Once we have lemma 4.6.1, it is standard to prove that process FDQ is guardedly specifiable. It
is moreover easy to derive an analogous version of proposition 4.4.4 for FDQ.

495

4.6.1 Remark. One might ask if there is not a r too many in the specification of process
FDBUFI. Why not specify the faulty and damaging buffer simply as follows?

FDB 1 = ~ $.FDB 1 d
deD

FDBI a = (t d + "per + r).FDB1

A first observation we make is that if D=/={er}:

SACP~ It FDBUF1 = FDB1

This is because the two processes are different in bisimulation semantics. Process FDBUF1 can
input a datum d different from er, and then get into a state where either an output action "per
will be performed or no output action at all. This means that it is possible that a datum is first
damaged and then lost. Process FDB 1 does not have such a state.

For similar reasons we also have the following fact:

SACP, ~ l t FDB la>>FDB 1 = ,.(FDB I>FDB 1 a)

This means that if we work with a queue defined with the help of FDB 1, our standard tech-
nique to prove facts about queues is not applicable. Note that processes FDB 1 and FDBUF1
are trivially equal if we work in a setting where the law T4 (~(,x +y)=,x +y) is valid.

4. 7. The faulty and stuttering queue. This section is about a very curious queue: a FIFO-queue
that can lose or duplicate any element contained in it at every moment. An infinite
specification of this process can be found in LARSEN & MIL~mR [28]. The basic component we
use in the specification of the Faulty and Stuttering Queue is a Faulty and Stuttering Buffer
with capacity 1:

FSBUFI = ~ ~d.FSBUF1 a
deD

FSBUF1 a = ~d.FSBUFI a + T.FSBUFI

I FSQ = ~_+ ~I.(FSQ>>FSBUF1 g) 1
deD

When we place two faulty and smtt~ing buffers in a chain, then we have the possibility of an
infinite number of internal actions (the first buffer stutters and the second one loses all its
input). This implies that, in the specification of the faulty and stuttering queue, we have to
guard against unguarded recursion. We need a fairness assumption if we want to exclude the
possibility of infinite stuttering. This explains the presence of KFAR in the following lemma.

4.7.1. lmMUA: SACP, ~ + KFAR v FSBUFld>>FSBUF1 = ,.(FSBUFI>>FSBUFlg).
PROOF: See [23]. This proof is rather involved. []

From lemma 4.7.1 all the rest follows: process FSQ is guardedly specifiable and we can derive
an analogous version of proposition 4.4.4.

496

§5 A PROTOCOL VERIFICATION
In this section we present the specification and verification of a variant of the Alternating Bit
Protocol, resembling the ones discussed in KOYMANS & MULDER [27] and LARSEN & MILNER
[28]. The aim of this exercise is to illustrate the usefulness of the proof technique developed in
the previous section. The architecture of the Concurrent Alternating Bit Protocol (CABP) is as
follows:

A B

D C

Fietme 5.

Elements of a finite set of data are to be transmitted by the CABP from port 1 to port 2.
Verification of the CABP amounts to a proof that (1) the protocol will eventually send at port 2
all and only data it has read at port 1, and (2) the protocol will send the data at port 2 in the
same order as it has read them at port 1.

In the CABP sender and receiver send frames continuously. Since sender and receiver will
have a different clock in general, the number of data that can be in the channels at a certain
moment is in principle unlimited. In this section we assume that the channels behave like the
process FQ as described in section 4.4: a FIFO-queue with unbounded capacity that can either
lose frames or pass them on correctly.

In the protocol, the sender consists of two components A and D, whereas the receiver consists
of components B and C. One might propose to collapse A and D into a sender process, and B
plus C into a receiver process. The resulting processes would be more complicated and in the
correctness proof we would have to decompose them again.

5.1. Specification. Let D be a finite set of data which have to be sent by the CABP from port 1
to port 2. Let B = {0,1 }. ® = (D X B) U B is the set of data which occur as parameter in the
actions of the chaining operators. The set of ports is P = {1,2,3,4}, the set of data that can be
communicated at these ports is D = D U {next }. Alphabet A and communication function T are
now defined by the standard scheme for the chaining operators, augmented with actions r/(d),
si(d) and ci(d), for which we have communications T(ri(d),si(d)) = ci(d) (i eP and tieD).

We now give the specifications of processes A, B, C and D. Here b ranges over B = {0,1 }
and d over D (the overloading of names B and D should cause no confusion). The
specifications are standard and need no further comment.

497

A = A 0

A S = ~ , , r l (d) .A (~
d~D

Aa~ = '~db.A ~ Jr r3(next) .A I-b

D : D O

D b = ,~ (1 -b) .D b + ,[b.s3(next) .D l -b

B = B o

B b = Y. $(a, 1 - b) . B ~ + ~ Sdb .B '~
d~D d~D

B ab = s2(d) . s4(nex t) .B l -b

C = C I (not C°!)

C b = tb "C b Jr r4 (nex t) .C l -b

Let H and I be the following sets of actions:

H = {r3(next) ,s3(next) ,r4(next) ,s4(next)}

I = {c 3(next) ,c4(next)}

The Concurrent Alternating Bit Protocol is defined by:

CABP = ~IO~.((A >>FQ>>B)I](C>>FQ>>D))]

5.2. Verification. ff we do not abstract from the internal actions of the protocol, then the
number of states is infinite. This means that a straightforward calculation of the state graph is
not possible. A strategy which is often applied in cases like this is that one substitutes a buffer
with capacity 1 for the communication channels. As a result the system is finite and can be
verified automatically. Next a buffer with capacity 2 is substituted, followed by another
automatic verification, etc.. The verification for the case of buffers with capacity 155 takes 23
hours CPU time. Thereafter it is decided that 'the protocol is correct'.

Of course it is not so difficult to specify a protocol that is correct for buffers with capacity
less or equal than 155, but fails when the capacity is 156. The conclusion that the protocol is
correct for arbitrary buffer size because it works in the cases where the buffer size is less than
156, is therefore influenced by other observations. It is for example intuitively not very plausible
that the CABP works for buffer size 155, but not for buffer size 156, because the specification is
so short and the only numbers which occur in it are 0 and 1.

Because intuitions can be wrong people look for formal techniques which tell in which situa-
tious induction over certain protocol parameters is allowed.

The basic merit of the results of section 4 is that they make it possible to use inductive argu-
ments when dealing with the length of queues in protocol systems. In the verification below we
show that the protocol is correct if the channels behave as faulty FIFO-queues with unbounded
capacity. However, a minor change in the proof is enough to show that the protocol also works
if the channels behave as n-buffers, faulty n-buffers, perfect queues, faulty and stuttering queues,
etc.

The following two lcmma.~ will be used to show that, after abstraction, the number of states
of the protocol is finite. The first lcmma says that if, at the head of the queue, there is a datum
that will be thrown away by the receiver because it is of the wrong type, this datum can be
thrown away immediately.

5.2.1. ~ "
i) FBUFIdb>>BI-b = ?.(FBUFI>>BI-b);
ii) , FBUF1~>>s4(next).B 1-b = ?.(FBUFl>>s4(next).Bl-b);
i~) FBUFIdb•B ab = ?.(FBUFI>>Bdb).
PROOF: Straightforward with summand inclusion and T2. See [23]. []

498

The next lemma says that if two frames, of a type that the receiver is willing to accept, are at
the head of the queue, one of these can be deleted without changing the process (modulo an ini-
tia| ~).

5.2.2. LEMMA: FBUF la~>> FB UF la~ >> B a = ,r.(FBUF I >> FBUF I~ >> Bb).
PROOf: Likewise; see [23]. []

5.2.3. We can now derive a transition diagram for process A>>>FQ>>B. In the derivation we
use lemmas 5.2.1 and 5.2.2 to keep the diagram finite. Furthermore we stop the derivation at
those places where an action is performed that corresponds to the acknowledgement of a frame
that has not yet arrived. In [23] the derivation is carried out in detail. The result of the calcula-
tions is presented in lemma 5.2.4, which is pictured in figure 6. The grey arcs correspond to
places where we stopped the derivation.

c
rl(d) c(d0) , , ~ x s2(d) ~ / s 4 (n e x t) ~ t

r3(next) i ~ z / i r3(next) i r3(next) i r3(next) :3(next)

(next) ~. '~ ~.. ..:.~,.

~s4(next) s2(d) x rl(d) 1

V c(al) V c(dl) V c(dl) V c(dl)

FIGU~ 6. Transition diagram of process A >>> FQ>> B

5.2.4. LF.MMA: A >>>FQ>>B satisfies the following system of recursion equations.

x = x~

X~ = ~r l (d) .X~ '
d~D

x ~ = c(ab).x¢ + Y~

x ¢ = , . x ¢ + c<a~).x¢ + ,-.x~' + r ¢

x ~ = c<ab).x¢; + :2(a3.x¢ + Y~

X¢ = c(db)'X¢ + s4(next).X~ + r ¢

X~ = r3(next).Xt -b + c(db).X~

Y~ = r 3(next).(A l-b >>> FQ >> Bb)

y~b = r 3(next) "(,41-b >>> FQ >> FB UF lab >> B b)

Y~ = r 3(next).(A 1-b>>> FQ>> Bab)

Y~ = r 3(next) .(A l-b >>> FQ >> s 4(next) .B l-b)

Using CFAR immediately gives the next lemma.

5.2.5. LEtup,: Let U be specified by:

499

v = o~

dED

U~ = s2(d).U~ + V~

U~ = s4(next).U~ + V~

U~ = r 3(next)'Ut -b

V~ = r 3(next).(A l - b >> FQ >>B b)

V~ = r 3(next).(,4 I-b>> FQ>> FBUF I ~ Bb)

V~ = r 3(next) .(A I-a >> FQ >> B db)

V~ = r 3(next).(A I-b>> FQ>>s 4(next) .B I-b)

Then: SACP~ + KFAR v U=A>>FQ>>B.

In the same way we can derive similar lemmas for 'the other side' of the protocol.

5.2.6. Lr.MMA:
i) FBUFIb>>D l-b = *'(FBUFI,'~'Dt-b);
ii) FBUFlb>>s3(next).D l-b = ,.(FBUFl>>s3(next).Dl-b);
iii) FB UF Ib>> FBUF lb >> D b = ,r.(FBUF I >> FBUF lb >> Db).

5.2.7. L ~ A : Let W be specified by:

w = w t

W~ = ¢ .r 4(next) . W~ -b

w~ = , . ~ +z~ +z~

= • 3(~exO.~ + z~

Z~ = r4(next).(cl-b>>FQ>>D b)

Z~ = r4(next).(CI-b>>FQ>>FBUFIb~D b)

Z~ = r 4(next) .(c l -b >> FQ >> s 3(next) .D l-b)

Then: SACP~, + KFAR v C>>FQ>>D= W.

The fact that CABP is a correct protocol is asserted by

5.2.8. THEOKE~t: SACP{ + KFAR l- CABP =~'(~ r l(d)-s 2(d)).CABP.
d~D

PROOF: Lemmas 5.2.5 and 5.2.7 together give that we can write CABP as:

CABP = ,fan(UilW)

A straightforward expansion gives:

*f~n(UliW) = ~'.(~ r l(d).s2(d)).(~ r l(e).s 2(e)).,f~n(UtlW)
d~D e~D

The variables V and Z vanish in the expansion, due to the fact that they only occur in situa-
tions where a receiver component sends a premature acknowledgement. An application of RSP
concludes the proof of the theorem. 0

500

5.2.9. Remark A serious problem that has to be faced in the context of algebraic protocol
verification is the fairness issue. In the verifications of this paper we used KFAR to deal with
fairness. KFAR is the algebraic equivalent of the statement: 'if anything can go well infinitely
often, it will go well infinitely often'. In most applications a more subtle treatment of fairness is
desirable. Moreover KFAR is incompatible with lots of semantics between bisimulation and
trace semantics. In [15] it is proved that failure semantics is inconsistent with the rule KFAR.
In the same paper a restricted version KFAR- of KFAR is presented which/s consistent with
the axioms of failure semantics, but this version is not powerful enough to allow for a
verification of the CABP. The argument for this is simple: KFAR- allows for the fair abstrac-
tion of unstable divergence. This means that a process will never stay forever in a conservative
cluster of internal ~-steps if it can be exited by another internal ~-step. Since in the CABP com-
ponent C can always perform an internal step, and since the protocol is finite state (after suit-
able abstraction), there must be a conservative cluster of internal steps which can only be exited
by performing an observable action. Thus the CABP contains stable divergence.

~6 CONCLUSIONS AND OPEN PROBLEMS
In this paper we presented a language making it possible to give modular specifications of pro-
cess algebras. The language contains operations + and D, which are standard in the theory of
structured algebraic specifications, and moreover two new operators H and S. Two applications
have been presented of the new operators: we showed how the left-merge operator can be hid-
den if this is needed and we described how the chaining operator can be defined in a clean way
in terms of more elementary operators. It is clear that there are much more applications of our
approach. Numerous other process combinators can be defined in terms of more elementary
operators in the same way as we did with the chaining operators. Maybe also other model
theoretic operations can be used in a process algebra setting (cartesian products?).

Strictly speaking we have not introduced a 'module algebra' as in [9]: we do not interpret
module expressions in an algebra. However, this can be done without any problem. An
interesting topic of research is to look for axioms to manipulate module expressions. Due to
the presence of the operators H and S, an elimination theorem for module expressions as in [9]
will probably not be achievable.

An important open problem for us is the question whether the proof system of table 1 is
complete for first order logic.

In this paper the modules are parametrised by a set of actions. These actions themselves do
not have any structure. The most natural way to look towards actions like s l(d0) however, is
to see them as actions parametrised by data. We would like to include the notion of a
parametrised action in our framework but it turns out that this is not trivial. Related work in
this area has been done by MAuw [29] and MAUW & VELTISI([30].

In order to prove the associativity of the chaining operators, we needed auxiliary actions F(d),
7(d), etc. Also in other situations it often turns out to be useful to introduce auxiliary actions
in verifications. At present we have to introduce these actions right at the be~nning of a
specification. This is embarrassing for a reader who does not know about the future use of these
actions in the verification. But of course also the authors don't like to rewrite their specification
all the time when they work on the verification. Therefore we would like to have a proof princi-
ple saying that it is allowed to use 'fresh' atomic actions in proofs. We think that it is possible
to add a 'Fresh Atom Principle' (FAP) to our formal setting, but some work still has to be
done.

In our view section 4 convincingly shows that chaining operators are useful in dealing with
FIFO-queues. We think that in general it will be often the case that a new application requites
new operators and laws.

In section 4.5 we presented a simple example of a realistic situation where bisimulation
semantics does not work: a FIFO-quene which can loose data at every place is different from a

501

FIFO-queue which can only loose data at the end. Adding the law T4, which holds in ready
trace semantics (and hence in failure semantics), made it possible to prove the two queues equal.

For the correctness of protocols which involve faulty queues one normally needs some fair-
ness assumption. Koomen's Fair Abstraction Rule (KFAR) often forms an adequate, although
not optimal, way to model fairness. An interesting open problem is therefore the question
whether the module SACP[+ T4 + KFAR is consistent (conjecture: yes).

The verification of the Concurrent Alternating Bit Protocol as presented in the full version of
this report takes 4 pages (or 5 if the proofs of the standard facts about the queues are included).
Our proof is considerably shorter than the proof of similar protocols in [27] and [28] (15 and 11
pages respectively). But maybe this comparison is not altogether fair because the proofs in these
papers were meant as an illustration of new modular proof techniques. Our proof shows that
the axioms of bisimulation semantics with fair abstraction are sufficient for the modular
verification of simple protocols like this. The axioms of bisimulation semantics will turn out to
be not sufficient for more substantial modular verifications because bisimulation semantics is
not fully abstract. We could give a shorter and simpler proof of the protocol by using the
notion of redundancy in context of [41]: the grey arcs in figure 6 all correspond to summands
which are redundant in the context in which they occur. Additional proof techniques will cer-
tainly be needed for the modular verification of more complex protocols.

ACKNOWLEDGEMENTS
Our thanks to Jan Bergstra for his help in the development of the H-operator and to Kees Mid-
delburg for helpful comments on an earlier version.

APPENDIX: LOGICS
In this appendix equational, conditional equational and first order logic are defined. Since all
these logics share the concepts of variables and terms, these will be treated first.

1. Variables and terms. Let o be a signature. A o-variable is an expression Xs with x ~ NAMES
and $0:S. A valuation of the o-variables in a o-algebra ~ is a function ~ that takes every a-
variable Xs into an element of S ~.

For any $o:S the set T~ of a-terms of sort S is defined inductively by:
Xs ~ ~ for any a-variable Xs.
If [:o'.f :Sl × " '" × S ~ S and ti~l~s, for i =1 n then fs,× ... ×s.~s(tb " '" , t n) ~ s .

The ~-evaluation [t] ~ S ~ of a a-term t~75 in a a-algebra A (with ~ a valuation) is defined by:
lxsi ~ =~xs)~S ~.
[f s , x . . . x s . - . s (t b " " , t .)] $ = f~ , x - . . x s . - ~ s ([t l] ~, " ' " ,[tn]t~) -

2. Equational logic. The set l~,q l of equations or equational formulas over o is defined by:
If t i ~ s for i = 1,2 and certain $o:S then (tl =t2)EFeo q/.

An equation (tl =t2)~/~, q/is ~-true in a o-algebra ~ notation A,~ ~¥ tl =t2, if [tl]~=[t2] ~.
Such an equation rk~l~,q I is true in if, notation ~ # ~, if ~ ~e,# ~ for all valuations ~.

An inference system IeJ z for equational logic is displayed in table 11 below. There t, u and v are
terms over 0 and x is a variable. Furthermore t [u/x] is the result of substituting u for all
occurrences of x in t. Of course u and x should be of the same sort. Finally an inference rule

H with H = O is called an axiom and denoted simply by ~.

502

t = t u=____&v t : u ~ u : v u = v u = v I
v =u t =v t [u / x] : t [v / x] u [t / x] : v [t / x]

TAnL~ 11.

3. Conditional equational logic. The set F'ff, of atomic formulas over o is defined by:
If t ~ / ~ for i =1,2 and certain $0:S then (t~ =t2)e/~, t.
If R, T C_SI × " " ×Sn and t i ~ s , for i = 1,...,n then ps, x ... xs , (tb • "" ,tn)~F~, t.

The set b-~oq I of conditional equational formulas over o is defined by:
If C ~ o t and a~b~to then (C~ol)~FCo eql.

The ~-truth of formulas ~F~o O bx, eqt in a o-algebra 8 is defined by:
~,~ ~.~ t~ =t2 if l td '=It21 ~.
~,~ ~ t Ps,× ... ×s.(tb " " ,tn) if p~,× ... ×s,([t~l~, " ' " ,It~F).
~ ~qt C=~a if ~ ~ t [3 for some [3~C or ~ ~ t a.

~p is true in d~ notation ~g,~t ~, if ~ ~c,~qt ~ for all valuations ~.

An inference system I ~ for conditional equational logic is displayed in table 12 below. There a
and ai are atomic formulas, C is a set of atomic formulas, ~ is a conditional equational formula,
ti, t, u and v are terms over a and xi and x are variables. Furthermore a[u/x] is the result of
substituting u for all ocxmrrences of x in a. Of course u and x should be of the same sort. Like-
wise ~[ti/x~ (i e/)] is the result of simultaneous substitution for i e l of ti for all occurrences of

x~ in ~. An inference rule ~-- is again denoted by ~ and a conditional equational formula el =~a

bya.

C~ai (i~I), {a~[i~I}~a
C ~ a ff a ~ C

C ~ a ~ t , / xi (i ~I)1

t : t {U=V}=~(v =u) { t=u, U : V } ~ (t =U) (U =v, a[u/x]}=~(a[v/x])

T~L~ 12.

The logic described above is infinitary conditional equational logic. Finitary conditional equational
logic is obtained by the extra requirement that in conditional equational formulas C ~ a the set
of conditions C should be finite. In that case the inference rule

~t~/x~ (iEI)] can be replaced by ,l,[t/x]"

Furthermore On)finitary conditional logic is obtained by omitting all reference to the equality
predicate =.

4. First order logic. The set F~.°leq of first order formulas with equality over o is defined by:
- I f t i ~ s f o r i = l , 2 a n d c e r t a i n S ~ : S t h e n (t l = t 2) ~ F f , oleq.

If Ro:p C_SI X . . . XSn and tiffins, for i = 1,...,n then ps~x ... xs . (tb " '" ,tn)EFf~ °le¢.
If ~F~o°~q then -O~F~°~.
If ~, and ,b~F~ th~ (4 - ~) ~ ° ~ .

- If ~ and ¢~o~q then (~,A¢)EF~°~q.
If ~ and ~F~a °l~/then (~V~)~F~°/~/.
If ¢ and ~ o ~ then (~) ~ o ~ .
If Xs is a o-variable and ~F~. °~ then VXs(~b)eFf.aeq.
If Xs is a o-variable and ,beFf~O~q then 3Xs(t~)~Ffooleq.

503

The ~-truth of a formula ¢~Ff,~q in a o-algebra ~ is defined inductively by:
~,~ ~o~q ti =t2 if [t~l~=[t2] ~.

. ~ ~o/eq PS, X ... xs.(tl , " ' " ,tn) ifp~,x .-- xs. ([t l] ~, " ' " ,[t,i~).

~,~ ~o~ ~ _ ~ if ~ W:~q ¢ or ¢,~ ~o~q ~.
- a;~ d . ~ CA~ if e,~ ~o~ ¢ and ~,~ ~o~q ~.
_ ~,6 ~o~q Cv~ if ~,~ ~o~q ¢ or ¢6 ~o~q ~.
_ ~,~ ~o~q ~ if ~,~ ~o~ ¢ if and only if ~ ~ * ~.

~ ~o~ VXs(~) if ~,//, ~o/eq ~ for all valuations ~' with ~'(ys,)=~-(ys ,) for all variables
ys,#Xs.
~,~ ~.o~]Xs(~) if ~,~, ~.o~ ¢ for some valuation f' with ~'(ys,)=~(ys,) for all variables
ys,#Xs.

¢ is true is if, notation ~ t-f, °teq ¢, if ff,~ d,°teq q, for all valuations ~.

An inference system Ifo°t*q for first order logic with equality is displayed in table 13 below. There
¢, ff and p are elements of Ff, oteq, a is an atomic formula (constructed by means of the first two
clauses in the definition of F~, °uq only), t, u and v are terms over a and x is a variable. An
occurrence of a variable x in a formula ¢ is bound if it occurs in a subformula Vx(~b) or 3x0k) of
¢. Otherwise it is free. ¢[t/x] denotes the result of substituting u for all free occurrences of x in
t. Of course u and x should be of the same sort. Now t is free for x in ¢ if all free occurrences of

H variables in t remain free in ¢[t/x]. As before an inference rule ~ with H = I ~ is called an

axiom and denoted simply by q.

rb, ¢-->~ modus ponens q generalisation
Vx(¢)

~-,(~-~)
{~-->(~->p)} ~ {(~-->~)-->(~->,)}
{Vx(~-->~)}~{~-->Vx(~)}, if x does not occur free in
(-,¢-.¢)--,,

Vx(~)---~t/x], if t is free for x in ~

deduction axioms

axiom of the excluded middle
axiom of contradiction
axiom of specialisation

~-~{~,-~@AO} @V~)-->(-~¢-,O ax(¢) ,-, -,vx(-~)

t = t (u =v)--->(v =u) {(t =u)A(U =v)}--->(t =v) (u =v)-->(a[u/x] ~-> a[v/x D

TABLE 13.

First order logic is obtained from first order logic with equality by omitting all reference to = . It
is also possible to present first order logic without the connectives A, V and ~-~ and the
quantifier ~t, and introduce them as notational abbreviations. In that case the third block of
table 13 can be omitted.

5. Expressiveness. One can translate an equation a ~ F ~ 1 by a (finitary) conditional equational
formula O~,a ~Ffoc"q I and a finitary conditional equational formula {ab " ' " ,a.}=*a ~Ffffql
into a first order formula (a l A ' ' " Aan)~a ~Ffol~. Usin~ this translation we have
F~eqICF/oceqlCF~e °~ and furthermore ~ l ~ ** ~ q , ~ for ~b 'vd l and

~ 1 ~ ** ~ o ~ ~ for ~ F ~ c~l. This means that first order logic with equality is more
expressive then equational logic and finitary conditional equational logic is somewhere in
between. However first order logic with equality and infinitary conditional equational logic are

504

incomparable.

6. Completeness. For all logics mentioned above the following completeness result is known to
hold: Alg(o,T)~ ~ ~ T ~ ep. The reverse direction also holds, since all these logics are
obviously sound. As a corollary we have

T ~ l ep ** T ~ l ~ f o r ~ , ~ l and

T ~ l ~ ~=} T ~o/eq ~ for ~b~F/o ceqt.

For this reason in a lot of process algebra papers it is not made explicit which logic is used in
verifications: the space needed for stating this could be saved, since the resulting notion of pro-
vability would be the same anyway. However, the situation changes when formulas are proved
from modules. Equational logic and conditional equational logic are not complete anymore and
for first order logic with equality this is still an open problem (for us). Here a logic ~ is com-
plete if M ~ ~ =* M ~e ~. It is easily shown that

M ~ ~ =~ M ~ ,1, for ~ F ~ M) and

M ~ # , =} M J ° ~ # , f o r # , ~ F ~ ,

but the reverse directions do not hold. Thus we should state exactly in which logic our results
are proved.

7. Notation. TI~ paper employs infinitary conditional equational logic. However, no proof trees
are constructed; proofs are given in a slightly informal way, that allows a straightforward trans-
lation into formal proofs by the reader. Furthermore all type information given in the subscripts
of variables, function and predicate symbols is omitted, since confusion about the correct types

H is almost impossible. Outside section 1 and this appendix inference rules ~ do not occur, but

all conditional equational formulas C=*a are written -C-C, as is usual. However, the suggested
a

. . . . H similarity between inference rules and conditional equational formulas is misleading: -~- holds

in an ~ e b r a ~ ff (A,~ ~ ,~ for all ~ e H and all valuations 0 implies (~,~ ~ ~ for all valuations 0,

while ' ~ ' - - holds in ¢ if for all valuations ~: (~,~ ~ ~ for all ~ C implies ~,~ ~ a).
o~

8. Positive and universal formulas. In equational logic all formulas are both positive and univer-
sal. In conditional equational logic all formulas are universal and the positive formulas are the
atomic ones. In first order logic with equality the positive formulas are the ones without the
connectives -~ and --> and the universal ones are the formulas without quantifiers. Model theory
(see for instance [33]) teaches us that a formula ~ is preserved under homomorphisms (respec-
tively subalgebras) itf there is a positive (respectively universal) formula ~ with ~Zeq ~ ,_, ~.

REFERENCES

[1] P. AMERICA (1985): Definition of the programming language POOL-T. ESPRIT project 415,
Doc. Nr. 91, Philips Research Laboratories, Eindhoven.

[2] D. AUSTRY & G. BOVDOL (1984): Alg~bre deprocessus et synchronisations. Theoretical Com-
puter Science 30(1), pp. 91-131.

[3] J.C.M. BAFr~ & J.A. B~OSTRA (1987): Global Renaming Operators in Concrete Process
Algebra (revised version). Report P8709, Programming Research Group, University of
Amsterdam, to appear in I&C.

[4] J.C.M. B ~ , J.A. BV_aOSTRA & J.W. KLOP (1987): Conditional Axioms and a/fl Calculus
in Process Algebra. In: Formal Description of Programmlr~g Concepts - III, Proceedings of

505

the third IFIP WG 2.2 working conference, Ebberup 1986 (M. Wirsing, ed.), North-
Holland, Amsterdam, pp. 53-75.

[5] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLOV (1987): On the Consistency of Koomen's Fair
Abstraction Rule. Theoretical Computer Science 51(1/2), pp. 129-176.

[6] J.C.M. B~TEN, J.A. BERGSTRA & J.W. KI.OP (1987): Ready trace semantics for concrete pro-
cess algebra with priority operator. The Computer Journal 30(6), pp. 498-506.

[7] J.C.M. BAETEN & R.L VAN GLAm3EEK (1987): Merge and termination in process algebra. In:
Proceedings 7th Conference on Foundations of Software Technology & Theoretical Com-
puter Science, Pune, India (K.V. Nori, ad.), LNCS 287, Springer-Verlag, pp. 153-172.

[8] J.A. BERGSTV, A (1985): A Process Creation Mechanism in Process Algebra. Logic Group
Preprint Series Nr. 2, CIF, State University of Utrecht, to appear in: Applications of Pro-
cess Algebra, (J.C.M. Baeten, ed.), CWI Monograph, North-Holland, 1988.

[9] J.A. BERGSTV,& J. FI~Rr~G & P. KLItCr (1986): Module Algebra. Report CS-R8617, Cen-
trum voor Wiskunde en Informatica, Amsterdam, to appear in: Journal of the ACM.

[10] LA. BErtGsr~ & LW. KLOV (t984): The algebra of recursivdy defined processes and the
algebra of regular processes. In: Proceedings llth ICALP, Antwerpen (J. Paredaens, ed.),
LNCS 172, Springer-Verlag, pp. 82-95.

[11] J.A. BERGSTRA & J.W. KLOp (1984): Process algebra for synchronous communication. I&C
60(1/3), pp. 109-137.

[12] J.A. BErtGSTRA & J.W. KLOP (1985): Algebra of communicating processes with abstraction.
Theoretical Computer Science 37(1), pp. 77-121.

[13] J.A. BERGSTRA & J.W. KLOV (1986): Process Algebra: Specification and Verification in
Bisimulation Semantics. In: Mathematics and Computer Science II, CWI Monograph 4 (M.
Hazewinkel, J.K. Lenstra & L.G.L.T. Meertens, ads.), North.Holland, Amsterdam, pp.
61-94.

[14] J.A. BER~STIIA & J.W. KLOP: ACP,: A Universal Axiom System for Process Specification.
This volume.

[15] J.A. BERGSTR& J.W. KLOp & E.-R. OLDEROG (1987): Failures without chaos: a new process
semantics for fair abstraction. In: Formal Description of Programming Concepts - III,
Proceedings of the third IFIP WG 2.2 working conference, Ebberup 1986 (M. Wirsing, ad.),
North-Holland, Amsterdam, pp. 77-103.

[16] J.A. BEROSTRA & J. TltmX, N (1987): Process Algebra Semantics for Queues. Fund. Inf. X,
pp. 213-224, also appeared as: MC Report IW 241, Amsterdam 1983.

[17] S.D. BROOKES & A.W. ROSCOE (1985): An improved failures model for communicating
processes. In: Seminar on Concurrency (S.D. Brookes, A.W. Roscoe & G. Winskel, ads.),
LNCS 197, Springer-Verlag, pp. 281-305.

[18] M. BROY (1987): Views of Queues. Report MIP-8704, Fakult~tt fttr Mathematik und Infor-
matik, Universitat Passau.

[19] CHILL (1980): Recommendation 7,.200 (CHILL Language Definition). CCITT Study
Group XI.

[20] 1L DE NICGLA & M. HENNESSY (1984): Testing equivalences for processes. Theoretical Com-
puter Science 34, pp. 83-134.

[21] T. DENVlR, W. HARWOOD, M. JACKSON & M. RAY (t985): The Analysis of Concurrent Sys-
tems, Proceedings of a Tutorial and Workshop, Cambridge University 1983, LNCS
207, Springer-Verlag.

[22] R.J. vAN GLABBEEK (1987): Bounded Nondeterminism and the Approximation Induction Prin-
ciple in Process Algebra. In: Proceedings STACS 87 (F.J. Brandenburg, G. Vidal-Naquet &
M. Wirsing, ads.), LNCS 247, Springer-Verlag, pp. 336-347.

[23] RJ. VAN GLABBEEK & F.W. VAANDRAGER (1988): Modular Specifications in Process Algebra
- With Curious Queues. Report CS-R8821, Centrum voor Wiskunde en Informatica,
Amsterdam.

[24] C.A.R. HOARE (1980): Communicating sequential processes. In: On the construction of

506

programs - an advanced course (P.M. McKeag & A.M. Macnaghten, eds.), Cambridge
University Press, pp. 229-254.

[25] C.A.R. H o ~ (1985): Communicating Sequential Processes, Prentice-Hall International.
[26] I-~ JIrI~NG & C.A.R~ HOARI~ (1987): Algebraic specification and proof of a distributed

recovery algorithm. Distributed Computing 2(1), pp. 1-12.
[27] C.P.J. KOYMANS & J.C. MOLDER (1986): A Modular Approach to Protocol Verification using

Process Algebra. Logic Group Preprint Series Nr. 6, CIF, State University of Utrecht, to
appear in: Applications of Process Algebra, (J.C.M. Baeten, ed.), CWI Monograph, North-
Holland, 1988.

[28] K.G. LAItSEN & IL MILNER (1987): A Complete Protocol Verification Using Relativized
Bisimulation. In: Proceedings 14th ICALP, Karlsruhe (Th. Ottmann, ed.), LNCS 267,
Springer-Verlag, pp. 126-135.

[29] S. Mxtrw (1987): An algebraic specification of process algebra, including two examples. Tiffs
volume.

[30] S. MAtrw & G.J. VI/LI'Ir~ (1988): A Process Specification Formalism. Report P8814, Pro-
gramming Research Group, University of Amsterdam.

[31] 1L MIL~It (1980): A Calculus of Communicating Systems, LNCS 92, Springer-Verlag.
[32] R. MIL~.R (1985): Lectures on a Calculus for Communicating Systems. In: Seminar on

Concurrency (S.D. Brookes, A.W. Roscoe & G. Winskel, eds.), LNCS 197, Springer-Vedag,
pp. 197-220.

[33] J.D. MONK (1976): Mathematical Logic, Springer-Verlag.
[34] E.-R. OLDm(OG & C.A.1L HOARE (1986): Specification-Oriented Semantics for Communicat-

ing Processes. Aeta Informatiea 23, pp. 9-66.
[35] I.C.C. PHILLIPS (1987): Refusal Testing. Theoretical Computer Science 50, pp. 241-284.
[36] V.IL PRATT (1986): Modelling Concurrency with Partial Orders. International Journal of

Parallel Programming 15(1), pp. 33-71.
[37] D.T. SA/Ct~LIA & A. TARLECrd (1988): Toward Formal Development of Programs from

Algebraic Specifications: Implementations Revisited. Aeta Informatiea 25, pp. 233-281.
[38] D.T. SANlqELI~ & M. WmSmG (1983): A kernel language for algebraic specification and

implementation (extended abstract). In: Proc. Intl. Conf. on Foundations of Computation
Theory, Borgholm (M. Karpinski, ed.), LNCS 158, pp. 413-427, long version: Report
CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh, 1983.

[39] F.W. VAANDI~GER (1986): Verification of Two Communication Protocols by Means of Pro-
cess Algebra. Report CS-R8608, Centrum voor Wiskunde en Informatiea, Amsterdam.

[40] F.W. VAAr~DRAG~R (1986): Process algebra semantics of POOL. Report CS-R8629, Cen-
trum voor Wisktmde en Informatica, Amsterdam, to appear in: Applications of Process
Algebra, (J.C.M. Baeten, ed.), CWI Monograph, North-Holland, 1988.

[41] F.W. VAA~rO10,GFR (1988): Some Observations on Redundancy in a Context. Report CS-
1(8812, Centrum voor Wiskunde en Informatica, Amsterdam, to appear in: Applications
of Process Algebra, (J.C.M. Baeten, ed.), CWI Monograph, North-Holland, 1988.

