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INTRODUCTION

During the last decade, a lot of research has been done on process alge-
bra: the branch of theoretical computer science concerned with the
modeling of concurrent systems as elements of an algebra. Besides the
Calculus of Communicating Systems (CCS) of MILNER [34,35], a large
number of related formalisms have been developed, such as the theory of
Communicating Sequential Processes (CSP) of HOARE [29], the MEDE
calculus of AUSTRY & BouDoL [3] and the Algebra of Communicating
Processes (ACP) of BERGSTRA & Krop [10, 12, 13]. There are a number
of factors that help explain why so many different proposals occur in the
literature.

A central idea in process algebra is that two processes which cannot be
distinguished by observation should preferably be identified: the process
semantics should be fully abstract with respect to some notion of testing
[21,34]. This means that the choice of a suitable process algebra may
depend on the tools an environment has to distinguish between certain
processes. In different applications the tools of the environment may be
different, and therefore different applications may require different pro-
cess algebras.

Another factor which plays a role has to do with the operators of pro-
cess algebras. For theoretical purposes it is in general desirable to work
with a single, small set of fundamental operators. We doubt however
that a unique optimal and minimal collection exists. What is optimal
depends on the type of results one likes to prove. This becomes even
more clear if we look towards practical applications. Some operators in
process algebra can be used for a wide range of applications, but we
agree with JIFENG & HOARE [30] that we may have to accept that each
application will require derivation of specialized laws and operators to
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control its complexity.

Many people are embarrassed by the multitude of process algebras
occurring in the literature. They should be aware of the fact that there
are close relationships between the various process algebras: often one
process algebra can be viewed as a homomorphic image, subalgebra or
restriction of another one. The aim of this paper is to show how the
semantical reality, consisting of a large number of closely related process
algebras, can be reflected, and even used, on the level of algebraic
specifications and in process verifications.

This paper is about process algebras, their mutual relationships, and
strategies to prove that a formula is valid in a process algebra. Still, we
do not present any particular process algebra here. We only define
classes of models of process modules. One reason for doing this is that
the semantical notions we refer to are well documented in the literature
[10,27,29,35] and a detailed description of all the particular process
algebras we use would make this paper needlessly long. Another reason
is that there is often no clear argument for selecting a particular process
algebra. In such situations we are interested in assertions saying that a
formula is valid in all algebras satisfying a certain theory. Finally, we
would like to stress that the verifications in this paper are completely
model independent, and there is no better way of doing that than by
presenting no models at all. However, a number of times we need results
stating that some formulas cannot be proven from a certain module. A
standard way to prove this is to give a model of the module where the
formulas are not true. For this reason we will sometimes refer to particu-
lar process algebras which have been documented elsewhere in the litera-
ture.

The discussion of this paper takes place in the setting of ACP. We
think however that the results can be carried over to CCS, CSP, MEDE,
or any other process algebra formalism.

The creation of an algebraic framework suitable to deal with realistic
applications, gives rise to the construction of building blocks, or
modules, of operators and axioms, each block describing a feature of
concurrency in a certain semantical setting. These modules can then be
combined by means of a module combinator + in a lot of ways. Some
combinations are interesting, for other combinations no interesting appli-
cations exist. Didactical aspects aside, a major advantage of the modular
approach is that results which have been proved from a module M, can
also be proved from a module M+N. This means that process
verifications become reusable.
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It turns out that certain pairs of modules are incompatible in a very
strong sense: with the combination of two modules strange and counter-
intuitive identities can be derived (so-called trace inconsistencies, which
do not hold in any known process algebra). In BAETEN, BERGSTRA &
Kror [8], for example, it is shown that the combination of failure
semantics and the priority operator is trace inconsistent. Another exam-
ple can be found in BERGSTRA, KLoP & OLDEROG [14], where it is
pointed out that the combination of failure semantics and Koomen’s
Fair Abstraction Rule (KFAR) leads to unwanted identifications.

In the first section we present, besides the combinator +, some other
operators on modules. We discuss an export operator [, allowing to for-
get some operators in a module, an operator H, changing semantics by
taking homomorphic images, and an operator S which takes subalgebras.
These operators enable us to combine modules in a subtle way, when the
direct combination would be inconsistent. In Section 2 we describe a
large number of process modules which play a role in the ACP frame-
work. Section 3 contains two examples of applications of the new
module operators in process algebra:

1. In a setting with internal actions, the left-merge operator of ACP
cannot be combined in a trace consistent manner with e.g. the usual
laws of failure semantics. However, we will show in this paper that
use of the module approach makes it possible to do failure seman-
tics with 7’s but still benefit from the left-merge in verifications.
The idea is that a verification takes place by writing the proof on
two pages. On one page the left-merge may be used; on the other
one the laws of failure semantics can be applied. Then there are
some rules that say which intermediate results may be moved from
one page to the other.

2. A problem with defining operators in terms of other operators is
that often auxiliary atomic actions are needed in the definition.
These auxiliary actions can then not be used in any other place,
because that would disturb the intended semantics of the operator.
In the laws that can be derived for the defined operator, the auxili-
ary actions occur prominently. These ‘side effects’ are often quite
unpleasant. However, we will show that also this problem can be
solved in a clean way via the module approach.

The concept of hiding auxiliary operators in a module is quite familiar in

the literature (see BERGSTRA, HEERING & KLINT [11]), but the use of

module operators H and S, and their application in combining modules

that would be incompatible otherwise, is, as far as we know, new. The H
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and S operations are in spirit related to the abstract operation of SAN-
NELLA & WIRSING [42] and SANNELLA & TARLECKI [41], which also
extends the model class of a module.

In previous papers on ACP, the underlying logic used in process
verifications was not made explicit. The reason for this was that a long
definition of the logic would distract the reader’s attention from the
more essential parts of the paper. It was felt that filling in the details of
the logic would not be too difficult and that moreover different options
were equivalent. In this paper we generalize the classical notion of a for-
mal proof of a formula from a theory to the notion of a formal proof of
a formula from a module. The definition of this last notion is
parametrized by the underlying logic. What is provable from a module
really depends on the logic that is used, and this makes it necessary to
consider in more detail the issue of logics. In this paper we present three
alternatives: (1) Equational logic. This logic is suited for dealing with
finite processes, but not strong enough for handling infinite processes;
(2) Infinitary conditional equational logic. This is the logic used in most
process verifications in the ACP framework until now; we take the
opportunity to prove its completeness; (3) First order logic with equality.

Our investigations into the precise nature of the calculi used in process
algebra, led us to alternative formulations of some of the proof princi-
ples in ACP which fit better in our formal setup. We present a reformu-
lation of the Recursive Specification Principle (RSP) and also an alpha-
bet operator which returns a process instead of a set of actions.

As an illustration of the techniques developed in Sections 1-3, we
present in Section 4 some examples dealing with FIFO-queues. Amongst
others, we give an example of an identity that holds intuitively (there is
no experiment that distinguishes between the two processes) but is not
valid in bisimulation semantics. We use the machinery developed in Sec-
tions 1-3 to extend the axiom system in a neat way (avoiding trace
inconsistencies) so that we can prove the processes identical.

1. MODULE LoGIC ‘

In this paper, as in many other papers about process algebra, we use for-
mal calculi to prove statements about concurrent systems. In this section
we answer the following questions:

- Which kind of calculi do we use?

- What do we understand by a proof?

In the next sections we will apply this general setup to concurrent
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systems.

I.1. Statements about concurrent systems. In many theories of con-
currency it is common practice to represent processes - the behaviors of
concurrent systems - as elements in an algebra. This is a mathematical
domain, on which some operators and predicates are defined. Algebras
which are suitable for the representation of processes are called process
algebras. Thus a statement about the behavior of concurrent systems can
be regarded as a statement about the elements of a certain process alge-
bra. Such a statement can be represented by a formula in a suitable
language which is interpreted in this process algebra. Sometimes we con-
sider several process algebras at the same time and want to formulate a
statement about concurrent processes without choosing one of these alge-
bras. In this case we represent the statement by a formula in a suitable
langnage which has an interpretation in all these process algebras. Hence
we are interested in assertions of the form: ‘Formula ¢ holds in the pro-
cess algebra @, notation @ k ¢, or ‘Formula ¢ holds in the class of pro-
cess algebras €, notation CF ¢. Now we can formulate the goal that is
pursued in the present section: to propose a method for proving asser-
tions @ F ¢, or Ck ¢.

1.2. Proving formulas from theories. Classical logic gave us the notion of
a formal proof of a formula ¢ from a theory 7. Here a theory is a set of
formulas. We write T + ¢ if such a proof exists. The use of this notion is
revealed by the following soundness theorem: If T + ¢ then ¢ holds in all
algebras satisfying T. Here an algebra @ satisfies T, notation @ ¢ 7, if all
formulas of T hold in this algebra. Thus if we want to prove @ ¢ it
suffices to prove T + ¢ and @k T for a suitable theory 7. Likewise, if we
want to prove Ck ¢, with € a class of algebras, it suffices to prove T + ¢
and Ck T.

At first sight the method of proving @ k ¢ by means of a formal proof
of ¢ out of T seems very inefficient. Instead of verifying @ ¢ ¢, one has to
verify @ k ¢ for all Y €7, and moreover the formal proof has to be con-
structed. However, there are two circumstances in which this method is
efficient, and in most applications both of them apply. First of all it may
be the case that ¢ is more complicated than the formulas of T and that a
direct verification of @ k ¢ is much more work than the formal proof and
all verifications @k together. Secondly, it may occur that a single
theory 7" with @ ¢ T is used to prove many formulas ¢, so that many
verifications @ ¢ ¢ are balanced against many formal proofs of ¢ out of T
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and a single set of verifications @ F . Especially when constructing for-
mal proofs is considered easier then making verifications @ k ¢, this reu-
sability argument is very powerful. It also indicates that for a given alge-
bra @ we want to find a theory T from which most interesting formulas ¢
with @ ¢ can be proved.

Often there are reasons for representing processes in an algebra that
satisfies a particular theory 7, but there is no clear argument for select-
ing one of these algebras. In this situation we are interested in assertions
Ck ¢ with C the class of all algebras satisfying T. Of course assertions of
this type can be conveniently proved by means of a formal proof of ¢
from 7.

1.3. Proving formulas from modules. In process algebra one often wants
to modify the process algebra currently used to represent processes. Such
a modification might be as simple as the addition of another operator,
needed for the proper modeling of yet another feature of concurrency,
but it can also be a more involved modification, such as factoring out a
congruence, in order to identify processes that should not be dis-
tinguished in a certain application. It is our explicit concern to organize
proofs of statements about concurrent systems in such a way that, when-
ever possible, our results carry over to modifications of the process alge-
bra for which they were proved.

Now suppose @ is a process algebra satisfying the theory T and a state-
ment &k ¢ has been proved by means of a formal proof of ¢ out of 7.
Furthermore suppose that ® is obtained from @ by factoring out a
congruence relation on @ (so B is a homomorphic image of @) and for a
certain application % is considered to be a more suitable model of con-
currency than @ Then in general B k ¢ cannot be concluded, but if ¢
belongs to a certain class of formulas (the positive ones) it can. So if ¢ is
positive we can use the following theorem: ‘If @k T, T + ¢, ¢ is positive,
and % is a homomorphic image of &, then % ¢ ¢’. This saves us the trou-
ble of finding another theory U, verifying that % £ U and proving U r ¢
for many formulas ¢ that have been proved from T already. Another
way of formulating the same idea is to introduce a module H (7). We
postulate that one may derive ‘H (T) + ¢’ from ‘T + ¢’ and ‘¢ is positive’,
and H(T) + ¢ implies that ¢ holds in all homomorphic images of alge-
bras satisfying 7.

Thus we propose a generalization of the notion of a formal proof.
Instead of theories we use the more general notion of module. Like a
theory a module characterizes a class C of algebras, but besides the class
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of all algebras satisfying a given set of formulas, € can for instance also
be the class of homomorphic images or subalgebras of a class of algebras
specified earlier. Now a proof in the framework of module logic is a
sequence or tree of assertions M + ¢ such that in each step either the for-
mula ¢ is manipulated, as in a classical proof, or the module M is mani-
pulated. Of course we will establish a soundness theorem as before, and
then an assertion @ ¢ ¢ can be proved by means of a module M with
€k M and a formal proof of ¢ out of M. We will now turn to the formal
definitions.

1.4. Signatures. Let NAMES be a given set of names.

A function declaration is an expression F(f,n) with f€ NAMESs and n eNN.
A function declaration F(f, 0) of arity 0 is sometimes called a constant
declaration.

A predicate declaration is an expression R(p,n) with pE NAMES and
nelN.

A signature o is a set of function and predicate declarations.

1.5. o-Algebras. Let o be a signature. A o-algebra @ is a pair of a set Dg
and a function on ¢ that maps

F(f,n)eo to a functionj@:D&eD@ and

R(p,n)€o0 to a predicate p® C D3,

Let @ and B be o-algebras. B is a subalgebra of @ if Dg CDg and if fe
restricted to D% is just f® for all function and predicate declarations
F(f,n) and R(f,n) in o.

A homomorphism h:@—%® is a mapping 4:D g—>Dg such that
A(FGes, ) = P0G, . h)
for all F(f,n)€o and all x;€Dgq (i=1,...,n),
PIL - x) & pPhlx), - k)
for all R(p,n)€o and all x;€Dgq (i=1, ... ,n).

B is a homomorphic image of @ if there exists a surjective homomorphism

h:@—%.

Let @ be a o-algebra. The restriction p[J@ of @ to the signature p is the
pMo-algebra %, defined by

Dg = D,
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f@’ Zf@fora]lﬂ:(f,n)epﬂo,
p9 = 5% for all R(p,n)epno.

A congruence on a o-algebra @ is an equivalence relation = on D g satis-
fying, for x;,y; €D, the following congruence properties:

- VF(f,n)eo: if x,=y; (i=1,...,n) then f (X 1,..., X)=f (¥ 1,-,Vn),

- VR@,n)eo: if x;=p; (i=1,...,n) thenp (x1,...,x,) ©p(y j gms Vi )-
(Sometimes (weak) congruences appear in the literature, that are not
required to satisfy the congruence properties for predicates.) For xeDg,
the congruence class (x)= of x is the set of all y €Dg with y=x.

For @ a o-algebra and = a congruence on @, the o-algebra @/=, called @
modulo =, is defined by

Dg/_ = {(x)=1xeDg},

PRGN ) = (o, o),

(D=, - - G2 ep Y= o (xh, .. x) Ept

Due to the congruence properties this definition is independent of the
choice of the representing x; €(x;)=.

1.6. Logics. A logic £is a complex of prescriptions, defining for any sig-

nature o

- aset FE of formulas over o such that F:} ﬂFg = Fgm -

- a binary relation £ on o-algebras X F5 such that for all p-algebras @
and qbeFEnp: c1@ k%mp ¢ & @ #% ¢, and

- aset IS of inference rules Ll with P CFZ and peFE.

If @ FE ¢ we say that the o-algebra @ satisfies the formula ¢, or that o}
holds in @. A theory over o is a set of formulas over o. If T is a theory
over ¢ and @ k£ ¢ for all T we say that @ satisfies T, notation @ 5 7.

We also say that @ is a model of T. An inference rule %;— with P=@ is
called an axiom and will be denoted simply by ¢.

A logic £ is sound if fe]& implies @ k5 P = @5 ¢ for any o-algebra
@

A formula ¢ €F E is preserved under subalgebras if @ #2 ¢ implies % I=§ P,
for any subalgebra % of @.

A formula ¢eF5 is preserved under homomorphisms if @5 ¢ implies
B 5 ¢, for any homomorphic image %6 of @.
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Without doubt, the definition of a ‘logic’ as presented above is too gen-
eral for most applications. However, it is suited for our purposes and
anyone can substitute his/her favorite (and more restricted) definition
whenever he/she likes.

In the process algebra verifications of this paper we will use equational
logic and sometimes infinitary conditional equational logic. The
definition of these logics can be found below. At some places we will
refer to first order logic with equality, and therefore a definition of this
logic is included in Appendix I.

1.6.1. Variables and terms. Since all logics announced above share the
concepts of variables and terms, these will be treated first.
Let Vbe a given infinite set of variables, disjoint from NAMEs.

Let o be a signature. The set T(o) of o-terms is defined inductively by:

- x€T(o) for any variable x;

- U F(f,n)isin o and ;€T (o) for i =1,...,n then f (¢1,...,2,) €T (0).

A o-term that contains no variables is called closed. We use T (o) to
denote the set of closed o-terms.

A o-substitution (or just substitution) is a mapping {:V—T (o). With £[{]
we denote the result of simultaneous substitution for x €%V of {(x) for all
occurrences of x in z. With u/x we denote the substitution which maps
variable x to u and all other variables to themselves. So tlu/x] is the
result of substituting u for all occurrences of x in z.

A valuation in a c-algebra @ is a function £ that takes every variable x
into an element of Dg. The &-evaluation [t]¢ €Dy of a o-term ¢ in @ is
defined by:

- [IxFF=éw),

- U enawF = A 1619,

1.6.2. Equational logic. The set F&' of equations or equational formulas

over o is defined by:
- Ift;,€T(o) for i =1,2, then (t; =1,) e Fe4.

Let ¢ be an equation (f]=t,)eF%4. We say that ¢ is §-frue in a o-
algebra @, notation @£ £¢% ¢, if [[t1]]$:I[t2]]$.
¢ is true in @, notation @ ££% ¢, if @,¢ ke4’ ¢ for all valuations £

An inference system I¢4 for equational logic is displayed in Table 1
below. There ¢, u and v are terms over ¢ and x is a variable.
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U=y I=u, u=vy u=y U=y
V=u r=vy tHu/x]=t[v/x] ult/x]=v[t/x]

TABLE 1

1.6.3. Conditional equational logic. The set F¥ of atomic Jormulas over o
is defined by:

- Fg C F¥

- i R(,n)isin o and 1, €T (o) for i =1,...,n then p (¢1,...,1,) FZ.
The set F5 of conditional equational formulas over o is defined by:

- If CCF¥ and aeF% then (C=a)cFed.

Let { be a substitution. For a€F%, C CF¥ and ¢ =F%?, a[¢], C[¢] and
¢[{] are defined as the result of applying ¢ to all terms in a, C, Iesp. ¢.

The &-truth of formulas p € F# U F4 in a o-algebra @ is defined by:

- GER g if Fg? and @£ & ¢
- QEEF Pty i (T, [0 ]6) ep
- QEECY C=a if @,¢ ¥ 54 B for some BeC or @£ £Se4! g,

¢ is true in @, notation @ k¥ ¢, if @,£ k4! ¢ for all valuations £

An inference system 7% for conditional equational logic is displayed in
Table 2 below. There « and «; are atomic formulas, C is a set of atomic
formulas, ¢ is a conditional equational formula, { is a substitution, ¢, u
and v are terms over o and x is a variable. A conditional equational for-
mula &=« is denoted by «.

. C=>a,- (l EI), {a,-|iEI}=>a i
C=a ifaeC Coon o[
1=t {u=vi=>@=u) {t=u, u=v}i=@=v)

{u=v, au/x]}=(fv/x])

TABLE 2

The logic described above is infinitary conditional equational logic. Fini-
tary conditional equational logic is obtained by the extra requirement that
in conditional equational formulas C=a the set of conditions C should
be finite. In that case the inference rule

- can be replaced by

(<]

¢
Mr/x]
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Furthermore (in)finitary conditional logic is obtained by omitting all refer-
ence to the equality predicate =. Note that all these logics and also the
first order logic of Appendix I satisfy the general requirements for logics
set out above.

1.6.4. Expressiveness. One can translate an equation acFe by a
(finitary) conditional equational formula @ =« and a finitary conditional
equational formula {a1,...,ay}=>a into a first order formula
(g /\ -+ - Neyy)—a (see Appendix I). Using this translation we have
Feql C Ffeeq! CFJ%%9 and furthermore @ ' p o @ k? & for peFed!
and Q% ¢ < Q@ £f%%4 ¢ for e F[?. This means that first order
logic with equality is more expressive then equational logic and finitary
conditional equational logic is somewhere in between. However first
order logic with equality and infinitary conditional equational logic have
incomparable expressive power.

1.7. Classical logic.
DERIVABILITY. A o-proof of a formula ¢ €FZ from a theory T C F& using
the logic £ is a well-founded, upwardly branching tree of which the
nodes are labeled by o-formulas, such that

the root is labeled by ¢, and

if ¢ is the label of a node g and P is the set of labels of the nodes

directly above ¢ then

- either ye7 and P= g,

P e
- or —elj;.

If a o-proof of ¢ from T usin% £ exists, we say that ¢ is o-provable from
T by means of £, notation T +g ¢.

TRUTH. Let € be a class of o-algebras and qber. Then ¢ is said to be
true in C, notation € l=§ ¢, if ¢ holds in all c-algebras @eC. With
Alg(0,T) we denote the class of all o-algebras satisfying 7.

SOUNDNESS THEOREM. If £ is sound then T +§ ¢ implies Alg(0,T) hg“ P.
PROOF. Straightforward by induction. O

If no confusion is likely to result, the sub- and superscripts of k and r
may be dropped without further warning.
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1.8. Equational logic. This section recalls the soundness and complete-
ness theorem for equational logic, that was first established by BIRKHOFF
[16, Theorem 10], and presents an alternative notion of proof that is
tailored to equational logic and more convenient in the applications of
this paper. We establish that the new concept of proof induces the same
notion of provability as the proof concept of Section 1.7.

1.81. TueoREM: T +é% ¢ < Alg(o,T) :%4 .

1.8.2. An instance of an equation (u =v)eF¢4 is an equation f[u/x][{]
= tv/x][§]. An equational o-proof of an equation (u=v)eF¢ is a
string tg=¢1= - - - =¢, (n€N) of o-terms t; with o=wu and ¢, =v, such
that, for i =1,..,n, (t; —1=¢;) or (t;=1;_1) is an instance of an equation
from 7. Write u — v if such a proof exists.

1.83. THEOREM: u v « T +&! (u=v).
PROOF. Straightforward by induction on the size of the proofs. O

1.9. Conditional equational logic. This section presents an alternative
notion of proof that is tailored to infinitary conditional equational logic
and more convenient in the applications of this paper. We establish that
this new concept of proof induces the same notion of provability as the
proof concept of Section 1.7, and simultaneously we give a short and
elegant proof of the (soundness and) completeness of infinitary condi-
tional equational logic. The completeness of finitary conditional equa-
tional logic without predicates has already been proven in SELMAN [43]
and in RoBINsoN [40].

1.9.1. A substitution instance of a conditional equational formula ¢ is a
conditional equational formula of the form ¢[¢]. A conditional equational
o-proof of a formula (C=a)eFs? from a theory TCF&? is a well-
founded, upwardly branching tree of which the nodes are labeled by
atomic o-formulas, such that

the root is labeled by e, and

if B is the label of a node ¢ and D is the set of labels of the nodes

directly above ¢ then

- either f€C and D= @, or

- D= is a substitution instance of a conditional equational

formula ¢ from T or the bottom part of Table 2.

An example of a (fragment of) a conditional equational proof is given in
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Section 3.1.1.4. Write C %;a if such a proof exists.

1.9.2. THEOREM: The following three statements are equivalent:

1. C =0,

2. T+ Coq,

3. Alg(e,T) £ C=a.

PrROOF. The implications (1) = (2) and (2) = (3) can be proved by
straightforward induction on the size of proofs. Here we only present the
hard part of the proof which is the implication (3) = (1).

Suppose Alg (0, T) k$? C=a. Let C be the o-algebra with
De = T(o),
oy, - t)=f, .. .t for F(f,n)€0, and
(1, - - 1t)ep® i (CDp(ry, ... ,1,) for R(pn)eo

Define the relation = on D by: t=u iff (C %;(t =u)). By definition of
=, = is a congruence, so €/ is again a o-algebra.

Any function £&—T(o) is both a valuation in € and a o-substitution.
Let {/= be the valuation in @/—= defined by §&/=(x)=(4(x))=. Any
valuation £ in €/= is of the form &/— for certain ¢: take &(x) Ef’gx) for
x €. By induction one easily establishes that for any z T (o): [¢]*'= =

1= = (1E)=.
CLAM: For any BEFS we have: (C/=, ¢/=  B) & (C & B[4)).

PROOF: Let B be p(t1,...,1,) for certain R(p,n)€0 and 71, . . ., 1, €T (o).

Then
/=, E/=Fp s, ... 1) & 175, .. 16175 ep%= o
& (= ..., G ep"= <
o @i, ... Lighep® o
& (CIp@ilf), ..., 50) <
s (CIp@y,...,0)E.
Now let 8 be (] =t;) for certain 1,7, €T(0). Then:
Cl=, E/=F (t1=1) & [117==[1]" o
e LWiD==®lf= < 1[f=nlf <
& (CSptilfl=nf) <
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& (CSp@t=1)lf). O

Using this claim we prove that C/= is a model of T. Suppose
(D=7)€T and £/= is a valuation in /= with @/=, &/= kB for all
BeD. Then C ?,8[5] for all BeD. The corresponding proof trees (one
for_each B€D) can be combined into one big proof tree, proving
C %;y[f], by applying the substitution instance (D=>y)[£] of the condi-
tional equational formula (D=>y)eT. Hence €/, &/ = F v, which had to
be proved.

Thus C/=€Alg(o,T), so we have C/=, ¢ k (C=0) for any valuation &
in C/=. In particular this holds for & =id/=, with id the identity valua-
tion in C, defined by id(x)=x for x €. By means of a trivial proof (a
one-node-only proof tree) one establishes that C %;,B[id] for any BeC.
Hence, by the claim, C/=, id/= ¢ 8 for BeC. Thus, by the definition of
truth in conditional equational logic, we must have C/=, id/— F a.
Applying the claim once more gives C >a. O]

1.10. Module logic.

1.10.1. The set O of module expressions is defined inductively by:
- If ois a signature and T a theory over o, then (o, 7) €91,

- If Me9 and N €9 then M + N €91,

- If o is a signature and M €9 then e M €91,

- If MO then H(M)eom,

- If M &9t then S (M) e,

Here + is the composition operator, allowing to organize specifications
in a modular way, and [ is the export operator, restricting the visible
signature of a module, thereby hiding auxiliary items. These operators
occur in some form or other frequently in the literature on software
engineering. Our notation is taken from BERGSTRA, HEERING & KLINT
[11], where also additional references can be found. The homomorphism
operator H and the subalgebra operator S are, as far as we know, new in
the context of algebraic specifications. Of course they are well known in
model theory, see for instance MoNK [36].

1.10.2. 'The visible signature 2(M) of a module expression M is defined
inductively by:

- 2(0,T) = o,

- 2Z(M+N)=Z(MUZN),

- 2(c0OM) = oNZI(M),

- 2(HM)) = 2(M),
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- 2(SM) = Z(M).

1.10.3. TRUTH. The class Alg (M) of models of a module expression M is

defined inductively by:

- @is amodel of (o, 7) if it is a o-algebra, satisfying T,

- @ is a model of M+N if it is a 2(M + N)-algebra, such that
2(M)0Q is a model of M and 2(N)O@ is a model of N;

- @is a model of oM if it is the restriction of a model of M to the
signature o;

- @1is a model of H(M) if it is a homomorphic image of a model of
M;

- @1is a model of S(M) if itis a subalgebra of a model of M.

Note that Alg(M) is a generalization of Alg(0,T) as defined earlier. All

the elements of Alg(M) are 2(M)-algebras. A 2(M)-algebra @eAlg (M)

is said to satisfy M. A formula ¢ F %(M) is satisfied by a module expres-

sion M, notation M t* ¢, if Alg(M) c§ps ¢, thus if ¢ holds in all

2(M)-algebras satisfying M. A theory T gj;%(M) is satisfied by a module

expression M, M £° T, if M &° ¢ for all pT.

1.10.4. DERIVABILITY. A proof of a formula ¢EF%(M) from a module
expression M using the logic £ is a well-founded, upwardly branching
tree of which the nodes are labeled by assertions N r 1, such that
- the root is labeled by M + ¢, and

if N+ is the label of a node g and P is the set of labels of the

is one of the inference rules of

nodes directly above g, then
Table 3.

P
Nty

Here positive and universal are syntactic criteria, to be defined for each
logic £ separately, ensuring that a formula is preserved under homomor-
phisms and subalgebras respectively. In equational logic all formulas are
both positive and universal. In conditional equational logic all formulas -
are universal and the positive formulas are the atomic ones. We write

N + vy for N% 7 and omit braces in the conditions of inference rules. If

a proof of ¢ from M using £ exists, we say that ¢ is provable from M by
means of £, notation M +* o.
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(0,1)+ ¢ if T
M|-¢j Gjel) ¢; (Gel)
J £
Mro whenever py €130

_Mro Nto
M+NtGEo M+Nt&©o

Mo .
clLUM+ ¢ if g Fy

Mro cn .
TNt 0D+ o if ¢ is positive
% if ¢ is universal

TABLE 3

1.10.5. LEMMA. If M +* ¢ then ¢ € F§ .
PrRoOOF. By induction. The only nontrivial cases are the rules for + and
[1. These follow from FE CF S up and F% OF% CF S np Tespectively. [

1.10.6. SOUNDNESS THEOREM. If £ is sound then M +* ¢ implies M £~ ¢,
PROOF. By induction to the size of proof trees. Suppose M +° ¢ by
means of a proof tree whose last step is an application of an inference

mleMr

assertions N + ¢ in P, being the roots of smaller proof trees, we have
N £° 4. It has to be established that M t° ¢, i.e. that for all models @ of
M we have @ Fg(M) ¢. Now six cases can be distinguished.
1. P=@,M=(0,T) and ¢€T.
Let € be a model of M =(6,T). Then @ h%(M) ¢’ for all '€ T, so in
particular @ h%( M) P

from Table 3. By induction we may assume that for all

- (GeJ
2. P={Mt+ q‘)jIjEJ} and 2;(;——)61%(1\{).
Let @ be a model of M. By induction @Zhg(M) ¢; for jeJ. Thus
@ k:%(M) ¢, since £ is sound.
3. M=Nj+Njand P={N;+ ¢} (=1or?2).
By Lemma 1.10.5, ¢EF%(N,~) :F%(N,-)OE(A{)- Let @ be a model of
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M ={N1+N,}. Then 3(N;)I@ is a model of N;, hence, by induc-
tion, Z(V) D@ kwyn s ¢. Taking 0=3(N;) and p=S(M) in the
requirement of a lo§ic that for all p-algebras @ and c[)eFS Np:
o0@k5n, ¢ = Qs ¢, we find @ Sy, o,

4. M=00ON,P={N+ ¢} and pcF~.
By Lemma 1.105, € FS), so $€F5 NFsyy =FEnsy). Let @ be
a model of M =g¢IN. Then there is a model } of N with @=cI%.
By induction, % h%(N) ¢. Taking p=2(N) in the requirement of a
logic that for all p-algebras @ and q)ng'mp: oL@ hgnp ¢ <
Qry ¢, we find 000B ko3 6, e @ Sy 0.

5. M=H(N),P={N+ ¢} and ¢is positive.
Let @ be a model of M =H(N), i.e. @ is the homomorphic image of
a model B of N. By induction ® l=§(M) ¢ and since ¢ is positive
) F%(M) .

6. M=S(N),P={N+ ¢} and ¢ is universal.
Let @ be a model of M =S (N), i.e. @ is a subalgebra of a model B
of N. By induction, % k%(M) ¢ and since ¢ is universal @ #%(M) ¢. [

1.10.7 Modules. This paper deals with module expressions, which are
syntactic objects, rather than modules, in the sense of semantic objects
which are denoted by module expressions. Nevertheless it may be helpful
to have an idea what these modules could be. Here several options are
available (see for instance BERGSTRA, HEERING & KLINT [11]). One pos-
sibility is that a module expression denotes the class of its models, or the
class of its countable models. Another possibility is that it denotes the
set of all formulas which are derivable from it. In each of these cases the
operators of the module language can be easily interpreted (see the Sub-
sections 1.10.3 and 1.10.4 above). The simplest and least abstract
interpretation however, which may be considered to be the one employed
in this paper, is the one in which a module is an annotated and struc-
tured collection of axiom systems: a module expression simply denotes
itself.

1.11. Completeness. All logics mentioned in Section 1.6 and Appendix I
are sound and complete:

Alg(0,T) k5 ¢ o T+l (1)
As a corollary, using 1.6.4, we have
Tredl ¢  Treed for ¢cFe4 and 2
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Trel ¢ o THY ¢ for e Ffed!. (3)

For this reason in most process algebra papers it is not made explicit
which logic is used in verifications: the space needed for stating this
could be saved, since the resulting notion of provability would be the
same anyway. However, the situation changes when formulas are proved
from module expressions. Equational logic and conditional equational
logic are not complete anymore (for counterexamples see Sections 3.1.1.5
resp. 3.2.4) and for first order logic with equality this is still an open
problem (as far as we know). Here a logic £ is complete if M * ¢ =
M+E ¢ Itis easily proved that

M 4! & = M rced ¢ for quFEf{lM) and C))
Myl g > Mg for g S, )

but the reverse directions do not hold (as is also shown by the coun-
terexamples of Sections 3.1.1.5 and 3.2.4). Thus we should state exactly
in which logic our results are proved.

1.12. Towards applications. This paper employs infinitary conditional
equational module logic. However, proofs in the sense of Section 1.10
will hardly occur. In this section we show that in most applications we
may use simpler proof methods.

1.12.1. LEMMA: If M +* ¢ has been established before, then M + ¢ may
occur as a leaf in a proof tree. Likewise, if T +5 ¢ has been established
before, then ¢ may be used in the construction of a proof as if it were a

member of T.
ProoF. The figurative leaf can be expanded into a proof tree in order to

make the proof correct. O

1.12.2. LemMa: (00, To)+ - - - +(0,,T,) £ & <> (.Lnj o,-,‘L"J T,) £ &.
PrOOF. "=": Replace all modules that appear on lt]:: leflt:gf turn-styles
in a proof of ¢ from (09, Tg)+ - -+ +(0,,T,) by (CJ oi,.LnJ T,-) and
remove the applications of the inference rules for +. R

"&<": Also straightforward. O
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112.3. LemMma: (0,1 ¢ o T +£o.
PRrOOF. Trivial. O

These three lemmas say that (parts of) proofs from modules that do not
contain the operators (I, H or S may be given in classical logic instead
of module logic. In case of conditional equational logic, a conditional
equational proof can then be given. Alternatively, using Lemma 1.12.1
again and observation 1.11.2, any part of a conditional equational proof
that deals with equations only, may be given in equational logic instead.
For these parts - which are most numerous in this paper - the equational
proof method of Section 1.8 applies.

1.13. Notation. In this paper a module (6,T) will sometimes be intro-
duced by mentioning only 7. In such cases o is understood to be the sig-
nature of all functions and predicates appearing in T. Outside this Sec-

tion 1 and Appendix I inference rules § do not occur, but all condi-

. ; ‘ C .
tional equational formulas C=« are written —, as is usual. However,
o

the suggested similarity between inference rules and conditional equa-
tional formulas is misleading: g holds in an algebra @ if (&, k ¢ for all

Y &P and all valuations £) implies (&,¢ k ¢ for all valuations £), while %
holds in @ if for all valuations ¢: (@£ k B8 for all BeC implies &, k a).

2. PROCESS ALGEBRA

This is not an introductory paper on process algebra. Our only aim here
is to show how the ACP formalism can be presented in a precise and
structured way using our notion of a module. For a comprehensive
presentation of the ACP formalism we refer the reader to BAETEN &
WENLAND [10]. We will use as much as possible the notations and termi-
nology from this reference.

2.1. ACP". In this paper a central role will be played by the module
ACP’, the Algebra of Communicating Processes with abstraction. A first
parameter of ACP" is a finite set A of actions. For each action « in 4
there is a constant @ in the language, representing the process which
starts with an g-action and terminates (successfully) after some time.

The first two composition operations we consider are -, denoting
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sequential composition, and + for alternative composition. If x and y are
two processes, then x:y is the process that starts execution of y after suc-
cessful completion of x, and x +y is the process that either behaves like
x or like y. We do not specify whether the choice between x and y is
made by the process itself, or by the environment.

We have a special constant §, denoting deadlock, inaction, a process
that does nothing at all. In particular § does not terminate successfully.
We write 4 5=4 U {8}.

Next we have a parallel composition operator ||. x|y denotes the process
corresponding to the parallel execution of x and y. Execution of x||y
either starts with a step from x, or with a step from », or with a syn-
chronization of an action from x and an action from y. Synchronization
of actions is described by the second parameter of ACP”, which is a par-
tial communication function y:A X A—A which is commutative and asso-
clative:

v(@,b) = y(b,a) ¥(a,v(b,c)) = v(v(a,b),c).

In the above equations we also imply that one side of an equation is
defined exactly when the other side is. With ¥(a,b)] we indicate that
Y(a,b) is defined. If, for some a,b,c €4, y(a,b)=c this means that actions
a and b can synchronize. The synchronous performance of a and b is
then regarded as a performance of the communication action ¢. F ormally
we should add the parameters to the name of a module: ACP"(4, 7).
However, in order to keep notation simple, we will always omit the
parameters if this can be done without causing confusion. In order to
axiomatize the ||-operator we use two auxiliary operators || (left-merge)
and | (communication merge). x|y is xl|y, but with the restriction that
the first step comes from x, and x|y is x|y but with a synchronization
action as the first step.

Next we have for each H CA an encapsulation operator dg. The opera-
tor 9y blocks actions from H. The operator is used to encapsulate a pro-
cess, i.e. to block synchronization with the environment.

When describing concurrent systems and reasoning about their
behavior, it is often useful to have a distinguished action that cannot
synchronize with any other action. Such an action is denoted by the con-
stant ¢4 5. We write 4§ for 4 U {§,7}. The fact that 7 cannot synchron-
ize makes that in some sense this action is not observable. Therefore it is
often called the silent action. For each 7 CA the language contains an
abstraction or hiding operator 7;. This operator hides actions in I by
renaming them into 7, thus expressing that certain actions in a system
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behavior cannot be observed.
In Table 4 we summarize the signature of module ACP".

binary operators +  alternative composition (sum)
. sequential composition (product)
I parallel composition (merge)
L left-merge
| communication merge
unary operators ~ dy  encapsulation, for any H CA
7y abstraction, for any 7 CA4

constants a for any atomic action a €4
) inaction, deadlock
T silent action
TABLE 4

Table 5 contains the theory of the module ACP".

xX+y =y+x Al XT =X Bl
x+@y+z)=(x+y)tz A2 x(r(y +z)+y) = x(y +z) B2
X+x = x A3

(x+y)z = xz+yz A4

)z = x(yz) A5

x+8 =x A6 alb = y(a,b) if v(a,b)] CF1
ox =6 A7 alb =9 otherwise CF2
xlly = xlly+yllx+xly CMI | (ax)|b = (alb)x CM5
all x = ax CM2 | al(bx) = (alb)x CM6
(ax)lLy = a(xlly) CM3 | (ax)|(by) = (alb)(xlly) CM7

x+pllz = xllz+yllz CM4A| (x+p)lz = xlz+ylz CM8
x|y +z) = xly+txlz CM9

ogla) = a ifageH D1 (@) = a ifael TI1

dy(a) =8 ifacH D2 |7/@) =1 ifael TI2

og(x +y) = og(x)+oy(y) D3 Tr(x +y) = Tr(x)+77(p) TI3

op(xy) = Op(x)-0p(y) D4 | m(xp) = 71(x)71(p) TI4
TABLE 5

All axioms in Table 5 are in fact axiom schemes in a, b, H and I. Here a
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and b range over A} (unless further restrictions are made in the table)
and H,I CA. In a product x -y we will often omit the -. We take - to be
more binding than other operations and + to be less binding than other
operations. In case we are dealing with an associative operator, we also
leave out parentheses. In this paper we present ACP™ as a monolithic
module. In [10] however, it is shown that ACP™ can be viewed as the
sum of a large number of sub-modules which are interesting in their own
right. The module consisting of axioms A1-5 only is called BPA (from
Basic Process Algebra). If we add axioms A6-7 we obtain BPA;s, and
BPAs plus axioms B1-2 gives BPAS. The module ACP consists of the
axioms A1-7, CF1-2, CM1-9 and D1-4.

2.1.1. Note. LetD = {d1,...,d,} be a finite set and let Id,s-stq be pro-
cess expressions. We use the notation 3 geptd for the expression

g, + o+ Ede@td = § by definition.

2.1.2. PROPOSITIOI;I:I ACP" + a(mx|ly) = a(xlly). s .
PROOF. a(rxlly) = ar(rxlly) = a(rrx|Ly) = a(tx|Ly) = ar(xlly) =
a(xlly). ]

2.1.3. Summand inclusion. In process verifications the summand inclu-
sion predicate C turns out to be a useful notation. We write x C y as an
abbreviation for x+y=y. From the ACP"-axioms Al, A2 and A3
respectively it follows that C is antisymmetrical, transitive and reflexive,
and hence a partial order.

Most of the operators of ACP” are monotonic with respect to the sum-
mand inclusion ordering. For instance, if f is a unary ACP" operator,
then we can prove the following conditional formula:

xCy
SOCSf)
For reasons to be explained in Section 3, we prefer to state properties of

ACP"-processes in an equational rather than a conditional form. There-
fore we write the above monotonicity property as

JG)Cf G +y).

The reader may check that both formulas are equivalent in a setting with
the laws Al-3. Using essentially the distributivity of the operators over
+, one can prove from ACP":

- x+z Cx+y+tz
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- Xz C(x+ty)z

- xllz € (x+p)lz,

- xlz C (x+p)lz,

- 9g(x) C Ag(x +y),

- 1(x) C Tr(x +y).

Due to branching time (see [23]), we cannot prove z-x C z+(x +y),
xllz C (x+p)llz or zILx C z|| (x +y). However, we do have the follow-
ing weak form of monotonicity for the merge operator:

- 1(xllz) C (mx+p)llz.

The last formula formula follows since

T(xllz) = x|z C (=x+y)lLz C (mx +p)llz.

2.2. Standard Concurrency. Often one adds to ACP" the following
module SC of Standard Concurrency. These axioms are not included in
ACP" because they can be derived for all closed ACP-terms.

SC | (xllyllz=xlL(pllz) SC1
xIplz=xIl@lz) SC2
xly=ylx SC3
xlylz)=(xly)lz SC4

TABLE 6

2.2.1. ProrosITION. ACP™ + SC+
@® xlly = yllx,

@ xllyllz) = xly)llz.
ProOF. See [10]. .

2.3. Renamings. For every function f:A§—AJ with the property that
f(©)=38 and f(r)=r, the module RN introduces a unary operator Py
Axioms for pr are presented in Table 7 (here a ranges over A§ and id is
the identity function). Module RN is parametrized by 4.
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RN | pda) = f(a) RN1
orlx +y) = pAx)+pAy) RN2
pr(xy) = prx)-pAy) RN3
pid(x) = x RN4
ProPg(X) = prog(x) RN5

TABLE 7
For 14§ and H CA we define mappings Fi g i A§5—Af by:

t facH
rH(a) = a otherwise

In the rest of this paper we will implicitly identify the operators dy and
Prs > and also the operators 77 and p,, ;- encapsulation is just renaming
of actions into §, and abstraction is renaming of actions into the silent
step 7.

2.4. Chaining operators. A basic situation we will encounter is one in
which processes input and output values in a domain D. Often we want
to ‘chain’ two processes in such a way that the output of the first one
becomes the input of the second. In order to describe this, we define
chaining operators 3> and . In the process x>>>y the output of pro-
cess x serves as input of process y. Operator > is identical to operator
=>, but hides in addition the communications that take place at the
internal communication port. The reason for introducing two operators
is a technical one: the operator > (in which we are interested most)
often leads to the possibility of an infinite sequence of internal actions
corresponding to hidden synchronizations between the two arguments of
the operator (a form of unguarded recursion, cf. Section 2.9.1). In order
to deal with such behaviors, it is useful to view > as the composition of
two operators: the > operator and an abstraction operator that hides
the internal communications. We will define the chaining operators in
terms of the operators of ACP"+RN. In this way we obtain a simple,
finite axiomatization of the operators. The operator > occurs (in
different notations) already in HOARE [28] and MILNER [34].

Let for deD, |d be the action of reading 4, and 1d be the action of
sending 4. Furthermore let ck (D) be the following set of actions:
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ch(D) = {1d,|d,s(d),r(d),c(d)|deD}.

Here r(d), s(d) and c(d) (de€D) are auxiliary actions used in the
definition of the chaining operators. The module for the chaining opera-
tors is parametrized by an action alphabet A satisfying ch (D) CA. The
module should be used in a context with modules ACP™(4,y) and
RN(A) where

range(y)N {{d,d,s (@),r (d)|deD} = @

and communication on ¢k (D) is defined by

V(s (@),r(d)) = c(d)

(all other communications on or with ck (D) are undefined). The renam-
ing functions 7s and | are given by

Ts(td) = s(@) and |r(Jd) = r(d) (deD)

and 1s(a)=|r(a)=a for every other a €4}. Now the ‘concrete’ chaining
of processes x and y, notation x>y, is defined by means of the axiom

(H = {s(d),r(@|deD}):

x3%y = 0y(ops()loy,(y)  CHI

The “abstract’ chaining of processes x and y, notation x >y, is defined by
means of the axiom (I = {c(d)|deD}):

x>y = 1(x>>y) CH2

The module CH™ consists of axioms CHI and CH2, and is
parametrized by 4. The ‘+’ in CH™ refers to the auxiliary actions in
the module, which will be removed in Section 3.2.

2.4.1. The following laws can be easily proven from module ACP™ +
SC + RN + CH™. Here d0 and e0 are elements of D and d and e are
variables ranging over D. L5 follows using Proposition 2.1.2.

2d0x3>( S ley®) = m(x>p90) L1
ecD

1d0-x>1e0y = 1e0-(1d0-x>y) L2

(2 1dxD>(Z ley®) = 3 1d-xD>( 3 ley®) L3

deD eeD deD ecD

(> ¢d-xd)>>1‘e0-y = ¥ J,d-(xd>>’|‘eO'y) + 7e0-(( > ¢d-xd)>>y) L4
deD deD deD
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a(mx>y) = a(x>1y) = a(x>y) L5
The laws are equally valid when the operator > is replaced by >
except for law L1 where in addition the 7 has to be replaced by ¢ (d0).

2.4.2. ExampLE. Let D={0,1}. Process AND reads two bits and then
outputs 1 if both are 1, and 0 otherwise:

AND = [0-(}0-10 + [110) + [1-(J0-10 + [1-11).
Process OR reads two bits, outputs 0 if both are 0, and 1 otherwise:

OR = [0-(J0-10 + 11D + [1-(JO-P1 + |[1-9D).
Process NEG reads a bit b and outputs 1—5:

NEG = |01 + [110.

These processes can be composed using chaining operators. It is not too
hard to prove from ACP™ + RN + CH™:

(NEG-NEG>»>AND)>»NEG = OR
Note however that we do not have
(NEG-NEG>>>AND)>>NEG = OR
since in the LHS process internal computation steps are still visible.
2.5. Projection. The unary operators 7, (n €IN) stop processes after they
have performed » atomic actions, with the understanding that 7-steps are

transparent. The axioms for 7, are presented in Table 8, where a ranges
over A 5. Module PR is parametrized by A.

PR | 7y(1) = 7 PR1
mo(ax) = & PR2
T, +1(ax) = a-m,(x) PR3
Tu(Tx) = 77,(x) PR4
Ta(x +y) = my(x)+my(y)  PRS

TABLE 8

In this paper, as in other papers on process algebra, we have an infinite
collection of unary projection operators. Another option, which we do
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not pursue here, but which might be more fruitful if one is interested in
finitary proofs, is to introduce a single binary projection operator
F:a:INXP—P (here P is the sort of processes).

2.6. Alphabets. Intuitively, the alphabet of a process is the set of atomic
actions which it can perform. This idea is formalized in [6], where an
operator « from processes to sets of actions is introduced, with axioms
such as

ad) = o,
a(ax) = {a}Ua(x),
a(x +y) = a(x)Uay).

In this approach the question arises what axioms should be adopted for
the set-operators U, N, etc. One option, which is implicitly adopted in
previous papers on process algebra, is to take the equalities which are
true in set theory. This collection is unstructured and too large for our
purposes. Therefore we propose a different, more algebraic solution. We
view the alphabet of a process as a process again: « is an operator from
processes to processes; a(x) is the alternative composition of the actions
which can be performed by x. In this way we represent a set of actions
by a process. A set B of actions is represented by the process expression
B= 4>, _pb. So the empty set is represented by 8, a singleton-set {a}

by the expression g, and a set {a,b} by expression a +b. Set union
corresponds to alternative composition. The process algebra axioms A1-3
and A6 correspond to similar axioms for the set union operator. The
notation C for summand inclusion between processes (Section 2.1.3), fits
with the notation for the subset predicate on sets.

The following axioms in Table 9 can be used to compute the alphabet
of finite processes. In the table a ranges over the set 4 of actions which
occurs as a parameter of module AB.

AB | a(d) =46 ABI
alax) = a+a(x) AB2
a(x+y) = a(x)+a(y) AB3
a(t) =8 AB4
a(tx) = a(x) AB5S

TABLE 9

In order to compute the alphabet of infinite processes, we introduce an
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additional module AA which is also parametrized by A4.

AA | a(x)cA AAl
a(x|ly)=alx)+a(y)+ a(x)| aly) AA2

aopf(x) C pred roa(x) AA3
(Where H={a €A |f (a)=7))

VneN a(m,(x))Cy
a(x)Cy

TABLE 10

It is not hard to see that the axioms of AA are derivable for all closed
BPAj§-terms.

2.6.1. EXAMPIE (from [6]). Let P,Q,R be processes satisfying P =a-P,
Q=741 (P) and R=Q-b (with b=%a). We derive the alphabet of R.
a(R) = a(@b) = a(r(4)(P)h) = a(r(a}(P) (4 () =
AA43
= a(r(a)(Ph)) “C (08 (a)oa(PB) "% 84y°0(Pb).

Since
a(Pb) = a(aPb) 2" 4+ a(Pb),

we have that a Ca(Pb). On the other hand we derive for n €IN:
a(m,(Pb)) = a(a™8)Ca

and therefore, by application of axiom AA4, a(Pb)Ca. Consequently
a(Pb)=a and

AR) = d(ay°a(Ph) = d(ay(a) = 6.

Information about alphabets must be available if we want to apply the
following rules. These rules, which are a generalization of the conditional
axioms of [6], occur in a slightly different form also in [45]. Rules like
these are an important tool in system verifications based on process alge-
bra. Module RR is parametrized by 4 and y. Observe that axioms AA1l
and RR1 together imply axiom RN4 of Table 7. Axiom RR2, which
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a(x)CB
pr(x)=x

a(x)CB, a(y)CC

pr(xlly)=pxllopy))

VbeB: f(b)=bh RR1

VeeC:f (©)=f*(c) N(Vb €B:foy(b,c)= foy(b,f (c))) RR2

TABLE 11

describes the interaction between renaming and parallel composition,
looks complicated, but that is only because it is so general. The axioms
RR are derivable for closed terms.

2.7. Recursion. A recursive specification E is a set of equations
{x=txlx€VEg} with Vg a set of variables and 7, a process expression
for xeVg. Only the variables of Vz may appear in f,. Recursive
specifications are used to define (or specify) infinite processes.

For each recursive specification E and x €V, the module REC intro-
duces a constant <<x|E >, denoting the x-component of a solution of E.
Here a solution of E is an interpretation of the variables of Vg as
processes (in a certain domain), such that the equations of E are
satisfied.

In most applications the variables X €V in a recursive specification E
will be chosen freshly, so that there is no need to repeat £ in each
occurrence of <X'|E>. Therefore the convention will be adopted that
once a recursive specification has been declared, <X|E > can be abbre-
viated by X. If this is done, X is called a formal variable. Formal vari-
ables are denoted by capital letters. So after the declaration X =aX, a
statement X =aaX should be interpreted as an abbreviation of
<X|X=aX> = aa<X|X=aX>.

Let E = {x=t,|x€VE} be a recursive specification, and ¢ a process
expression. Then <¢|E> denotes the term ¢ in which each free
occurrence of x € Vg is replaced by <x | E>. In a recursive language we
have for each E as above and x €V an axiom

<x|E> = <, |E> REC

If the above convention is used, these formulas seem to be just the equa-
tions of E. The module REC is parametrized by the signature in which
the recursive equations are written. In the presence of module REC each
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system of recursion equations over this signature has a solution.

2.8. Boundedness. The unary predicates B, (n<IN) state that the non-
determinism displayed by a process before its n” atomic steps is
bounded. If for all n€N: B,(x), we say x is bounded. Axioms for B,
are in Table 12. Module B is parametrized by A. In the table a ranges
overacAs.

B Bo(x) BI

B,(7) B2

Bﬁﬁ) 53

% B4

G
TABLE 12

Boundedness predicates were introduced in [22].

2.9. Approximation Induction Principle. AIP™ is a proof rule which is
vital if we want to prove statements about infinite processes. The rule
expresses the idea that if two processes are equal to any depth, and one
of them is bounded then they are equal.

VneN m,(x) = m,(y), By(x)

(AIPT) =

The *—’ in AIP™, distinguishes the rule from a variant without predi-
cates B,, (see [22]).

2.9.1. DEFINITION. Let ¢ be an open BPA}-term. An occurrence of a
variable x in ¢ is guarded if t has a subterm of the form g -, with a €4,
and this x occurs in ¢. Otherwise, the occurrence is unguarded.

Let £ = {x=1,|x€VE} be a recursive specification in which all ¢,
are BPAj-terms. For x,y Vg we define:

X -uéy < y occurs unguarded in ,.
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We call E guarded if relation —> is well-founded (i.e. there is no infinite

u u u
sequence x —>y —>z —> - - - ).

2.9.2. THEOREM (Recursive Specification Principle (RSP)): Let E be a
guarded recursive specification over the signature of BPA} and let x V.
Then: BPA§ + REC + PR + B + AIP™ +

E
x = <x|E>

(RSP)

In earlier papers on process algebra, RSP referred to the assumption,
stated in plain English, that a guarded recursive specification has at most
one solution. The RSP we present here says exactly the same in the
language of infinitary conditional equational logic. Because suppose we
have two collections of processes {pyly€VEg} and {g,|y€VEg} which
both are a solution of the equations of E, that is, if we substitute for
each occurrence of a variable y in E the corresponding processes Py Tesp.
gy, then we obtain valid statements. In such a situation RSP allows us to
conclude that p,=<x|E> and also that g,=<x|E>. Here it is
important to note that <x|E>> is a constant and that we are not
allowed to substitute for variables occurring in it. Consequently we have
for each y €VE: p,=g,. This means that E has a unique solution.

2.9.3. EXAMPLE. Let

E = {X=(a+b)X} and F = {Y=a<(a+b)Y+b'Y)
be two recursive specifications. Since

<X|E> = (a+b)<X|E> = a<X|E>+b-<X|E> =

=a<(a+b)<X|E>+b-<X|E>,

the constant <X|E> satisfies the equation of F. Because the
specification F is guarded, RSP now gives that <X|E> = <Y |F>.
2.10. ACPj;. The combination of all modules presented thus far will be
called ACP}. Formally, the module is defined by:

ACP} = ACP" + SC + RN + CH™ + PR + AB +

+ AA + RR + REC + B + AIP™.

Branching bisimulation semantics, as described in for instance [10], gives
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a model for the module ACP%.

2.11. RSP™. For many verifications RSP is not really practical and one
would like to use a more powerful principle. Therefore, we will present
below a more general version of RSP, which we will call RSP . Section
4 cogtains a number of examples which illustrate the use of RSP and
RSP™.

2.11.1. DEFINITION. A process expression teT(2(ACP})) is called
guardedly specifiable if there exists a guarded recursive specification E
with x € Vg such that

ACP& Fi=<<x|E>.

2.11.2. THEOREM (Generalized Recursive Specification Principle (RSPT)):
Let <x|E> be a guardedly specifiable process expression. Then: ACPj +

E

RSP™
( ) x=<x|E>

PROOF. Suppose <x|E > is a guardedly specifiable process expression.
Then there exists a guarded recursive specification F with y €VF such
that

ACP& F<x|E>=<y|F>.

Let p be a conditional equational proof of <x|E>=<y|F> from the
theory ACP}. Let p’ be the node labeled tree obtained by replacing, for
each z €V, all occurrences of <z|E> in p by z. We claim that p'isa
conditional equational proof of E=x=<y|F>. The proof goes by a
straightforward induction on the size of p. The important case is where
p consists of a single node only, with a label of the form
<x|E>=<t,|E>, obtained as an instance of axiom REC. Via the
substitution this is turned into the equation x =t¢,, which we are allowed
to use as a leaf in p’ since it is an equation from E. Using the the rules
from Table 2 for symmetry and associativity of ‘=", it is easy to com-
bine the proofs p and p’ to a conditional equational proof of
E=x=<x|E>. O
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2.11.3. REMARK. In the definition of the notion ‘guardedly specifiable’, it
is essential that the identity 1= <\x|E > is provable. If we would only
require = <x | E >, then the corresponding version of RSP™ would not
be provable from ACP}, since this rule would then not be valid in the
action relation model of [22]. Strictly speaking, in [22] a recursion con-
struct <x|E > is viewed as a kind of variable which ranges over the x-
components of the solutions of E. Since any process x satisfies x =x, the
identity <x|{x=x}>=8 does not hold under this interpretation.
However, if one interprets the construct <x|E > as a constant in the
model of [22], then the most natural choice is to relate to <x|E > the
bisimulation equivalence class of the term <x|E >. Under this interpre-
tation <x|{x=x}>=4. Hence <x|{x=x}>=<y|{y=86}> =s.
Since the specification {y =8} is guarded, this would mean that expres-
sion <x|{x=x}> is guardedly specifiable. But then RSP™ gives that
for arbitrary z: z=<\x|{x =x}>=4§. This is clearly false.

We conjecture that an expression ¢ is guardedly specifiable iff it is
provably bounded, i.e. for all n €IN: ACP} + B, (z).

3. APPLICATIONS OF MODULE LOGIC IN PROCESS ALGEBRA

In the previous section we have illustrated how the +-construct for
modules can be used to present a large number of operators and axioms
for processes in a structured way. In this section we will present some
less trivial applications of module logic in process algebra which involve
use of the module constructs H and S.

3.1. The H-construct. In general a user of a process algebra module
wants that this module proves the equality p =g of two closed process
expressions p and g, whenever p and ¢ ‘have the same interesting proper-
ties’. So it depends on what properties are interesting for a particular
user, whether the module (s)he uses should be designed to prove p =g or
not. For this reason the semantical branch of process algebra research
generated a variety of process algebras in which different identification
strategies are pursued. In branching bisimulation semantics with explicit
divergence [26], for instance, a distinction will be made between any two
processes that differ in the precise timing of choices or divergencies
(infinite 7-sequences); in #race semantics on the other hand only
processes are distinguished which can perform different sequences of
actions; and, somewhere in between, failure semantics identifies processes
if they have the same traces (can perform the same sequences of actions)
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and have the same deadlock behavior in any context. A Iot of the pro-
cess algebras which have been proposed in the literature can be organ-
ized as homomorphic images of each other, as indicated in Figure 1. (In
fact, the standard branching bisimulation semantics of [26] cannot be
mapped homomorphically to failure semantics; see [14]).

branching bisimulation semantics with explicit divergence [26]

. , LYo ' oo
weak bisimulation semantics with explicit divergence [14]

\
ready trace semantics [8]
readiness semantics [37]  failure trace semantics [38]

failure semantics 14, 17,21, 29]

trace semantics [28]

FIGURE 1. The linear time - branching time spectrum

For concrete process algebra (without 7-moves) these semantical notions
have been defined in [23] relative to some very simple process language.
If two process expressions p and g represent the same process in branch-
ing bisimulation semantics with explicit divergence, they have many pro-
perties in common; if they only represent the same process in trace
semantics, this only guarantees that they share some of these properties;
and, descending from branching bisimulation semantics to trace seman-
tics, less and less distinctions are made. Now a user should state exactly
in which properties of processes (s)he is interested. Suppose (s)he is only
interested in traces and deadlock behavior, then we can tell that for this
purpose failure semantics suffices. This means that if processes p and g
are proven equal in failure semantics, this guarantees that they have the
same relevant properties. If they are only identified in trace semantics
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(somewhere in the lattice below failure semantics) such a conclusion can-
not be drawn, but if they are identified in a semantics finer than failure
semantics (such as branching bisimulation semantics with explicit diver-
gence), then they certainly have the same interesting properties, and
probably some uninteresting ones as well. Hence a proof in branching
bisimulation semantics with explicit divergence is just as good as one in
failure semantics (or even better).

This is the reason that we prefer to carry out our proofs using a
module, for instance ACP}, which is sound with respect to branching
bisimulation semantics with explicit divergence. However, if two
processes are different in this semantics, we will never succeed in proving
them equal from ACP}. In such a case we may add some axioms to the
system, that represent the extra identifications made in a less discrim-
inating semantics. If we find a proof from this enriched module, it can
be used by anyone satisfied with the properties of this coarser semantics.

3.1.1. Weak bisimulation semantics and the communication merge. It is in
the light of the above considerations that one should judge the appear-
ance of the following module WBS:

WBS | x7=x T1
TX+X = TX T2
a(tx+y) = a(tx+y)+ax T3

TABLE 13

The laws of this module do not hold in branching bisimulation semantics
(we refer to [10,26] for a detailed comparison of branching and weak
bisimulation), but they do hold in all other semantics of Figure 1 in a
setting with the language of BPA§. In fact, in combination with the laws
of BPAJ, the laws of Table 13 completely axiomatize the semantical
notion of weak bisimulation for this language. Thus any identity derived
from ACP} + WBS holds in weak bisimulation semantics and hence
also in the coarser ones like failure and trace semantics, or so it seems ....

Even without explaining the semantical notions, it is possible to point
out that there is a problem here. We will show that the module ACP} +
WBS proves some very unintuitive identities. More specifically, we will
introduce the notion of #race consistency and show that ACP} + WBS is
not trace consistent. However, first we have to introduce some auxiliary
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notation.

3.1.1.1. Notation for sequences. Let K be any set. K* stands for the set
of finite sequences of elements of K, and K™ stands for the set of
nonempty finite sequences over K. The empty sequence is denoted by A
and sequence pxo is the concatenation of sequences p and o. The
sequence only consisting of k €K is denoted by k as well.

3.1.1.2. DEFINITION. Let ¢ be a closed expression in the signature of
BPAS. The trace set tr(¢) of t is defined inductively by:

ir(6) = {A},

r(m) = (A},

tr(a) = {Aa,ax\/},

tr(s+t) = tr(s) U tr ),
tr(st) = (r(s)NA™)U{oxplox\/ctr(s) and perr(r)).

Thus trace sets are nonempty and prefix closed. The special symbol /
which may occur at the end of a trace denotes successful termination.
3.1.1.3. DEFINITION. Let M be a process module with S(M)D 3(BPAjJ).
M is called trace consistent if for all closed BPA§-expressions s and #:

Mt s=r implies tr(s)=tr(7).

A model @ of M is trace consistent if for all closed BPAF-expressions s
and 7:

@k s=t implies tr(s)=1tr(r).

The module ACP} is trace consistent because branching bisimulation
semantics, as described in [10], gives a consistent model for this module.
The module ACP} + WBS however is in general not trace consistent:

3.1.1.4. PROPOSITION. Let ACP} and WBS be parametrized by a set A of
actions which contains at least three different elements a, b and ¢ with
y(a,b)=c. Then the module ACP} + WBS is not trace consistent.

ProoOF. We derive:
¢c =8a+c = (tlb)atc = (ralb)+alb =
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T2
= (ra+a)lb = ralb = (r|b)a = 8.

This means that the module cannot be trace consistent since

ir(c) = {Ae,ex/} = (A} = tr(5). O

This sudden inconsistency must be the result of a serious misunderstand-
ing. And indeed, what’s wrong is the use of ACP} in weak bisimulation
semantics. It happens that weak bisimulation congruence (see [7]), which
is the notion of equivalence that is used to construct algebras in the set-
ting of weak bisimulation semantics, is a congruence for the +-operator
but not for the |-operator. This is the source of all the troubles. We
should point out here that in [7] a communication merge operator is
defined in a setting with weak bisimulation congruence. However, even
though it plays a similar role, this operator is different from the com-
munication merge on the domain of branching bisimulation semantics
(as defined in [10]), in the sense that both operators cannot be related by
a homomorphic mapping.

Module logic provides us with the tools to solve the above problem in
a simple and rigorous way. First we make the observation that in practi-
cal applications one will never use the operators || and | directly. The
L and | are only auxiliary operators, needed to give a finite complete
axiomatization of the merge operator, but of no use for the specification
of communicating processes. However, operators like || and | in ACP"
are needed to do calculations and without them even the most elemen-
tary equations cannot be derived.

Our solution to this problem is based on the following idea. Suppose
one would like to prove an equation p =g in which no |-operator occurs
and which holds in weak bisimulation semantics but not in branching
bisimulation semantics. Then we first prove an intermediate result from
ACP": one or more equations valid in branching bisimulation semantics
(with explicit divergence) and in which no | appears. Since, except for
the |-operator, the branching bisimulation model can be mapped
homomorphically on the weak bisimulation model, this intermediate
result is preserved after carrying out the homomorphic mapping, and can
be combined consistently with the module WBS. Thus the proof of P=q
can be completed. In our language of modules we describe this as fol-
lows. Let

oAM = (S(M)—o)OM

denote the module M in which the operators and predicates from
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signature ¢ are hidden. Consider the module
sACP™ = H({F(|,2)}A ACP").

This module does not contain the operator | in its visible signature.
Since weak bisimulation semantics can be obtained as a homomorphic
image of branching bisimulation semantics for all operators of ACP”
except for |, and since ACP" is sound w.r.t. branching bisimulation
semantics, we conclude that sACP" is sound w.r.t. weak bisimulation
semantics. Thus sACP" is a suitable module for proving statements in

weak bisimulation semantics, and can be combined consistently with the
module WBS.

We would like to stress that the use of the H-operator is essential here.
The H-operator makes that from module SACP™ only positive formulas
are provable. The following example shows what goes wrong if we also
allow non-positive formulas. Analogous to the derivation which we used
to show that ACP™ + WBS is not trace consistent, we prove that

{(F(1,2)}A ACP™ + WBS + ¢=8,

Applying Section 1.12 properly, this is one of the rare occasions where
we have to construct a nontrivial conditional equational proof:

Tat+a=ta

c=(tra+a)lb (tat+a)lb=71alb

c=Ttalb Ta|b=3§

c=90

The leafs c=(ra+a)|b and 7a|b=4§ in this proof tree have been esta-
blished before using equational logic. Thus

Tat+ta=na
c=8
One application of the rule for the export operator in Table 3 gives

ACP™ +
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Ta+a=ra

(F(1,2}8 ACP™ + T2

Consequently one can prove a trace inconsistency if one adds law T2:

(F(1,2)}A ACP" + WBS t c=5.

So although the formulas provable from module {F(|,2)}A ACP" con-
tain no communication merge, some of them (which are non-positive)
cannot be combined consistently with the laws of weak bisimulation
semantics.

The above observations allow us to prove the following incompleteness
result:

3.1.1.5. THEOREM: Equational logic for modules is not complete.
PrROOF. We prove that
{F(1,2)})A ACP™ + WBS ¢ ¢=§
even though
{F(1,2))A ACP™ + WBS ¥ ¢4 ¢=5.
In the previous paragraph we have shown that
{F(1,2)}A ACP™ + WBS 4 =35,

Due to the soundness of conditional equational logic and Theorem
1.10.6, this implies

{F(1,2)}A ACP™ + WBS ¢4 c=§
which, since ¢ =4 is an equational formula, is equivalent to
{F(1,2)}A ACP™ + WBS £ =5

(as follows from an observation in Section 1.6.4). However, even though
the equation ¢=4§ holds in all models, it can not be proved with equa-
tional logic. In the previous paragraph, we have argued that in a setting
with conditional equational logic, the module

H({F(l,2)}A ACP") + WBS

is trace consistent and therefore does not prove ¢ =8§. This result carries
over to the setting of equational logic (cf. 1.11.4). The key observation
we can make now is that, since in equational logic all formulas are posi-
tive, a module M proves an equation iff the module obtained from M by
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removing all H’s proves this equation. Thus
(F(I,2)})A ACP™ + WBS ¢ ¢ c=3§, O

3.1.2. The axiom T4 and the left-merge operator. We think that the
example of the previous section, which shows how the H-construct can
be used to solve a problem with the communication merge, is highly gen-
eric. It is a genmeral phenomenon that if one tries to establish a
homomorphism from one algebra to another, it might be that for certain
operators on the source domain no corresponding versions exist on the
target domain. Module logic provides a way to handle this type of situa-
tions on the logical level. It is not hard to come up with several other
examples of process algebra operators that do not ‘survive’ an
homomorphic mapping. One can think of the operation of action
refinement which ‘lives’ in certain non-interleaved models of concurrency
but for which no corresponding operator exists in the interleaving world
(see [24]). In the introduction we already mentioned the example of the
priority operator of [8], which can be defined in bisimulation semantics
and ready trace semantics (at least in a setting without 7) but not in
failure trace semantics. Below we will show that the left-merge operator

cannot be added to trace consistent algebras in which the following
axiom T4 is valid:

T4 T(tx+y) = 7%+ y

In a setting with the operators from BPAJ, axiom T4 holds in all the
semantics of Figure 1 except for branching and weak bisimulation
semantics. So in particular it holds in ready trace semantics. The follow-
ing example shows that not all operators from sACP" can be added to
the ready trace model for BPAJ.

3.1.2.1. PROPOSITION: Let SACP" be parametrized by a set A of actions
which contains at least three elements a, b and c. Then the module
SACP" +T4 is not trace consistent.

PROOF. ACP" + T4 + 7(ac +ca)+bc = 7(r(ac +ca)+bc +c(ta+b)), as
T(ra+b)lLc = (ra+b)lLc = r(alle)+bc = t(ac +ca)+bec
and

m(ra+b)lLc = 1((ra+b)llc) = v((ac +ca)+bc+ c(ra+b)).
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But this implies that the module is not trace consistent since
cxb &tr(r(ac +ca)+bc) but cxb etr (t(v(ac + ca)+ be + ¢ (ta +b))). L]

The problem in this case is the left-merge operator which cannot be
defined on the semantic domain of (for instance) ready trace semantics.
Again we should note that operators which resemble our left-merge
operator and which play a similar role in axiomatizing the merge opera-
tor may be defined on the domains of ready trace and other semantics.
ACETO [1], for instance, has defined a kind of left-merge operator in a
setting of testing (i.e. failure) semantics without +. However, given our
belief that a framework for the specification and verification of con-
current and reactive systems should provide a user with a spectrum of
semantic domains, and not just with a single domain, we think that in
general it is preferable to have essentially only a single left-merge and a
single communication merge operator, and not a whole spectrum of
different versions of these operators.

The same approach that was used in Section 3.1.1 to solve the problem
with the communication merge can of course be used also to solve the
present problem with the left-merge operator. Consider the module

SACP™ = H({F(IL,2), F(1,2)}A(ACP" + SC)).

This module is sound w.r.t all semantics of Figure 1 and can be com-
bined consistently with the axiom T4.

3.2. The S-construct. In order to axiomatize certain operators which one
would like to use for the specification of concurrent/reactive systems,
one will often introduce other, auxiliary operators. These auxiliary opera-
tors are not intended for use in specifications. Therefore it seems a
natural idea to hide in a module all auxiliary operators using the [I-
construct. In this way one accentuates the auxiliary status of these opera-
tors and one makes it impossible to use them in specifications. Just like
the left-merge and the communication merge are used in order to
axiomatize the parallel composition operator, also new atomic actions
are often used for axiomatizing a new operator. This is especially the
case when new operators are defined in terms of the basic combinators
using a single axiom. As an example we mention the actions s(4) and
r(d) which are used in the definition of the chaining operators. Defined
operators can be very useful, but still one can just view them as nota-
tions. Since the set of actions occurs as a parameter in modules like
ACP’, one may think that by varying this parameter the underlying
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theory will not really change and that, after hiding of auxiliary actions
no traces of them will be left in the resulting module. In this section we
will argue that in general this is not the case and that in order to erase
all traces of auxiliary operators one sometimes has to use in addition the
S-construct. If one adds new atomic actions to a process module, then,
in order to preserve trace consistency on the semantic level, one has to
extend the domains of the algebras. If, in a subsequent step, one removes
these auxiliary actions from the signature, one still has to face the fact
that on the semantical level one has ‘larger’ algebras. In order to illus-
trate that this can be problematic, we consider the case of the chaining
operators. One of the properties of these operators which we use most is
that they are ‘associative’. However, due to the auxiliary actions, the
chaining operators are in general not associative in trace consistent
models. Here is a counterexample:

(rd)=>(sd)+se))=>>r() = ¢ (d)8,
r(d)=>((s(d)+s(e)=>r(e) = c(e)s.

We do have associativity under some very weak assumptions. In the
model of branching bisimulation semantics, the following conditional
law is valid (here 4" = A —{s (d),r(d)|ldeD}):

alx) A", a(y)CA’, a(z)CA’
(x>=>=y)>sz=x>3(y>>>7)

CC

However, rather than using the above law, we would prefer a solution in
which the auxiliary actions are hidden and, for the chaining operators,
we have associativity in general. In this section we will see how this can
be accomplished by means of the S-construct of our module logic.

Although the rule CC holds in the model of bisimulation semantics, we
have not been able to prove it algebraically from the module ACPj. The
obvious proof strategy would be to eliminate the >>’s via an applica-
tion of axiom CHI, then to move the various encapsulation and renam-
ing operators to their proper place via axioms RN and RR, and then to
reintroduce the >>’s again via CH1. Unfortunately this does not work
because since both chaining operators synchronize processes via the
same auxiliary actions, the side conditions of axiom RR2 do not hold, so
we cannot apply this crucial axiom. However, we can prove algebraically
a weaker version of rule CC if we make some additional assumptions
about the alphabet: we assume that besides actions ch (D), the alphabet
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A contains actions
H = (s(@)7(d)|deD) and H = (s(d),r(d|deD}.

One may think about these actions as special fresh atoms which are
added to 4 only in order to prove the associativity of the chaining
operators.1 R .

Let H={r(d),s(d)ldeD} and let HZHUHUI_I. We assume that
actions from H do not synchronize with the other actions in the alpha-

bet, and that range(y)yNH = @. On H communication is given by
(deD):

Ys(d), 7(d) = ¥(5(d), r(@) = Y(s(d), 7(d)) = ¥(s(d), r(d)) =
= Y6@, r@) = ¥(s(d), r(@) = 1), rd) = c(d)
For the proof of the following two theorems we refer to Appendix II
HereA™ = A—H.
3.2.1. TueorREM: SACP" + RN + CH™ + AB + AA + RR+

a(x)CA~, a())CA™, a(z)CA~
(x=>>y)>z=x>3 (> 2)

3.2.2. THEOREM: SACP™ + RN + CH' + AB + AA + RR ¢+

a(x)CA—, a(y)CA™, a(z)CA™
(x>p)>z=x>(>z) '

We will now apply the module approach to remove all traces of the auxi-
liary atoms which were used in the definition of the chaining operators
and to obtain general associativity. As a first step, consider the module

CH™ = ({F(a, 0)lacH}U{F(ps, 1)If: 45 >45))
ASACP™ + RN + CH™' + AB + AA + RR).

This module is parametrized with an alphabet B satisfying /d€B <«
Jd EB, and not containing the auxiliary actions s (d), 7(d),... From B one
derives the alphabet

A = BU{s(d),r(d)5(d),7(d),s(d),r(d)|1deB),

1. The Fresh Atom Principle (FAP) says that we can use new (or ‘fresh’) atomic actions in proofs. In [9], it is shown that FAP
holds in bisimulation semantics. We have not included FAP in the theoretical framework of this paper. Therefore, if we need
certain ‘fresh’ atoms in a proof, then formally we have to assume that they were in the alphabet right from the beginning.
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which is the parameter of its constituent components SACP”, RN, CH™,
etc. Of course B=A4 ~.

The module CH™ cannot be used to prove any formula containing
atoms in H but also not to prove the general associativity of the chaining
operators. The reason is that the auxiliary atoms, although removed from
the language, are still present in the models of module CH™ . The coun-
terexample r(d)>=>(s (d) +s(e))>>>r (e) still works in any model that is
the restriction of a trace consistent model of SACP™ + RN + CH™ +
AB + AA + RR. Consequently, we have to adapt the class of models
of CH™ a bit. The right class of models can be denoted with the help of
operator S: consider the module

CH = S(CH )+ <a(x)cd ™ >.

Some models of module CH™ have consistent submodels which do not
contain auxiliary atoms at all. In these models the law a(x) CA~ holds.
Thus module CH has consistent models. Using Theorems 3.2.1 and 3.2.2
one can easily establish that module CH proves the general associativity
of the chaining operators:

CHFx>>(@p>>z)=(x>>>y)>>x and
CHt x>>(p>z)=(x>y)>x.

Since in conditional equational logic all formulas are universal, the
module CH™ + <a(x) CA4~ > has the same derivational power as CH.
In particular this module is trace consistent, even though its models are
not. When using first order logic however, we see that the use of the S-
construct in CH is essential.

3.2.3. PROPOSITION: Let the module CH™ be parametrized by an alpha-
bet B=A" such that there is at least one action 74 in B. Then

CH™ + <a(x)CA™ > +foleq 1g=4

PROOF. The constituent components of CH™ are parametrized with a set
A of actions containing an action  (d). We claim:

SACP™ + RN + AB V%4 (a(r(d)) CA™ — 1d=4).

The proof is constructed by applying at both sides of the equation
a(r(d))+A~ =A~ a renaming operator that takes r(d) into 7d and all
actions from A~ into §. The formula (a(r(d)) CA~ — 1d=9) plays the
role of —(a(r(d)) CA4 ™), which cannot be proven from SACP™ + RN +
AB. From this one derives
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SACP™ + RN + AB W% Ix(a(x)CA™ — 1d=9)

(a formal derivation requires fluency in first order logic or the use of
several lemmas). Since in this formula no hidden items occur we obtain

CH™ V%4 3x(a(x)CcA™ — 1d=9)
and thus
CH™ + <a(x)CdA ™~ > poled 1g=34, O

We conclude Section 3.2 with an incompleteness result:

3.2.4. THEOREM: Infinitary conditional logic for modules is not complete.
PROOF. Similar to the proof of Theorem 3.1.1.5, using the Proposition
3.2.3. ]

3.3. SACPE. Module SACP} is an ‘improved’ version of module ACP;
in which auxiliary operators are hidden in an appropriate way. It is
defined by: '

SACP; = SACP™ + RN + CH + PR + AB +
+ AA + RR + REC + B + AIP™.

Module SACP} is parametrized by an alphabet 4 which does not
include the auxiliary actions s (d), 7(d),... The rules RSP and RSP can
still be used in a setting with module SACP}: we have SACP} + RSP
and SACP& F RSP™. Also the results of Sections 2.1.2, 2.1.3 and 24.1
carry over to the new setting. For this it is crucial that the properties of
Section 2.1.3 are stated in an equational and not in a conditional form.

4. CURIOUS QUEUES

The aim of this section is to present a somewhat more substantial exam-

ple of the use of our module logic in process algebra verifications. We

have chosen here to deal with some variants of FIFO queues with

unbounded capacity. In the specification of concurrent systems these

queues often play an important role. We give some examples:

- The semantical description of langnages with asynchronous message
passing such as CHILL (see [19]),

- The modeling of communication channels occurring in computer
networks (see LARSEN & MILNER [31] and VAANDRAGER [44]),
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- The implementation of languages with many-to-one synchronous
communication, such as POOL (see AMERICA [2] and VAANDRAGER
[45D),

Consequently the questions how queues can be specified, and how one

can prove properties of systems containing queues, are important. For a

nice sample of queue-specifications we refer to the solutions of the first

problem of the STL/SERC workshop [20]. Some other references are

Broy [18], HOARE [29] and PRATT [39].

4.1. Also in the setting of ACP a lot of attention has been paid to the
specification of queues. Below we present an infinite recursive
specification of a queue. We assume a finite set D of data. In the equa-
tions we use the notations for sequences that were introduced in Section
3.1.1.1. Further, d ranges over D and o ranges over D*.

QUEUE = Q) = 3 ld-Qq
deD

Qord = 2 e Qevoxa + 140,

eeD

Note that this infinite specification uses only the signature of BPA; (see
Section 2.1). We have the following fact:

4.1.1. THEOREM: Using read/send communication, the process QUEUE
cannot be specified in ACP by finitely many recursion equations.
PROOF. See BAETEN & BERGSTRA [4] and BERGSTRA & TIURYN [15]. O

It turns out that if one allows an arbitrary communication function, or
extends the signature with an (almost) arbitrary additional operator, the
process QUEUE can be specified by finitely many recursion equations.
For some nice examples we refer to BERGSTRA & KLoP [13] and BAETEN
& BERGSTRA [5].

4.2. Definition of the queue by means of chaining. All process algebra
verifications involving queues that we encountered in the literature were
rather complex. For example, let BUF1 denote a buffer with capacity
one:
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BUF1= 3 |d-BUF¢
deD

BUF1% = 14-BUF1

In process verifications ome often needs propositions like
QUEUE>BUF1 = QUEUE. However, proofs of such facts starting
from the infinite specification happen to be rather complicated. We claim
that the following specification of a queue by means of the (abstract)
chaining operator allows for a simple proof of the above proposition and
numerous other useful identities. A similar specification is also described
by HOARE [29] (p. 158).

Q = 3 |d(Q>BUF1%)
deD

The first thing we have to prove is that the process described above is a
queue indeed.

4.2.1. THEOREM: SACP} + Q = QUEUE.
PROOF. Define for n €N process Q" as the chaining of Q with n empty
buffers with capacity one:

0% =9, ¢))
Q"*l = 0">BUF1. )
By induction we prove that for all n:
Q" = 3 |d-(Q">BUF19). €)
deD

The case n =0 follows trivially using (1). So suppose that the statement
has been shown for n<k. Using the laws of Section 2.4.1 we derive:

Qk*1 2 QksBUFI1 =
(> |d<(Q*>BUF19)>BUF1 =

deD

LM 1d(QF>(BUF19>BUF 1)) =

deD

Ll S |d(Q*>m(BUF1:>BUF1%)) =
deD
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2 3 |d<(QF>BUF1>BUF 1) =
deD

“C? 5 1d-©@F 1 >BUF19).

deD

This completes the proof of the induction step.
Define for €D ™ processes B by:

B? = BUF14, @)
B™ = B°>BUF14. 5)
By simple inductive arguments one can show that
B%° = BUF14>>B°, (6)
B4 = 14-(BUF1>>B°). (7)

We can now derive the following recursive equations (from now on the
laws L1-5 and the associativity of > will be used without being men-
tioned explicitly):

0" = 3 |d(Q">BUF1Y £ S 1d©">BY).
deD deD

0">B? 2" 3 |6 (Q">(BUF1°>BY) + 1d-(Q">BUF1) =

eeD

Z° 3 le<(Q" By + 1d-0n T,
ecD

0">B7 21 3 | (Q">(BUF1°>B™Y) + 14-(Q">BUF1)>B°) =
eeD

Z° 3 e« By 4 120"t 1B,

ecD

Consider the following guarded recursive specification with variables Q"
for oeD™ and neNN:

o = X 1d-0%,
deD
Oted = 3 JeQbwgrg + 1d-03 7L
ecD

Since QUEUE satisfies the defining equations of QY, the RSP gives that
QUEUE =Y. Because 0" also satisfies the equations for QQ, another
application of RSP gives 0% = QY. Consequently QUEUE=0%=0. O
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The proof above shows the ‘view of a queue’ that lies behind the
specification of Q. During execution there is a long chain of 1-datum
buffers passing messages from ‘the left to the right’. After the input of a
new datum on the left, a new buffer is created, containing the new
datum and placed at the leftmost position in the chain. Because no
buffer is ever removed from the system, the number of empty buffers
increases after every output of a datum.

4.2.2. COROLLARY: SACPL + O>BUF1 = Q.
Proor. From equations (1), (2) and (3) in the proof of Theorem 4.2.1 it
follows that

Q>BUF1 = 3 |d-(Q>BUF1)>BUF19).
deD

Since the specification for QUEUE is guarded, we know from Theorem
4.2.1 that Q is guardedly specifiable. Therefore, since Q:>BUF 1 satisfies
the defining equation of Q, we can use RSPT to conclude that
Q=Q0>BUF1. O

4.2.3. PROPOSITION: SACP; + 0>0Q = Q.
PROOF. 0>»>Q =

= 3 ld-(Q>BUF19)>»Q) =
deD

= 3 |d-(Q>(BUF1%>Q)) =
deD

= 3 |d-(Q>7-(BUF1>>(Q>>BUF1%)) =
deD

= 3 |d(Q>(BUF1>(Q>BUF1%)) =
deD

= 3 |d-(Q>BUF1)>(Q>BUF1%) =
deD

2 3 1dQ>(Q>BUF19) =

deD

= 3 |d-((Q>Q)>BUF19).
deD

Now apply RSP, O
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4.2.4. REMARK. It will be clear that the implementation which is sug-
gested by the specification of process Q is not very efficient: at each time
the number of empty storage elements equals the number of data that
have left the queue. But we can do it even more inefficiently: the follow-
ing queue doubles the number of empty storage elements each time a
datum is written.

0= 3 d(0>1d-0)
deD

A standard proof gives that Q = QUEUE. From the point of view of
process algebra this specification is very concise. It is the shortest
specification of a FIFO-queue known to the authors, except for a 5-
character specification due to PRATT [39]: |} X D*. A problem with
Pratt’s specification however is that a neat axiomatization of the ortho-
currence operator X is not available. Our Q-specification has the disad-
vantage that it does not allow for simple proofs of identities like

>0 = 0.

4.3. A queue that can lose data. When dealing with communication pro-
tocols, one often encounters transmission channels that can make errors:
they can lose, damage or duplicate data. All process algebra
specifications of these channels we have seen thus far were lengthy and
often incomprehensible. Consequently it was difficult to prove properties
of systems containing these queues. Now, interestingly, the same idea
that was used to specify the normal queue by means of the chaining
operator, can also be used also to specify various types of faulty queues.
One just has to replace the process BUF1 in the definition of Q by a
process that behaves like a buffer but can lose, damage or duplicate
data.

Here we describe a quene FQ that can lose every datum contained in it
at every moment, without any possibilities for the environment to
prevent this from happening. The basic component of this queue is the
following Faulty Buffer with capacity one:

FBUF1 = S |d-FBUF1¢
deD

FBUF1¢ = (1d + 7)-FBUF1

If the faulty buffer contains a datum, then this can get lost at any
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moment through the occurrence of a r-action. In the equation for
FBUF1¢ there is no r-action before the Td-action because this would
make it possible for the buffer to reach a state where datum 4 can not
get lost.

We use the above specification in the definition of the faulty queue

FQ:.

FQ = I |d«(FQ>FBUF1%
deD

The idea behind this specification of the faulty queue is illustrated in
Figure 2. Each faulty buffer process is represented by a ‘conductor’.
These conductors also occur on the emblem of the Dutch REX project
(Research and Education in Concurrent Systems). On the REX emblem
one can see them engaged in their profession, which is parallel conduct-
ing of a symphony orchestra. In Figure 2, they are depicted while help-
ing one of their colleagues who is moving, passing on to each other vari-
ous types of boxes. These boxes of course correspond to the elements of
the set D of data. As one can see the conductors are not really good in
this type of work and now and then a box just slips out of their hands
into the deep abyss that lurks right under the corridor in which all
activity takes place. The aspect of process creation which is present in
the specification of FQ is not captured in the figure. One should imagine
that whenever a new box arrives at the beginning of the corridor, also a
new conductor arrives and reluctantly starts to work by either passing on
the box or letting it slip away.

PITOTITOTIVIT IO TITIIVTOT VT IITTIVITTITIVTOIIITTITIIITITOTIFS

>

FIGURE 2. The faulty queue



Curious queues 53

4.3.1. LemMA: SACP} +
7(FBUF1¥>FBUF1) = r-(FBUF13>FBUF19),

PROOF. 7-(FBUF1%:>FBUF1) =

= 7-(r-(FBUF1>>FBUF1%) + 7-(FBUF1:>FBUF1)) =

= 7+(r*(r-(FBUF I>>FBUF1) + FBUF1>>FBUF 1) + r-(FBUF13>FBUF1)) =

2 ¢ (-(FBUF1>FBUF1) + FBUF13>FBUF19) =

= 7«(FBUF 1>>FBUF 1%). O

Compare the simple definition of FQ with the following BPAJ-
specification of the same process.

4.3.2. For oeD™, let R(o) be the finite set of residuals which can be
obtained by deleting one arbitrary datum from 6. Now FQUEUE is
defined by the following recursive specification:

FQUEUE = FQ), = S |d-FQ,
deD
FQovg = 2 Je " FQeupxg + 1d-FQ, + 2 1"FQp
ecD pER(0*d)

4.3.3. THEOREM: SACP} + FQ = FQUEUE.
PROOF. Analogous to the proof of Theorem 4.2.1. Use Lemma 4.3.1. O

Analogous versions of the identities we derived for the normal queue can
be derived for the faulty queue in the same way.

4.3.4. PROPOSITION: SACP; +

i) FQ>FBUF1=FQ,

ii)y T(FBUF193»>FQ)=r(FBUF1>(FQ>FBUF1%)),
iy Q>FQ = FQ>FQ = FQ.
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4.4. An identity that does not hold. In this subsection we will discuss the
identity

FQ = O>FBUF1.

‘Intuitively’ the processes FQ and Q>FBUF1 are equal since both
behave like a FIFO-queue that can lose data. Furthermore, with both
processes the environment cannot prevent in any way that a datum gets
lost. We can think of no ‘experiment’ that distinguishes between the two
processes. Still the identity cannot be proved from the module SACP".
In fact we have proved the following, even stronger result.

4.4.1. THEOREM: If parameter D of operator > contains more than one
element, then SACP; + WBS ¢¥ FQ = Q>FBUF1.
PrROOF. We show that the identity is not valid in the model of process
graphs modulo weak bisimulation congruence of BAETEN, BERGSTRA &
KropP [7] (see also BAETEN & WELLAND [10]). Suppose that there exists a
bisimulation between processes FQ and Q> FBUF 1. Consider the situa-
tion in which process FQ has read successively two different data, start-
ing from the initial state. Because of the bisimulation it must be possible
for the process Q> FBUF1 to read the same data in such a way that the
resulting state is bisimilar to the state process FQ has reached. Suppose
that next process FQ executes a -step and forgets the second datum. We
claim that process Q>>FBUF1 is not capable to perform a correspond-
ing sequence of zero or more 7-step. This is because there are only two
possibilities:

1) QO>FBUF1 forgets the second datum. But this means that also the
first datum is forgotten. In the resulting state Q:>FBUF1 cannot
output any datum (before reading one), whereas process FQ can do
this.

2) Q>FBUF1 does not forget the second datum. In the resulting state
Q>FBUF1 can output this datum. Process FQ cannot do that.

The argument is illustrated in Figure 3. O



Curious queues 55

FQ Q> FBUF I

- - ®
- -
el R T

o) (e lost)

FIGURE 3.

The next theorem says that, if we add law T4, the two faulty queues can
be proven equivalent.

4.4.2. THEOREM: SACP} + WBS + T4+ FQ=Q>FBUF1.
PrOOF. Define the process QF by:

QF = OF\ = 3 |d-QF,,

deD

QF geq = 2 e OFegeg + (1d + 7)-QF,,.
eeD
Analogous to the proof of Theorem 4.2.1, using in addition the identity
Q>BUF 1=, one can prove from SACP} that Q>>FBUF 1= QF.

The main trick in the proof is that we introduce yet another ‘view of
queues’ process QF; is split into two parts, a read-process and a
(faulty) send process. The read-process takes care of reading new data
and stores them in a queue. The send process outputs the data in ¢ or
forgets them and after that it starts behaving like a faulty buffer with
capacity one which receives input from the read process. The fact that
the length of the sequence of data in the send process can only decrease
(until the moment that it starts behaving like a faulty buffer) allows us to
use induction.

Define the faulty send process for s€D* by:

FS, = FBUFI,
FSoug = (1d + 7)-FS,.
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It is routine to prove from SACPj that Q> FS, = QF,. Until here one
does not need the additional axioms. The crucial part in the proof is the
following

CLAM: 7-FS g5 C FS pegso-

PROOF. By induction on the length of o. If 6 = A then the claim holds
trivially. Assume the claim is proved for |o|<n. Suppose 6=o*e with
|o| =n. We derive:

T -FSU*E*G - T '(Te .FSO’*E + T-FSG*E) =
(this is the only step where we use axiom T4)
- Te'FSo*E + T'FSG*E g

(because on the onme hand fe‘FS,g C fe-FS oxdxs DY induction
hypothesis and axiom T3, and on the other hand r-FS siz C TS gedis
by induction hypothesis and axiom T2)

- Te 'FSo*d*E gl § 'FSg*d*E — FSo*d*E*e-

This finishes the proof of the claim. As a corollary we can prove that
T'QFp*o e QFp*d*o:

TQF g = T(Q>FS 5xs) C
(Use the observation of Section 2.1.3 that 7(x||z) C (tx + y)llz)
g Q>>FSp*d*U — Q.Fp*d*o.

We have shown that process QF, is indistinguishable from a process
that can lose each datum at every moment. Using the notation of Section
4.3.2 we can write the following equation for processes QF 4.4

OF 52qg = 2 e OF gxgxqg + 1d-QF, + 2 T'QFp-
eeD pER(o*d}
Application of RSP gives that the process FQUEUE of Section 4.3.2
equals process QF. But according to Theorem 4.3.3 also FQUEUE = FQ.
Thus FQ =FQUEUE=QF=Q>FBUF1. L]

CONCLUSIONS AND OPEN PROBLEMS

In this paper we presented a language making it possible to give modu-
lar specifications of (classes of) process algebras. The language contains
constructs + and [, which are standard in the theory of structured
algebraic specifications, and moreover two new constructs H and S. Two
applications have been presented of the new constructs: we showed how
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the left- and communication merge operators can be hidden if this is
needed and we described how the chaining operator can be defined in a
clean way in terms of more elementary operators. It is clear that there
are much more applications of our approach. Numerous other process
combinators can be defined in terms of more elementary operators in the
same way as we did with the chaining operators. Maybe also other
model theoretic operations can be used in a process algebra setting
(cartesian products?).

Strictly speaking, we have not introduced a ‘module algebra’ as in [11]:
we do not interpret module expressions in an algebra. However, this can
be done without any problem. An interesting topic of research is to look
for axioms to manipulate module expressions. Due to the presence of the
operators H and S, an elimination theorem for module expressions as in
[11] will probably not be achievable.

An important open problem for us is the question whether the proof
system of Table 3 is complete for first order logic.

In this paper the modules are parametrized by a set of actions. These
actions themselves do not have any structure. The most natural way to
look towards actions like s(dg) however, is to view them as actions
parametrized by data. We would like to include the notion of a
parametrized action in our framework but it turns out that this is not
trivial. Related work in this area has been done by Mauw [32] and
MAuw & VELTINK [33].

In order to prove the associativity of the chaining operators, we needed
auxiliary actions 5(d), 7(d), etc. Also in other situations it often turns out
to be useful to introduce auxiliary actions in verifications. At present we
have to introduce these actions right at the beginning of a specification.
This is unsatisfactory for a reader who does not know about the future
use of these actions in the verification. But of course also the authors
don’t like to rewrite their specification all the time when they work on
the verification. Therefore we would like to have a proof principle saying
that it is allowed to use ‘fresh’ atomic actions in proofs. We think that it
is possible to add a ‘Fresh Atom Principle’ (FAP) to our formal setting,
but some work still has to be done.

In our view Section 4 convincingly shows that chaining operators are
useful in dealing with FIFO-queues. We think that in general it will be
often the case that a new application requires new operators and laws. In
Section 4.4 we presented a simple example of a realistic situation where
bisimulation semantics does not work: a FIFO-queue which can loose
data at every place is different from a FIFO-queue which can only loose
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data at the end. Adding the law T4, which holds in ready trace seman-
tics (and hence in failure semantics), made it possible to prove the two
queues equal.
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APPENDIX I: FIRST ORDER LOGIC
In this appendix first order logic is defined, in order to allow comparison
with the two logics of Section 1.

The set F[%% of first order Jormulas with equality over o is defined by:
_ th £ F{,bleQ;

- if ¢ F/%4 then —o e Fjoleq.

- if ¢ and Y€F/°9 then (¢p—si)) e FJO%4;

- if ¢ and Y€ F/°%9 then (¢p/\y) e Flo%4:

- if ¢ and Y€ F/°9 then (¢\/v) e Fl%4;

- if ¢ and Y€ FI%%9 then (¢pesy) € FIO%4;

- if x is a variable and ¢ € F[?9 then Vx (¢) € FJ0leq.

- if x is a variable and ¢ € F/%9 then Ix (¢) e FLokeq.

The &-truth of a formula quF{"l"q in a o-algebra @ is defined by:

- Q& ¢ if peF% and @, 5% ¢;
= @y‘f k’é‘OZeq —|(;I) if @35 H”oleq Cf);

- GEH gy QERL™T ¢ or @F HIE y;

- QLRI oAy i QEH ¢ and Q¢ HT y;

- GERIeVY QLR ¢ or @€ KR y;

- Qi poy  if @EH ¢ if and only if @£ £ y;

- QEEPIVX(p)  if @ ¢ E[P%4 ¢ for all valuations & with
§'(y)=£&(y) for all variables y5x;

- @& Efoed 3y (¢) if @& E[°%9  for some valuation & with
§'(y)=E&(y) for all variables y=~x.

¢ is true is @, notation @ £[%9 ¢, if @& £[7¢9 ¢ for all valuations &.

An inference system I/9 for first order logic with equality is displayed
in Table 14. There ¢, ¢ and p are first order formulas in F/%¢4, « is an
atomic formula in F%, ¢, u and v are terms over o and x is a variable.
An occurrence of a variable x in a formula ¢ is bound if it occurs in a
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subformula Vx(y) or 3x(y) of ¢. Otherwise it is free. A variable is free in
a formula ¢ if all its occurrences in ¢ are free. ¢[z/x] denotes the result
of substituting u for all free occurrences of x in 7. Now ¢ is free for x in ¢
if all free occurrences of variables in ¢ remain free in ¢[f/ x].

i% modus ponens #G) generalization

9—>(—>9)

{p—=>{—p)} > {(9—>¢)—>(p—p)} } deduction axioms

{Vx(e—Y)}—{¢—Vx ()}, if x is not free in ¢

(—p—p)—9 axiom of the excluded middle

—0—=>(p—vY) axiom of contradiction

Vx (¢)f—>q5[t/ x], if ¢ is free for x in ¢ axiom of specialization

(¢A\Y)—o ¢—>(0Vy) (¢ < P> {(¢=PN\WP—¢)}

(CANRY y—>(9VY) {(—=YN\WY—9)}>(9 & ¥)

o—>{Y—=(9/\Y)} @V =>(=9—=¢)  Ax(9) & —Vx(—¢)

t=t (u=v)—=@ =u) {C=w)N\(u=v)}>@E=v)
(u=v)=(afu/x] < ofv/x))

TABLE 14

First order logic is obtained from first order logic with equality by omit-
ting all reference to =. It is also possible to present first order logic
without the connectives /\, VV and <> and the quantifier 3, and intro-
duce them as notational abbreviations. In that case the third block of
Table 14 can be omitted.

In first order logic (with equality) the positive formulas are the ones
without the connectives —, — and <, and the universal ones are the for-
mulas without quantifiers. Model theory (see for instance [36]) teaches us
that a formula ¢ is preserved under homomorphisms (respectively
subalgebras) iff there is a' positive (respectively universal) formula ¢ with
Holeq 5 .
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APPENDIX II: THE ASSOCIATIVITY OF THE CHAINING OPERATORS

In this appendix we will present the proofs of Theorem 3.2.1 and
Theorem 3.2.2 about the associativity of the chaining operators. Define
for v,w €{1,,5,7,5,7,5,r} the renaming function vw by:

w(d) if a=v(d) for some deD
ywia) = a otherwise.

First we need an auxiliary lemma:

LEMMA. SACP™ + RN + CH™ + AB + AA + RR ¢+
dg(x)=x, 0g(y)=y, dg(z)=z
0g(os(lloF()) = x>y = 35(9@@)”9@@))

PROOF. We only prove the first equality. The second follows by sym-
metry.

I (p5(x)llp7(r)) = (Note 1 below, RR1)
= dmepsorr(pis()llpF()) = (RNS, y=05(y))
= mepgerr(ps(X)lioFopy()) = (Note 2, RR2)
= 0p°pssorr(ps(x)llpy () = (SC4, RNS, x=085(x))
= 0m°piopss(py-()llpgopps(x)) = (as in Note 2, RR2)
= 0mopropss(0,(llpps(x)) = (RNS)
= 9g°0m(p,r(»)llpps(x)) = (Note 3, RR1, SC4)
= I (ops(x)lloy()) = (CHI)
X =>>.

I

Notel. Let B=A—H. We claim a(p5(x)llp i,(y)) CB
(recall that B= gr>, . B

PROOF. a(PTE(x)HPy(Y)) =

A42
= aopps(x) +acpF(y) +acpys(x) lacp F(y) C

(Use that x Cy = x|z Cylz. Use further x =97(x) R dgodg(x) =

I (x).)

AA1
C avprrdn(x)+aoprdp(y) + 414 C




Appendix Il: The associativity of the chaining operators 61
(Use that range(y)y NH=@.)
RN5
C aBpopys(x) +asdropyr(y) + BC

AA3+RN5
C " Opeaspr(x)+dpeacpr(y) + BC
(Use that x Cy implies pr(x) CpAy).)
' 94(4)+35(4)+B=B

This finishes the proof of the claim. [

Note 2. Application of axiom AAI gives: aopys(x) CA and acp |, (y) CA.
In order to apply axiom RR2, we first have to check that for all c€4:
rr(c)=rrerr(c). This is obviously the case. Because range(y) NH= @, we
have for all b,c €4 :rroy(b,c)=7y(b,c). Now the last thing to be checked is
that for b,c €A4: y(b,c)=v(b,rr(c)).

Note 3. Let C=A —H. We claim: a(p},(y)llpys(x)) CC. The proof is
similar to the proof in Note 1.

This finishes the proof of the lemma. It should be noted however that
although the proof looks equational, it is in fact a conditional equational
proof. The appropriate adjustment of its format is left to (the imagina-
tion of) the reader. O

THEOREM 1. SACP™ + RN + CH™ + AB + AA + RR +
dp(x)=x, dg(y)=y, og(z)=z
X3 >=>z)=(x>>y)>>z

ProoF. This is essentially Theorem 1.12.2 of [45]. We give a sketch of
the proof.

ma

x32(y322) 2 05 (p(0) lordm(ors(»)liey @) =

"2 05 o) 1050 orsM)llpy @) =

= 0g0m(p(0) 18pF o ()lIoy, () =

27 070 () 105015 0)llpy, () =

= 87790 (P15 (lloyr(o 715 ()P (2))) =
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RR 1

= 0gdu(os(0)llooprs(lle (2)) =

= 90 (00 g5 o07)llpy, () =

REI alioaﬁ(pTi(pTg(x)lIP¢E°P¢F(V))||P¢£(Z)) =
= 0r0E (oo @lIo 0D lIpy,(2)) =

= 1R PReP1s (s Io oMoy 2) =

= 0 OF @ lIo 0Dy, () =
= 8(or ANl NlIoy () = (x359)35

O

THEOREM 2. SACP™ + RN + CHT + AB + AA + RR +
dg(x)=x, dag(y)=y, 0f(z)=:z
x>(y>z) = (x>p)>z

PROOF. Let I={c(d)|deD}. We derive:

x>(>>z) ng TI(x=>(11(y >>2))) =

CH1
= 100 (s ()lloyom(y=>>>2)) =

L7 dorr(ors(x)llrropy, (p=35>2)) =
L2 dpror (o ()lpy(y552)) =
L 1100 (o (D)l (r32)) =
ek TI(x=>>(y>>2)) =

Theorem1

= 1((x>>y)=>>z) = - = (x>y)>z O

Theorems 3.2.1 and 3.2.2 follow from the above Theorems 1 resp. 2 in
combination with axiom RRI.
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