Notes on the methodology of CCS and CSP

R.J. van Glabbeek
Centre for Mathematics and Computer Science, Amsterdam

In this paper the methodology of some theories of concurrency (mainly CCS and CSP) is analysed,
focusing on the following topics: the representation of processes, the identification issue, and the
treatment of nondeterminism, communication, recursion, abstraction, divergence and deadlock
behaviour. Process algebra turns out to be a useful instrument for comparing the various theorics.

1980 Mathematics Subject Classification: 68B10, 68C01, 68D25, 68F20.

1982 CR Categories: F.1.2, F.3.2, F.4.3, D.3.1.

Key words & phrases: concurrency, CCS, CSP, process algebra.

Note: Sponsored in part by Esprit project no. 432, Meteor (An Integrated Formal Approach to
Industrial Software Development).

1. Introduction: Theories of Concurrency

This is an investigation into the methodology of some theories of concurrency. In general a
concurrency theory offers a framework for the specification (or even the design) of parallel
processes and the verification of statements about them. The features of concurrency, expressible
within such a framework, include communication between parallel processes, deadlock behaviour,
abstraction from internal steps, fairness, nondeterminism, priorities in the choice of actions, tight

regions, etc.
Some interesting theories of concurrency that have been shown to be suitable for specification
and verification are:

- The theory of Petri Nets (see for instance Reisig [16])

- Trace theory (see for instance Rem [17])

- Milner's Calculus of Communicating Systems (CCS) ([1 17)

- Hoare's theory of Communicating Sequential Processes (CSP) (°n

- The topological process theory of De Bakker & Zucker (13,4])

- The Algebra of Communicating Processes (ACP) of Bergstra & Klop ([5]).
This paper will be mainly devoted to CCS and CSP.

Table of contents

1. Introduction: theories of concurrency
2, Models and calculi
3. How to represent a process
3.1 Models of concurrency
3.2 Atomic actions
3.3 Trace sets
3.4 Failure sets
3.5 State transition diagrams
3.6 Operational semantics
4. When to identify processes
4.1 Why identify processes?
4.2 How to identify processes
4.3 Bisimulation semantics
4.4 Trace semantics
4.5 Failure semantics
4.6 Ready trace semantics
4.7 Survey
5. Features of concurrency
5.1 Nondeterminism
5.2 Communication
5.3 Recursion
5.4 Abstraction
5.5 Divergence
5.6 Deadlock behaviour
6. Survey of CCS and CSP
6.1 An operational semantics for CCS
6.2 An operational semantics for CSP
6.3 Equivalences on process expressions
6.4 Axioms for CSP
6.5 Axioms for CCS
6.6 Axioms for identification of CCS expressions
7. References

2. Models and Calculi

A framework for studying concurrency often has the shape of a mathematical model. Parameters in
the classification of these models are the features captured by the model, the identifications made on
processes and the particular way of representing them. These criteria (in reverse order) will be
explained and applied in the next three sections.

Apart from being a mathematical model, the framework in question can also be a calculus for the
verification of statements about processes, formulated in an algebraical language. For practical
applications this means that instead of checking that a process fits into a selected model, one has to
check that it operates in an environment where the rules and axioms of the calculus are satisfied.
Some theories of concurrency use both models and calculi, but with different em phasis on one of
those. This provides an important criterion for method decomposition.

The theory of Petri nets establishes a model of concurrency, without a calculus, and so does the
topological process theory.

Trace theory also presents a model, but a number of calculi, axiomatising this model, have been
developed, starting with Kleene [10] and Salomaa [18].

CSP, as presented in Brookes, Hoare and Roscoe [7] and in Hoare [9], provides a model,
illustrated with some algebraical laws. Systematic axiomatisations of CSP can be found in Brookes
[8] and De Nicola [13].

CCS is essentially a calculus, but the rules and axioms in this calculus are presented as laws, valid
in a given model.

ACP is a calculus that is not bound to a particular model. It is the core of a family of axiom
systems, each describing some features of concurrency.

The systematic exploration of (families of) algebraical calculi is called process algebra. In process
algebra models are merely used as illustration and for constructing consistency proofs. This model
-independence makes process algebra, apart from a tool for studying concurrency directly, also
suitable for analysing the different models: the presentation of axiomatisations illuminates their
differences and similarities. Axioms for CCS and CSP and for the identification criteria discussed
in §4, will be presented in §6. Most of them are taken from [81, [9], [11] and [13].

3. How to represent a process

3.1 Models of concurrency

As can be extracted from the previous section, five of the six concurrency theories mentioned in §1,
work with an explicit model. In all these models processes are represented differently. In Net
theory one of the ways to represent a process is as a labeled Petri net with a given initial
marking. De Bakker and Zucker use a topological construction to represent processes. In trace

4

theory a process is represented by a trace set and in CSP by a failure set; both these concepts will
be explained below. Milner represents a process by a synchronisation tree. This is the same
(though slightly less general) as what is known as a state transition diagram or process graph, and
will be explained in section 3.5. In [5] three models of ACP are mentioned: its initial algebra, a
projective limit model (resembling the topological construction of De Bakker and Zucker) and a
process graph model.

3.2 Atomic actions

In all concurrency theories mentioned in this paper, the most elementary components of a process
are the so-called atomic actions. They are indivisible and not subject to further investigations. Now
a process just performs atomic actions 3,b,C,... out of a given alphabet A.

3.3 Trace sets

In trace theory a process is considered to be fully determined by the possible sequences of atomic
actions it can perform (its #races). Therefore a model is created in which a process is represented by
the set of its traces. Usually trace sets are required to be prefix closed and to contain only finite

traces of infinite processes. In this setting any non-empty prefix closed set of finite words over A
TEPTesents a process.

3.4 Failure sets

In CSP a process is considered to run in an environment which can veto the performance of certain
atomic actions. Moreover the environment can decide to do so durin g the execution of a process.
If, at some moment in the execution, no action in which the process is prepared to engage in
is allowed by the environment, then deadlock occurs, which is considered to be observable. Now, a
finite experiment with a process yields either a trace, or a trace followed by deadlock. In the last
case the trace 0E€A* may be recorded, as well as the set XC A of actions allowed by the
environment at the time of stagnation. An element of X is said to be refused by the process and X is
called a refusal set of the process after performance of 0. Now the pair <0,X> is a failure pair of
the process and the set of all failure pairs of a process is called its failure set. Since in CSP a
process 1is considered to be fully determined by the observations obtainable from all possible finite
experiments (as described above) with the process, a failure model of CSP is created in which a
process is represented by its failure set. In this model any set F € A* x Pow (A) satisfying
[<e,0> € F
Il. <oxp,@> € F = <0,@> € F
1. <0,Y> € F A XCY = <0,X> € F
IV. <0,X> € F a VaeY(<oxa,@> ¢ F) » <g,XUY> € F,
represents a process. Here € denotes the empty trace, @ the empty set and 0 the concatenation
of the traces 0 and .

UIn [7], the refusal sets are moreover required to be finite. In [9], a process is given by its failure set, together
with its alphaber and its divergencies. 1 will pass over these nuances here.

3.5 State transition diagrams

In CCS a process is considered to go through a number of states. The states are determined by the
possible courses of action the process is ready to engage in. In a state transition diagram the states
of a process are pictured as open dots (°): the nodes of a process graph. Any action a€A the
process can perform is regarded as a state transition from the state of the process before
performance, to the state after. Such a state transition is pictured as an arrow between these two
states, labeled by 2: an edge of the process graph. If a process passes to another state without
performing an (observable) action, the corresponding state transition in the diagram is labeled by
T€A (the invisible action, or T-step). If a process can remain in a state without terminating, then
there is a T-step from this state to itself (a U-loop or delay). Finally the initial state in the diagram is
denoted by a short arrow (—¢): the root of the process graph. Now in the graph model of CCS a
process is represented by its state transition diagram, and any state transition diagram over AU{T}
represents a process. However, different state transition diagrams may represent the same process:
two processes are identified if there exists a bisimulation between their state transition diagrams g
and h. This is a binary relation R between the states of g and h, containing the pair of roots, such
that if (s,t) € R and s 2— ' is an edge in g then there is an edge t2 ¢ in h, with the

same label @ € AU{T}, such that (s't") € R, and, vice versa, if (s,t) € R and t —2— t' is an

edge in h, then there is an edge s <2 ¢ in g with (s',t)) € R.

This identification criterion is what Milner calls strong congruence (although his first definition
of strong congruence (in [11]) was slightly different). In [11] Milner expresses the wish to identify
also processes which are not strongly congruent. Then a process is modeled as an equivalence
class of state transition diagrams, under an equivalence relation containing strong congruence. The
appropriate equivalences are discussed later.

3.6 Operational semantics

In a calculus processes are represented by process expressions, built from the constants and
operators in the language. This representation differs from the model representations in two ways:
different expressions may represent the same process, and some processes may have no process
expression representation.

The initial algebra of a theory is the set of closed process expressions modulo provable equality (if
the theory is an algebraical calculus, then provable equality is always a congruence). If the
language used is sufficiently expressive and the calculus complete for closed terms (with respect to
an intended interpretation), then the initial algebra models the finite processes, i.e. any finite
process is represented by exactly one equivalence class of process expressions. In CCS and CSP
also a recursion operator [L is present, enableing the construction of Process expressions
representing infinite processes. In the presense of such an operator the idea of the initial algebra can
be generalised, and the set of closed process expressions modulo provable equality again
constitutes a model of concurrency. However, in the absence of a complete calculus (with respect
to an intended interpretation), this model does not make enough identifications.

This asks for a coarser equivalence on process expressions. Such an equivalence can be obtained
by the general method of endowing languages with operational semantics: For any label

acAU{t} define a binary relation —2, on the set of process expressions, in such a way that

E —2— F means that the process represented by the expression E may perform an a-step, thereby
changing into a process that can be represented by the expression F. This makes the domain of
Process expressions into a state transition diagram (however without a root). From this universal
state transition diagram the diagram of a particular expression can be obtained by appointing this
expression as root of the diagram.

Since this approach identifies process expressions, processes and states, a bisimulation can be
defined as a relation on process expressions, and strong congruence is just the union of all
bisimulations. Now a model of closed CCS-expressions modulo strong congruence can be
constructed, which is more satisfying than the generalized initial algebra approach of
CCS-expressions modulo provable equality. In §6 an operational semantics for both CCS and CSP
will be presented, following [11 ,3,14].

4. When to identify processes

4.1 Why identify processes?

As remarked in §1, one of the purposes of a concurrency theory is to verify statements about
processes. Such a statement can be that a certain system correctly simulates a specified process. In
that case the theory has to determine whether the two processes (i.e. the real and the intended
behaviour of the system) are equal. This asks for a criterion for identifying processes. Such a
criterion determines (partly) the semantics of the theory. The choice of a suitable semantics may
depend on the tools an environment has, to distinguish between certain processes. It is conceivable
that a concurrency theory is equipped with different semantics, and has the capacity to express
equality on different levels.

4.2 How to identify processes

In the various concurrency theories different identification strategies have been pursued. In
particular CCS identifies much less then CSP. An advantage of identifying more is that it becomes
easier to verify statements in which processes are equated. All true statements x=y remain true after
identifying more. However, one might identify too much, depending on the discriminating capacity
of an environment. In particular the identification of two processes that cannot be distinguished
with a given set of tools, disables the development of a new tool to distinguish them. Algebraically
this means that some operators in a language of concurrency (which correspond to tools that
distinguish between processes) are incompatible with some identifications. Moreover some useful
conditionals axioms might get lost, because after making certain identifications the premisses of the
axioms are true too often.

4.3 Bisimulation semantics

In CCS processes are identified only if there is no environment conceivable in which they can be
distinguished. In each case processes should be identified if they are strongly congruent, in the
sense of section 3.5. However, Milner identifies some more processes, only differing in their
invisible steps. In [11] he proposes the notion of observation equivalence. Later he uses a
slightly different version of observation equivalence (see [1 2]), adapted to the notion of
bisimulation, as proposed by Park in [15]. In §6 the syntax of CCS is presented, together with an
operational semantics, including the definition of observation equivalence. The basic operators of
CCS are the constant O, the unary operators a (for a€A) and the binary operator +. O represents
the process, unable of doing anything at all; aP represents the process, which will first perform an
a-step and then proceeds with P; and P + Q represents the process, which first makes a choice
between P and Q, and then proceeds with the chosen process. This is illustrated by the following
state transition diagrams:

a a a
C 1 <
@)
a(b0 + c0) ab0 + acO

fig. 1

In bisimulation semantics the processes a(b0O + c0) and ab0 + acO are considered to be
different. A motivation for this can be found in the different timing of the choice between b and C.
Moreover, if they are placed in an environment that will not allow the execution of C, then they can
be distinguished by observation: ab0 + acO has the possibility to deadlock after execution of a,
while 2(bO + €O) has not: here @ will always be followed by b.

Algebraically, such an environment is represented by the restriction operator \C (see §6; on
process graphs \C removes all C-edges (as well as the disconnected parts that originate)). Now
(ab0 + ac0)\c = ab0 + a0, while (a(b0 + c0))\c = abO.

In [11], Milner remarks about observation equivalence that "two behaviour expressions should
have the same interpretation in the model iff in all contexts they are indistinguishable bv
observation”. However, in order to distinguish observationally inequivalent processes like
abcO +abd0O and a(bcO + bd0) one has to make fargoing assumptions on the power
of observation. In any case it cannot be done by any of the CCS operators.

4.4 Trace semantics

In trace theory much more processes are identified than in CCS. By defining trace equivalence on
process graphs, it is possible to compare trace semantics with bisimulation semantics, Definition:
0 €A* is a trace of a process graph g, if there is a finite path in g, starting at the root, with label
0. Here the label of a path is the sequence of labels of the composing transitions, where all
T-labels are dropped. Now the trace set of g is the set of its traces, and two process graphs are
trace equivalent iff they have the same trace sets. Remark that the model of trace sets of section
3.3 is isomorphic to the model of process graphs modulo trace equivalence. Since any two
observation equivalent processes are also trace equivalent, trace equivalence is called a coarser (=
less discriminating) equivalence than observation equivalence. This is pictured in section 4.7.

In the setting of trace theory, presented in section 3.3 (or above), no deadlock behavior is
displayed. Not only the processes ab0 + acO and a(b0 + cO) are identified (both have trace
set {€, @, ab, ac}) but also the processes ab0 + a0 and abO (both have trace set {e, 3,

abl). However, ab0O + a0 can deadlock after performing an a-step, while ab0 cannot. If
deadlock is considered to be observable, a modification of trace theory can be made, in which also
traces ending on O are allowed. In that setting ab0 + 20 has trace set {€, a, a0, ab, ab0}
while 2D 0 has trace set {¢, a, ab, ab0}. Call the corresponding equivalence on graphs
d-trace equivalence.

4.5 Failure semantics

In o-trace semantics, where deadlock is observable, the processes ab0 + acQ and a(b0+c0)
are equal (both have d-trace set {€, a, ab, ab0, ac, ac0}). However, the processes
(ab0 + 2c0)\c = ab0 + a0 and (a(bQ + cO))\c = abO are different (as remarked
above). So Milner's restriction operators \C (CE€A) are incompatible with d-trace semantics. If
an environment is equipped with restriction as a tool for analysing processes, then a finer
equivalence is needed to model the results of this analysis. As suggested previously, in section 3.4,
failure semantics is adequate for restriction and deadlock behavior.

A tuple <0,X> with 0 € A* and XCA is a failure pair of a process graph g if there is a path
from the root of g to a node p with label 0, such that the set | (p) of labels of the outgoing edges
of P, is contained in A-X, i.e. if the process can deadlock after execution of O , in case the
environment allows only actions from X. Two processes, not containing divergence (= infinite
TU-paths) are failure equivalent iff they have the same set of failure pairs. Now the model of
process graphs (not containing divergence) modulo failure equivalence is isomorphic to the model
of failure sets of section 3.4.

A node p of a process graph is said to be unstable if it has an outgoing T-edge. Remark that
because TEA, a path ending in an unstable node cannot contribute to the failure set of a process.
This is on purpose, since deadlock can never occur if a T-step is possible. A consequence of this is
that in the presence of divergence some information on the trace set of a process might get lost (in
the construction of a failure set). A process containing a T-loop at every node, for instance, has no
failure pairs! This is the reason for excluding diverging processes here. They will be added,

however, in section 5.5.

A variant of failure semantics is readiness semantics, as presented in Olderog & Hoare [14].
<0,X> € A*xPow (A) is a ready pair of a process graph g, if there is a path from the root of
g to anode p with |(p) = X. Ready equivalence must be a finer equivalence than failure
equivalence since the failure set of a process is derivable from its ready set. The reverse however is
not true: @bO + acO and ab0 + a(b0 + cO) + acO are failure equivalent, but not ready
equivalent.

4.6 Ready trace semantics

By now one might think that failure equivalence constitutes a preferable semantics for models of
concurrency, since two processes are failure equivalent iff they are distinguishable by observation.
However this depends to a great extent on the tools an environment has, to analyse processes. If
these tools are unknown, then bisimulation semantics is in each case a safe choice. Therefore also
in ACP and the topological process theory bisimulation semantics is used. In [2], Baeten, Bergstra
& Klop show that a priority operator (as they introduced in the context of bisimulation semantics in
[1]) is incompatible with failure semantics. Such an operator models an environment which
imposes a priority to the execution of certain atomic actions over others, and can be used for the
specification of an interrupt mechanism. Moreover they present a semantics intermediate between
readiness and bisimulation semantics (but without T-steps) that is compatible with priorities. In this
ready trace semantics the role of a ready pair is replaced by an alternating sequence of subsets

and elements of A, representing a trace of a process, with for each node on the trace the set of
possibilities to continue.

4.7 Survey

Trace theory CSP Bisimulation: CCS, ACP, topological

| 1 1 I | process theory

o 8
o 8§ 3 g g 5
o9 = b=l o LE) —
= D o o) — o
= 8 = = g =2
g =2 5 3z 7 =
25 5 5 2 g
5 o =2 o g o
3 g o =
Q)|) o
b} W)l o [B
L O ol o st ——
9f |/ = § H g
g o9 = [
= 1 = f= ==
(g I is! 4
S °
— O
more identifications less identifications
, >
deadlock restric- priorities fair- +
behaviour tions ness

fig. 2

10

In figure 2, the equivalences mentioned above are classified. In the bottom line, the reasons are
displayed to move into the direction of less identifications. Observation congruence will be
discussed in section 5.1. If the schema suggests that all interesting equivalences can be linearly
ordered by inclusion, then this is misleading; in order to keep the picture simple all equivalences
disturbing the linearity are omitted. Furthermore bisimulation semantics identifies strictly less then
failure semantics only in the absence of divergence. The differences between the various
equivalences are further clarified by the axiomatisations in section 6.6. In figure 3, six process
graphs are displayed, in such a way that in order to distinguish a process from the previous one,
each time a finer equivalence is needed. This illustrates that in bisimulation semantics all
information about the timing of choices is preserved, in trace semantics none, and in the other
semantics some.

failure

a a el d ¢

0 O 000 0
(v TC :
0 O ©

‘ie

g
O
ready O bisimulation
ready trace
fig. 3

5. Features of concurrency

Both CCS and CSP capture nondeterminism, communication, recursion, abstraction, divergence
and deadlock behaviour, but differently. A discussion per feature will follow below. In §6 the
operators (the most important ones anyway) of CCS and CSP are presented, and provided with an
operational semantics (as explained in section 3.6). For CSP this is not the usual method, but the

failure semantics of both CCS and CSP are derivable by translating graphs to failure sets. For CSP
this has been shown in [14].

11

5.1 Nondeterminism

Both of the languages of CCS and CSP are equipped with a constant O for deadlock (called N|L
in CCS and STOP in CSP) and with prefix multiplication aP (in CSP denoted as a—P) for
representing the sequential composition of @ and P. However they have different operators for
choice. Hoare uses two operators for choice: external choice O and internal choice N. The first kind
of choice is deterministic: it depends on the environment; the second is nondeterministic: it cannot
be influenced by the environment. A nondeterministic choice appears after abstraction from the
actions of the environment that cause the choice for one of the alternatives. Both O and M are
commutative, associative and idempotent (see the table of CSP axioms in section 6.4), i.e. the
alternatives can be regarded to form a set. The difference appears in combination with deadlock:
PoDO = P but PNO # P! Now the influence of the environment can be modeled by Milner's
restriction operator: a00b0\b = a0, while a0nbO\b = aoOn0 = a0 (for a=b).
So theenvironment cannot force the process a0MbO to choose its left summand.
Milner makes no distinction between external and internal choice; there is only one choice operator,
+, and apart from being commutative, associative and idempotent, it satisfies P + O = P, On
synchronisation trees, * composes two processes by identifying their roots. In CCS,
nondeterminism is not a property of the operator, making an alternative composition of two
processes P and Q, but of the alternatives P and Q together. A choice can be regarded as fully
nondeterministic if the environment does not participate in the selection of the alternatives. This can
be modeled with the unary operator T. A nondeterministic choice between P and Q can now be
represented by TP + TQ (so PNQ = TP + TQ) and a deterministic choice between, say, a0
and DO is represented by a0 + DO. On the other hand, the process Ta0 + DO can be
represented in CSP by a0n(200b0).
If one tries to translate the CSP operator O into CCS (as is done for M above), one might think that
it is just +. However, this is not the case. If P and Q are starting with a T-step, then their
+-composition yields a nondeterministic choice, while the operator O intends to remove this
nondeterminism: Ta00Tb0 = ©(a0 + b0) # 1a0 + ThO! Therefore it may not be pos-
sible to translate O into CCS directly. However, it can be axiomatised over +, - and 0, as was
shown by Brc_nokes in [8], see section 6.5.
In CCS the processes a0 and T30 are observation equivalent. However the processes a0 + b0
and Ta0 + DO are not; they are not even failure equivalent: (a0 + bO)\a = bO and
(ta0 + bO)\a = tO + bO have a different deadlock behavior. So in the presence of the
+-operator, observation equivalence cannot be a criterion for identification; once a0 and Ta0 are
identified, a0 + b0 and T20 + DO cannot be distinguished. Summation is incompatible with
observational equivalence in the same way as restriction is incompatible with d-trace semantics. For
that reason Milner introduced (in [11]) the notion of observation congruence: two processes
are observation congruent if they are observation equivalent in every context> This does give a
suitable identification criterion (see also figure 2). Now any observation equivalence class contains
exactly two observation congruence classes (P and TP). In the same way failure congruence
can be defined (congruence with respect to +), but in CSP this is not necessary, since + is not a

*This is the case iff they are observation congruent in every +-context.

12

CSP operator and failure equivalence is already a congruence for the CSP operators (as is
observation equivalence, see Brookes [8]).

5.2 Communication

In their treatment of communication, there are three differences between CSP and CCS:

- CSP has different operators for communication and interleaving (|| and |||), while CCS has one
operator (|) doing both.

- In CSP communication between two processes occurs if both of them offer the same action @ €
A. In CCS this happens if one of them offers an atomic action @ € A, and the other its
complementary action 3.

- In CSP the communication between @ and 2 results in the same step @. In CCS the
communication between @ and 3 results in a T-step, i.e. the communication serves only as
synchronisation, the result is not visible.

These differences are illustrated by the following examples:

(a0 o b0) ||| a0 = aa0 o ba0 o a(a0ob0Q)

(a0 o b0O) || a0 = a0

(a0 + b0O) | @20 = 220 + ba0 + a(ad +b0) +t0.

In CCS there is a restriction operator \a, to remove the results of unsuccessful communication,
Le. to remove some of the interleaving component of paralel composition:

{(a0 +b0) | 30}\a\b = 0+0+0+t0 = TO.

In CSP such an operator is not present, but it is expressible using ||, if the alphabet A is finite.
Suppose that A = {a,b,c} then x\a = X || uX.(bX O cX). In this translation of \a, the
actions A-{a} allowed by the environment are used, instead of the disallowed action 2.
UX.(bX 0 cX) is the unique solution of the equation X = bX O CX, i.e. the infinite sequence
of choices between b and C.

The exact meaning of these operators is given by the operational semantics of CCS and CSP in the
sections 6.1 and 6.2. The algebraic laws governing them are listed in the sections 6.4 and 6.5. In
the listing of CCS axioms also the axioms of CSP operators in CCS context are presented, as in
Brookes [8].

5.3 Recursion

Both in CSP and CCS it is possible to specify a process by means of a fixed point equation. Such
an equation has the form X = P with P€FE a process expression and X a variable. The process
aaaa..., performing an infinite sequence of a-steps, for instance, is specified by the fixed point
equation X = aX. Some fixed point equations, like X = @X, have unique solutions (in the

13

mentioned failure and graph models) but others have more solutions (any process satisfies X = X);
however there are no fixed point equations without solutions. Both CSP and CCS use the
expression [LX.P to denote the unique solution of X=P, if there is one, If X = P has 1o unique
solution, then U X. P should denote some default element from the solution set. The question which
one is answered differently in CSP and CCS.

In the failure model of CSP the reverse inclusion ordering C on failure sets makes this model
into a complete partial order (c.p.o.). On process expressions this ordering is characterised by
the condition Y C X iff X MY = Y (Y is less deterministic then X). Now all CSP operators
turn out to be monotonic for this ordering (i.e. X C X’ implies f(X,Y) C f(X,Y)) as well
as continuous, and using general fixed point theory this implies that any fixed point equation
X = P has a least solution. Hoare chooses this least fixed point to be the interpretation of yX.P.
His reason for doing so is that underspecification expresses uncertainty about the specified
process. Therefore the default solution of the equation should be the least deterministic one
(the least predictable). In the most extreme case (of the fixed point equation X = X) there is
complete underspecification and no certainty at all. Therefore 1X.X is chosen to be the least
deterministic of all processes: the process CHAOS. The failure set of CHAOS is A* x Pow(A).
CHAOS can be regarded as the internal sum (M) of all processes. In the calculus of CSP,
CHAOS can be added as a constant X, satisfying the law y Mz = y.

In bisimulation semantics this method cannot be applied, since prefixing is not monotonic for
such an ordering (due the the absence of an axiom aX/aY = a(XmY)), and no complete partial
order has been found for which it is. However, a fixed point is found in the graph generated by
the action rules for the operational semantics of section 6.1. That this graph really satisfies its
fixed point equation (the recursion axiom in section 6.5) follows trivially from the action rule
for recursion in section 6.1. Milner’s fixed point is different from Hoare’s: in CCS uX. X =0,
while in CSP uX.X = y.

Also sets of fixed point equations can be used to specify processes. A recursive specification E is a
set {X = Py | X € Z} with Z a set of variables and Px a process expression (for X € =).
Example: if E = {X = @Y, Y = bX}, then X = ababab.. andY = bababa.... The
X-component of the solution vector of E is denoted by <X | E>. Thus, <X | E> means: 'the X,

as specified by E'. This is a safer expression than just X, since the variable X can also occur in
other specifications. However, in most contexts the names of the variables in all mentioned
specifications are chosen to be distinct, so that <X | E> can safely be abbreviated by X.

If E is finite then the expression <X | E> can be translated into a CCS or CSP expression,
involving the nested use of the recursion operator [. Example: <X | X = aX + bY, Y = cX
+.dY> = uX.(aX + buY.(cX + dY)).

5.4 Abstraction

In CSP there is a concealment operator /@ (for &if A) for hiding those actions we are not
interested in. As in Brookes [8] and De Nicola [IB]‘The notation /3 is used instead of \a, in order

14

to distinguish abstraction from restriction. Its operational behaviour and the axioms governing it
can be found in the sections 6.2 and 6.4. The application of such an operator is called 'abstraction
from internal steps'. There is a big difference between abstraction and restriction: abcQ/b =
acO, while abcO\b =

In CCS there is no separate concealment operator, since there abstraction and communication are
integrated. However, hiding can be expressed by the operators for parallel composition and
restriction: X/a = (X|UY.aY+3Y)\a, where LY.aY+3Y is the process only generating a-
and 3-steps. The translation of concealment into CCS can be axiomatised by the axioms in section
6.5. Using the CSP axioms for concealment, one finds (if a=b): (acOnbd0)/a/b =
cOndOn(c0O0d0), and using the CCS axioms: (acOobdQ)/a/b = (acQ +
bd0)/a/b = tcO + tdO = cOndO. This is indeed the same result, since in failure

semantics XNy = XNYn(xoy), as can be verified by either using the distributive laws of
section 6.4, or the failure axioms of section 6.6.

= a.

5.5 Divergence

On process graphs, abstraction from an atomic action @ consists of replacing all a-edges by
T-edges. This might result in divergence (infinite T-paths) as is the case in (UX.aX)/a. Here an
infinite @-path changes into an infinite T-path. Contrary to the equation X = aX, that has the
infinite @-path as unique solution, the CCS equation X=TX is satisfied by many processes, of
which TO is the simplest. However, the process that is selected to be the default solution of X=TX
(by Milner's operational semantics of CCS) is just the infinite T-path. Hence (UX.aX)/a =
UX.TX,4nd tgeneral €[IX.P /@) sq abstractiomand rectrsiom commufe.

In CSP ti—;l:sms different in two respects:\ﬁ;:;he exp;":;%_plx. P }ms\n'\mog meaning
than in CCS and second, by the absence of T, it is not possible to define a divergent process
directly (in section 4.5, divergent processes were even excluded from the failure model). In general
X/a is the process X from which the a-steps are removed (@aab0/a = b0 in CSP). Thus, the
actions 'behind' the a-steps are moved forwards. But since it is not clear what can be thought to
be behind an infinite sequence of a-steps, Hoare has some freedom in giving a meaning to
(uX.aX)/a in the failure model. He chooses to treat 'overabstraction' like underspecification,

and the result is that also in CSP reéand ;ﬁsﬁas{on _do commute, S0 (UX.aX)/a =
“TuX.((aX)/a) = gXX = X.

In combination with the interpretation of abstraction on process graphs, this implies that any
divergent process (= a process containing divergence at the root) is failure equivalent with the
process X. This removes the restriction on failure equivalence, that it is only defined on processes

not containing divergence. However, by doing so, a lot of interesting information about divergent
processes gets lost: even the processes

(p_»va o and ta*)i»o

are identified! This is the reason a different form of failure semantics is presented in Bergstra, Klop

Erratum, December 2005: As pointed out to me by Jos Baeten & Mario Bravetti, in general abstraction and recursion do not commute.
However, abstraction and recursion do commute for expressions involving variables, actions, inaction, CCS-choice and recursion only.

Counterexamples are (4X.ab(XOc))/a, (uX.a0 + (ab0|X)\a)/a, and (uX. X [R] + b) /b with R(b)

15

& Olderog [6], in which divergence is treated more subtly.

5.6 Deadlock behaviour

Deadlock is the state of a process where no further action is possible. It can occur in a merge of two

processes if both of them are waiting for the other to provide a suitable communication. Example
(in CCS) :

[{uX.atacX+bdX)}|(uY.2b3Y)\a\b = trdrrco.

As explained in §4, deadlock behaviour is preserved by d-trace, failure, ready and ready trace
equivalence, but not by trace equivalence. Furthermore 9-trace equivalence is disqualified since it is
disturbed in the presence of communication and restriction operators, modeling the influence of the
environment. In the absence of divergence, deadlock behaviour is preserved in bisimulation
semantics too, but in the presence of divergence it is preserved only in combination with livelock
behaviour.

Livelock is the state of a process where only an infinite sequence of hidden moves is possible, as in
UX.TX. In CSP livelock (being a special case of divergence) is equated with the fully
unpredictable process CHAOS. In CCS it is equated with deadlock: UX.TX = TO.

Deadlock can be visualised if processes are supposed to make noise. The noise starts at the
beginning of a process and ends if the process reaches a state of deadlock. If a component in a
merge has to wait for a suitable communication it becomes silent untill the communication is
enabled, but as long as at least one component is making progress, noise is being made. Only if all
components are waiting, the process becomes silent. This guarantees that no further action is
possible.

In this interpretation deadlock can be distinguished from livelock. Of course it is also possible to
define a version of bisimulation where deadlock and livelock behaviour are distinguished.

6. Survey of CCS and CSP

6.1 An operational semantics for CCS

Let A be a given set of names. A~ = {2 | ae A} is the corresponding set of conames.
ANAT= @. Let T¢ A=AUA™ be the invisible step and write Ar= AUAT U {1} Let

a,b,c range over A and put a=a (T =1). Afunction R; A->A is called a relabeling.

The domain of a relabeling R can be expanded to A¢ by putting R(T) = T and R(3) = R(2).
Let V be a given set of variables, then the set £ of CCS expressions is defined inductively by:

VARIABLES:
ACTION:
INACTION:
CHOICE:
COMPOSITION:
RESTRICTION:
RELABELING:
RECURSION:

16

VCE

If PEE and €A then aP€F

O€E

If P,Q€E then P+Qef

If P,Q€E then P|QefE

If PEE and a€A then P\aeF

If PEE and R: A-»A then P[R]€FE
IfX€V and P€E then uX.Pe E

Now the action relations 2 C E xF for a€Ar are generated by the following rules:

-aP &, p
-From P 45 Q infer:

P+S 25 Q
S+p 2, Q
PIS & qls

and if 3=b=a: P\b -2 Q\b

-From P 25 Qand S 25 T (@=1) infer P|S Lo Q[T
- From P[X:=pX.P] & Q infer pX.P &> Q.
(Here P[X:=S] denotes the result of substituting S for each free occurrence of X in P, with usual

avoidance of name clashes.)

6.2 An operational semantics for CSP

Let A be a given alphabet of atomic actions and let V be a given set of variables, then the set £ of
CSP expressions is defined inductively by:

VARIABLES:
ACTION:

INACTION:
EXTERNAL CHOICE:
INTERNAL CHOICE:
COMMUNICATION:
INTERLEAVING:
CONCEALMENT:
RELABELING:
RECURSION:

VCE

If PEE and a€A then aPef

O€E

If P,Q€E then POQeE

If P,Q€E then PNQeE

If P,Q€E then P||QeE

If P,Q€E then P|||QeE

If PEE and a€A then P/acF

If PEE and f: A-A is injective then f(P)€E
IfX€V and PEE then UX.PEE.

17

Now the action relations 2> C £ xE for a€A are generated by the following rules:

-aP &5 p

-pna L p

PO L g

-From P &5 Q (@=17) infer: P0S 2> Q
SoP -4 Q
fpy L), ¢(q)

- From P %~ Q infer: PoS % Qos
SoP % SpoQ
f(P) £ f(Q)
PlIs - qlIs
slp X sjla

-From P & Qand S & T (@=1) infer: P||S 2> Q||T

- From P -2 Q infer: PlIS &> qQ|||s
slip 2 sjjla
P/a % Q/a

and if a=b: P/b 2 Q/b
- pX.P 0 P[X := uX.P].

6.3 Equivalences on process expressions

Let L C F xE for 0€AX, the set of finite words over A, be the least relation satisfying:
-p-Esp

-IfP -2 Qthen P 2 Q (for acA)

-IfP 5 Qthen P £ Q

P9+ QandQ 2 Sthen P -9%0, 3.

A T-bisimulation is a relation R CE xE, satisfying (for all 0EAX)
_IfPRQand P %> P' then @ -9 Q' and P'R Q' for some Q'€F.
-IfPRQand Q <= Q' then P % P’ and P'R Q' for some P'€E.

0€A* isa trace of P if P -<Z— Q for some Q€F,
P is divergent if there is an infinite T-path P Lup 1 L, Po -

<0,X> € A¥ x Pow (A) is a failure pair of P if P -9..Q for some QE€F such that
Q 2> S implies a€A-X, or if 6=0"%0" and P < Q for some divergent Q€F.

P and Q are observation equivalent (P~Q) if PR Q for some T-bisimulation R.
P and Q are observation congruent if P+S=Q+S for any SEE.

P and Q are failure equivalent (P=Q) if they have the same failure sets.

P and Q are failure congruent if P+S=Q+S for any SEE.

P and Q are trace equivalent if they have the same trace set.

18

6.4 Axioms for CSP (and failure equivalence)

External choice: Xoy = yox
xo(yoz) = (xoy)oz
XOX = X
X000 = x
Internal choice: Xny = ynx
xn(ynz) = (xnyinz
XOX = X
Distributive laws: xolynz) = (xoy)n(xoz)
xn(yoz) = (xny)ol(xnz)
axnay = a(xny)
axoay = a(xny)
Communication:* Xlly = yllx
(xnllz = (xllz)ntyllz)
ai=bj
Interleaving:* xlly = ylllx
(xnWlllz = x|z n ylllz
pl”Q =[] a]-(P]-H[O) o0 bj(P“[Q])
1' J
Concealment: (xny)/a = x/a n y/a
(axoy)/a = x/a n (xoy)/a
(O b]p1)/3 = [b]-(P]-/a) if Yi bj:‘a
i i
Relabeling: f(0) =0
f(xny) = f(xInf(y)
f(xoy) = f(x)of(y)
f(ax) = f(a)f(x)
Recursion: UX.P = P[X:=pX.P]

*- Here P = aq PT I:Iazpzlj.‘..l:lanp

n

L1 I s

=1

m
J7]

0

a]P1 and Q = 0 b;Q.. Put a}P] = Q.

j=1 i=1

19

6.5 Axioms for CCS (and strong congruence)

Choice: X+y=y+xX
(x +y)+z=x+(y+2)
X+ X=X
X+ Q=X

Restriction: O\a =0

(x+y\a = x\a + y\a
(ax)\a = (ax)\a = 0
(bx)\a = b(x\a) if 3=b=a

Relabeling: O[R] = 0O
(x+y)[R] = x[R] + y[R]
(ax)[R] = R(a) (x[RD)

Recursion: UX.P = P[X:=uX.P]
Composition: ! P|Q=Zai(Pi|O)+2bj(P|Oj)+ > T(pile)
b= =t
jo e
Interleaving:'+? Plla = 3 a]-(P]-HIO) + 2 bj(PIIIOJ)
Communication:%3 Pl = 2 t(P;'[lQ) + 2 t(PHOjj + 2 aj“Di”Oj)
a]-=b-
J
External choice;%>) PoQ=> a]P] + D DJO] + 3 'E(p]"DQ) + > t(pDOJ')
Internal choice:?) PnQ = tP + tQ
Concealment:? 0/a =0
(x+y)/a = x/a + y/a
(ax)/a = (ax)/a = t(x/a)
(bx)/a = b(x/a) if a=b=a
n m 0
1) Here P = a; p] + 32p2+ i anpn =.§: a]p] and Q =‘Z b]O_] Pl.ltlz a]P] = 0.
2) Imported from CSP. 1=l J=1 1=1
n N m ™

.21:'

3)Here P = 2 ajPy + 2 TP’ and Q = 3 bjoj + 2 ECJ]' with aj, b]

i=1 =] =1 j=1

20

6.6 Axioms for identification of CCS expressions

Observational congruence: atx = ax
TX *+ X = TX
a(tx + y) = altx + y) + ax

Ready congruence: a(tx + ty) = ax + ay
TX + X = TX
W(TX + Y) =tXx + y
T(ax + ay + z) = t(ax + z) + ay

Failure congruence: a(tx + ty) = ax + ay
TR+ Y = TXE) ¢ TR
t(ax + ay + z) = t(ax + z) + ay

Trace equivalence: ax + ay = alx + y)
TX = X

7. References

(1] Baeten, J.C.M., J.A. Bergstra & J.W. Klop, Syntax and defining equations for an interrupt
mechanism in process algebra, Fundamenta Informaticae IX, pp. 127-168, 1986.

[2] Baeten, J.C.M,, J.A. Bergstra & J.W. Klop, Ready trace semantics for concrete process
algebra with priority operator, report CS-R8517, Centrum voor Wiskunde en Informatica,
Amsterdam 1985. Computer Journal 30(6), pp. 498-506, 1987.

[3] De Bakker, J.W. & J.1. Zucker, Denotational semantics of concurrency, Proc. 14th ACM
Symp. on Theory of Computing, pp. 153-158, 1982.

[4] De Bakker, J.W. & J.I. Zucker, Processes and the denotational semantics of concurrency,
Information & Control 54 (1/2), pp. 70-120, 1982.

[5] Bergstra, J.A. & J.W. Klop, Algebra of communicating processes, Proc. of the CWI Symp.
Math. & Comp. Sci., eds. J.W. de Bakker, M. Hazewinkel & J.K. Lenstra, pp. 89-138,
North-Holland, Amsterdam 1986.

[6] Bergstra, J.A., J.W. Klop é’;z E.-R. Olderog, Failures without chaos: a new process semantics
for fair abstraction, Proc. of the'Working Conference on the Formal Description of Programming
Concepts, Ed. M. Wirsing, (G1. Avernaes, August 1986), North-Holland, pp. 77-103, 1987.

[7] Brookes, S.D., C.A.R. Hoare & W. Roscoe, A theory of communicating sequential processes,
J.Assoc.Comput.Mach. 31 (3), pp. 560-599, 1984.

[8] Brookes, S.D., On the relationship of CCS and CSP, Proc. 10th ICALP, Barcelona, ed. J.
Diaz, Springer LNCS 154, pp. 83-96, 1983.

[9] Hoare, C.A.R., Communicating sequential processes, Prentice Hall International, 1985.

21

[10] Kleene, S.C., Representation of events in nerve nets and finite automata, Automata studies,
pp. 3-41, Princeton Univ. Press, Princeton, 1956.

[11] Milner, R., A calculus for communicating systems, Springer LNCS 92, 1980.

[12] Milner, R., Lectures on a calculus for communicating systems, Seminar on concurrency,
Springer LNCS 197, pp 197-220, 1985.

[13] De Nicola, R., A complete set of axioms for a theory of communicating sequential processes,
Found. of Comp. Theory, Springer LNCS 158, pp. 115-126, 1983.

[14] Olderog, E.-R. & C.A.R. Hoare, Specification-oriented semantics for communicating
processes, Acta Informatica 23, pp. 9-66, 1986.

[15] Patk, D.M.R., Concurrency and automata on infinite sequences, Proc, 5th GI Conference,
Springer LNCS 104, 1981.

[16] Reisig, W., Petrinetze, Springer-Verlag 1982.

(17] Rem, M., Partially ordered computations, with applications to VLSI design, Proc. 4th
Advanced Course on Found. Comp. Sci., part 2, eds. J.W. de Bakker & J. van Leeuwen, Tract
159, Mathematisch Centrum, Amsterdam 1983.

(18] Salomaa, A., Two complete axiom systems for the algebra of regular events,
J.Assoc.Comput.Mach. 13 (1), pp. 158-169, 1966.

