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Introduction 
The following proposition about first order logic is known as CRAIG'S LEMMA: 

1 

(1) If <p and 'I' are sentences of some first order language L, and <p-7'1' is provable in the first 

order calculus (notation: 1-<p~'lf), then we can find a sentence e such that the nonlogical 

symbols of e occur in both <p and 'If, and 1-<p~e and 1-e~'I' . 

(Cf. [C].) The sentence e is called an interpolant for <p and 'If, and accordingly the property of 

first order logic expressed in (1) is sometimes referred to as the interpolation property, and (1) 

as the interpolation theorem. It should be noted that the equality symbol = is counted among the 

logical symbols. 

One may ask of other logical systems, such as second order logic or equational logic, 

whether they have the interpolation property. It need not be immediately clear, however, what 

such a question means; especially when the system under consideration is weaker than first 

order logic. In particular, if we want to pronounce on the behavior of equational logic with 

respect to interpolation, we must first find a suitable statement of Craig's Lemma. 
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The problem is essentially that equational logic is much less expressive than first order logic. 

It is not really weaker. Indeed, first order logic is a conservative extension of equational logic: if 

an equation f3 can be derived, in the first order calculus, from the universal closures of a set A 

of equations, then f3 can be derived from A in equational logic. Thus, on the assumption that 

deduction in the first order calculus from assumptions containing free variables is defined in 

such a way that a formula <p can be deduced from a set <I> of formulas if and only if <p can be 

deduced from the universal closures of the formulas in <I>, our indiscriminate use, in the sequel, 

of the turnstile I- for deducibility in both equational logic and first order logic is quite justified. 

First, then, the statement (1) depends on a notion of implication in the formal language, 

which is lacking in equational logic. This can be overcome by passing to the equivalent state­

ment - equivalent for first order logic -

(2) If <pl-'lf, then we can find a sentence 0 such that the nonlogical symbols of 0 occur in 

both <p and 'If, and cpl-0 and 01-'lf . 

This (with 'equation' substituted for 'sentence') is still not quite what we want. Deductions 

from a single equation are rather special, and not particularly interesting. It could in fact be 

maintained that the interest of (2), even in the first order case, is a consequence of the presence 

of conjunction. Thus we pass to the next reformulation: 

(3) If <pi, ... ,<pnl-'I', then we can find a finite list of sentences 9i, ... ,0k such that the non­

logical symbols of each Si (l=:::iS/c) occur both in 'I' and in at least one of <pi, ... ,<pn, and 

<pi, ... ,<pn1-0i, for all i from 1 to k, and 0i, ... ,0kl-'I'. 

Statement (3) is still equivalent to (1), for first order logic; and mutato mutando we have an 

interesting claim about equational logic. A voiding subscripts, and taking account of sorts as part 

of the nonlogical endowment of equations, the interpolation theorem for equational logic now 

runs as follows: 

(4) If f3 is an equation, and A a set of equations, such that Al-(3, then we can find a finite set I 

of equations the signature of which is contained in that of A and that of (3, such that Al-I 

and Il-(3 . 

This is what we will prove in the sequel. With some self-explanatory notation, and dropping the 

claim of finiteness (which was hardly worth making anyway; finiteness of I in (4) is a simple 

consequence of the finitary nature of equational logic), ( 4) can be condensed to 
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( 4') If A and B are sets of equations such that Al-B, then we can find a set I of equations such 

that :E(I) c :E(A)n:E(B), Al-I and Il-B . 

Our investigation was motivated by [BHK]. In that report, BERGS1RA, HEERING and KLINT 

present a 'module algebra': a system of axioms for import and export. Interpreted for first order 

logic, one of these axioms (E4, to be precise) is shown to be a restatement of Craig's Lemma. 

The same axiom is shown to fail for equational logic. On the basis of a similar observation, 

MAIBAUM and SADLER [MS] claim that equational logic 'does not satisfy the Craig 

interpolation property'. Below, we shall discuss the situation in the light of our result. 

Preliminaries 

A signature consists of a set of sorts and a set of function symbols. It may help to assume 

that all sorts and all function symbols are taken from some pre-existing class. Every function 

symbol comes with a fixed arity: a specification of the number of its arguments, their sorts in 

order, and the sort of its value. If a signature contains a function symbol, then it must also con­

tain the sorts specified in its arity. To communicate that a function symbol/takes n arguments 

of respective sorts si, ... ,sn, and values of sorts, we may writef:s1x ... Xsn--ts. From function 

symbols and variables, terms are constructed as usual. If the function symbols in a term t are all 

from some signature :E, we say t is a term over :E. For a term, equation or system of equations 

X, :E(X), the signature of X, consists of all the sorts involved in X and all function symbols 

occurring in X. In fact, sorts do not play an essential part in this note. We always assume that 

the terms and equations we are dealing with are wellformed. The symbol = will be used for id­

entity by definition and identity of syntactic objects. 

A context is a term or equation with holes; with each such hole a sort is associated, the sort 

of terms that would fit into it. We shall mark holes by the names of their associated sorts. A 

precise definition of contexts then runs as follows: 

(i) a term of sort s, and the sort s itself, are contexts of sort s ; 

(ii) iff:six ... Xsn--ts, and q, ... ,cn are contexts of sorts s1, ... ,sn respectively, then/(q, ... ,cn) is 

a context of sort s; 

(iii) if ci and c2 are contexts of the same sort, then ci =c2 is a context. 

When it is necessary to distinguish contexts as formed by (i) and (ii) above from the contexts 

formed by (iii), we shall call the first kind term contexts and the second equation contexts. If the 

function symbols and sorts in context care all from signature :E, we say c is a context over :E. If 

c contains holes marked s1, ... ,sn respectively, then we may write c[s1, ... ,sn] for c; then if 

ti, ... ,tn ate terms of suitable sorts, c[tJ, ... ,tn] is the term or equation one gets by inserting each 

ti in the i-th slot (l:Si:Sn). Note that we assume the holes marked by writing c[s1, ... ,sn] to be 
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real. In particular, insertion instances c[si, .. . ,sn] and c[t1, .. .,tn] are identical only if sf=.ti for 

all i, l~i~n. If c = (ci=c2) is an equation context, with ci=c1[s1, . .. ,s,n] and c2=c2[sm+l•·· .,sn], 

we may write ci[s1, .. . ,sm]=c2[sm+l•· .. ,sn] instead of c[s1, .. . ,snl· 

By a common convention, a term t may be introduced as t(y1, ... ,yn), with the implication 

that t contains no other variables than YI·····Yn· In the sequel, a rather different convention will 

be used much more often, which we shall explain now. We shall introduce equations y = (s=t) 

as y[yi, ... ,yn], or s[yi, ... ,ym]=t[ym+b····Ynl - an insertion instance of some equation con­

text c = 'Y[s1, .. . ,sn] = (s[si, .. . ,sm]=t[sm+l•· .. ,snD - with the understanding that sand t contain 

no occurrences of variables other than the indicated occurrences of y1, .. . ,yn; so in particular, 

the context c does not contain any variables. As with the parentheses notation, we may go on to 

discuss some equation s[q, ... ,rm]=t[rm+b····rn] (or terms s[q, ... ,rm], t[rm+b····rnD; but 

these will count as insertion instances of 'Y[s1, .. . ,sn] (or s[s1, ... ,sm], t[sm+l•· .. ,snD. so that it is 

not required that ri=rj if Yi and Yj happen to be the same variable and i':F:j. 

Equational logic consists of an identity axiom x=x (one for every sort) and the rules of sym­

metry (conclude t=s from s=t), transitivity (conclude r=t from r=s and s=t), substitution (con-

clude s(si, . .. ,sn)=t(s1, ... ,Sn) from s(yi, .. . ,yn)=t(yi, ... ,yn)) and congruence (for any function 

symbol/, concludefi:s1, ... ,sn)=f(t1, ... ,tn) from s1=~i, ... ,sn=tn). Al-ymeans that the equation 

y can be derived by these rules from the identity axioms and the equations in A. For later 

reference we note the following simple fact. 

Lemma 1. If Al-y[y1, ... ,yk], and for certain terms q, ... ,rt, Al-ri=rj whenever Yi::Yj. then 

Al-'Y[ri, ... ,rk]. 

Similarity 
Let A be a system of equations. The relation of similarity over A is the least relation :::::: on the 

class of all terms such that, for any terms s and t, s :::::: t if 

(i) s=t; or 

(ii) for some function symbol/ not in :E(A), and terms si, ... ,sn,ti, ... ,tn such that for l~i~n, 

Si:::::ti, s =f(s1,. .. ,sn) and t =f(ti, ... ,tn), or 

(iii) there are terms s' = s'[yi, ... ,ym] and t' = t'[ym+I·····Yn] over :E(A), and terms ri, ... ,rn 

such that for l~i<j~n. ri:::::rj if Yi::Yj. with s=s'[q, ... ,rm] and t=t'[rm+1, .. .,rn], and Al-s'=t'. 

Ifs and tare in this relation, we say that sand tare similar over A, notation: s:::::At (and we shall 

often drop the subscript when confusion is unlikely). If two terms are similar over A, there 

must b~ a derivation of this similarity, consisting of successive applications of clauses (i)-(iii) 

above to intermediate similarities. By the set of theorems associated with some given derivation 

D of similarity we shall mean the set of all A-derivable equations s'=t' over :E(A) used in ap-
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plications of clause (iii) in D. In proving properties of similarity we will sometimes take re­

course to induction on the length of derivations. 

By clause (i}, the relation of similarity, over any given A, is reflexive. It is also symmetric, 

as may be seen by a trivial induction on the lengths of derivations. 

Examples. 
1. Let A be a system of equations axiomatizing the theory of abelian groups, with a single sort 

s, a binary function symbol + (written between its arguments), a unary function symbol-, and 

a nullary function symbol 0. Writing x -y for x + (-y), as is natural, we have Al-x-x=O. Since 

X""X by (i), x-X""AO by clause (iii). Let/:sXs-ts be a new function symbol. Since Y""Y by (i), 

f(x-x,y) ""'f(O,y) by clause (ii). Again by clause (iii), Al-x-x=O justifies f(x-x,y)-f(O,y) ""' 0. 

2. Let A= {x=y}, for distinct variables x andy. Then I:(A) is empty (but for a single sort). 

Lets and t be arbitrary terms (of that sort). Then replacing x bys and y by t, we finds""' At. 

Similarity implies provable equality 

We now prove a sequence of lemmas connecting provable equality from axioms A with sim­

ilarity over A. One direction is easy. 

Lemma 2. Ifs ""At, then Al-s = t. 

Proof. By induction on the length of the derivation of s""t. If S""t by clause (i), s=t is a 

substitution instance of an identity axiom. If the last step is by clause (ii), Al-s=t follows from 

the induction hypothesis by the rule of congruence. If the last step is by clause (iii), Al-s=t is 

an immediate consequence of the induction hypothesis by lemma 1. ~ 

The converse is considerably harder. We shall not be able to avoid juggling with the contexts 

involved in clause (iii) of the definition of similarity. As it stands, this clause makes for easy 

proofs of substitutivity and congruence (lemmas 6 and 7 below); but some more insight will be 

required to show that similarity is an equivalence relation on the class of all terms. For this rea­

son, we introduce a seemingly more restricted notion of similarity. 

Strict similarity 

Definition. A strict derivation of similarity over A is a derivation of similarity over A obeying 

the following strictness condition: there are no applications of clause (iii) in which either 

(a) s'=y1 =t', or 

(b) '3.ny one of the terms r1, ... , rn begins with a function symbol belonging to I:(A). 

Ifs ""At by a strict derivation, we says and tare strictly similar over A, and write S=.At. 
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Intuitively, the alternatives (a) and (b) represent ways in which a derivation might be longer 

than necessary. If s'=y1=t', one of the premises needed to conclude s=t is s=t itself; and if Yi 

begins with a function symbol from :E(A), presumably some part of Yi could be added to s'[ .. . ] 

and/or t'[ ... ], and the subderivations Dij involving Yi replaced by subderivations of Dij· We will 

justify this intuition only to the extent of proving that all similar terms are strictly similar (lemma 

4 below). Observe that for any term Y, there is exactly one context c that could figure in applica­

tions of clause (iii) to obtain a similarity with Y that satisfy strictness: with 1=c[q1, .. . ,qn]. where 

qi, .. . ,qn are the maximal subterms of Y that do not begin with a function symbol from :E(A). 

Lemma 3. Strict similarity over A is an equivalence relation on the class of all terms. 

Proof. Reflexivity and symmetry are trivial, as with ordinary similarity; we assume they hold, 

and concentrate on transitivity. 

Let for any term t, lht be the length of t. We order three-element multisets of terms, to be 

called triples for short, as follows. (Recall that multisets are something between sequences and 

sets: the order of elements is neglected, but not the number of times they occur.) Suppose we 

are given multisets {Y1,si.t1} and {Y2,s2,t2}, with lhYi:::::lhsi:::::lhti, for i=l,2. Then {71,si,t1} > 

{ Y2,s2,t2} iff 

lhY1>lhY2, or 

lh71=lhY2 and lhs1>lhs2, or 

lhY1=lhY2 and lhs1=lhs2 and lht1>lht2. 

This ordering of triples is clearly inductive. We shall prove that =.A is transitive by induction 

over triples. 

Suppose we have three terms Y, s and t, with Y =.A s and s =.A t; and whenever y'=.As' and 

s'=.At' with {Y',s',t' } < {Y,s,t}, y'=.At'. We must show that Y =.At. 

We first exclude a simple pathological case. It is easy to see that, if Al-x=y for distinct vari­

ables x and y of some sort s, Y =.A t for all terms Y and t of sort s. Hence for the remainder of this 

proof we may assume that Al-x=y, for variables x and y of the sort of our terms Y, s and t, 

holds only if x=y. Now since we obviously may ignore applications of clause (i), there are four 

cases left. 

(a) There is a function symbol /e :E(A) such that for certain terms Y1, ... ,Yn, si, ... ,sn and 

ti, ... ,tn, Y =f(Y1, ... ,Yn), s =f(s1, ... ,sn) and t =f(ti, ... ,tn). with Yi.:: Si.::. ti, l~i~n. For each i, 

{Yi,Si,til < {Y,s,t}, so Yi.:: ti by induction hypothesis. It follows that Y.::t by an application of 

clause (ii) of the definition of similarity. 

(b) In both derivations, the last step is an application of clause (iii). Then there are terms 

y'::y'[yi, ... ,Yk], s'=s'[yk+I.····YL], s"=s"[z1, ... ,Zk'] and t'=t'[zk'+1 .... ,zr] over :E(A) such that 
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Al-r'=s' and Al-s"=t', and for certain terms qi, ... ,qz, ri, ... ,rr with Qe:.Qj if Yi:Yj and lSi<jS/, 

and ri=rj if zi=Zj and lSi<jSl', r=.r'[qi, ... ,qk], s=.s'[Qk+i. ... ,qz]=s"[ri, .. .,rk'] and t:= 

t'[rk'+l•·· .,rr]. Observe that by the requirement of strictness the contexts s'[sk+t.·· .,s/] and 

s"[ti, ... ,tfc'] (where Si is the sort of Yi· and tj the sort of Zj) are identical; in particular, l-k = k'; 

and it follows that Qk+t=ri for lSi~'. We assume without loss of generality that the sequences 

y1,. .. ,yz and z1, ... ,zr are disjoint. 

We have lhqi<lhr, for lSiSk, unless r'=y1, and so on; by our assumptions (strictness and 

nontriviality of the sort under consideration) we may be sure that at most one of r' and s' and of 

s" and t' is a variable. Then for any triple {pi,p2,p3} of distinct elements of {q1, ... ,qz, 

ri, ... ,rr}, {p1,p2,p3} < {r,s,t}, since pi,p2,p3 are subterms of r,s,t, and one at least is a 

proper subterm; so by reflexivity and symmetry and the induction hypothesis, ::. is an 

equivalence on {qi, ... ,qJ, r1, ... ,rr}. 

Let - be the least equivalence relation on the set {y1, ... ,yz,z1, ... ,zr} such that Yk+i-Zi for 

lSi~'. Pick a representative for each equivalence class. List these representatives as ui, ... ,uz, 

... ,Uk+l'· with Ui-Yi if lSiS/, and Ui-Zi-k if i>k. Since identical entries in the list Yt. ... ,yz, 

z1, .. . ,zr have identical representatives, we infer 

Al-r'[u t. ... ,Uk]=s'[uk+ 1, ... ,u1] and Al-s"[Uk+ i. ... ,u1]=t'[u1+1 •... ,Uk+l'l 

by lemma 1. Hence 

(*) Al-r'[ui, .. .,Uk]=t'[uz+i. ... ,Uk+l'] 

by the rule of transitivity. Since Qk+i='i for lSi~', and - is the least equivalence relation with 

Yk+i-Zi for lSiSk', by induction hypothesis we have q;:::.qj when Yi-Yj (lSiJSl), Qi=:!'j when 

Yi-Zj (lSiSl, lSjSl'), and re::n when Zi-Zj (lSiJSl'). Now if r' and t' are variables (which im­

plies r'[u1]=u1=u1+1=t'[uz+1]), r=q1=..rz-=t; otherwise, replacing Ui by Qi in(*), for lSi~. and 

Uj by 'i-k for l<j~+l', r=..t by an application of clause (iii) of the definition of (strict) similarity. 

(c),(d) In one derivation the last step is by clause (ii), in the other it is by clause (iii). These 

cases are symmetric; we treat just one. Suppose r =/(71, ... ,rk), s =f(si, ... ,Sk), and there are 

terms s'=s'[yi, ... ,yml and t'=t'CYm+1, ... ,yn] over I:(A) such that Al-s'=t', and for certain 

terms t1, .. . ,tn with ti=..tj if Yt=Yj and lSi<jSn, s=s'[t1, ... ,tm] and t:=t'[tm+i. ... ,tn]. Then s' must 

be the variable YI - so t' is not a variable. Thus whenever Yt=Yj for l<jSn, we have 

r=s=t1=..tj. with tj a proper subterm oft, so that {r,s,~} < {r,s,t}. Hence r=tj by induction 

hypothesis; so from Al-y1=t' we may conclude, by clause (iii), that r=..t. ~ 
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Next we show that the additional restriction in the definition of strict similarity does not lead 

to a smaller relation. 

Lemma 4. If sz At, then s~t. 

Proof. Induction on the length of the given derivation D of sz At. If the last step in this 

derivation is not by clause (iii), or satisfies, if it is, part (b) of the strictness condition, then the 

argument is straightforward. So suppose the last step of D consists in taking terms s' = 
s'[y1,. . .,ym] and t' = tlYm+I.····Yn] over I:(A), and terms ri, ... , rn such that for 1'5:i<j'5:n, 

Yi""'Yj if Yi=Yj. with s=s'[q, ... ,rm] and t=t'[rm+1, ... ,rn], and Af-s'=t'. By induction hypo­

thesis, rc.rj. say by a strict derivation Dij. whenever l'5:i<j'5:n and Yi::Yj; by reflexivity and 

symmetry of,::, we may drop the requirement that i<j. 

For each i, 1'5:i'5:n, there is a unique variable-free context q=q[s. 1, •• . ,s. k.] over I:(A) such 
l, l, ' 

that ri=Ci[q. 1, ... ,q. k.] for certain terms q. 1, ... ,q. k· not beginning with a function symbol from 
l, l, ' l, l, ' 

I:(A). If the last step of Dij is an application of clause (i), then q=cj, and q. r=q .1 for 1'5:l'5:ki 
l, ], 

(=kj). Take distinct variables uij,1, ... ,uij,ki' and ~et vij,l=uij,l' for 1'5:l'5:ki. Then we have 

Af-ci[Uij,l ' .. . ,ui,j,ki]=Cj[Vij,l' ... ,vij,k)• and qi,Fqj,l by clause (i).If the last step of Dij is an 

application of clause (ii), then q=s. 1=cj. Let vz .. 1::u .. 1 be some variable of sort s. 1. Then we 
l, J, lJ, l, 

have Af-q[u .. 1]=Cj[V .. 1], and Dij proves q. 1=..q. 1. Finally, suppose the last step of Dij is an 
lJ, lJ, l, ], 

application of clause (iii). Then in this step, sequences u . . 1, ... ,u .. k· and v .. 1, ... ,v .. k· are 
ZJ, l,j, i lJ, l,], 1 

specified such that 

and 

(1) Ar q[u . . 1, ... ,u .. k.] = Cj[v .. 1, ... ,v .. k.], 
lJ, l,j, i lJ, l,], 1 

qi,eqi,l if Uij,kEUij,l (1'5:k<['5:ki), 

(2) qi,eqj,l if Uij,kEVij,l (1'5:k'5:ki, 1'5:['5:kj), and 

qj,eqj,l if Vij,kEVij,l (1'5:k<l'5:kj). 
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As set out above, we may assume (1) and (2) hold for every relevant pair (iJ). We assume 

that all sets Uij = {u .. 1, ... ,u .. k·'v . . 1, ... ,v .. k.} are disjoint. Let - be the least equivalence 
lJ, l,j, ' lJ, lJ, 1 

relation on the union U ijUij such that uij,l-uij',l for all ijj' and l with 1'5:.ijj''.S.n and 

1'5:.l'.S.ki, uij,l-vj,i,l for all ij and l with 1'5:.ij'.S.n and 1'5:.l'.S.ki, and vij,l -vi'j,l for all i,i'j and l 

with 1'5:.i,i'j'.S.n and 1'5:.l'5:.k1·. Note that in constructing Yi and Y1· from q[u . . 1, . .. ,u . . k.] and 
lJ, lJ, ' 

Cj[ v . . 1, .•• , v . . k.], u . . , 1, u .. 1, v .. 1 and v .,, . 1 are replaced by the same term Qi,l· Pick a re-
ZJ, l,j, J lJ, lJ, j,l, J ,l, 

presentative for each equivalence class; say Wi,l is the representative of u .. 1 and v ., .1, for all j 
lJ, J ,l, 

andj'. Since identical entries in the lists uij,1,. .. ,ui,j,ki' vij,1, ... ,vij,kj have identical repre-

sentatives, we have 

(3) Al- Ci[w. 1, ... ,w. k.] = Cj[w. 1,. .. ,w. k], for all ij with Yi=Yj. 
l, l, ' ), ), J 

from (1) by lemma 1. Moreover, Qi,JC..Qj,l must hold if Wi,k=Wj,l· For Wi,k=Wj,l implies 

uij,k-vij,l; since:::. is an equivalence relation by lemma 3, and - is a least equivalence relation, 

Qi,k=:.Qj,l follows from what we just noted about the construction of Yi and Yj. 

By Al-s'=t' and lemma 1, (3) implies 

t'[cm+1[wm+l 1' ... ,wm+l k ], .•• ,Cn[Wn 1, ... ,wn k ]]. 
• • m+l • • n 

Since Yi=ci[q. 1, ... ,q. k.], we conclude that s=:,t by clause (iii). ~ 
l, l, ' 

Corollary. s=At if and only if s=:,At. 

P:roof. The direction from right to left is trivial. The reverse direction is the lemma we just 

proved. ~ 

Provable equality implies similarity 

As an immediate consequence of lemma 3 and the corollary to lemma 4 we have 

Lemma 5. Similarity over A is an equivalence relation on the class of all terms. 
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We continue by proving that similarity over a set of axioms A is closed under the rules of 

substitution and congruence. 

Lemma 6. Supposes= s(xi, ... , Xn), t = t(x1, ... , Xn). Ifs ""'At, then for any terms ri, ... ,rn, 

Proof. By induction on the length of the derivation of s::::t. If s=t, then s(q, ... ,rn) ""'t(r1, ... ,rn) 

by reflexivity of""'· If the last step in the derivation is an application of clause (ii), s(r1, . .. ,rn)""' 

t(r1, ... ,rn) as a straightforward consequence of the induction hypothesis. So suppose the last 

step is an application of clause (iii): there are terms s'=s'[y1, ... ,yk] and t'= t'[yk+J. ... ,yJ] with 

Al-s'=t', and SJ, ... ,S/ such that Si""'Sj if Yi::Yj (lS::i<jS::l), s=s[s1, ... ,Sk] and t= t'[sk+J, ... ,SJ]. 

We may write Si=Si(Xi, .. . , Xn) (lS::is;,[); then by induction hypothesis Si(rJ, ... ,rn)""'Sj(rJ, ... ,rn) if 

Yi::Yj (lS::i<jS::l). Combining all, we have 

and s(r1, ... ,rn) = t(r1, ... ,rn) by clause (iii) of the definition of similarity. ~ 

Lemma 7. Let/be a k-ary function symbol. If for 15::15::k, Sf"Alt, then 

Proof. Immediate: if/~ :E(A), by clause (ii) of the definition of similarity; and otherwise by 

clause (iii), since Al- f(xi, ... ,xk) = f(xi, ... ,xk). ~ 

The last three lemmas may be epitomized as follows. 

Lemma 8. If Al-s=t, then S""'A t. 

Interpolation 
For similarity, interpolation is easy to prove. Suppose we have a derivation of S""'A t; let I be 

the associated set of theorems. Then :E(I) c :E(A)n:E(s=t); and obviously s=r t. By the equi­

valence established between similarity and provable equality, ordinary interpolation has become 

easy too. 
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Theorem. If Af-s=t, then there exists a finite set I of equations over ,l;(A)nI,(s=t) such that 

Ar I and I f-s=t. 

Proof. If Af-s=t, then s=A t by lemma 8. Take I as above. Then clearly Af-I, and l;(I) c 

l;(A)nl;(s=t). From s=1 t we get I f-s=t by lemma 2. ~ 

Module algebra 

In the notation of module algebra (see [BHK]), and equating modules with logically closed 

theories, the theorem above may be expressed by the equation 

(E3) xo(T(y)+Z) = T(xny) + (xDZ). 

The apparent dependence of (E3) on interpolation was first observed by G. RENARDEL [R]. It 

is easy to prove (E3), interpreted in equational logic as in [BHK], from interpolation, and vice 

versa. We shall do this now, somewhat informally. By Cl(A) we shall mean the closure of A, 

i.e. the set of all equations over l;(A) that can be derived from A, in equational logic. 

Interpolation implies (E3): It will suffice to prove xo(T(y)+Z) c T(xny) + (xDZ), since the re­

verse inclusion is trivial. Suppose a e xo(T(y)+Z). Then 

l;(a) c xn(yu:E(Z)) = (xny) u (xn:E(Z)) 

and Z f- a. Take an interpolant I: then Z f- I and I,(I) c ,l;(Z)nl;( a) c xnl;(Z), so I c xoZ. 

Moreover If-a; and since :E(a) c (xny)u(xn:E(Z)) = I,(T(xny)+(xDZ)), a e T(xny)+(xDZ). 

(E3) implies interpolation: Suppose Ara; then 

a e :E(a)o(T(:E(a))+Cl(A)) = T(l;(a)) + (l;(a)oCl(A)), 

hence there must be I c l;(a)oCl(A), i.e. such that ,l;(I) c I,(a)nl;(A) and Ar I, with I f-a. 

The stronger axiom 

(E4) I,(Y)nl:(Z) c x ==> xo(Y+Z) = (xDY)+(xoZ) 

may be formulated for extensions of equational logic as a combined interpolation and splitting 

property: 

(*)if AuB f- r, then there is a set I with .:r.(I) c l;(A)n(:E(B)u:E(r)) such that 

Ar I, and Bui f- r. 

One gets interpolation from(*) by taking B=0. 
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(E4) implies (*): Suppose AuB I- r. Take x = :E(r)u(:E(A)n:E(B)); then the condition of (E4) 

is satisfied for Y =A with signature :E(A) and Z = B with signature :E(B). Since AuB1-r, and 

:E(r)cx, we must have (xDA)u(xoB)l-r. Take I=xoA. Then 

:E(l) c (:E(r)u(:E(A)ri:E(B)))n:E(A) = :E(A)ri(:E(B)u:E(r)), 

and clearly IuB1-r. 

(*)implies (E4): Suppose :E(Y)ri:E(Z) c x. We prove only xo(Y+Z) c (xoY)+(xDZ), since 

the other inclusion is nothing special. If yexo(Y+Z), then :E(y)cx. Take an interpolant E> be­

tween Y and Z,y, and I between Zand E>,y. Then 

:E(E>) c :E(Y)ri(:E(Z)u:E(y)) c :E(Y)ri(:E(Z)ux) = (:E(Y)ri:E(Z))u(:E(Y)rix) 

= ((:E(Y)n:E(Z))rix)u(:E(Y)rix) = :E(Y)rix. 

Thus E>cxoY; and likewise Is;:xoz. Since IuE>l-y, we see that ye (xDY)+(xDZ). 

In first order logic, property(*) (splitting interpolation) easily follows from the interpolation 

property as formulated in (3) and (4) of the introduction. Splitting interpolation, and its 'algebr­

aic' counterpart (E4), are more conspicuous in module algebra than (E3), and it may have been 

for this reason that in [BHK] only (E4) was considered in the context of equational logic. It 

fails, and this failure complicates the module algebra of equational logic. Essentially this had 

been noted earlier by Maibaum and Sadler [MS], who also formulated the splitting property (*). 

We conclude by considering what it is about predicate logic that makes (E4) follow from 

(E3), or equivalently, why interpolation in predicate logic implies splitting interpolation. Sup­

pose we have a finitary deduction system - finite formulas, rules involving :finitely many 

formulas - extending equational logic. Note that in equational logic, every formula a is inter­

preted as its universal closure 'r;/ a; and that therefore the correct form of "a implies f3" in the 

notation of predicate logic is 'r;/a~f3. Suppose then that if a and f3 are formulas (of our 

system), we also have a formula ('r;/ a~f3). The precise form of the symbols does not matter, of 

course, but we will use some wellk:nown conventions; in particular, we write a~f3~y instead 

of a~(f3~y). Assume modus ponens and the deduction theorem for formulas, in the following 

form: 

Au{a}l-f3 if and only if Al-'r;/a~f3. 

Suppose interpolation holds, and AuB1-r. Take any ye r. Then since our formal system is 

finitary, there is a finite BocB, such that AuBol-y. Say Bo={f3i, ... ,f3n}. Then by the deduc-
" 

tion theorem, 



13 

By interpolation, there exists a set ly of formulas with 

such that Al-lyand lyf-'v'~1~ ... ~'v'~n~Y· Now let I=Uyer1'Y; then I satisfies the require­

ments of splitting interpolation. 
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