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Abstract
Most fairness assumptions used for verifying liveness properties are criticised for being too strong or
unrealistic. On the other hand, justness, arguably the minimal fairness assumption required for the
verification of liveness properties, is not preserved by classical semantic equivalences, such as strong
bisimilarity. To overcome this deficiency, we introduce a finer alternative to strong bisimilarity,
called enabling preserving bisimilarity. We prove that this equivalence is justness-preserving and a
congruence for all standard operators, including parallel composition.

2012 ACM Subject Classification Theory of computation → Logic and verification; Theory of
computation → Process calculi; Theory of computation → Distributed computing models

Keywords and phrases bisimilarity, liveness properties, fairness assumptions, process algebra

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2021.33

Related Version Full version: http://arxiv.org/abs/2108.00142 [15].

Acknowledgements We are grateful to Filippo De Bortoli.

1 Introduction

Formal verification of concurrent systems becomes more and more standard practice, in par-
ticular in safety-critical environments. Progress and fairness assumptions have to be used when
verifying liveness properties, which guarantee that ‘something good will eventually happen’.
Without assumptions of this kind, no meaningful liveness property can formally be proven.

▶ Example 1. Consider the program while(true) do x:=x+1 od with x initialised to 0. Intu-
itively, any liveness property of the form ‘eventually x=n’ should be satisfied by the program.
However, these properties are valid only when assuming progress, stating that a system will
make progress when it can; otherwise the program could just stop after some computation. ⌟

Progress itself is not a strong enough assumption when concurrent systems are verified,
for a system of multiple completely independent components makes progress as long as one
of its components makes progress, even when others do not. For decades, researchers have
developed notions of fairness and used them in both system specification and verification;
the most common ones are surveyed in [13]. Two of the most popular fairness assumptions
are weak and strong fairness of instructions [5].1 They apply to systems whose behaviour is
specified by some kind of code, composed out of instructions. A task is any activity of the
system that stems from a particular instruction; it is enabled when the system is ready to do

1 Often these notions are referred to as weak and strong fairness without mentioning instructions; here,
we follow the terminology of [13], which is more precise.
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33:2 Enabling Preserving Bisimulation Equivalence

some part of that task, and executed when the system performs some part of it. Now weak
and strong fairness of instructions state that whenever a task is enabled persistently (for
weak fairness) or infinitely often (for strong fairness), then it will be executed by the system.
These fairness assumptions, as well as all others surveyed in [13],2 imply progress.

Despite being commonly used, it has been argued that most fairness assumptions, including
weak and strong fairness of instructions, are often too strong or unrealistic, “in the sense
that run-of-the-mill implementations tend not to be fair” [13].

(Reactive) systems are often described by labelled transition systems, which model all
activities as transitions going from state to state, labelled with actions. Some actions require
synchronisation of the modelled system with its environment; they can occur only when both
the system and the environment are ready to engage in this action. Such actions, and the
transitions labelled with them, are called blocking.

▶ Example 2. Assume that every morning Alice has a choice between a slice of bread with
jam or a bacon and egg roll. A corresponding transition system consists of one state with
two transitions, each standing for one kind of breakfast. Both weak and strong fairness
(of instructions) will force Alice to eventually have both types of breakfast, ruling out the
possibility that Alice picks up jam every day as she is a vegetarian. ⌟

To address this issue, a weaker assumption, called justness, has been proposed. It has been
formulated for reactive systems, modelled as labelled transition systems. Justness is the
assumption that

Once a non-blocking transition is enabled that stems from a set of parallel components,
one (or more) of these components will eventually partake in a transition. [13]

Example 2 features only one component, Alice. Assuming justness, as expected, she now has
the option to eat jam for the rest of her life. Let us now look at a more technical example.

▶ Example 3. We consider the following two programs, and assume that all variables are
initialised by 0.

while (true) do
choose

if true then y := y+1;
if x = 0 then x := 1;

end
od

while(true) do
y := y+1;

od ∥ x := 1;

The example on the left presents an infinite loop containing an internal nondeterministic
choice. The conditional write if x = 0 then x := 1 describes an atomic read-modify-write
(RMW) operation3. Such operators, supported by modern hardware, read a memory location
and simultaneously write a new value into it. This example is similar to Example 2 in the
sense that the liveness property ‘eventually x=1’ should not be satisfied as the program has a
choice every time the loop body is executed.

The example on the right-hand side is similar, but the handling of variables x and y are
managed by different components. As the two programs are independent from each other –
they could be executed on different machines – the property ‘eventually x=1’ should hold.

Justness differentiates these behaviour, whereas weak and strong fairness fail to do so. ⌟

2 Many other notions of fairness are obtained by varying the definition of task. In fairness of components
a task refers to all activity stemming from a component of a system that is a parallel composition.

3 https://en.wikipedia.org/wiki/Read-modify-write

https://en.wikipedia.org/wiki/Read-modify-write
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The above example illustrates that standard notions of fairness are regularly too strong,
and the notion of justness may be a good replacement. When it comes to verification tasks,
semantic equivalences, such as strong bisimilarity [18], are a standard tool to reduce the state
space of the systems under consideration. Unfortunately, these semantic equivalences do not
accord well with justness. The problem is that they are based on labelled transition systems,
which do not capture the concept of components. The different behaviour of the two programs

y := y + 1

x := 1

y := y + 1

in Example 3 stems from the components involved. In fact, both
programs give rise to the same transition system, depicted on
the right. Systems featuring the same transition system cannot
be distinguished by any semantic equivalence found in the literature. Consequently, the
verification of the stated liveness property will fail for one of the two programs of Example 3.

To overcome this deficiency, we introduce enabling preserving bisimilarity, a finer alternat-
ive to strong bisimilarity, which respects justness. It is based on extended labelled transition
systems that take components involved in particular transitions into account.

2 Labelled Transition Systems with Successors

As discussed in the introduction, one reason why strong bisimilarity does not preserve liveness
properties under justness is that necessary information is missing, namely components.

The definition of (parallel) components was based on the parallel composition operator in
process algebras when justness was first introduced in [4, 12], and has been generalised in
later work to allow the use of justness in different contexts.

Here we define a justness-preserving semantic equivalence on an extension of labelled
transition systems. Using labelled transition systems rather than process algebra as underlying
concept makes our approach more general, for other models of concurrency, such as Petri
nets or higher-dimensional automata, induce a semantics based on transition systems as well.

The essence of justness is that when a non-blocking transition t is enabled in a state s,
eventually the system must perform an action u that interferes with it [13], notation t ⌣̸• u,
in the sense that a component affected by u is necessary for the execution of t – or, to be
more precise, for the variant t′ of t that is enabled after the system has executed some actions
that do not interfere with t. The present paper abstracts from the notion of component, but
formalises justness, as well as our enabling preserving bisimilarity, in terms of a successor
relation t ;π t′, marking t′ as a successor of t, parametrised with the noninterfering actions
π happening in between. This relation also encodes the above relation ⌣̸•. The advantage of
this approach over one that uses components explicitly, is that it also applies to models like
higher-dimensional automata [21, 6, 16, 8] in which the notion of a component is more fluid,
and changes during execution.

A labelled transition system (LTS) is a tuple (S, Tr, source, target, ℓ) with S and Tr sets
(of states and transitions), source, target : Tr → S and ℓ : Tr → L , for some set L of
transition labels. A transition t ∈ Tr of an LTS is enabled in a state p ∈ S if source(t) = p.
Let en(p) be the set of transitions that are enabled in p.

A path in an LTS is an alternating sequence p0 u0 p1 u1 p2 . . . of states and transitions,
starting with a state and either being infinite or ending with a state, such that source(ui) = pi

and target(ui) = pi+1 for all relevant i. The length l(π) ∈ N∪ {∞} of a path π is the number
of transitions in it. If π is a path, then π̂ is the sequence of transitions occurring in π.

▶ Definition 4 (LTSS). A labelled transition system with successors (LTSS) is a tuple
(S, Tr, source, target, ℓ,;) with (S, Tr, source, target, ℓ) an LTS, and ; ⊆ Tr × Tr × Tr, the
successor relation, such that if (t, u, v) ∈ ; then source(t) = source(u) and source(v) =
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33:4 Enabling Preserving Bisimulation Equivalence

target(u). We write t ;u v for (t, u, v) ∈ ;.

We use this successor relation to define the concept of (un)affected transitions. Let two
transitions t and u be enabled in a state p, i.e., t, u ∈ en(p) for some p ∈ S; the concurrency
relation ⌣• is defined as t ⌣• u :⇔ ∃ v. t ;u v. Its negation t ⌣̸• u says that the possible
occurrence of t is affected by the occurrence of u. In case t is unaffected by u (i.e., t ⌣• u),
each v with t ;u v denotes a variant of t that can occur after u. Note that the concurrency
relation can be asymmetric. Examples are traffic lights – a car passing traffic lights should
be affected by them, but the lights do not care whether the car is there; and read-write
operations – reading shared memory can be affected by a write action, but, depending on
how the memory is implemented, the opposite might not hold. In case t and u are mutually
unaffected we write t ⌣ u, i.e., t ⌣ u :⇔ t ⌣• u ∧ u ⌣• t.

It is possible to have t ⌣• t, namely when executing transition t does not disable (a future
variant of) t to occur again. This can happen when t is a signal emission, say of a traffic
light shining red, for even after shining for some time it keeps on shining; or when t is a
broadcast receive action, for receiving a broadcast does not invalidate a system’s perpetual
readiness to again accept a broadcast, either by receiving or ignoring it.

▶ Example 5. Consider the labelled transition system of Example 3, let t1 and t2 be the
two transitions corresponding to y:=y+1 in the first and second state, respectively, and let u

be the transition for assignment x:=1. The assignments of x and y in the right-hand program
are independent, hence t1 ;u t2, u ;t1 u and t1 ⌣ u.

For the program on the left-hand side, the situation is different. As the instructions stem
from the same component (program), all transitions affect each other, i.e., ; = ⌣• = ∅. ⌟

The successor relation relates transitions one step apart. We lift it to sequences of transitions.

▶ Definition 6 (Successor along Path). The relation ; is extended to ; ⊆ Tr × Tr∗ × Tr by
(i) t ;ε w iff w = t, and (ii) t ;πu w iff there is a v with t ;π v and v ;u w.

Here, ε denotes the empty sequence, and πu the sequence π followed by transition u.
We define a concurrency relation ⌣• ⊆ Tr × Tr∗ considering sequences of transitions by
t ⌣• π :⇔ ∃ v. t ;π v. Intuitively, t ⌣• π means that there exists a successor of t after π has
been executed. Thus, t is unaffected by all transitions of π.

We are ready to define justness, which is parametrised by a set B of blocking actions.

▶ Definition 7 (Justness). Given an LTSS = (S, Tr, source, target, ℓ,;) labelled over L , and
B ⊆ L , a path π in is B-just if for each suffix π0 of π and for each transition t ∈ Tr• with
ℓ(t) /∈ B and source(t) the first state of π0, the path π0 has a finite prefix ρ such that t ⌣̸• ρ̂.
Here Tr• := {t ∈ Tr | t ⌣̸• t}.

3 Enabling Preserving Bisimulation Equivalence

In this section we introduce enabling preserving bisimulation equivalence, and show how it
preserves justness. In contrast to classical bisimulations, which are relations of type S × S,
the new equivalence is based on triples. The essence of justness is that a transition t enabled
in a state s must eventually be affected by the sequence π of transitions the system performs.
As long as π does not interfere with t, we obtain a transition t′ with t ;π t′. This transition
t′ represents the interests of t, and must eventually be affected by an extension of π. Here,
executing t or t′ as part of this extension is a valid way of interfering. To create a bisimulation
that respects such considerations, for each related pair of states p and q we also match each
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enabled transition of p with one of q, and vice versa. These relations are maintained during
the evolution of the two related systems, so that when one system finally interferes with a
descendant of t, the related system interferes with the related descendant.

▶ Definition 8 (Ep-bisimilarity). Given an LTSS (S, Tr, source, target, ℓ,;), an enabling
preserving bisimulation (ep-bisimulation) is a relation R ⊆ S × S × P(Tr × Tr) satisfying
1. if (p, q, R) ∈ R then R ⊆ en(p) × en(q) such that

a. ∀t ∈ en(p). ∃ u ∈ en(q). t R u,
b. ∀u ∈ en(q). ∃ t ∈ en(p). t R u,
c. if t R u then ℓ(t) = ℓ(u), and

2. if (p, q, R) ∈ R and v R w, then (target(v), target(w), R′) ∈ R for some R′ such that
a. if t R u and t ;v t′, then ∃ u′. u ;w u′ ∧ t′ R′ u′, and
b. if t R u and u ;w u′, then ∃ t′. t ;v t′ ∧ t′ R′ u′.

Two states p and q in an LTSS are enabling preserving bisimilar (ep-bisimilar), p ↔ep q, if
there exists an enabling preserving bisimulation R such that (p, q, R) ∈ R for some R.

Definition 8 without Items 2a and 2b is nothing else than a reformulation of the classical
definition of strong bisimilarity. An ep-bisimulation additionally maintains for each pair of
related states p and q a relation R between the transitions enabled in p and q. Items 2a
and 2b strengthen the condition on related target states by requiring that the successors of
related transitions are again related relative to these target states. It is this requirement
(and in particular its implication stated in the following observation) which distinguishes the
transition systems for Example 3.

▶ Observation 9. Ep-bisimilarity respects the concurrency relation.
For a given ep-bisimulation R, if (p, q, R) ∈ R, t R u and v R w then t ⌣• v iff u ⌣• w.

▶ Proposition 10. ↔ep is an equivalence relation.
Proof. Reflexivity: Let (S, Tr, source, target, ℓ,;) be an LTSS. The relation

RId := {(s, s, Ids) | s ∈ S}
is an ep-bisimulation. Here Ids := {(t, t) | t ∈ en(s)}.

Symmetry: For a given ep-bisimulation R, the relation
R−1 := {(q, p, R−1) | (p, q, R) ∈ R}

is also an ep-bisimulation. Here R−1 := {(u, t) | (t, u) ∈ R}.

Transitivity: For given ep-bisimulations R1 and R2, the relation
R1; R2 := {(p, r, R1; R2) | ∃ q. (p, q, R1) ∈ R1 ∧ (q, r, R2) ∈ R2}

is also an ep-bisimulation. Here R1; R2 := {(t, v) | ∃ u. (t, u) ∈ R1 ∧ (u, v) ∈ R2}. ◀

▶ Observation 11. The union of any collection of ep-bisimulations is itself an ep-bisimulation.

Consequently there exists a largest ep-bisimulation.
Before proving that ep-bisimilarity preserves justness, we lift this relation to paths.

▶ Definition 12 (Ep-bisimilarity of Paths). Given an ep-bisimulation R and two paths
π = p0 u0 p1 u1 p2 . . . and π′ = p′

0 u′
0 p′

1 u′
1 p′

2 . . . , we write π R π′ iff l(π) = l(π′), and there
exists Ri ⊆ Tr × Tr for all i ∈ N with i ≤ l(π), such that
1. (pi, p′

i, Ri) ∈ R for each i ∈ N with i ≤ l(π),
2. ui Ri u′

i for each i < l(π),
3. if t Ri t′ and t ;ui v with i < l(π), then ∃ v′. t′ ;u′

i
v′ ∧ v Ri+1 v′, and

4. if t Ri t′ and t′ ;u′
i

v′ with i < l(π), then ∃ v. t ;ui
v ∧ v Ri+1 v′.

CONCUR 2021



33:6 Enabling Preserving Bisimulation Equivalence

Paths π and π′ are enabling preserving bisimilar, notation π ↔ep π′, if there exists an
ep-bisimulation R with π R π′. If π ↔ep π′, we also write π R⃗ π′ if R⃗ := (R0, R1, . . . ) are
the Ri required above.

Note that if p ↔ep q and π is any path starting from p, then, by Definition 8, there is a path
π′ starting from q with π ↔ep π′. The following lemma lifts Observation 9.

▶ Lemma 13. If π R⃗ ρ with π finite and t R0 t′ then t ⌣• π̂ iff t′ ⌣• ρ̂.

Proof. We have to show that ∃v. t ;π̂ v iff ∃v′. t′ ;ρ̂ v′. Using symmetry, we may restrict
attention to the ‘only if’ direction. We prove a slightly stronger statement, namely that for
every transition v with t ;π̂ v there exists a v′ such that t′ ;ρ̂ v′ and v Rl(π) v′.

We proceed by induction on the length of π.
The base case, where l(π) = 0, π̂ = ε and thus v = t, holds trivially, taking v′ := t′.
So assume πup R⃗ ρu′p′ and t ;π̂u w. Then there is a v with t ;π̂ v and v ;u w. By

induction there is a transition v′ such that t′ ;ρ̂ v′ and v Rl(π) v′. By Definition 12(3), there
is a w′ with v′ ;u′ w′ and w Rl(π)+1 w′. Thus t′ ;ρ̂u′ w′ by Definition 6. ◀

▶ Theorem 14. Ep-bisimilarity preserves justness: Given two paths π and π′ in an LTSS
with π ↔ep π′, and a set B of blocking actions, then π is B-just iff π′ is B-just.

Proof. Let π = p0 u0 p1 u1 p2 . . . and π′ = p′
0 u′

0 p′
1 u′

1 p′
2 . . . . Suppose π is B-unjust, so there

exist an i ∈ N with i ≤ l(π) and a transition t ∈ Tr• with ℓ(t) /∈ B and source(t) = pi such
that t ⌣• ρ̂ for each finite prefix ρ of the suffix pi ui pi+1 ui+1 pi+2 . . . of π. It suffices to show
that also π′ is B-unjust.

Take an ep-bisimulation R such that π R π′. Choose Ri ⊆ Tr × Tr for all i ∈ N with
i ≤ l(π), satisfying the four conditions of Definition 12. Pick any t′ ∈ Tr with t Ri t′ –
such a t′ must exist by Definition 8. Now source(t′) = p′

i. By Definition 8, t′ ∈ Tr• and
ℓ(t′) = ℓ(t) /∈ B. It remains to show that t′ ⌣• ρ̂′ for each finite prefix ρ′ of the suffix
p′

i u′
i p′

i+1 u′
i+1 p′

i+2 . . . of π′. This follows by Lemma 13. ◀

4 Stating and Verifying Liveness Properties

The main purpose of ep-bisimilarity is as a vehicle for proving liveness properties. A liveness
property is any property saying that eventually something good will happen [17]. Liveness
properties are linear-time properties, in the sense that they are interpreted primarily on
the (complete) runs of a system. When a distributed system is formalised as a state in
an (extended) LTS, a run of the distributed system is modelled as a path in the transition
system, starting from that state. However, not every such path models a realistic system
run. A completeness criterion [9] selects some of the paths of a system as complete paths,
namely those that model runs of the represented system.

A state s in an (extended) LTS is said to satisfy a linear time property φ when employing
the completeness criterion CC , notation s |=CC φ, if each complete run of s satisfies φ [10].
Writing π |= φ when property φ holds for path π, we thus have s |=CC φ iff π |= φ for all
complete paths π starting from s. When simplifying a system s into an equivalent system s′,
so that s ∼ s′ for some equivalence relation ∼, it is important that judgements |=CC φ are
preserved:

s ∼ s′ ⇒ (s |=CC φ ⇔ s′ |=CC φ).

This is guaranteed when for each path π of s there exists a path π′ of s′, such that (a) π |= φ

iff π′ |= φ, and (b) π′ is complete iff π is complete. Here (a) is already guaranteed when π
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and π′ are related by strong bisimilarity. Taking CC to be B-justness for any classification
of a set of actions B as blocking, and ∼ to be ↔ep, Theorem 14 now ensures (b) as well.

5 Interpreting Justness in Process Algebras

Rather than using LTSs directly to model distributed systems, one usually employs other
formalisms such as process algebras or Petri nets, for they are often easier to use for
system modelling. Their formal semantics maps their syntax into states of LTSs. In this
section we introduce the Algebra of Broadcast Communication with discards and Emissions
(ABCdE), an extension of Milner’s Calculus of Communication Systems (CCS) [18] with
broadcast communication and signal emissions. In particular, we give a structural operational
semantics [19] that interprets process expressions as states in an LTS. Subsequently, we
define the successor relation ; for ABCdE, thereby enriching the LTS into an LTSS.

We use ABCdE here, as for many realistic applications CCS is not expressive enough
[7, 11]. The presented approach can be applied to a wide range of process algebras. ABCdE
is largely designed to be a starting point for transferring the presented theory to algebras
used for ‘real’ applications. For example, broadcast communication is needed for verifying
routing protocols (e.g. [14]); signals are employed to correctly render and verify protocols for
mutual exclusion [11, 3]. Another reason is that broadcasts as well as signals, in different
ways, give rise to asymmetric concurrency relations, and we want to show that our approach
is flexible enough to handle this.

5.1 Algebra of Broadcast Communication with Discards and Emissions
ABCdE is parametrised with sets A of agent identifiers, C of handshake communication
names, B of broadcast communication names, and S of signals; each A ∈ A comes with
a defining equation A

def= P with P being a guarded ABCdE expression as defined below.
C̄ := {c̄ | c ∈ C } is the set of handshake communication co-names, and S̄ := {s̄ | s ∈ S } is
the set of signal emissions. The collections B!, B?, and B: of broadcast, receive, and discard
actions are given by B♯ := {b♯ | b ∈ B} for ♯ ∈ {!, ?, :}. Act := C ·∪ C̄ ·∪ {τ} ·∪ B! ·∪ B? ·∪ S

is the set of actions, where τ is a special internal action. L := Act ·∪ B: ·∪ S̄ is the set of
transition labels. Complementation extends to C ·∪ C̄ ·∪ S ·∪ S̄ by ¯̄c := c.

Below, c ranges over C ·∪C̄ ·∪S ·∪S̄ , η over C ·∪C̄ ·∪{τ} ·∪S ·∪S̄ , α over Act, ℓ over L , b over
B, ♯, ♯1, ♯2 over {!, ?, :} and s, r over S . A relabelling is a function f : (C → C ) ·∪ (B → B)
·∪ (S → S ); it extends to L by f(c̄) = f(c), f(τ) := τ , and f(b♯) = f(b)♯.

The set P of ABCdE expressions or processes is the smallest set including:
0 inaction α.P for α ∈ Act and P ∈P action prefixing
P + Q for P, Q ∈P choice P |Q for P, Q ∈P parallel composition
P \L for L ⊆ C ·∪ S , P ∈P restriction P [f ] for f a relabelling, P ∈P relabelling
A for A ∈ A agent identifier P ŝ for s ∈ S signalling

We abbreviate α.0 by α, and P\{c} by P\c. An expression is guarded if each agent identifier
occurs within the scope of a prefixing operator.

The semantics of ABCdE is given by the labelled transition relation → ⊆ P× L ×P,
where transitions P

ℓ−→ Q are derived from the rules of Tables 1–3. Here L := {c̄ | c ∈ L}.
Table 1 shows the basic operational semantics rules, identical to the ones of CCS [18].

The process α.P performs the action α first and subsequently acts as P . The choice operator
P + Q may act as either P or Q, depending on which of the processes is able to act at all.
The parallel composition P |Q executes an action η from P , an action η from Q, or in the
case where P and Q can perform complementary actions c and c̄, the process can perform
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33:8 Enabling Preserving Bisimulation Equivalence

Table 1 Structural operational semantics of ABCdE – Basic

α.P
α−→ P (Act)

P
α−→ P ′

P + Q
α−→ P ′

(Sum-l)
Q

α−→ Q′

P + Q
α−→ Q′

(Sum-r)

P
η−→ P ′

P |Q η−→ P ′|Q
(Par-l)

P
c−→ P ′, Q

c̄−→ Q′

P |Q τ−→ P ′|Q′
(Comm)

Q
η−→ Q′

P |Q η−→ P |Q′
(Par-r)

P
ℓ−→ P ′

P \L
ℓ−→ P ′\L

(ℓ /∈ L ·∪ L) (Res)
P

ℓ−→ P ′

P [f ] f(ℓ)−→ P ′[f ]
(Rel)

P
α−→ P ′

A
α−→ P ′

(A def= P ) (Rec)

a synchronisation, resulting in an internal action τ . The restriction operator P\L inhibits
execution of the actions from L and their complements. The relabelling P [f ] acts like process
P with all labels ℓ replaced by f(ℓ). Finally, an agent A can do the same actions as the body
P of its defining equation. When we take B = S := ∅, only the rules of Table 1 matter, and
ABCdE simplifies to CCS.

Table 2 augments CCS with a mechanism for broadcast communication. The rules are
similar to the ones for the Calculus of Broadcasting Systems (CBS) [20]; they also appear in
the process algebra ABC [12], a strict subalgebra of ABCdE. The Rule (Bro) presents the core
of broadcast communication, where any broadcast-action b! performed by a component in a
parallel composition is guaranteed to be received by any other component that is ready to do
so, i.e., in a state that admits a b?-transition. Since it is vital that the sender of a broadcast
can always proceed with it, regardless of the state of other processes running in parallel, the
process algebra features discard actions b:, in such a way that each process in any state can
either receive a particular broadcast b, by performing the action b?, or discard it, by means of
a b:, but not both. A broadcast transmission b! can synchronise with either b? or b:, and thus
is never blocked by lack of a listening party. In order to ensure associativity of the parallel
composition, one requires rule (Bro) to consider receipt at the same time (♯1 = ♯2 = ?). The
remaining four rules of Table 2 generate the discard-actions. The Rule (Dis-nil) allows the
nil process (inaction) to discard any incoming message; in the same spirit (Dis-act) allows a
message to be discarded by a process that cannot receive it. A process offering a choice can
only perform a discard-action if neither choice-option can handle it (Rule (Dis-sum)). Finally,
an agent A can discard a broadcast iff the body P of its defining equation can discard it.
Note that in all these cases a process does not change state by discarding a broadcast.

There exists a variant of CBS, ABC and ABCdE without discard actions, see [12, 9]. This
approach, however, features negative premises in the operational rules. As a consequence,
the semantics are not in De Simone format [23]. Making use of discard actions and staying
within the De Simone format allows us to use meta-theory about this particular format. For
example we know, without producing our own proof, that the operators + and | of ABC
and ABCdE are associative and commutative, up to strong bisimilarity [2]. Moreover, strong
bisimilarity [18] is a congruence for all operators of ABCdE.

Table 2 Structural operational semantics of ABCdE – Broadcast

0 b:−→ 0 (Dis-nil) α.P
b:−→ α.P (α ̸= b?) (Dis-act)

P
b:−→ P ′, Q

b:−→ Q′

P + Q
b:−→ P ′ + Q′

(Dis-sum)

P
b♯1−→ P ′, Q

b♯2−→ Q′

P |Q b♯−→ P ′|Q′
(♯1◦♯2=♯ ̸=_) with

◦ ! ? :
! _ ! !
? ! ? ?
: ! ? :

(Bro)
P

b:−→ P ′

A
b:−→ A

(A def= P ) (Dis-rec)
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Table 3 Structural operational semantics of ABCdE – Signals

P ŝ
s̄−→ P ŝ (Sig)

P
s̄−→ P ′

P + Q
s̄−→ P ′ + Q

(Sig-sum-l)
Q

s̄−→ Q′

P + Q
s̄−→ P + Q′

(Sig-sum-r)

P
s̄−→ P ′

P r̂
s̄−→ P ′ r̂

(Sig-sig)
P

s̄−→ P ′

A
s̄−→ A

(A def= P ) (Sig-rec)
P

α−→ P ′

P r̂
α−→ P ′

(Act-sig)
P

b:−→ P ′

P r̂
b:−→ P ′ r̂

(Dis-sig)

Next to the standard operators of CCS and a broadcast mechanism, ABCdE features
also signal emission. Informally, the signalling operator P ŝ emits the signal s to be read by
another process. Signal emissions cannot block other actions of P . Classical examples are
the modelling of read-write processes or traffic lights (see Section 2).

Formally, our process algebra features a set S of signals. The semantics of signals is
presented in Table 3. The first rule (Sig) models the emission s̄ of signal s to the environment.
The environment (processes running in parallel) can read the signal by performing a read
action s. This action synchronises with the emission s̄, via the rules of Table 1. Reading does
not change the state of the emitter. The next four rules describe the interaction between
signal emission and other operators, namely choice, signal emission and recursion. In short,
these operators do not prevent the emission of a signal, and emitting signals never changes
the state of the emitting process. Other operators, such as relabelling and restriction do not
need special attention as they are already handled by the corresponding rules in Table 1.
This is achieved by carefully selecting the types of the labels: while (Sum-l) features a label
α of type Act, the rules for restriction and relabelling use a label ℓ ∈ L . In case a process
performs a ‘proper’ action, the signal emission ceases (Rule (Act-sig)), but if the process
performs a broadcast discard transition, it does not (Rule (Dis-sig)).

The presented semantics stays within the realm of the De Simone format [23], which
brings many advantages. However, there exists an alternative, equivalent semantics, which
is based on predicates. Rather than explicitly modelling P emitting s by the transition
P

s̄−→ P , one can introduce the predicate P↷s. The full semantics can be found in [3]. Some
readers might find this notation more intuitive as signal emitting processes do not perform
an actual action when a component reads the emitted signal.

5.2 Naming Transitions
The operational semantics of ABCdE presented in Section 5.1 interprets the language as an
LTS. In Section 5.3, we aim to extend this LTS into an LTSS by defining a successor relation
; on the transitions, and thereby also a concurrency relation ⌣•. However, the standard
interpretation of CCS-like languages, which takes as transitions the triples P

α−→ Q that are
derivable from the operational rules, does not work for our purpose.

▶ Example 15. Let P = A|B with A
def= τ.A + a.A and B

def= ā.B. Now the transition
P

τ−→ P arises in two ways; either as a transition solely of the left component, or as a
synchronisation between both components. The first form of that transition is concurrent
with the transition P

ā−→ P , but the second is not. In fact, an infinite path that would
only perform the τ -transition stemming from the left component would not be just, whereas
a path that schedules both τ -transitions infinitely often is. This shows that we want to
distinguish these two τ -transitions, and hence not see a transition as a triple P

α−→ Q. ⌟

Instead, we take as the set Tr of transitions in our LTSS the derivations of the transition
triples P

α−→ Q from our operational rules. This is our reason to start with a definition of
an LTS that features transitions as a primitive rather than a derived concept.
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▶ Definition 16 (Derivation). A derivation of a transition triple φ is a well-founded (without
infinite paths that keep going up), ordered, upwardly branching tree with the nodes labelled
by transition triples, such that
1. the root is labelled by φ, and
2. if µ is the label of a node and K is the sequence of labels of this node’s children then K

µ

is a substitution instance of a rule from Tables 1–3.
Given a derivation, we refer to the subtrees obtained by deleting the root node as its direct
subderivations. Furthermore, by definition, Kφ

φ is a substitution instance of a rule, where φ

is the label of the derivation’s root and Kφ is the sequence of labels of the root’s children;
the derivation is said to be obtained by this rule.

We interpret ABCdE as an LTS (S, Tr, source, target, ℓ) by taking as states S the ABCdE
expressions P and as transitions Tr the derivations of transition triples P

α−→ Q. Given a
derivation t of a triple P

α−→ Q, we define its label ℓ(t) := α, its source source(t) := P , and
its target target(t) := Q.

▶ Definition 17 (Name of Derivation). The derivation obtained by application of (Act) is
called α→P . The derivation obtained by application of (Comm) or (Bro) is called t|u, where
t, u are the names of its direct subderivations.4 The derivation obtained by application of
(Par-l) is called t|Q where t is the direct subderivation’s name and Q is the process on the
right hand side of | in the derivation’s source. In the same way, the derivation obtained
by application of (Par-r) is called P |t, while (Sum-l), (Sum-r), (Res), (Rel), and (Rec) yield t+Q,
P+t, t\L, t[f ] and A:t, where t is the direct subderivation’s name. The remaining four rules
of Table 2 yield b:0, b:α.P , t+u and A:t, where t, u are direct subderivations’ names. The
derivation of P ŝ

s̄−→ P ŝ obtained by (Sig) is called P →s. Rules (Act-sig), (Dis-sig) and (Sig-sig)

yield t r̂, and rules (Sig-sum-l), (Sig-sum-r) and (Sig-rec) yield t+Q, P+t and A:t, where t is the
direct subderivation’s name.

A derivation’s name reflects the syntactic structure of that derivation. The derivations’
names not only provide a convenient way to identify derivations but also highlight the
compositionality of derivations. For example, given a derivation t of P

c−→ P ′ and a
derivation u of Q

c̄−→ Q′ with c ∈ C ·∪ C̄ ·∪ S ·∪ S̄ , t|u will be a derivation of P |Q τ−→ P ′|Q′.
Hereafter, we refer to a derivation of a transition triple as a ‘transition’.

5.3 Successors
In this section we extend the LTS of ABCdE into an LTSS, by defining the successor relation
;. For didactic reasons, we do so first for CCS, and then extend our work to ABCdE.

Note that χ ;ζ χ′ can hold only when source(χ) = source(ζ), i.e., transitions χ and
ζ are both enabled in the state O := source(χ) = source(ζ). It can thus be defined by
structural induction on O. The meaning of χ ;ζ χ′ is (a) that χ is unaffected by ζ – denoted
χ ⌣• ζ – and (b) that when doing ζ instead of χ, afterwards a variant χ′ of χ is still enabled.
Restricted to CCS, the relation ⌣• is moreover symmetric, and we can write χ ⌣ ζ.

In the special case that O = 0 or O = α.Q, there are no two concurrent transitions
enabled in O, so this yields no triples χ ;ζ χ′. When O = P + Q, any two concurrent
transitions χ ⌣ ζ enabled in O must either stem both from P or both from Q. In the former

4 The order of a rule’s premises should be maintained in the names of derivations obtained by it.
Here t should be the derivation corresponding to the first premise and u to the second. As a result,
t ̸= u =⇒ t|u ̸= u|t.
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case, these transitions have the form χ = t + Q and ζ = v + Q, and we must have t ⌣ v,
in the sense that t and v stem from different parallel components within P . So t ;v t′ for
some transition t′. As the execution of ζ discards the summand Q, we also obtain χ ;ζ t′.
This motivates Item 1 in Definition 18 below. Item 2 follows by symmetry.

Let O = P |Q. One possibility for χ ;ζ χ′ is that χ comes from the left component and ζ

from the right. So χ has the form t|Q and ζ = P |w. In that case χ and ζ must be concurrent:
we always have χ ⌣ ζ. When doing w on the right, the left component does not change, and
afterwards t is still possible. Hence χ ;ζ t|target(w). This explains Item 3 in Definition 18.

Another possibility is that χ and ζ both stem from the left component. In that case
χ = t|Q and ζ = v|Q, and it must be that t ⌣ u within the left component. Thus t ;v t′

for some transition t′, and we obtain χ ;ζ t′|Q. This motivates the first part of Item 4.
It can also happen that χ stems form the left component, whereas ζ is a synchronisation,

involving both components. Thus χ = t|Q and ζ = v|w. For χ ⌣ ζ to hold, it must be that
t ⌣ v, whereas the w-part of ζ cannot interfere with t. This yields the second part of Item 4.

The last part of Item 4 is explained in a similar vain from the possibility that ζ stems
from the left while χ is a synchronisation of both components. Item 5 follows by symmetry.

In case both χ and ζ are synchronisations involving both components, i.e., χ = t|u and
ζ = v|w, it must be that t ⌣ v and u ⌣ w. Now the resulting variant χ′ of χ after ζ is
simply t′|v′, where t ;v t′ and u ;v u′. This underpins Item 6.

If O has the form P [f ], χ and ζ must have the form t[f ] and v[f ], respectively. Whether t

and v are concurrent is not influenced by the renaming operator. So t ⌣ v. The variant of t

that remains after doing v is also not affected by the renaming, so if t ;v t′ then χ ;ζ t′[f ].
The case that O has the form P\L is equally trivial. This yields the first two parts of Item 7.

In case O = A with A
def= P , then χ and ζ must have the forms A:t and A:v, respectively,

where t and v are enabled in P . Now χ ⌣ ζ only if t ⌣ v, so t ;v t′ for some transition t′.
As the recursion around P disappears upon executing ζ, we obtain χ ;ζ t′. This yields the
last part of Item 7. Together, this motivates the following definition.

▶ Definition 18 (Successor Relation for CCS). The relation ; ⊆ Tr × Tr × Tr is the smallest
relation satisfying
1. t ;v t′ implies t + Q ;v+Q t′,
2. u ;w u′ implies P + u ;P +w u′,

3. t|Q ;P |w (t|target(w)) and P |u ;v|Q (target(v)|u),
4. t ;v t′ implies t|Q ;v|Q t′|Q, t|Q ;v|w (t′|target(w)), and t|u ;v|Q t′|u,
5. u ;w u′ implies P |u ;P |w P |u′, P |u ;v|w (target(v)|u′), and t|u ;P |w t|u′,
6. t ;v t′ ∧ u ;w u′ implies t|u ;v|w t′|u′,

7. t ;v t′ implies t\L ;v\L t′\L, t[f ] ;v[f ] t′[f ] and A:t ;A:v t′.

for all t, t′, u, u′, v, w ∈ Tr, P, Q ∈P and L, f, A with source(t) = source(v) = P , source(u) =
source(w) = Q, source(t′) = target(v), source(u′) = target(w), L ⊆ C , f a relabelling and
A ∈ A – provided that the composed transitions exist.

By projecting the ternary relation ; on its first two components, we obtain a characterisation
of the concurrency relation ⌣ between CCS transitions:

▶ Observation 19 (Concurrency Relation for CCS). The relation ⌣ ⊆ Tr × Tr is the smallest
relation satisfying
1. t ⌣ v implies t + Q ⌣ v + Q,
2. u ⌣ w implies P + u ⌣ P + w,

CONCUR 2021



33:12 Enabling Preserving Bisimulation Equivalence

3. t|Q ⌣ P |w and P |u ⌣ v|Q,
4. t ⌣ v implies t|Q ⌣ v|Q, t|Q ⌣ v|w, and t|u ⌣ v|Q,
5. u ⌣ w implies P |u ⌣ P |w, P |u ⌣ v|w, and t|u ⌣ P |w,
6. t ⌣ v ∧ u ⌣ w implies t|u ⌣ v|w,

7. t ⌣ v implies t\L ⌣ v\L, t[f ] ⌣ v[f ] and A:t ⌣ A:v,

for all t, u, v, w ∈ Tr, P, Q ∈ P and L, f, A with source(t) = source(v) = P , source(u) =
source(w) = Q, L ⊆ C , f a relabelling and A ∈ A – provided that the composed transitions
exist.

The same concurrency relation appeared earlier in [12]. Definition 18 and Observation 19
implicitly provide SOS rules for ; and ⌣, such as t⌣v′

t+Q⌣v+Q . It is part of future work to
investigate a rule format for ep-bisimilarity.

Definition 20 below generalises Definition 18 to all of ABCdE. In the special case that ζ is
a broadcast discard or signal emission, i.e., ℓ(ζ) ∈ B: ·∪ S̄ , the transition ζ does not change
state – we have source(ζ) = target(ζ) = O – and is supposed not to interfere with any other
transition χ enabled in O. Hence χ ⌣• ζ and χ ;ζ χ. This is Item 1 from Definition 20.

Consequently, in Item 11, which corresponds to Item 7 from Definition 18, we can now
safely restrict attention to the case ℓ(ζ) ∈ Act. The last part of that item says that if within
the scope of a signalling operator an action v occurs, one escapes from this signalling context,
similarly to the cases of choice and recursion. That would not apply if v is a broadcast
discard or signal emission, however.

An interesting case is when χ is a broadcast receive or discard transition, i.e., ℓ(χ) = b?
or b: . We postulate that one can never interfere with such an activity, as each process is
always able to synchronise with a broadcast action, either by receiving or by discarding it.
So we have χ ⌣• ζ for all ζ with O = source(ζ) = source(χ). It could be, however, that in
χ ;ζ χ′, one has ℓ(χ) = b? and ℓ(χ′) = b:, or vice versa. Item 2 says that if O = α.P , with
ζ the α-transition to P , then χ′ can be any transition labelled b? or b: that is enabled in P .
The second parts of Items 3 and 4 generalise this idea to discard actions enabled in a state
of the form P + Q. Finally, Items 5 and 6 state that when χ is a broadcast receive stemming
from the left side of O = P + Q and ζ an action from the right, or vice versa, then χ′ may be
any transition labelled b? or b: that is enabled in target(ζ). In all other cases, successors of χ

are inherited from successors of their building block, similar to the cases of other transitions.

▶ Definition 20 (Successor Relation for ABCdE). The relation ; ⊆ Tr × Tr × Tr is the
smallest relation satisfying
1. ℓ(ζ) ∈ B: ·∪ S̄ and source(ζ) = source(χ) implies χ ;ζ χ,
2. ℓ(t) ∈ {b?, b:} implies b?→P ;b?→P

t and b:α.P ; α→P
t,

3. ℓ(v) /∈ S̄ ∧ t ;v t′ implies t + Q ;v+Q t′ and t + u ;v+Q t′,
4. ℓ(w) /∈ S̄ ∧ u ;w u′ implies P + u ;P +w u′ and t + u ;P +w u′,
5. ℓ(w) /∈ S̄ ∧ ℓ(t) = b? ∧ ℓ(u′) ∈ {b?, b:} implies t + Q ;P +w u′,
6. ℓ(v) /∈ S̄ ∧ ℓ(u) = b? ∧ ℓ(t′) ∈ {b?, b:} implies P + u ;v+Q t′,

7. t|Q ;P |w (t|target(w)) and P |u ;v|Q (target(v)|u),
8. t ;v t′ implies t|Q ;v|Q t′|Q, t|Q ;v|w (t′|target(w)), and t|u ;v|Q t′|u,
9. u ;w u′ implies P |u ;P |w P |u′, P |u ;v|w (target(v)|u′), and t|u ;P |w t|u′,

10. t ;v t′ ∧ u ;w u′ implies t|u ;v|w t′|u′,

11. ℓ(v) ∈ Act ∧ t ;v t′ implies t\L ;v\L t′\L, t[f ] ;v[f ] t′[f ], A:t ;A:v t′ and t r̂ ;v̂ r t′,
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for all t, t′, u, u′, v, w ∈ Tr, P, Q ∈ P and α, L, f, A, b, r with source(t) = source(v) = P ,
source(u)=source(w)=Q, source(t′)=target(v) and source(u′)=target(w), α ∈ Act, L ⊆ C ·∪S ,
f a relabelling, A ∈ A , b ∈ B and r ∈ S – provided that the composed transitions exist.

Although we have chosen to inductively define the ; relations, in [15, Appendix B] we follow
a different approach in which Definition 20 appears as a theorem rather than a definition.
Following [9], we understand each transition as the synchronisation of a number of elementary
particles called synchrons. Then relations on synchrons are proposed in terms of which the
; relation is defined. That this leads to the same result indicates that the above definition
is more principled than arbitrary.

5.4 Congruence and Other Basic Properties of Ep-bisimilarity
As mentioned before, the operators + and | are associative and commutative up to strong
bisimilarity. We can strengthen this result.

▶ Theorem 21. The operators + and | are associative and commutative up to ↔ep.

Proof. Remember that P denotes the set of ABCdE expressions or processes.

Commutativity of +, i.e., P + Q ↔ep Q + P : The relation

{(I, I, IdI) | I ∈ P} ·∪ {(P + Q, Q + P, RP,Q) | P, Q ∈ P}

is an ep-bisimulation. Here IdI := {(t, t) | t ∈ en(I)} and

RP,Q :={(t + Q, Q + t) | t ∈ en(P ) ∧ ℓ(t) /∈ B:} ·∪
{(P + u, u + P ) | u ∈ en(Q) ∧ ℓ(u) /∈ B:} ·∪
{(t + u, u + t) | t ∈ en(P ) ∧ u ∈ en(Q) ∧ ℓ(t) = ℓ(u) ∈ B:} .

RP,Q relates transitions, i.e., derivations of transition triples, that are composed of the same
sets of direct subderivations, even though their order is reversed.

Associativity of +, i.e., (O + P ) + Q ↔ep O + (P + Q): The relation

{(I, I, IdI) | I ∈ P} ·∪ {((O + P ) + Q, O + (P + Q), RO,P,Q) | O, P, Q ∈ P}

is an ep-bisimulation. Here IdI and RO,P,Q are defined similarly to the previous case.

Commutativity of |, i.e., P |Q ↔ep Q|P : The relation {(P |Q, Q|P, RP,Q) | P, Q ∈ P} is an
ep-bisimulation. Here

RP,Q ={(t|Q, Q|t) | t ∈ en(P ) ∧ ℓ(t) /∈ B! ·∪ B? ·∪ B:} ·∪
{(P |u, u|P ) | u ∈ en(Q) ∧ ℓ(u) /∈ B! ·∪ B? ·∪ B:} ·∪
{(t|u, u|t) | t ∈ en(P ) ∧ u ∈ en(Q) ∧ ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ } ·∪
{(t|u, u|t) | t ∈ en(P ) ∧ u ∈ en(Q) ∧

∃ b ∈ B. {ℓ(t), ℓ(u)} ∈ {{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}}} .

Associativity of |, i.e., (O|P )|Q ↔ep O|(P |Q): The relation

{(O|P )|Q, O|(P |Q), RO,P,Q) | O, P, Q ∈ P}

is an ep-bisimulation, where RO,P,Q is defined similarly to the previous case. ◀
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Additionally, not only strong bisimilarity should be a congruence for all operators of
ABCdE – which follows immediately from the De Simone format – but also our new ep-
bisimilarity. This means that if two process terms are ep-bisimilar, then they are also
ep-bisimilar in any context.
▶ Theorem 22. Ep-bisimilarity is a congruence for all operators of ABCdE.
We cannot get it directly from the existing meta-theory on structural operational semantics,
as nobody has studied ep-bisimilarity before. As is standard, the proof is a case distinction
on the type of the operator. For example, the case for action prefixing requires

P ↔ep Q ⇒ α.P ↔ep α.Q for α ∈ Act .

Such properties can be checked by inspecting the syntactic form of the transition rules,
using structural induction. While proofs for some statements, such as the one for action
prefixing, are merely a simple exercise, others require more care, including long and tedious
case distinctions. A detailed proof of Theorem 22 can be found in Appendix A.

6 Failed Alternatives for Ep-Bisimulation

On an LTSS (S, Tr, source, target, ℓ,;) an ep-bisimulation has the type S × S × P(Tr × Tr).
This is different from that of other classical bisimulations, which have the type S × S. While
developing ep-bisimulation we have also explored dozens of other candidates, many of them
being of type (S × S) ·∪ (Tr × Tr). The inclusion of a relation between transitions is necessary
to reflect the concept of components or concurrency in one way or the other. One such
candidate definition declares a relation R ⊆ (S × S) ·∪ (Tr × Tr) a valid bisimulation iff the
set of triples

{(p, q, R) | (p, q) ∈ R ∩ (S × S) ∧ R = R ∩ (en(p) × en(q))}

is an ep-bisimulation. However, neither this candidate nor any of the others leads to a
transitive notion of bisimilarity. The problem stems from systems, not hard to model in
ABCdE, with multiple paths πi from states p to p′, such that a triple (p, q, R) in an ep-
bisimulation R forces triples (p′, q′, R′

i) to be in R for multiple relations Ri ⊆ en(p′) × en(q′),
depending on the chosen path πi.

7 Related Work

Our LTSSs generalise the concurrent transition systems of [24]. There t ;v u is written
as t↑v = u, and ↑ is a partial function rather than a relation, in the sense that for given t

and v there can be at most one u with t↑v = u. This condition is not satisfied by broadcast
communication, which is one of the reasons we switched to the notation t ;v u. As an
example, consider b!|a.(b? + b?). The b!-transition after the a-transition has two variants,
namely b!→0|( b?→0+b?) and b!→0|(b?+ b?→0). Another property of concurrent transition systems
that is not maintained in our framework is the symmetry of the induced concurrency relation.
Finally, [24] requires that (v↑t)↑(u↑t) = (v↑u)↑(t↑u), the cube axiom, whereas we have so far
not found reasons to restrict attention to processes satisfying this axiom. We are, however,
open to the possibility that for future applications of LTSSs, some closure properties may be
imposed on them.

In [1] a location-based bisimulation is proposed. It also keeps track of the components
participating in transitions. The underlying model is quite different from ours, which makes
it harder to formally argue that this notion of bisimilarity is incomparable to ours. We do
not know yet whether it could be used to reason about justness.
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8 Conclusion and Future Work

In related work, it has been argued that fairness assumptions used for verifying liveness
properties of distributed systems are too strong or unrealistic [13, 4, 12]. As a consequence,
justness, a minimal fairness assumption required for the verification of liveness properties, has
been proposed. Unfortunately, all classical semantic equivalences, such as strong bisimilarity,
fail to preserve justness.

In this paper, we have introduced labelled transition systems augmented by a successor
relation, and, based on that, the concept of enabling preserving bisimilarity, a finer variant
of strong bisimilarity. We have proven that this semantic equivalence is a congruence for
all classical operators. As it also preserves justness, it is our belief that enabling preserving
bisimilarity in combination with justness can and should be used for verifying liveness
properties of large-scale distributed systems.

Casually speaking, ep-bisimilarity is strong bisimilarity augmented with the requirement
that the relation between enabled transitions is inherited by successor transitions. A
straightforward question is whether this feature can be combined with other semantic
equivalences, such as weak bisimilarity or trace equivalence.

We have further shown how process algebras can be mapped into LTSSs. Of course,
process algebra is only one of many formal frameworks for modelling concurrent systems.
For accurately capturing causalities between event occurrences, models like Petri nets [22],
event structures [25] or higher dimensional automata [21, 8] are frequently preferable. Part
of future work is therefore to develop a formal semantics with respect to LTSSs for these
frameworks.

In order to understand the scope of justness in real-world applications, we plan to study
systems that depend heavily on liveness. As a starting point we plan to verify locks, such as
ticket lock.
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A Congruence Proofs

Ep-bisimilarity is a congruence for all operators of ABCdE iff Propositions 23–28 below hold.
We prove them one by one.

▶ Proposition 23. If P ↔ep Q and α ∈ Act then α.P ↔ep α.Q.

Proof. A transition enabled in α.P is either α→P or b:α.P for some b ∈ B with α ̸= b? .

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,
2. if (P, Q, R) ∈ R and α ∈ Act then (α.P, α.Q, α.R) ∈ R, where

α.R := {( α→P,
α→Q)} ·∪ {(b:α.P, b:α.Q) | b ∈ B ∧ α ̸= b?} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.

Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.

Induction step: Suppose (P, Q, R) ∈ R satisfies all requirements of Definition 8, we prove
that (P ′, Q′, R′), where P ′ = α.P , Q′ = α.Q, and R′ = α.R, also satisfies those requirements.
This follows directly with Definitions 8 and 20. ◀

▶ Proposition 24. If PL ↔ep QL and PR ↔ep QR then PL + PR ↔ep QL + QR.

Proof. A transition enabled in P + Q is either
t + Q for some t ∈ en(P ) with ℓ(t) /∈ B:,
P + u for some u ∈ en(Q) with ℓ(u) /∈ B:, or
t + u for some t ∈ en(P ) and u ∈ en(Q) with ℓ(t) = ℓ(u) ∈ B: .

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,
2. if (PL, QL, RL), (PR, QR, RR) ∈ R then (PL + PR, QL + QR, RL + RR) ∈ R, where

RL + RR :={(t + PR, v + QR) | t RL v ∧ ℓ(t) /∈ B:} ·∪
{(PL + u, QL + w) | u RR w ∧ ℓ(u) /∈ B:} ·∪
{(t + u, v + w) | t RL v ∧ u RR w ∧ ℓ(t) = ℓ(u) ∈ B:} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.

Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.

Induction step: Suppose (PL, QL, RL), (PR, QR, RR) ∈ R satisfy all requirements of Defini-
tion 8, we prove that (P, Q, R), where P = PL + PR, Q = QL + QR and R = RL + RR, also
satisfies those requirements.

R ⊆ en(P ) × en(Q) follows from RL ⊆ en(PL) × en(QL) and RR ⊆ en(PR) × en(QR).

Requirement 1.a: It suffices to find, for each χ ∈ en(P ), a ζ ∈ en(Q) with χ R ζ.
1. Suppose χ = t + PR for some t ∈ en(PL) with ℓ(t) /∈ B: .

We obtain v ∈ en(QL) with t RL v, and pick ζ = v + QR.
2. Suppose χ = PL + u for some u ∈ en(PR) with ℓ(u) /∈ B: .

We obtain w ∈ en(QR) with u RR w, and pick ζ = QL + w.
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3. Suppose χ = t + u for some t ∈ en(PL) and u ∈ en(PR) with ℓ(t) = ℓ(u) ∈ B: .
We obtain v ∈ en(QL) and w ∈ en(QR) with t RL v and u RR w, and pick ζ = v + w.

In all cases, ζ ∈ en(Q) and χ R ζ hold trivially.

Requirement 1.b: The proof is similar to that of Requirement 1.(a) and is omitted.

Requirement 1.c: This follows directly from the observations that
ℓ(t) = ℓ(v) =⇒ ℓ(t + PR) = ℓ(v + QR),
ℓ(u) = ℓ(w) =⇒ ℓ(PL + u) = ℓ(QL + w), and
ℓ(t) = ℓ(v) ∧ ℓ(u) = ℓ(w) =⇒ ℓ(t + u) = ℓ(v + w);

provided that the composed transitions exist.

Requirement 2 : It suffices to find, for arbitrary Υ, Υ′ with Υ R Υ′, an R′ with
(target(Υ), target(Υ′), R′) ∈ R, such that
(a) for arbitrary χ, χ′ with χ R χ′ and χ ;Υ ζ, we can find a ζ ′ with χ′ ;Υ′ ζ ′ and ζ R′ ζ ′,
(b) for arbitrary χ, χ′ with χ R χ′ and χ′ ;Υ′ ζ ′, we can find a ζ with χ ;Υ ζ and ζ R′ ζ ′.
Below we focus merely on (a), as (b) will follow by symmetry.

Suppose ℓ(Υ) ∈ B: ·∪ S̄ . Pick R′ = R. Then (target(Υ), target(Υ′), R′) = (P, Q, R) ∈ R.
From χ ;Υ ζ we have ζ = χ. Pick ζ ′ = χ′. Then χ′ ;Υ′ ζ ′. ζ R′ ζ ′ is given by χ R χ′.

We further split the cases when ℓ(Υ) ∈ Act.
1. Suppose Υ = v + PR and Υ′ = v′ + QR with v RL v′. We obtain R′

L that satisfies
Requirement 2 with respect to v and v′. Pick R′ = R′

L. Then (target(Υ), target(Υ′), R′) =
(target(v), target(v′), R′

L) ∈ R.
a. Suppose χ = t + PR and χ′ = t′ + QR with t RL t′. From χ ;Υ ζ we have t ;v ζ.

Then we obtain x′ with t′ ;v′ x′ and ζ R′
L x′. Pick ζ ′ = x′. Then χ′ ;Υ′ ζ ′ follows

from t′ ;v′ x′.
b. Suppose χ = PL + u and χ′ = QL + u′ with u RR u′. We obtain x′ with ζ R′

L x′ and
pick ζ ′ = x′. From χ ;Υ ζ we have ℓ(χ) = b? and ℓ(ζ) ∈ {b?, b:} for some b ∈ B.
Then χ′ ;Υ′ ζ ′ follows from ℓ(χ′) = b? and ℓ(x′) ∈ {b?, b:}.

c. Suppose χ = t + u and χ′ = t′ + u′ with t RL t′ and u RR u′. From χ ;Υ ζ we have
t ;v ζ. Then we obtain x′ with t′ ;v′ x′ and ζ R′

L x′. Pick ζ ′ = x′. Then χ′ ;Υ′ ζ ′

follows from t′ ;v′ x′.
In all cases, ζ R′ ζ ′ is given by ζ R′

L x′.
2. Suppose Υ = PL + w and Υ′ = QL + w′ with w RR w′. The proof is similar to that of the

previous case. ◀

▶ Proposition 25. If PL ↔ep QL and PR ↔ep QR then PL|PR ↔ep QL|QR.

Proof. A transition enabled in P |Q is either
t|Q for some t ∈ en(P ) with ℓ(t) /∈ B! ·∪ B? ·∪ B:,
P |u for some u ∈ en(Q) with ℓ(u) /∈ B! ·∪ B? ·∪ B:,
t|u for some t ∈ en(P ) and u ∈ en(Q) with ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ , or
t|u for some t∈en(P ) and u∈en(Q) with {ℓ(t), ℓ(u)}∈{{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}}
for some b ∈ B.

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,
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2. if (PL, QL, RL), (PR, QR, RR) ∈ R then (PL|PR, QL|QR, RL|RR) ∈ R, where

RL|RR :={(t|PR, v|QR) | t RL v ∧ ℓ(t) /∈ B! ·∪ B? ·∪ B:} ·∪
{(PL|u, QL|w) | u RR w ∧ ℓ(u) /∈ B! ·∪ B? ·∪ B:} ·∪
{(t|u, v|w) | t RL v ∧ u RR w ∧ ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ } ·∪
{(t|u, v|w) | t RL v ∧ u RR w ∧

∃ b ∈ B. {ℓ(t), ℓ(u)} ∈ {{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}}} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.

Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.

Induction step: Suppose (PL, QL, RL), (PR, QR, RR) ∈ R satisfy all requirements of Defini-
tion 8, we prove that (P, Q, R), where P = PL|PR, Q = QL|QR and R = RL|RR, also satisfies
those requirements.

R ⊆ en(P ) × en(Q) follows from RL ⊆ en(PL) × en(QL) and RR ⊆ en(PR) × en(QR).

Requirement 1.a: It suffices to find, for each χ ∈ en(P ), a ζ ∈ en(Q) with χ R ζ.
1. Suppose χ = t|PR for some t ∈ en(PL) with ℓ(t) /∈ B! ·∪ B? ·∪ B: .

We obtain v ∈ en(QL) with t RL v and pick ζ = v|QR.
2. Suppose χ = PL|u for some u ∈ en(PR) with ℓ(u) /∈ B! ·∪ B? ·∪ B: .

We obtain w ∈ en(QR) with u RR w and pick ζ = QL|w.
3. Suppose χ = t|u for some t ∈ en(PL), u ∈ en(PR) with ℓ(t) = ℓ(u) ∈ C ·∪ C̄ ·∪ S ·∪ S̄ .

We obtain v ∈ en(QL) and w ∈ en(QR) with t RL v and u RR w, and pick ζ = v|w.
4. Suppose χ = t|u for some t ∈ en(PL) and u ∈ en(PR) with

{ℓ(t), ℓ(u)} ∈ {{b!, b?}, {b!, b:}, {b?}, {b?, b:}, {b:}} for some b ∈ B.
We obtain v ∈ en(QL) and w ∈ en(QR) with t RL v and u RR w, and pick ζ = v|w.

In all cases, ζ ∈ en(Q) and χ R ζ hold trivially.

Requirement 1.b: The proof is similar to that of Requirement 1.(a) and is omitted.

Requirement 1.c: This follows directly from the observation that
ℓ(t) = ℓ(v) =⇒ ℓ(t|PR) = ℓ(v|QR),
ℓ(u) = ℓ(w) =⇒ ℓ(PL|u) = ℓ(QL|w), and
ℓ(t) = ℓ(v) ∧ ℓ(u) = ℓ(w) =⇒ ℓ(t|u) = ℓ(v|w);

provided that the composed transitions exist.

Requirement 2 : It suffices to find, for arbitrary Υ, Υ′ with Υ R Υ′, an R′ with
(target(Υ), target(Υ′), R′) ∈ R, such that
(a) for arbitrary χ, χ′ with χ R χ′ and χ ;Υ ζ, we can find a ζ ′ with χ′ ;Υ′ ζ ′ and ζ R′ ζ ′,
(b) for arbitrary χ, χ′ with χ R χ′ and χ′ ;Υ′ ζ ′, we can find a ζ with χ ;Υ ζ and ζ R′ ζ ′.
Below we focus merely on (a), as (b) will follow by symmetry.
1. Suppose Υ = v|PR and Υ′ = v′|QR with v RL v′. We obtain R′

L that satisfies Require-
ment 2 with respect to v and v′. Pick R′ = R′

L|RR. Then (target(Υ), target(Υ′), R′) =
(target(v)|PR, target(v′)|QR, R′

L|RR) ∈ R.
a. Suppose χ = t|PR and χ′ = t′|QR with t RL t′. From χ ;Υ ζ we have ζ = x|PR for

some x with t ;v x. Then we obtain x′ with t′ ;v′ x′ and x R′
L x′. Pick ζ ′ = x′|QR.

Then χ′ ;Υ′ ζ ′ follows from t′ ;v′ x′; ζ R′ ζ ′ is given by x R′
L x′.

b. Suppose χ = PL|u and χ′ = QL|u′ with u RR u′. From χ ;Υ ζ we have ζ = target(v)|u.
Pick ζ ′ = target(v′)|u′. Then χ′ ;Υ′ ζ ′ follows directly; ζ R′ ζ ′ is given by u RR u′.
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c. Suppose χ = t|u and χ′ = t′|u′ with t RL t′ and u RR u′. From χ ;Υ ζ we have
ζ = x|u for some x with t ;v x. Then we obtain x′ with t′ ;v′ x′ and x R′

L x′. Pick
ζ ′ = x′|u′. Then χ′ ;Υ′ ζ ′ follows from t′ ;v′ x′; ζ R′ ζ ′ is given by x R′

L x′ and
u RR u′.

2. Suppose Υ = PL|w and Υ′ = QL|w′ with w RR w′. The proof is similar to that of the
previous case.

3. Suppose Υ = v|w and Υ′ = v′|w′ with v RL v′ and w RR w′. We obtain R′
L that sat-

isfies Requirement 2 with respect to v and v′, and R′
R that satisfies Requirement 2

with respect to w and w′. Pick R′ = R′
L|R′

R. Then (target(Υ), target(Υ′), R′) =
(target(v)|target(w), target(v′)|target(w′), R′

L|R′
R) ∈ R.

a. Suppose χ = t|PR and χ′ = t′|QR with t RL t′. From χ ;Υ ζ we have ζ = x|target(w)
for some x with t ;v x. Then we obtain x′ with t′ ;v′ x′ and x R′

L x′. Pick
ζ ′ = x′|target(w′). Then χ′ ;Υ′ ζ ′ follows from t′ ;v′ x′; ζ R′ ζ ′ is given by x R′

L x′.
b. Suppose χ = PL|u and χ′ = QL|u′ with u RR u′. From χ ;Υ ζ we have ζ = target(v)|y

for some y with u ;w y. Then we obtain y′ with u′ ;w′ y′ and y R′
R y′. Pick

ζ ′ = target(v′)|y′. Then χ′ ;Υ′ ζ ′ follows from u′ ;w′ y′; ζ R′ ζ ′ is given by y R′
R y′.

c. Suppose χ = t|u and χ′ = t′|u′ with t RL t′ and u RR u′. From χ ;Υ ζ we have ζ =x|y
for some x, y with t ;v x and u ;w y. Then we obtain x′, y′ with t′ ;v′ x′, u′ ;w′ y′,
x R′

L x′, and y R′
R y′. Pick ζ ′ = x′|y′. Then χ′ ;Υ′ ζ ′ follows from t′ ;v′ x′ and

u′ ;w′ y′; ζ R′ ζ ′ is given by x R′
L x′ and y R′

R y′. ◀

▶ Proposition 26. If P ↔ep Q and L ⊆ C ·∪ S then P\L ↔ep Q\L.

Proof. A transition enabled in P\L is t\L for some t ∈ en(P ) with ℓ(t) /∈ L ·∪ L.

Let R ⊆ P×P× P(Tr × Tr) be the smallest relation satisfying
1. if (P, Q, R) ∈ R′ for some ep-bisimulation R′ then (P, Q, R) ∈ R,
2. if (P, Q, R) ∈ R and L ⊆ C ·∪ S then (P\L, Q\L, R\L) ∈ R, where

R\L := {(t\L, v\L) | t R v ∧ ℓ(t) /∈ L ·∪ L} .

It suffices to show that R is an ep-bisimulation. I.e., all entries in R satisfy the requirements
of Definition 8. We proceed by structural induction.

Induction base: Suppose (P, Q, R) ∈ R′ for some ep-bisimulation R′. Since R′ ⊆ R, all
requirements of Definition 8 are satisfied.

Induction step: Suppose (P, Q, R) ∈ R satisfies all requirements of Definition 8, we prove that
(P ′, Q′, R′), where P ′ = P\L, Q′ = Q\L, and R′ = R\L, also satisfies those requirements.
This follows directly with Definitions 8 and 20. ◀

▶ Proposition 27. If P ↔ep Q and f is a relabelling then P [f ] ↔ep Q[f ].

Proof. An easy structural induction on the structure of P ; similar to the proof for restriction
(Proposition 26). ◀

▶ Proposition 28. If P ↔ep Q and s ∈ S P ŝ ↔ep Q ŝ.

Proof. An easy structural induction on the structure of P ; similar to the proof for restriction
(Proposition 26). ◀


	1 Introduction
	2 Labelled Transition Systems with Successors
	3 Enabling Preserving Bisimulation Equivalence
	4 Stating and Verifying Liveness Properties
	5 Interpreting Justness in Process Algebras
	5.1 Algebra of Broadcast Communication with Discards and Emissions
	5.2 Naming Transitions
	5.3 Successors
	5.4 Congruence and Other Basic Properties of Ep-bisimilarity

	6 Failed Alternatives for Ep-Bisimulation
	7 Related Work
	8 Conclusion and Future Work
	A Congruence Proofs

