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In two earlier papers we derived congruence formats with regard to transition system specifications
for weak semantics on the basis of a decomposition method for modal formulas. The idea is that a
congruence format for a semantics must ensure that the formulas in the modal characterisation of this
semantics are always decomposed into formulas that are again in this modal characterisation. The
stability and divergence requirements that are imposed on many of the known weak semantics have
so far been outside the realm of this method. Stability refers to the absence of a τ-transition. We
show, using the decomposition method, how congruence formats can be relaxed for weak semantics
that are stability-respecting. This relaxation for instance brings the priority operator within the range
of the stability-respecting branching bisimulation format. Divergence, which refers to the presence
of an infinite sequence of τ-transitions, escapes the inductive decomposition method. We circumvent
this problem by proving that a congruence format for a stability-respecting weak semantics is also a
congruence format for its divergence-preserving counterpart.

1 Introduction

Structural operational semantics [25] provides specification languages with an interpretation. It gener-
ates a labelled transition system, in which states are the closed terms over a (single-sorted, first-order)
signature, and transitions between states carry labels. The transitions between states are obtained from a
transition system specification (TSS), which consists of a set of proof rules called transition rules. States
in labelled transition systems can be identified by a wide range of behavioural equivalences, based on e.g.
branching structure or decorated versions of execution sequences. VAN GLABBEEK [14] classified so-
called weak semantics, which take into account the internal action τ . A significant number of the weak
semantics based on a bisimulation relation carry a stability or divergence requirement. Stability refers to
the absence of a τ-transition and divergence to the presence of an infinite sequence of τ-transitions.

In general a behavioural equivalence induced by a TSS is not guaranteed to be a congruence, i.e.
the equivalence class of a term f (p1, . . . , pn) need not be determined by f and the equivalence classes
of its arguments p1, . . . , pn. Being a congruence is an important property, for instance in order to fit
the equivalence into an axiomatic framework. Respecting stability or preserving divergence sometimes
needs to be imposed in order to obtain a congruence relation, for example in case of the priority operator
[1].

Behavioural equivalences can be characterised in terms of the observations that an experimenter
could make during a session with a process. Modal logic captures such observations. A modal character-
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isation of an equivalence on processes consists of a class C of modal formulas such that two processes are
equivalent if and only if they satisfy the same formulas in C. For instance, Hennessy-Milner logic [21]
constitutes a modal characterisation of (strong) bisimilarity. A cornerstone for the current paper is the
work in [5] to decompose formulas from Hennessy-Milner logic with respect to a structural operational
semantics in the ntyft format [19] without lookahead. Here the decomposition of a modal formula ϕ w.r.t.
a term t = f (p1, . . . , pn) is a selection of n-tuples of modal formulas, one of which needs to be satisfied by
the processes pi in order for t to satisfy ϕ . Based on this method, congruence formats can be generated
for process semantics from their modal characterisation, to ensure that the equivalence is a congruence.
Such formats help to avoid repetitive congruence proofs and obtain insight into the congruence property.
Key idea is that congruence is ensured if formulas from the modal characterisation of a semantics under
consideration are always decomposed into formulas that are again in this modal characterisation. This
approach was extended to weak semantics in [13, 10]. It crosses the borders between process algebra,
structural operational semantics, process semantics, and modal logic.

Here we expand the latter work to weak semantics that respect stability or preserve divergence. We
focus on branching bisimilarity and rooted branching bisimilarity [18] and consider for each a stability-
respecting and two divergence-preserving variants. Divergence-preserving branching bisimilarity [18] is
the coarsest congruence relation for the parallel composition operator that only equates processes satis-
fying the same formulas from the well-known temporal logic CTL∗ minus the next-time operator X [17].
With regard to stability the expansion is relatively straightforward: we extend the modal characterisation
of the semantics with one clause to capture that a semantics is stability-respecting, and study the decom-
position of this additional clause. Next we show how the congruence formats for branching bisimilarity
and rooted branching bisimilarity from [13] can be relaxed, owing to the extended modal characterisation
for stability-respecting branching bisimilarity. Notably, the transition rules for the priority operator are
within the more relaxed formats.

The divergence preservation property escapes the inductive decomposition method, as it concerns
an infinite sequence of τ-transitions. We overcome this problem by presenting a general framework
for lifting congruence formats from some weak semantics ≈ to a finer weak semantics ∼, with the
aim to turn congruence formats for stability-respecting weak semantics into congruence formats for
their divergence-preserving counterparts. It roughly works as follows. Consider a TSS P in a con-
gruence format for ≈, and for example a unary function symbol f . A new TSS is created out of
P, in which many occurrences of τ in transition rules are suppressed by renaming them into some
fresh action name. Furthermore, processes are provided with what we call an oracle transition that
reveals some pertinent information on the behaviour of the process, such as whether it can diverge.
In this way we ensure that ≈ and ∼ coincide on the transformed TSS. For each closed term p of
P we moreover introduce a constant p̂ in the transformed TSS such that p ∼ q implies p̂ ∼ q̂, and
so p̂ ≈ q̂. We take care that this entire transformation preserves the congruence format for ≈. So
p̂ ≈ q̂ implies f (p̂) ≈ f (q̂), and hence, since ≈ and ∼ coincide on the transformed TSS, f (p̂) ∼ f (q̂).
Finally we cast f (p̂) and f (q̂) back to processes strongly bisimilar to f (p) and f (q) in the original TSS
P, taking care that ∼ is preserved. Thus we have gone full circle: p ∼ q implies f (p) ∼ f (q). This im-
plies that the congruence format for ≈ is also a congruence format for ∼. We show four instances where
this method can be applied. In two cases≈ is stability-respecting branching bisimilarity and in two cases
rooted stability-respecting branching bisimilarity, while in ∼ stability is replaced by two different forms
of divergence. Thus it can be concluded that the congruence format for stability-respecting branching
bisimilarity is also applicable to divergence-preserving as well as weakly divergence-preserving branch-
ing bisimilarity; and likewise for the rooted counterparts of these semantics.

An extended abstract of this paper appeared as [11].
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2 Preliminaries

This section recalls the basic notions of labelled transition systems and weak semantics and defines
stability-respecting and divergence-preserving branching bisimilarity (Sect. 2.1) as well as a modal char-
acterisation of stability-respecting branching bisimilarity (Sect. 2.2). It also presents a brief introduction
to structural operational semantics (Sect. 2.3) and recalls some syntactic restrictions on transition rules
(Sect. 2.4). We define the notion of a ruloid (Sect. 2.5). Finally, the modal decomposition method for
weak semantics is explained (Sect. 2.6).

2.1 Stability-respecting and divergence-preserving branching bisimilarity

A labelled transition system (LTS) is a triple (P,Act,→), with P a set of processes, Act a set of actions,
and → ⊆ P×Act ×P. We normally let Act = A∪{τ} where τ is an internal action and A some set
of external or observable actions not containing τ . We write Aτ for A∪ {τ}. We use p,q to denote
processes, α,β ,γ for elements of Aτ , and a,b for elements of A. We write p α−→ q for (p,α,q) ∈ →,
p α−→ for ∃q ∈ P : p α−→ q, and p 6α−→ for ¬(p α−→). Furthermore, ε

=⇒ denotes the transitive-reflexive
closure of τ−→.

Definition 1 Let B ⊆ P×P be a symmetric relation.

• B is a branching bisimulation if p B q and p α−→ p′ implies that either α = τ and p′ B q, or
q ε
=⇒ q′ α−→ q′′ for some q′ and q′′ with p B q′ and p′ B q′′.

• B is stability-respecting if p B q and p 6 τ−→ implies that q ε
=⇒ q′ 6 τ−→ for some q′ with p B q′.

• B is divergence-preserving if it satisfies the following condition:

(D) if p B q and there is an infinite sequence of processes (pk)k∈N such that p = p0, pk
τ−→ pk+1

and pk B q for all k ∈ N, then there exists an infinite sequence of processes (q`)`∈N such
that q = q0, q`

τ−→ q`+1 for all ` ∈N, and pk B q` for all k, ` ∈N.

The definition of a weakly divergence-preserving relation is obtained by omitting the condition
“and pk B q` for all k, ` ∈N”. (The condition “and pk B q for all k ∈N” is then redundant.)

Processes p,q are branching bisimilar, denoted p↔b q, if there exists a branching bisimulation B with
p B q. They are stability-respecting, divergence-preserving or weakly divergence-preserving branch-
ing bisimilar, denoted p↔s

b q, p↔∆
b q or p↔∆>

b q, if moreover B is stability-respecting, divergence-
preserving or weakly divergence-preserving, respectively.

We have↔b ⊃↔s
b ⊃↔∆>

b ⊃↔∆
b .

The relations↔b,↔s
b,↔∆

b and↔∆>
b are equivalences [2, 14, 16]. However, they are not congruences

with respect to most process algebras from the literature, meaning that the equivalence class of a process
f (p1, . . . , pn), with f an n-ary function symbol, is not always determined by the equivalence classes of
its arguments, i.e. the processes p1, . . . , pn. Therefore an additional rootedness condition is imposed.

Definition 2 Rooted branching bisimilarity,↔rb, is the largest symmetric relation on P such that p↔rb q
and p α−→ p′ implies that q α−→ q′ for some q′ with p′ ↔b q′. Likewise, rooted stability-respecting,
divergence-preserving or weakly divergence-preserving branching bisimilarity, denoted by p↔s

rb q,
p↔∆

rb q or p↔∆>
rb q, is the largest symmetric relation R on P such that p R q and p α−→ p′ implies

that q α−→ q′ for some q′ with p′↔s
b q′, p′↔∆

b q′ or p′↔∆>
b q′, respectively.
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Our main aim is to develop congruence formats for stability-respecting and divergence-preserving se-
mantics. These congruence formats will impose syntactic restrictions on the transition rules that are used
to generate the underlying LTS. The congruence formats will be determined using the characterising
modal logics for the semantics.

We will sometimes refer to strong bisimulation semantics, which ignores the special status of the τ .

Definition 3 A symmetric relation B⊆ P×P is a strong bisimulation if p B q and p a−→ p′ implies that
q a−→ q′ for some q′ with p′ B q′. Processes p,q are strongly bisimilar, denoted p↔ q, if there exists a
strong bisimulation B with p B q.

The various notions of bisimilarity defined above are examples of so-called behavioural equivalences.
For a general formulation of the results in Section 4, it is convenient to formally define a notion of
behavioural equivalence that includes at least the examples above. Note that a common feature of their
definitions is that they associate with every LTS G = (PG,ActG,→G) a binary relation∼G. (For instance,
in the case of strong bisimilarity, the relation ∼G associated with G is defined as the binary relation
↔ ⊆ PG×PG such that p↔ q if (and only if) there exists a strong bisimulation B ⊆ PG×PG such
that p B q.) One may, thus, think of a behavioural equivalence as a family of binary relations indexed
by LTSs. It turns out that we need to impose just one extra condition on such families to arrive at a
suitable formalisation of the notion of behavioural equivalence. The condition states that the relation
associated with the disjoint union of two LTSs restricted to one of the components coincides with the
relation associated with that component.

Definition 4 Two LTSs G = (PG,ActG,→G) and H= (PH,ActH,→H) are called disjoint if PG∩PH = /0.
In that case G]H denotes their union (PG∪PH,ActG∪ActH,→G ∪→H).

A behavioural equivalence ∼ on LTSs is a family of equivalence relations ∼G, one for every LTS G,
such that for each pair of disjoint LTSs G = (PG,ActG,→G) and H we have g∼G g′⇔ g∼G]H g′ for any
g,g′ ∈ PG.

The notions of bisimilarity defined above clearly qualify as behavioural equivalences. Given two
behavioural equivalences ∼ and ≈, we write ∼⊆≈ iff ∼G ⊆≈G for each LTS G.

2.2 Modal logic

Modal logic formulas express properties on the behaviour of processes in an LTS. Following [14], we
extend Hennessy-Milner logic [21] with the modal connectives 〈ε〉ϕ and 〈τ̂〉ϕ , expressing that a process
can perform zero or more, respectively zero or one, τ-transitions to a process where ϕ holds.

Definition 5 The class O of modal formulas is defined as follows, where I ranges over all index sets and
α over Aτ :

O ϕ ::=
∧
i∈I

ϕi | ¬ϕ | 〈α〉ϕ | 〈ε〉ϕ | 〈τ̂〉ϕ

We use abbreviations > for the empty conjunction, ϕ1 ∧ϕ2 for
∧

i∈{1,2}ϕi, ϕ〈α〉ϕ ′ for ϕ ∧ 〈α〉ϕ ′, and
ϕ〈τ̂〉ϕ ′ for ϕ ∧〈τ̂〉ϕ ′.

p |= ϕ denotes that process p satisfies formula ϕ . The first two operators represent the standard Boolean
operators conjunction and negation. By definition, p |= 〈α〉ϕ if p α−→ p′ for some p′ with p′ |= ϕ ,
p |= 〈ε〉ϕ if p ε

=⇒ p′ for some p′ with p′ |= ϕ , and p |= 〈τ̂〉ϕ if either p |= ϕ or p τ−→ p′ for some p′

with p′ |= ϕ .
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For each L ⊆ O, we write p ∼L q if p and q satisfy the same formulas in L. We say that L is a
modal characterisation of some behavioural equivalence ∼ if ∼L coincides with ∼. We write ϕ ≡ ϕ ′

if p |= ϕ ⇔ p |= ϕ ′ for all processes p. The class L≡ denotes the closure of L ⊆ O under ≡. Trivially,
p∼L q⇔ p∼L≡ q.

Definition 6 [14] The subclasses Ob and Orb of O are defined as follows, where a ranges over A and α

over Aτ :
Ob ϕ ::=

∧
i∈I

ϕi | ¬ϕ | 〈ε〉(ϕ〈τ̂〉ϕ) | 〈ε〉(ϕ〈a〉ϕ)

Orb ϕ ::=
∧
i∈I

ϕ i | ¬ϕ | 〈α〉ϕ | ϕ (ϕ ∈Ob)

Ob and Orb are modal characterisations of↔b and↔rb, respectively (see [13]).
The idea behind stability is: (I) if p↔s

b q and p ε
=⇒ p′ 6 τ−→ with p↔s

b p′, then q ε
=⇒ q′ 6 τ−→ with

q↔s
b q′. In the definition of ↔s

b this was formulated more weakly: (II) if p↔s
b q and p 6 τ−→, then

q ε
=⇒ q′ 6 τ−→ with q↔s

b q′. To argue that formulations (I) and (II) are equivalent, suppose p↔s
b q and

p ε
=⇒ p′ 6 τ−→ with p↔s

b p′. Clearly q ε
=⇒ q′′ with p′ ↔s

b q′′. Now the weaker property (II) yields
q′′ ε

=⇒ q′ 6 τ−→ with q′′↔s
b q′. So q ε

=⇒ q′ 6 τ−→ with q↔s
b q′. That formulations (I) and (II) coincide is

important to grasp the following modal characterisation of stability-respecting branching bisimilarity,
because the additional clause at the end of the definition of Os

b is based on formulation (I).

Definition 7 [14] The subclasses Os
b and Os

rb of O are defined as follows:

Os
b ϕ ::=

∧
i∈I

ϕi | ¬ϕ | 〈ε〉(ϕ〈τ̂〉ϕ) | 〈ε〉(ϕ〈a〉ϕ) | 〈ε〉(¬〈τ〉>∧ ϕ) (ϕ ∈Os
rb)

Os
rb ϕ ::=

∧
i∈I

ϕ i | ¬ϕ | 〈α〉ϕ | ϕ (ϕ ∈Os
b)

The additional clause 〈ε〉(¬〈τ〉> ∧ ϕ) in the definition of Os
b expresses stability. The first part

〈ε〉(¬〈τ〉> . . .) captures p ε
=⇒ p′ 6 τ−→, while the second part . . . ∧ ϕ captures the stability-respecting

branching bisimulation class of p′. Note that since p′ 6 τ−→, unrooted and rooted stability-respecting
branching bisimilarity coincide for p′, which allows us to take the second part from Os

rb.
The proof of the following theorem is presented in the appendix.

Theorem 8 p↔s
b q⇔ p∼Os

b
q and p↔s

rb q⇔ p∼Os
rb

q, for all p,q ∈ P.

2.3 Structural operational semantics

A signature is a set Σ of function symbols f with arity ar( f ). A function symbol of arity 0 is called a
constant. Let V be an infinite set of variables, with typical elements x,y,z; we assume |Σ|, |A| ≤ |V |. A
syntactic object is closed if it does not contain any variables. The sets T(Σ) and T(Σ) of terms over Σ and
V and closed terms over Σ, respectively, are defined as usual; t,u,v,w denote terms, p,q denote closed
terms, and var(t) is the set of variables that occur in term t. A substitution σ is a partial function from V
to T(Σ). A closed substitution is a total function from V to closed terms. The domain of substitutions is
extended to T(Σ) as usual.

Structural operational semantics [25] generates an LTS in which the processes are the closed terms.
The labelled transitions between processes are obtained from a transition system specification, which
consists of a set of proof rules called transition rules.
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Definition 9 A (positive or negative) literal is an expression t α−→ u or t 6α−→. A (transition) rule is of
the form H

λ
with H a set of literals called the premises, and λ a literal called the conclusion; the terms

at the left- and right-hand side of λ are called the source and target of the rule, respectively. A rule /0
λ

is
also written λ . A rule is standard if it has a positive conclusion. A transition system specification (TSS),
written (Σ,Act,R), consists of a signature Σ, a set of actions Act, and a collection R of transition rules
over Σ. A TSS is standard if all its rules are.

A TSS is meant to specify an LTS in which the transitions are the closed positive literals that can be
proved using the rules of the TSS. It is straightforward to associate an appropriate notion of provability
in the special case of standard TSSs with only positive premises. In the general case, in which the rules
of the TSS may have negative premises, consistency is a concern. Literals t α−→ u and t 6α−→ are said to
deny each other; a notion of provability associated with TSSs is consistent if it is not possible to prove
two literals that deny each other. To arrive at a consistent notion of provability in the general case, we
proceed in two steps: first we define the notion of irredundant proof, which on a standard TSS does not
allow the derivation of negative literals at all, and then arrive at a notion of well-supported proof that
allows the derivation of negative literals whose denials are manifestly underivable by irredundant proofs.
In [15] it was shown that the notion of well-supported provability is consistent.

Definition 10 [5] Let P = (Σ,Act,R) be a TSS. An irredundant proof from P of a rule H
λ

is a well-
founded tree with the nodes labelled by literals and some of the leaves marked “hypothesis”, such that
the root has label λ , H is the set of labels of the hypotheses, and if µ is the label of a node that is not a
hypothesis and K is the set of labels of the children of this node then K

µ
is a substitution instance of a rule

in R. The rule H
λ

is irredundantly provable from P, notation P `irr
H
λ

, if such a proof exists.

We note that if a leaf in a proof from P is not marked as hypothesis, then it is a substitution instance of a
rule without premises in R.

Definition 11 [15] Let P = (Σ,Act,R) be a standard TSS. A well-supported proof from P of a closed
literal λ is a well-founded tree with the nodes labelled by closed literals, such that the root is labelled by
λ , and if µ is the label of a node and K is the set of labels of the children of this node, then:

1. either µ is positive and K
µ

is a closed substitution instance of a rule in R;

2. or µ is negative and for each set N of closed negative literals with N
ν

irredundantly provable from
P and ν a closed positive literal denying µ , a literal in K denies one in N.

P `ws λ denotes that a well-supported proof from P of λ exists. A standard TSS P is complete if for each
p and α , either P `ws p 6α−→ or there exists a closed term q such that P `ws p α−→ q.

If P = (Σ,Act,R) is a complete TSS, then the LTS associated with P is the LTS (T(Σ),Act,→) with
→= {(p,α,q) | P `ws p α−→q}. We do not associate an LTS with an incomplete TSS.

2.4 Congruence formats

Let P = (Σ,Act,R) be a transition system specification, and let ∼P be an equivalence relation defined on
the set of closed terms T(Σ). Then ∼P is a congruence for P if, for each f ∈ Σ, we have that pi ∼P qi

implies f (p1, . . . , par( f ))∼P f (q1, . . . ,qar( f )). Note that this is the case if for each open term t ∈T(Σ) and
each pair of closed substitutions ρ,ρ ′ : V → T(Σ) we have (∀x∈ var(t). ρ(x)∼P ρ ′(x))⇒ ρ(t)∼P ρ ′(t).

Recall that we have associated with every complete TSS an LTS of which the states are the closed
terms of the TSS, and that a behavioural equivalence ∼ associates with every such transition system an
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equivalence on its set of states. Thus, ∼ associates with every TSS P an equivalence ∼P on its set of
closed terms. By a congruence format for a behavioural equivalence ∼ we mean a class of TSSs such
that for every TSS P in the class the equivalence ∼P is a congruence. Usually, a congruence format
is defined by means of a list of syntactic restrictions on the rules of TSSs. We proceed to recap some
terminology for syntactic restrictions on rules [5, 19, 20].

Definition 12 An ntytt rule is a rule in which the right-hand sides of positive premises are variables that
are all distinct, and that do not occur in the source. An ntytt rule is an ntyxt rule if its source is a variable,
an ntyft rule if its source contains exactly one function symbol and no multiple occurrences of variables,
and an nxytt rule if the left-hand sides of its premises are variables.

The congruence format for strong bisimulation semantics consists of the ntyft and ntyxt rules [19, 20].
Congruence formats for other semantics are generally obtained by imposing additional restrictions on
this ntyft/ntyxt format.

Definition 13 A variable in a rule is free if it occurs neither in the source nor in right-hand sides of
premises. A rule has lookahead if some variable occurs in the right-hand side of a premise and in the
left-hand side of a premise. A rule is decent if it has no lookahead and does not contain free variables.

Each combination of syntactic restrictions on rules induces a corresponding syntactic format for TSSs of
the same name. For instance, a TSS is in decent ntyft format if it contains decent ntyft rules only.

Definition 14 A TSS is in ready simulation format if it consists of ntyft and ntyxt rules that have no
lookahead.

In congruence formats for weak semantics, lookahead of two consecutive actions from A must be forbid-
den. To see this, consider the extension of CCS [23] with a unary operator f defined by the rule

x a−→ y y b−→ z

f (x) c−→ z
.

Then ab0↔rb aτb0, whereas f (ab0) 6↔rb f (aτb0). Therefore congruence formats for weak semantics
are generally obtained by imposing additional restrictions on the ready simulation format.

2.5 Ruloids

To decompose modal formulas, we use a result from [5], where for each standard TSS P in ready simula-
tion format a collection of decent nxytt rules, called P-ruloids, is constructed. The precise transformation,
which is rather lengthy, can be found in [5]. Here the construction is explained at a somewhat superficial
level, which is sufficiently detailed to argue later on that our congruence formats are preserved under this
transformation.

First P is converted to a standard TSS in decent ntyft format. In this conversion from [20], free
variables in a rule are replaced by arbitrary closed terms, and if the source is of the form x, then this
variable is replaced by a term f (x1, . . . ,xar( f )) for each n-ary function symbol f in the signature of P,
where the variables x1, . . . ,xar( f ) are fresh. Next, using a construction from [9], left-hand sides of positive
premises in rules of P are reduced to variables. In the final transformation step, non-standard rules with
a negative conclusion t 6α−→ are introduced. The motivation is that instead of the notion of well-founded
provability of Def. 11, we want a more constructive notion like Def. 10, by making it possible that a
negative premise is matched with a negative conclusion. A non-standard rule H

f (x1,...,xar( f )) 6
α−→

is obtained
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by picking one premise from each standard rule with a conclusion of the form f (x1, . . . ,xar( f ))
α−→ t, and

including the denial of each of the selected premises as a premise in H.
The resulting TSS, which is in decent ntyft format, is denoted by P+. In [5] it was established, for

all closed literals µ , that P `ws µ if and only if µ is irredundantly provable from P+. The P-ruloids
are those decent nxytt rules that are irredundantly provable from P+. In [5] is was proved that there
is a well-supported proof from P of a transition ρ(t) a−→ q, with ρ a closed substitution, if and only if
there is a proof of this transition that uses at the root a P-ruloid with source t. This result underlies the
decomposition method presented in the next section.

2.6 Decomposition of modal formulas

The decomposition method proposed in [13] gives a special treatment to arguments of function symbols
that are deemed patient; a predicate marks the arguments that get this special treatment.

Definition 15 [4, 8] Let Γ be a predicate on arguments of function symbols. A standard ntyft rule is a
Γ-patience rule if it is of the form

xi
τ−→ y

f (x1, . . . ,xar( f ))
τ−→ f (x1, . . . ,xi−1,y,xi+1, . . . ,xar( f ))

with Γ( f , i). A TSS is Γ-patient if it contains all Γ-patience rules. A standard ntytt rule is Γ-patient if it
is irredundantly provable from the Γ-patience rules; else it is called Γ-impatient.

A patience rule for an argument i of a function symbol f expresses that terms f (p1, . . . , par( f )) can mimic
the τ-transitions of argument pi (cf. [4, 8]). Typically, in process algebra, there are patience rules for the
arguments of the merge and for the first argument of sequential composition, but not for the arguments
of the alternative composition + or for the second argument of sequential composition.

Definition 16 [5] Let Γ be a predicate on {( f , i) | 1≤ i≤ ar( f ), f ∈Σ}. If Γ( f , i), then argument i of f is
Γ-liquid; otherwise it is Γ-frozen. An occurrence of x in t is Γ-liquid if either t = x, or t = f (t1, . . . , tar( f ))
and the occurrence is Γ-liquid in ti for a liquid argument i of f ; otherwise the occurrence is Γ-frozen.

We now show how to decompose formulas from O. To each term t and formula ϕ we assign a set
t−1(ϕ) of decomposition mappings ψ : V → O. Each of these mappings ψ ∈ t−1(ϕ) has the property
that, for all closed substitutions ρ , ρ(t) |= ϕ if ρ(x) |= ψ(x) for all x ∈ var(t). Vice versa, whenever
ρ(t) |= ϕ , there is a decomposition mapping ψ ∈ t−1(ϕ) with ρ(x) |= ψ(x) for all x ∈ var(t).

Definition 17 [13] Let P = (Σ,Aτ ,R) be a Γ-patient standard TSS in ready simulation format. We define
·−1 : T(Σ)×O→ P(V→O) as the function that for each t ∈ T(Σ) and ϕ ∈ O returns the smallest set
t−1(ϕ) ∈ P(V→O) of decomposition mappings ψ : V→O satisfying the following six conditions. Let
t denote a univariate term, i.e. without multiple occurrences of the same variable. (Cases 1–5 associate
with every univariate term t a set t−1(ϕ). Then, in Case 6, the definition is generalised to terms that
are not univariate, using that every term can be obtained by applying a non-injective substitution to a
univariate term.)

1. ψ ∈ t−1(
∧

i∈I ϕi) iff there are ψi ∈ t−1(ϕi) for each i ∈ I such that

ψ(x) =
∧
i∈I

ψi(x) for all x ∈V
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2. ψ ∈ t−1(¬ϕ) iff there is a function h : t−1(ϕ)→ var(t) such that

ψ(x) =


∧

χ∈h−1(x)

¬χ(x) if x ∈ var(t)

> if x /∈ var(t)

3. ψ ∈ t−1(〈α〉ϕ) iff there is a P-ruloid H
t α−→u

and a χ ∈ u−1(ϕ) such that

ψ(x) =


χ(x) ∧

∧
x

β−→y∈H

〈β 〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉> if x ∈ var(t)

> if x /∈ var(t)

4. ψ ∈ t−1(〈ε〉ϕ) iff one of the following holds:

(a) either there is a χ ∈ t−1(ϕ) such that

ψ(x) =

{
〈ε〉χ(x) if x occurs Γ-liquid in t

χ(x) otherwise

(b) or there is a Γ-impatient P-ruloid H
t τ−→u

and a χ ∈ u−1(〈ε〉ϕ) such that

ψ(x) =



> if x /∈ var(t)

〈ε〉
(

χ(x) ∧
∧

x
β−→y∈H

〈β 〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉>
) if x occurs

Γ-liquid in t

χ(x)∧
∧

x
β−→y∈H

〈β 〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉> otherwise

5. ψ ∈ t−1(〈τ̂〉ϕ) iff one of the following holds:

(a) either ψ ∈ t−1(ϕ);

(b) or there is an x0 that occurs Γ-liquid in t, and a χ ∈ t−1(ϕ) such that

ψ(x) =

{
〈τ̂〉χ(x) if x = x0

χ(x) otherwise

(c) or there is a Γ-impatient P-ruloid H
t τ−→u

and a χ ∈ u−1(ϕ) such that

ψ(x) =


χ(x)∧

∧
x

β−→y∈H

〈β 〉χ(y) ∧
∧

x 6γ−→∈H

¬〈γ〉> if x ∈ var(t)

> otherwise

6. ψ ∈ σ(t)−1(ϕ) for a non-injective substitution σ : var(t)→V iff there is a χ ∈ t−1(ϕ) such that

ψ(x) =
∧

z∈σ−1(x)

χ(z) for all x ∈V
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The following theorem will be the key to the forthcoming congruence results.

Theorem 18 [13] Let P = (Σ,Aτ ,R) be a Γ-patient complete standard TSS in ready simulation format.
For each term t ∈ T(Σ), closed substitution ρ , and ϕ ∈O:

ρ(t) |= ϕ ⇔ ∃ψ ∈ t−1(ϕ) ∀x ∈ var(t) : ρ(x) |= ψ(x)

3 Stability-respecting branching bisimilarity as a congruence

We proceed to apply the decomposition method from the previous section to derive congruence formats
for stability-respecting branching bisimilarity and rooted stability-respecting branching bisimilarity. The
idea behind the construction of these congruence formats is that the format must guarantee that a formula
from the characterising logic of the equivalence under consideration is always decomposed into formulas
from this same logic (see Prop. 25). This implies the desired congruence results (see Thm. 26 and
Thm. 27).

3.1 Congruence format for stability-respecting branching bisimilarity

The definitions of the congruence formats for (rooted) stability-respecting branching bisimilarity, below,
presuppose two predicates Λ and ℵ on the arguments of the function symbols of a TSS: Λ marks ar-
guments that contain processes that, intuitively, have started executing (but may currently be unable to
execute), while ℵ marks arguments that contain processes that can execute immediately. For example, in
process algebra, Λ and ℵ hold for the arguments of the merge t1‖t2, and for the first argument of sequen-
tial composition t1·t2; they can contain processes that started to execute in the past, and these processes
can continue their execution immediately. Λ and ℵ typically do not hold for the second argument of
sequential composition; it contains a process that did not yet start to execute, and cannot execute imme-
diately (in absence of the empty process). Λ does not hold and ℵ holds for the arguments of alternative
composition t1 + t2; they contain processes that did not yet start to execute, but that can start executing
immediately. We will instantiate Γ (from Sect. 2.6) with ℵ∩Λ.

We proceed to define when a standard ntytt rule is rooted stability-respecting branching bisimulation
safe, and base the rooted stability-respecting branching bisimulation format on that notion. The stability-
respecting branching bisimulation format will defined by adding one additional restriction to its rooted
counterpart: Λ is universal, i.e., Λ( f , i) for all f ∈ Σ and i = 1, . . . ,ar( f ). Our aim for the rest of this
section will be to prove that the (rooted) stability-respecting branching bisimulation format guarantees
that (rooted) stability-respecting branching bisimilarity is a congruence.

Definition 19 Let ℵ and Λ be predicates on {( f , i) | 1 ≤ i ≤ ar( f ), f ∈ Σ}. A standard ntytt rule r =
H

t α−→u
is rooted stability-respecting branching bisimulation safe w.r.t. ℵ and Λ if it satisfies the following

conditions.

1. Right-hand sides of positive premises occur only Λ-liquid in u.

2. If x ∈ var(t) occurs only Λ-liquid in t, then x occurs only Λ-liquid in r.

3. If x ∈ var(t) occurs only ℵ-frozen in t, then x occurs only ℵ-frozen in H.

4. Suppose that x has exactly one ℵ-liquid occurrence in t, and that this occurrence is also Λ-liquid.
(a) If x has an ℵ-liquid occurrence in a negative premise in H or more than one ℵ-liquid oc-

currence in the positive premises in H, then there is a premise v 6 τ−→ in H such that x occurs
ℵ-liquid in v.
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(b) If there is a premise w τ−→ y in H and x occurs ℵ-liquid in w, then r is ℵ∩Λ-patient.

Conditions 1–3 have been copied from the definition of rooted branching bisimulation safeness from [13],
and condition 4b is part of condition 4 in that definition. Condition 4a, however, establishes a relaxation
of condition 4 in the definition of rooted branching bisimulation safeness, where it was required that x
has at most one ℵ-liquid occurrence in H, which must be in a positive premise. Here, owing to stability,
we can be more tolerant, as long as x 6 τ−→ can be derived. As a consequence of this relaxation we will see
that the rule for the priority operator is rooted stability-respecting branching bisimulation safe, while it
is not rooted branching bisimulation safe (see Section 3.5).

Definition 20 A standard TSS is in rooted stability-respecting branching bisimulation format if it is in
ready simulation format and, for some ℵ and Λ, it is ℵ∩Λ-patient and only contains rules that are rooted
stability-respecting branching bisimulation safe w.r.t. ℵ and Λ.

This TSS is in stability-respecting branching bisimulation format if moreover Λ is universal.

3.2 Preservation of syntactic restrictions

The definition of modal decomposition is based on the P-ruloids. Therefore we must verify that if P
is in rooted stability-respecting branching bisimulation format, then the P-ruloids are rooted stability-
respecting branching bisimulation safe (Prop. 24). The key part of the proof is to show that the syntactic
restriction of decent rooted stability-respecting branching bisimulation safety is preserved under irredun-
dant provability (Lem. 23).

In the proof of the preservation lemma below, rules with a negative conclusion will play an important
role. Therefore the notion of rooted stability-respecting branching bisimulation safety needs to be ex-
tended to non-standard rules. The following definition coincides with the definition of rooted branching
bisimulation safe for non-standard rules in [13].

Definition 21 An ntytt rule r = H
t 6α−→

is rooted stability-respecting branching bisimulation safe w.r.t. ℵ

and Λ if it satisfies conditions 2 and 3 of Def. 19.

Lemma 22 Let Q be an ℵ∩Λ-patient TSS in decent ntyft format. If an ntytt rule H
t 6τ−→

is provable from

Q+ and x occurs ℵ∩Λ-liquid in t, then H contains a premise v 6 τ−→ where x occurs ℵ∩Λ-liquid in v.

Proof: Recall from Sect. 2.5 that also the TSS Q+ is in decent ntyft format. Let H
t 6τ−→

be provable from
Q+, by means of a proof π . We apply structural induction with respect to π .

Induction basis: The case where π has only one node, marked “hypothesis”, is trivial, as then H contains
t 6 τ−→.

Induction step: Let r be the decent ntyft rule and σ the substitution used at the bottom of π . Let
f (x1, . . . ,xar( f )) 6

τ−→ be the conclusion of r. Then σ( f (x1, . . . ,xar( f ))) = t. Since x occurs ℵ∩Λ-liquid in
t, it occurs ℵ∩Λ-liquid in σ(xi0) where i0 is an ℵ∩Λ-liquid argument of f . In view of the patience rule
for this argument of f and the construction of rules with a negative premise it follows that r has a premise
xi0 6

τ−→. So a rule H ′

σ(xi0 ) 6
τ−→

is provable from Q+ by means of a strict subproof of π , where H ′ ⊆ H. By

induction H ′ contains a premise v 6 τ−→ where x occurs ℵ∩Λ-liquid in v. �

Lemma 23 Let P be an ℵ∩Λ-patient TSS in decent ntyft format, in which each rule is rooted stability-
respecting branching bisimulation safe w.r.t. ℵ and Λ. Moreover, P is either a standard TSS or a TSS
of the form Q+ with Q an ℵ∩Λ-patient standard TSS in decent ntyft format. Then each ntytt rule
irredundantly provable from P is rooted stability-respecting branching bisimulation safe w.r.t. ℵ and Λ.
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Proof: For all conditions of Def. 19 and Def. 21 except 4a, the preservation proof coincides with the
corresponding proof for rooted branching bisimulation safeness in [13, Lem. 5—aliased 4.5]. Therefore
we here focus only on condition 4a. Let an ntytt rule H

t α−→u
be irredundantly provable from P, by means

of a proof π . We prove, using structural induction with respect to π , that this rule satisfies condition 4a
of Def. 19.

Induction basis: Suppose π has only one node, marked “hypothesis”. Then H
t α−→u

equals t α−→u
t α−→u

(so u is a
variable). This rule trivially satisfies condition 4a of Def. 19.

Induction step: Let r be the decent ntyft rule and σ the substitution used at the bottom of π . By assump-
tion, r is decent, ntyft, and rooted stability-respecting branching bisimulation safe w.r.t. ℵ and Λ. Let r
be of the form

{vk
βk−→ yk | k ∈ K}∪{w` 6

γ`−→ | ` ∈ L}
f (x1, . . . ,xar( f ))

α−→ v

Then σ( f (x1, . . . ,xar( f ))) = t and σ(v) = u. Moreover, decent ntytt rules rk =
Hk

σ(vk)
βk−→σ(yk)

for each k ∈K

and r` = H`

σ(w`) 6
γ`−→

for each ` ∈ L are irredundantly provable from P by means of strict subproofs of π ,

where H =
⋃

k∈K Hk∪
⋃

`∈L H`. By induction, they are rooted stability-respecting branching bisimulation
safe w.r.t. ℵ and Λ.

Suppose that x has exactly one ℵ-liquid occurrence in t, which is also Λ-liquid. Then there is an
i0 ∈ {1, . . . ,ar( f )} with ℵ( f , i0) and Λ( f , i0) such that x has exactly one ℵ-liquid occurrence in σ(xi0),
which is also Λ-liquid. Furthermore, for each i ∈ {1, . . . ,ar( f )}\{i0}, ¬ℵ( f , i) or x occurs only ℵ-
frozen in σ(xi). Since the ntyft rule r is rooted stability-respecting branching bisimulation safe w.r.t. ℵ

and Λ, by condition 3 of Def. 19, if ¬ℵ( f , i), then xi occurs only ℵ-frozen in vk for all k ∈ K, as well as
in w` for all ` ∈ L. We distinguish three possible cases, and argue each time that condition 4a of Def. 19
is satisfied.

CASE 1: xi0 has no ℵ-liquid occurrences in the premises of r. Then x has no ℵ-liquid occurrences in
σ(vk) for k ∈ K and σ(w`) for ` ∈ L. So by condition 3 of Def. 19 and decency of the rk and r`, x has no
ℵ-liquid occurrences in H.

CASE 2: xi0 has exactly one ℵ-liquid occurrence in the premises of r, in vk0 for some k0 ∈ K. By
condition 2 of Def. 19 this occurrence is also Λ-liquid. Then x has exactly one ℵ-liquid occurrence
in σ(vk0), and this occurrence is also Λ-liquid. So by condition 4a of Def. 19, if x has an ℵ-liquid
occurrence in a negative premise in Hk0 or more than one in the positive premises in Hk0 , then there is a
premise w 6 τ−→ in Hk0 ⊆ H where x occurs ℵ-liquid in w. Furthermore, x has no ℵ-liquid occurrences in
σ(vk) for k ∈ K \{k0} and σ(w`) for ` ∈ L. So by condition 3 of Def. 19, x has no ℵ-liquid occurrences
in Hk for k ∈ K \{k0} and H` for ` ∈ L.

CASE 3: xi0 occurs ℵ-liquid in w`0 for some `0 ∈ L or has more than one ℵ-liquid occurrence in the vk
for k ∈ K. Then, by condition 4a of Def. 19, xi0 occurs ℵ-liquid in w`1 for some `1 ∈ L with γ`1 = τ . By
condition 2 of Def. 19 this occurrence is also Λ-liquid. It follows that x occurs ℵ∩Λ-liquid in σ(w`1). In
case P is a standard TSS the premise w` 6

γ`−→ occurs in H, and otherwise, by Lem. 22, H`1 ⊆ H contains
a premise w 6 τ−→ where x occurs ℵ∩Λ-liquid in w. �

The following proposition can now be proved in the same way as the corresponding Prop. 2—aliased 4.6
—for rooted branching bisimulation safeness in [13].
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Proposition 24 Let P be an ℵ∩Λ-patient TSS in ready simulation format, in which each rule is rooted
stability-respecting branching bisimulation safe w.r.t. ℵ and Λ. Then each P-ruloid is rooted stability-
respecting branching bisimulation safe w.r.t. ℵ and Λ.

3.3 Preservation of modal characterisations

Consider a standard TSS in rooted stability-respecting branching bisimulation format, w.r.t. some ℵ and
Λ. Def. 17 yields decomposition mappings ψ ∈ t−1(ϕ), with Γ := ℵ∩Λ. In this section we prove that if
ϕ ∈Os

b, then ψ(x)∈Os≡
b if x occurs only Λ-liquid in t. (That is why in the stability-respecting branching

bisimulation format, Λ must be universal.) Furthermore, we prove that if ϕ ∈Os
rb, then ψ(x) ∈Os≡

rb for
all variables x. From these preservation results we will, in Sect. 3.4, deduce the promised congruence
results for unrooted and rooted stability-respecting branching bisimilarity, respectively.

In [13] the following proposition was proved in two separate steps: Prop. 3 and Prop. 4—aliased 4.7
and 4.8—in that paper. This was possible since Orb incorporates Ob but not vice versa. However,
since there is a circular dependency between the definitions of Os

b and Os
rb, here we need to prove the

corresponding results for these modal characterisations simultaneously. The third part of the proposition
below is merely a tool in proving the other parts.

Proposition 25 Let P be an ℵ∩Λ-patient standard TSS in ready simulation format, in which each rule
is rooted stability-respecting branching bisimulation safe w.r.t. ℵ and Λ.

1. For each term t and variable x that occurs only Λ-liquid in t:

ϕ ∈Os
b ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈Os≡

b

2. For each term t and variable x:

ϕ ∈Os
rb ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈Os≡

rb

3. For each term t and variable x that occurs only Λ-liquid and ℵ-frozen in t:

ϕ ∈Os
rb ⇒ ∀ψ ∈ t−1(ϕ) : ψ(x) ∈Os≡

b

Proof: We apply simultaneous induction on the structure of ϕ , resp. ϕ , and the construction of ψ . We
only treat the case where t is univariate. The case where t is not univariate can be dealt with in the
same way as in the proofs of the corresponding Prop. 3 and Prop. 4—aliased 4.7 and 4.8—in [13]. Let
ψ ∈ t−1(ϕ). If x /∈ var(t) then ψ(x)≡>∈Os≡

b . So suppose x occurs exactly once in t.
We start with the first claim of the proposition. The cases where ϕ is of the form

∧
i∈I ϕi or ¬ϕ ′ can

be dealt with as in the proof of Prop. 3—aliased 4.7—in [13]. We therefore focus on the other cases.

• ϕ = 〈ε〉(ϕ1〈τ̂〉ϕ2) with ϕ1,ϕ2 ∈ Os
b. Let the occurrence of x in t be Λ-liquid. According to

Def. 17.4 we can distinguish two cases.

CASE 1: ψ(x) is defined based on Def. 17.4a. Then ψ(x) = 〈ε〉χ(x) if x occurs ℵ-liquid in
t, or ψ(x) = χ(x) if x occurs ℵ-frozen in t, for some χ ∈ t−1(ϕ1〈τ̂〉ϕ2). By Def. 17.1,
χ(x) = χ1(x)∧χ2(x) with χ1 ∈ t−1(ϕ1) and χ2 ∈ t−1(〈τ̂〉ϕ2). By induction on formula size,
χ1(x) ∈ Os≡

b . For χ2(x), according to Def. 17.5, we can distinguish three cases. Cases 1.1
and 1.2 where χ2(x) is defined based on Def. 17.5a and Def. 17.5b, respectively, proceed in
the same way is in the proof of [13, Prop. 3]. We focus on the third case.
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CASE 1.3: χ2(x) is defined based on Def. 17.5c, employing an ℵ∩Λ-impatient P-ruloid H
t τ−→u

and

a ξ ∈ u−1(ϕ2). So χ2(x) = ξ (x)∧
∧

x
β−→y∈H

〈β 〉ξ (y)∧
∧

x 6γ−→∈H
¬〈γ〉>. By Prop. 24, H

t τ−→u
is rooted stability-respecting branching bisimulation safe. Since the occurrence of x in t is
Λ-liquid, by condition 2 of Def. 19, x occurs only Λ-liquid in u. Therefore, by induction on
formula size, ξ (x)∈Os≡

b . Case 1.3.1 where the occurrence of x in t is ℵ-frozen still proceeds
in the same way is in the proof of [13, Prop. 3]. We focus on the other case.

CASE 1.3.2: The occurrence of x in t is ℵ-liquid. If H has at most one premise of the form
x

β−→ y, for which β 6= τ , and none of the form x 6 γ−→, then still the proof proceeds in the
same way is in the proof of [13, Prop. 3]. However, the more relaxed condition 4a of Def. 19
allows H to have more than one premise of the form x

β−→ y with β 6= τ , or premises x 6 γ−→.
Only, then H must also contain the premise x 6 τ−→. Thus ψ(x)≡ 〈ε〉

(
¬〈τ〉>∧χ1(x)∧ξ (x)∧∧

x b−→y∈H
〈b〉ξ (y)∧

∧
x 6c−→∈H ¬〈c〉>

)
. By condition 1 of Def. 19 the right-hand sides y of

positive premises in H occur only Λ-liquid in u, so by induction ξ (y) ∈ Os≡
b . Hence the

conjuncts 〈b〉ξ (y) are in Os≡
rb . It follows that ψ(x) ∈Os≡

b .
CASE 2: ψ(x) is defined based on Def. 17.4b, employing an ℵ∩Λ-impatient P-ruloid H

t τ−→u
and

a χ ∈ u−1(〈ε〉(ϕ1〈τ̂〉ϕ2)). By Prop. 24, H
t τ−→u

is rooted stability-respecting branching bisim-
ulation safe. Since the occurrence of x in t is Λ-liquid, by condition 2 of Def. 19, x occurs
only Λ-liquid in u. Therefore, by induction on the construction of ψ , χ(x) ∈ O≡b . Case 2.1
where the occurrence of x in t is ℵ-frozen proceeds in the same way is in the proof of [13,
Prop. 3]. We focus on the other case.

CASE 2.2: The occurrence of x in t is ℵ-liquid. Then ψ(x) = 〈ε〉
(
χ(x) ∧

∧
x

β−→y∈H
〈β 〉χ(y)∧∧

x 6γ−→∈H
¬〈γ〉>

)
. If H has at most one premise of the form x

β−→ y, for which β 6= τ , and

none of the form x 6 γ−→, then still the proof proceeds in the same way is in the proof of [13,
Prop. 3]. However, the more relaxed condition 4a of Def. 19 allows H to have more than one
premise of the form x

β−→ y with β 6= τ , or premises x 6 γ−→. Only, then H must also contain
the premise x 6 τ−→. Thus ψ(x)≡ 〈ε〉

(
¬〈τ〉>∧χ(x)∧

∧
x b−→y∈H

〈b〉χ(y)∧
∧

x 6c−→∈H ¬〈c〉>
)
. By

condition 1 of Def. 19 the right-hand sides y of positive premises in H occur only Λ-liquid
in u, so by induction ξ (y) ∈ Os≡

b . Hence the conjuncts 〈b〉χ(y) are in Os≡
rb . It follows that

ψ(x) ∈Os≡
b .

The proof of the case ϕ = 〈ε〉(ϕ1〈a〉ϕ2) in Ob from [13, Prop. 3] needs to be adapted in a similar fashion
as the case ϕ = 〈ε〉(ϕ1〈τ̂〉ϕ2). We take the liberty to omit this adaptation here, and continue with the
additional clause in the modal characterisation of Os

b, compared to Ob.

• ϕ = 〈ε〉(¬〈τ〉>∧ ϕ) with ϕ ∈Os
rb. Let the occurrence of x in t be Λ-liquid. According to Def. 17.4

we can distinguish two cases.

CASE 1: ψ(x) is defined based on Def. 17.4a. Then ψ(x) = 〈ε〉χ(x) if x occurs ℵ-liquid in
t, or ψ(x) = χ(x) if x occurs ℵ-frozen in t, for some χ ∈ t−1(¬〈τ〉>∧ ϕ). By Def. 17.1,
χ(x) = χ1(x)∧χ2(x) with χ1 ∈ t−1(¬〈τ〉>) and χ2 ∈ t−1(ϕ). By Def. 17.2 there is a function
h : t−1(〈τ〉>)→ var(t) such that χ1(x) = ∧ξ∈h−1(x)¬ξ (x).

CASE 1.1: x occurs ℵ-liquid in t. By Def. 17.3, for each ξ ∈ h−1(x), ξ (x) is of the form∧
x

β−→y∈H
〈β 〉>∧

∧
x 6γ−→∈H

¬〈γ〉> for some P-ruloid H
t τ−→u

. Note that such formulas are in

Os
rb. Moreover, by induction on formula size, χ2(x) ∈Os≡

rb . Since the occurrence of x in t is
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ℵ∩Λ-liquid, there is an ℵ∩Λ-patient ruloid x τ−→y
t τ−→t ′

. This gives rise to a ξ ∈ h−1(x) such that
ξ (x) = ¬〈τ〉>. Concluding, ψ(x) = 〈ε〉(χ1(x)∧ χ2(x)) is of the form 〈ε〉(¬〈τ〉>∧ϕ

′) for
some ϕ

′ ∈Os
rb. So ψ(x) ∈Os

b.

CASE 1.2: x occurs ℵ-frozen in t. Then by condition 3 of Def. 19, x does not occur in H. Since
moreover ω(x) ≡ > for each ω ∈ t−1(>), by Def. 17.3, ξ (x) ≡ > for each ξ ∈ h−1(x). So
either χ1(x) ≡ ¬> if h−1(x) is non-empty or χ1(x) ≡ > if h−1(x) is empty. In the first case
ψ(x)≡¬>, so then we are done. In the second case, by induction on formula size, using the
third claim of this proposition, ψ(x)≡ χ2(x) ∈Os≡

b .

CASE 2: ψ(x) is defined based on Def. 17.4b. This case proceeds in the same way as case 2 of
ϕ = 〈ε〉(ϕ1〈τ̂〉ϕ2).

This completes the proof of the first claim of the proposition. We continue with the second claim of the
proposition. The cases where ϕ is of the form

∧
i∈I ϕ i or ¬ϕ

′ or 〈α〉ϕ can be dealt with as in the proof
of Prop. 4 in [13]. We focus on the only other case.

• ϕ ∈Os
b. The cases where ϕ is of the form

∧
i∈I ϕi or ¬ϕ ′ or 〈ε〉(ϕ1〈τ̂〉ϕ2) or 〈ε〉(ϕ1〈a〉ϕ2) can be

dealt with as in the proof of Prop. 4 in [13]. We focus on the only new case here.

∗ ϕ = 〈ε〉(¬〈τ〉>∧ϕ
′) with ϕ

′ ∈Os
rb. If the occurrence of x in t is Λ-liquid, then we already proved

in the corresponding case for the first claim of the proposition that ψ(x) ∈Os≡
b ⊂Os≡

rb . So we can
assume that this occurrence is Λ-frozen. According to Def. 17.4 we can distinguish two cases.

CASE 1: ψ(x) is defined based on Def. 17.4a. Then, since x occurs Λ-frozen in t, ψ(x) = χ(x)
for some χ ∈ t−1(¬〈τ〉>∧ϕ

′). By Def. 17.1, χ(x) = χ1(x)∧ χ2(x) with χ1 ∈ t−1(¬〈τ〉>)
and χ2 ∈ t−1(ϕ ′). By induction on formula size, χ1(x) ∈ Os≡

rb and χ2(x) ∈ Os≡
rb . Hence,

ψ(x) = χ1(x)∧χ2(x) is in Os≡
rb .

CASE 2: ψ(x) is defined based on Def. 17.4b, using an ℵ∩Λ-impatient P-ruloid H
t τ−→u

and a χ ∈
u−1(〈ε〉(¬〈τ〉>∧ϕ

′)). As the occurrence of x in t is Λ-frozen,
ψ(x) = χ(x)∧

∧
x

β−→y∈H
〈β 〉χ(y)∧

∧
x 6γ−→∈H

¬〈γ〉>. By induction on the construction of ψ ,

χ(x)∈O≡rb. Moreover, by condition 1 of Def. 19 the y occur only Λ-liquid in u, so we proved
before that the χ(y) are in Os≡

b . Hence ψ(x) ∈Os≡
rb .

This completes the proof of the second claim of the proposition. We finish with the last claim. The
cases where ϕ is of the form

∧
i∈I ϕ i or ¬ϕ

′ can be dealt with as in the proof of Prop. 3 in [13], and the
case ϕ = ϕ ∈ Ob follows immediately from the first claim. We therefore focus on the remaining case:
ϕ = 〈α〉ϕ with ϕ ∈Ob.

ψ(x) is defined based on Def. 17.3, for some P-ruloid H
t α−→u

and χ ∈ u−1(ϕ). Since the occurrence of
x in t is ℵ-frozen, by condition 3 of Def. 19, x does not occur in H. Hence, ψ(x) = χ(x). By Prop. 24,

H
t α−→u

is rooted stability-respecting branching bisimulation safe. Since the occurrence of x in t is Λ-liquid,
by condition 2 of Def. 19, x occurs only Λ-liquid in u. Therefore, by the first claim of this proposition,
χ(x) ∈O≡b . �

3.4 Congruence results

Now the promised congruence results for↔s
b and↔s

rb can be proved in the same way as their counterparts
for↔b and↔rb in [13].
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Theorem 26 Let P be a complete standard TSS in stability-respecting branching bisimulation format.
Then↔s

b is a congruence for P. �

Theorem 27 Let P be a complete standard TSS in rooted stability-respecting branching bisimulation
format. Then↔s

rb is a congruence for P. �

3.5 Application to the priority operator

The priority operator [1] is a unary function the definition of which is based on an ordering < on atomic
actions. The term Θ(p) executes the transitions of the term p, with the restriction that a transition p a−→ q
only gives rise to a transition Θ(p) a−→Θ(q) if there does not exist a transition p b−→ q′ with b > a. This
intuition is captured by the rule for the priority operator below.

x a−→ y x 6 b−→ for all b > a

Θ(x) a−→Θ(y)

In view of the target Θ(y), by condition 1 of Def. 19, the argument of Θ must be chosen Λ-liquid. And in
view of condition 3 of Def. 19, the argument of Θ must be chosen ℵ-liquid. Then the rule above is rooted
stability-respecting branching bisimulation safe, if the following condition on the ordering on atomic
actions is satisfied: if there is a b such that b > a, then τ > a. Namely, this guarantees that condition 4a
of Def. 19 is satisfied: if there is a negative premise x 6 b−→, then there is also a negative premise x 6 τ−→.
Moreover, since the argument of Θ is Λ-liquid, this operator is within the stability-respecting branching
bisimulation format.

Corollary 28 ↔s
b and↔s

rb are congruences for the priority operator.

In general, the priority operator Θ does not preserve [rooted] branching bisimilarity (cf. [30, pp. 130–
132]), as shown by the following example.

Example 29 Consider the following two LTSs:

a

a b

aτ

q

a

ba

τ
p

Clearly p↔b q. Note that on the other hand p 6↔s
b q, because q is stable while p cannot perform a

sequence of τ-transitions to a stable state.
Suppose that a < b. Let us try to extend the ordering < such that Θ(p)↔b Θ(q). Since Θ(p) cannot

execute the trace aa, we must declare a < τ , to block this trace in Θ(q). But then Θ(p) can only execute
an infinite τ-sequence while Θ(q) can execute a. Hence Θ(p) 6↔b Θ(q) for every ordering < (with
a < b).

Moreover, if p0 and q0 are processes with as only transitions p0
τ−→ p and q0

τ−→ q, then p0↔rb q0,
but Θ(p0) 6↔rb Θ(q0) for every ordering < (with a < b).

So inevitably, as observed in [13], the rule for the priority operator is not in the rooted branching bisimula-
tion format. Namely, the ℵ∩Λ-liquid argument x in the source occurs ℵ-liquid in the negative premises,
which violates the more restrictive condition 4 of the rooted branching bisimulation format.
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3.6 Application to sequencing

The binary sequencing operator ; is a variant of sequential composition that does not rely on a notion of
successful termination. Intuitively, the process p ;q behaves as its left-hand side argument until that can
no longer do any transitions; then it proceeds with its right-hand side argument. The rules below, which
appeared already in [3], formalise this behaviour:

x α−→ x′

x ;y α−→ x′ ;y

x 6α−→ for all α ∈ Aτ y
β−→ y′

x ;y
β−→ y′

Suppose that both arguments of ; are chosen to be ℵ-liquid and only the first argument of ; is chosen to
be Λ-liquid. Then it is straightforward to verify that both rules are rooted stability-respecting branching
bisimulation safe w.r.t. ℵ and Λ (see Def. 19):

1. The right-hand side x′ of the positive premise in the first rule occurs Λ-liquid in x′ ;y.

2. In both rules, the variable x has only Λ-liquid occurrences.

3. In both rules, both variables x and y have ℵ-liquid occurrences in the source.

4. In both rules, only the variable x has exactly one ℵ-liquid occurrence in the source that is also
Λ-liquid.

(a) The variable x does not have more than one ℵ-liquid occurrence in the positive premises of
the rules. It does have ℵ-liquid occurrences in negative premises of the second rule, but,
since α ranges over all actions in Aτ , there is also a premise x 6 τ−→.

(b) Clearly the first rule, which has a premise x τ−→ x′ with an ℵ-liquid occurrence of x, is
ℵ∩Λ-patient.

Corollary 30 ↔s
rb is a congruence for the sequencing operator.

Note that we cannot take Λ to be universal, for then by condition 4b we would need the second rule for
β = τ to be ℵ∩Λ-patient. Yet, as is easy to check,↔s

b is a congruence for sequencing. This shows that
our (unrooted) stability-respecting branching bisimulation format does not cover all relevant operators
from the literature.

Sequencing does not preserve [rooted] branching bisimilarity, as shown by the following example.

Example 31 Consider the following three processes:

a

q rτ p

Then p↔b q, but p ;r = p 6↔b r = q ;r. Note that p 6↔s
b q since q is stable while p cannot perform a

sequence of τ-transitions to a stable state.
Using processes p0 and q0 as in Ex. 29 shows that also↔rb fails to be a congruence for sequencing.

4 Divergence-preserving branching bisimilarity as a congruence

To get a modal characterisation of (weakly) divergence-preserving branching bisimilarity, a modality
needs to be added to the modal logic that captures divergence. A modal characterisation of divergence-
preserving branching bisimilarity would be obtained by adding a unary modality ∆ to the modal logic
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for branching bisimilarity, with the interpretation p |= ∆ϕ if there is an infinite trace p = p0
τ−→ p1

τ−→
p2

τ−→ ·· · such that pi |= ϕ for all i ∈N.
Modal formulas ∆ϕ to capture divergence elude the inductive decomposition method from Def. 17,

because they ask for the existence of an infinite sequence of τ-transitions. The following example shows
that the decomposition method does not readily extend to modalities ∆ϕ .

Example 32 Let A = {ai,bi | i ∈ N}∪{c}. The parallel composition operator ‖ is usually defined by
the following two rules, where α ranges over A:

x1
α−→ y

x1‖x2
α−→ y‖x2

x2
α−→ y

x1‖x2
α−→ x1‖y

We extend the operational semantics of this operator with (asymmetric) communication rules, for all
i ∈N:

x1
ai−→ y1 x2

bi−→ y2

x1‖x2
c−→ y1‖y2

Consider the following two collections of processes pi,qi for i ∈N. We define pi
τ−→ pi+1 and pi

ai−→ 0
and qi

τ−→ qi+1 and qi
bi−→ 0 for all i ∈N. We have p0‖q0 |= ∆(〈ε〉〈c〉>). There is no obvious way to

decompose this modal property of p0‖q0 into modal properties of its arguments p0 and q0.

We circumvent this problem by introducing so-called abstraction-free TSSs that allow only patience rules
and rules without premises to carry a conclusion with the label τ , and by introducing oracle transitions
p ω−→

√
, where the transition label ω reveals some pertinent information on the behaviour of the process

p, such as whether p can diverge. On abstraction-free TSSs with appropriate oracle transitions the
equivalences↔s

b and↔∆
b coincide; so there our congruence format for↔s

b is also a congruence format
for↔∆

b . We extend this observation to general TSSs by encoding any given TSS into an abstraction-
free TSS with oracle transitions, and conclude that on any TSS in the stability-respecting branching
bisimulation format↔∆

b is a congruence. The same proof strategy shows that on any such TSS also↔∆>
b

is a congruence, and it extends to the rooted case.
In Sect. 4.1 we present the method sketched above in more detail. We refrain from introducing the

needed machinery, but state exactly which properties of this machinery we require, and prove our main
congruence result based on these properties. Instead of dealing with specific equivalences↔∆

b and↔s
b,

we work with parametric equivalences ∼ and ≈ where ∼ is finer than ≈; they will later be instantiated
with↔∆

b and↔s
b. This allows a reuse of our work with↔∆>

b and↔s
b in the roles of ∼ and ≈, as well as

with↔∆>
rb and↔∆

rb in the role of ∼ and↔s
rb in the role of ≈.

In Sect. 4.2 we introduce the machinery needed in Sect. 4.1 and show that it has the required proper-
ties, except for those that depend on the choice of∼ and≈. Finally, in Sect. 4.3 we apply our framework
to derive congruence formats for↔∆>

b ,↔∆
b ,↔∆>

rb and↔∆
rb.

4.1 A general framework for lifting congruence formats to finer equivalences

Our general proof idea is illustrated in Fig. 1. Here P (on the left) is a TSS in our congruence format for
≈. We want to show that on P also ∼ is a congruence. So consider an operator f , for simplicity depicted
as unary. Given two processes p and q in P (closed terms in its signature) with p ∼ q, we need to show
that f (p)∼ f (q). Fig. 1 shows a roundabout trajectory from p to f (p). Imagine a similar trajectory from
q to f (q)—not depicted in Fig. 1, but hovering above the page.
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Figure 1: Proof idea

First we apply a transformation AFO on P, yielding the abstraction-free TSS with oracle transitions
AFO(P), depicted on the right. For each closed term p of P we introduce a constant p̂ in AFO(P), in
such away that p∼ q implies p̂∼ q̂. Each n-ary operator f of P remains an n-ary operator f of AFO(P).
Since ∼ ⊆ ≈ we have p̂ ≈ q̂. We argue that if P is within our congruence format for ≈, then the TSS
AFO(P) is also within this congruence format, and conclude from p̂≈ q̂ that f (p̂)≈ f (q̂). An important
result, deferred to Sect. 4.3, is that on AFO(P) the equivalences∼ and≈ coincide. Hence f (p̂)∼ f (q̂).

Finally, we decode the processes f (p̂) and f (q̂), aiming to return to the LTS generated by P, but
actually ending up in another LTS K. Our decoding function dec exactly undoes the effects of the
encoding enc, that sent p to p̂, so that dec( f (p̂)) is strongly bisimilar with f (p). A crucial property
of the function dec, also deferred to Sect. 4.3, is that it is compositional for ∼, meaning that from
f (p̂) ∼ f (q̂) we may conclude dec( f (p̂)) ∼ dec( f (q̂)). By imposing the requirement that ∼ contains
strong bisimilarity, this implies that f (p)∼ f (q).

We now formalise this proof idea. An LTS G is called disjoint from a complete TSS P if it is disjoint
from the TSS GP associated with P. In that case P]G denotes the union of GP and G (cf. Def. 4).

Theorem 33 Let ∼ and ≈ be behavioural equivalences on LTSs, with↔ ⊆∼⊆≈. Let F be a congru-
ence format for ≈, included in the decent ntyft format, and let AFO be an operation on standard TSSs,
where for each TSS P = (Σ,Act,R) the signature Σ̂ of AFO(P) contains Σ enriched by a fresh constant
p̂ for each closed term p in T(Σ), such that, for each complete standard TSS P in decent ntyft format:

1. also AFO(P) is a complete standard TSS,

2. if P is in F-format then so is AFO(P),

3. p∼P q ⇒ p̂∼AFO(P) q̂,

4. ∼AFO(P) and ≈AFO(P) coincide, and
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there is an LTS K = (PK,ActK,→K), disjoint from P, as well as a function dec : T(Σ̂)→ PK such that:

5. p∼AFO(P) q ⇒ dec(p)∼K dec(q), and

6. f (p1, . . . , pn)↔P]K dec( f (p̂1, . . . , p̂n)) for any n-ary f ∈ Σ and p1, . . . , pn ∈ T(Σ).

Then F is also a congruence format for ∼.

Proof: Let P = (Σ,Act,R) be a complete standard TSS in F-format. We will show that ∼P is a congru-
ence for P. So let f ∈ Σ be an n-ary function symbol, and let pi,qi ∈ T(Σ) with pi ∼P qi for i = 1, . . . ,n.
We need to show that f (p1, . . . , pn)∼P f (q1, . . . ,qn).

By requirements 1 and 2, AFO(P) is a complete standard TSS in F-format; hence≈AFO(P) is a con-
gruence for AFO(P). By requirement 3 p̂i ∼AFO(P) q̂i for i = 1, . . . ,n. By requirement 4 also ∼AFO(P)
is a congruence for AFO(P). So f (p̂1, . . . , p̂n)∼AFO(P) f (q̂1, . . . , q̂n). Hence, by requirement 5,

dec( f (p̂1, . . . , p̂n))∼K dec( f (q̂1, . . . , q̂n)).

Therefore, by two applications of requirement 6, and the definition of a behavioural equivalence,
f (p1, . . . , pn)∼P]K f (q1, . . . ,qn) and consequently f (p1, . . . , pn)∼P f (q1, . . . ,qn). �

4.2 Abstraction-freeness

In this section we introduce the machinery needed for Thm. 33, namely the conversion AFO on TSSs
and the function dec into the LTS K. We also establish requirements 1 and 6 of Thm. 33, leaving 2–5 to
the applications of Thm. 33 in Sect. 4.3 for specific instances of ∼ and ≈. Since we are only interested
in TSSs with τ-transitions, we here take the set of actions Act used in Sect. 4.1 to be Aτ .

4.2.1 The conversion AFO

Let again Γ denote a predicate that marks the (Γ-liquid) arguments of function symbols. In [12] we called
a standard TSS abstraction-free w.r.t. Γ if only its Γ-patience rules carry the label τ in their conclusion.
Here we use a slightly more liberal definition of abstraction-freeness that also allows rules that have no
premises, and a conclusion of the form c τ−→ d for constants c and d.

The following conversion turns any Γ-patient standard TSS P = (Σ,Aτ ,R) into a Γ-patient and
abstraction-free TSS AFOO,ζ

Γ
(P). It is parameterised by the choice of a fresh set of actions O, so

O∩ Aτ = /0, and a partial function ζ : T(Σ) ⇀ O, which we call an oracle. The choice of O and ζ

varies for different applications of Thm. 33. This choice will be made in Sect. 4.3 in such a way that
requirements 3 and 4 of Thm. 33 are met, for specific instances of ∼ and ≈.

Definition 34 Given a Γ-patient standard TSS P = (Σ,Aτ ,R). Let Σ̂ be the signature Σ, enriched with a
fresh constant

√
and a fresh constant p̂ for each closed term p ∈ T(Σ). Pick a fresh action ι /∈ Aτ ∪O.

We define the TSS AFOO,ζ
Γ

(P) as (Σ̂,Aτ ∪O∪{ι},R′) where the rules in R′ are obtained from the rules
in R as follows:

1. R1 is obtained from R by adding for each rule r and each non-empty subset S of positive τ-premises
of r, a copy of r with as only difference that the labels τ in the premises in S are replaced by ι ;

2. R2 is obtained from R1 by replacing, in every rule that has a conclusion with the label τ and is not
a Γ-patience rule, the τ-label in the conclusion by ι ;

3. R3 is obtained from R2 by adding the premise v 6 ι−→ to each rule with a negative τ-premise v 6 τ−→;
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4. R4 is obtained from R3 by the addition of a rule without premises p̂ α−→ q̂ for each transition
p α−→ q ws-provable from P;

5. R5 is obtained from R4 by the addition of a rule p̂
ζ (p)−→
√

for each p ∈ T(Σ) with ζ (p) defined;

6. R′ adds to R5 a rule
xk

ω−→ y

f (x1, . . . ,xn)
ω−→ y

for each ω ∈ O, f ∈ Σ and argument k with Γ( f ,k).

Step 2 above makes the resulting TSS abstraction-free by renaming τ-labels in conclusions of non-
patience rules into ι . To ensure that still the same transitions are derived, modulo the conversion of
some τ into ι-labels, step 1 above allows positive premises labelled ι to be used instead of τ in all rules,
and step 3 achieves the same purpose for negative premises. These three steps result in a Γ-patient and
abstraction-free TSS that could be called AF Γ(P).

Conceptually, steps 1, 2 and 3 on the one hand and steps 4 and 5 on the other hand are independent.
Listing steps 1, 2 and 3 before steps 4 and 5 makes it evident that the transformations 1–3 do not apply
to the rules added by 4 and 5.

For convenience in proofs, and to better explain steps 4 and 5 of Def. 34, we consider an auxiliary
LTS G = (PG,Aτ ,→G) with PG = { p̂ | p ∈ T(Σ)} and p̂ α−→G q̂ iff P `ws p α−→ q, and an auxiliary LTS
H = (PH,Aτ ∪O,→H) with PH = PG∪{

√
} and→H :=→G∪{ p̂

ζ (p)−→
√
| ζ (p) defined}. The LTS G is

simply a disjoint copy of the LTS generated by P.

Lemma 35 If p∼P q for some p,q ∈ T(Σ), then p̂∼G q̂.

Proof: We have p↔P]G p̂ for each p ∈ T(Σ), because the relation {(p, p̂),(p̂, p) | p ∈ T(Σ)} is a strong
bisimulation. So p̂↔P]G p∼P]G q↔P]G q̂, using the definition of a behavioural equivalence, and thus
p̂∼P]G q̂, using that↔ ⊆∼. Hence p̂∼G q̂, again by the definition of a behavioural equivalence. �

The LTS H adds oracle transitions to G. The idea is that ζ (p) is particular for the ∼-equivalence class
of p ∈ T(Σ), which on the one hand ensures that p̂∼H q̂ iff p̂∼G q̂, and on the other hand enforces that
∼ and ≈ coincide on H. Namely, if p̂ ≈H q̂ then the oracle action of p̂ can be matched by q̂ (and vice
versa), which implies p̂∼H q̂.

Example 36 Take ∼ to be weakly divergence-preserving branching bisimilarity, and ≈ to be stability-
respecting branching bisimilarity. Let us say that a process p in an LTS is divergent if there exists an
infinite sequence of processes (pk)k∈N such that pk

τ−→ pk+1 for all k ∈N, i.e. if p |=∆>. Take O={∆>}
and let ζ (p)=∆> iff p is divergent. Thus in H all divergent states of G have a fresh outgoing transition
labelled ∆>.

With this definition of H, we have p̂ ∼H q̂ iff p̂ ∼G q̂: any weakly divergence-preserving branch-
ing bisimulation B on G relates divergent states with divergent states only, and thus is also a weakly
divergence-preserving branching bisimulation on H (when adding

√
B
√

). Furthermore, as we will
show in Prop. 51, due to the construction of H, p̂∼H q̂ iff p̂≈H q̂.

Steps 4 and 5 of Def. 34 incorporate the entire LTS H into AF Γ(P): each state appears as a constant and
each transition appears as rule without premises. The operators from Σ can now be applied to arguments
of the form p̂. Finally, step 6 lets any term f (x1, . . . ,xn) inherit the oracle transitions from its Γ-liquid
arguments. Steps 4, 5 and 6 preserve abstraction-freeness; for step 4 this uses the relaxed definition of
abstraction-freeness that allows to incorporate τ-transitions between constants as rules without premises.

Example 37 Let P have the rules

x1
τ−→ y

g(x1,x2,x3)
τ−→ g(y,x2,x3)

x1
a−→ y1 x1

τ−→ y2 x3
τ−→ y3

g(x1,x2,x3)
τ−→ x2

x2
τ−→ y x3 6

τ−→
g(x1,x2,x3)

a−→ y
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where Γ(g,1). Then AFOO,ζ
Γ

(P) has the rules

x1
τ−→ y

g(x1,x2,x3)
τ−→ g(y,x2,x3)

x1
a−→ y1 x1

τ−→ y2 x3
τ−→ y3

g(x1,x2,x3)
ι−→ x2

x2
τ−→ y x3 6

τ−→ x3 6
ι−→

g(x1,x2,x3)
a−→ y

x1
ι−→ y

g(x1,x2,x3)
ι−→ g(y,x2,x3)

x1
a−→ y1 x1

ι−→ y2 x3
ι−→ y3

g(x1,x2,x3)
ι−→ x2

x2
ι−→ y x3 6

τ−→ x3 6
ι−→

g(x1,x2,x3)
a−→ y

x1
a−→ y1 x1

ι−→ y2 x3
τ−→ y3

g(x1,x2,x3)
ι−→ x2

x1
a−→ y1 x1

τ−→ y2 x3
ι−→ y3

g(x1,x2,x3)
ι−→ x2

x1
ω−→ y

g(x1,x2,x3)
ω−→ y

(ω∈O)

This example illustrates steps 1, 2, 3 and 6 of Def. 34 only. Since there are no closed terms in this
example, steps 4 and 5 are void.

Clearly, for any Γ-patient standard TSS P, the standard TSS AFOO,ζ
Γ

(P) is Γ-patient and abstraction-free
w.r.t. Γ. Henceforth, we drop the superscripts O and ζ , and AFO(P) denotes AFOΓ(P) for the largest
predicate Γ for which P is Γ-patient. The signature of AFO(P) contains the signature of P enriched by
a fresh constant p̂ for each closed term p in P, as required in Thm. 33.

Lemma 38 Let P be a complete standard TSS in ntyft format. If p̂ ∼H q̂ for some p,q ∈ T(Σ), then
p̂∼AFO(P) q̂.

Proof: Since AFO(P) has no rules whose source is a variable, the only derivable transitions of the form
p̂ α−→ q∗ with α ∈ Aτ ∪O∪{ι} are the ones from H, with q∗ of the form q̂ or

√
. For this reason any

process p̂ in H is strongly bisimilar to the process p̂ in AFO(P). Using this, the lemma follows just as
Lem. 35. �

As an immediate consequence of Lemmas 35 and 38 we have the following corollary.

Corollary 39 Requirement 3 of Thm. 33 is met if p̂∼G q̂ implies p̂∼H q̂. �

The inference p̂∼G q̂⇒ p̂∼H q̂ depends on the choice of O and ζ , and is deferred to Sect. 4.3.
The oracle inheritance rules in AFOΓ(P)—introduced in step 6 of Def. 34—ensure that a closed

term f (p1, . . . , pn) has an outgoing ω-transition, for ω ∈ O, iff one of its Γ-liquid arguments pk has
such a transition. Ultimately, all such oracle transitions stem from H. Using that in AFOΓ(P) any term
p ∈ T(Σ̂) can uniquely be written as ρ(t) with t ∈ T(Σ) and ρ : var(t)→ PH, this observation can be
phrased as follows.

Observation 40 Let t ∈ T(Σ) and ρ : var(t)→ PH; then AFOΓ(P) `ws ρ(t) ω−→ iff t has a Γ-liquid
occurrence of a variable x with ρ(x) ω−→H. �

We proceed to compare provability in a standard TSS P with provability in its abstraction-free counterpart
AFO(P), in order to verify requirements 1 and 6 of Thm. 33. The most laborious part in this comparison
lays in step 4 of Def. 34. Therefore we deal with this step separately from the other five. Hence, we define
for any standard TSS P=(Σ,Aτ ,R) a TSS G (P)= (Σ̂,Aτ ,R′′), which constitutes an intermediate between
P and AFO(P). It is built by only applying step 4 from the construction of AFO(P), with R in the role
of R3.
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4.2.2 Comparison of P and G (P)

We restrict our analysis to standard TSSs P= (Σ,Aτ ,R) in decent ntyft format. For p∈T(Σ̂), let p̌∈T(Σ)
be obtained from p by replacing every subterm q̂ in p by q. Likewise, for N a set of closed negative
literals, Ň := {p̌ 6α−→ | (p 6α−→) ∈ N}.

When we are merely interested in proving, from P or G (P), literals of the form p 6α−→ or p α−→,
possibly under some hypotheses, where the target of a positive literal is existentially quantified, we can
equivalently use a version of P resp. G (P) in which all right-hand sides of the premises and conclusions
of rules have been dropped. Here we use that P and G (P) are in decent ntyft format. This we do below.

Lemma 41 Let P = (Σ,Aτ ,R) be a standard TSS in decent ntyft format. Let α ∈ Aτ and p ∈ T(Σ̂).

• If G (P) `irr
N

p α−→
, with N a set of closed negative literals, then P `irr

Ň∪N′

p̌ α−→
for a set N′ of closed

negative literals λ with P `ws λ .

• If P `irr
N′

p̌ α−→
, with N′ a set of closed negative literals, then either P 6`ws λ for a literal λ ∈ N′, or

G (P) `irr
N

p α−→
for some N with Ň⊆ N′.

Proof: For the first statement we apply induction on the irredundant proof π of N
p α−→

from G (P).
First assume that p has the form q̂, so that p̌ = q. Since G (P) has no rules whose source is a variable,

the last step of π must be an application of a rule q̂ α−→ r̂, introduced in step 4 of the construction of
G (P), and N = /0. It follows that P `ws q α−→ r. Let N′ be the unique set of negative literals occurring in
the well-supported proof of q α−→ r from P that have no negative literals below them. Then P `irr

N′

q α−→r
and each literal λ ∈ N′ is ws-provable from P.

Alternatively, p= f (p1, . . . , pn) with f ∈ Σ. Then the last step of π must be an application of a decent
ntyft rule H

f (x1,...,xn)
α−→

in P and the substitution σ : {x1, . . . ,xn} → T(Σ̂) with σ(xi) = pi for i = 1, . . . ,n.

Let σ ′ : {x1, . . . ,xn} → T(Σ) be the substitution with σ ′(xi) = p̌i for i = 1, . . . ,n. With every positive
premise µ = (t

γ−→) in H we may associate a set of closed negative literals Nµ ⊆ N such that G (P) `irr
Nµ

σ(t)
γ−→

and such that N is the union of all Nµ . So, by induction, P `irr
Ňµ∪N′µ

σ ′(t)
γ−→

for a set N′µ of closed

negative literals λ with P `ws λ . Let N′ be the union of all the N′µ . Note that Ň is the union of all the Ňµ

and the literals σ ′(u) 6 γ−→ with (u 6 γ−→) ∈ H. It follows that P `irr
Ň∪N′

p̌ α−→
.

For the second statement assume P `irr
N′

p̌ α−→
and P `ws λ for all λ ∈ N′. Then P `ws p̌ α−→. We show

that G (P) `irr
N

p α−→
for some N with Ň ⊆ N′, by induction on the irredundant proof π of N′

p̌ α−→
from P.

First assume that p has the form q̂, so that p̌ = q. Then P `ws q α−→, so G (P) `irr q̂ α−→, meeting the
requirement of the lemma.

Alternatively, p = f (p1, . . . , pn) with f ∈ Σ, so that p̌ = f (p̌1, . . . , p̌n). Then the last step of π must
be an application of a decent ntyft rule H

f (x1,...,xn)
α−→

and the substitution σ ′ : {x1, . . . ,xn} → T(Σ) with

σ ′(xi) = p̌i for i= 1, . . . ,n. Let σ : {x1, . . . ,xn}→T(Σ̂) be the substitution with σ(xi) = pi for i= 1, . . . ,n.

For each positive premise µ = (t
γ−→) in H we have P `irr

N′µ
σ ′(t)

γ−→
for some N′µ ⊆ N′ and P `ws λ for all

λ ∈ N′µ , and thus, by induction, G (P) `irr
Nµ

σ(t)
γ−→

for some Nµ with Ňµ ⊆ N′µ . Let N be the union of all

the Nµ , and the literals σ(u) 6 γ−→ with (u 6 γ−→) ∈ H. Then Ň⊆ N′. It follows that G (P) `irr
N

p α−→
. �
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Proposition 42 Let P = (Σ,Aτ ,R) be a complete standard TSS in decent ntyft format, α ∈ Aτ and p ∈
T(Σ̂).
• P `ws p̌ α−→ q∗ ⇔ ∃q ∈ T(Σ̂). q∗ = q̌∧G (P) `ws p α−→ q.

• P `ws p̌ 6α−→ ⇔ G (P) `ws p 6α−→.
Proof: “⇒”: We prove both statements by simultaneous induction on the well-founded proof π from
p̌ α−→ q∗ or p̌ 6α−→ from P. First consider the case P `ws p̌ α−→ q∗.

Assume that p has the form r̂, so that p̌ = r. It follows immediately from step 4 of the construction
of G (P) that G (P) `ws r̂ α−→ q̂∗. So take q := q̂∗.

Alternatively, p = f (p1, . . . , pn) with f ∈ Σ, so that p̌ = f (p̌1, . . . , p̌n). Then the last step of π must
be an application of a decent ntyft rule H

f (x1,...,xn)
α−→t

and a substitution σ ′ : V ⇀ T(Σ) with σ ′(xi) = p̌i

for i = 1, . . . ,n and σ ′(t) = q∗. Let σ ′′ : {x1, . . . ,xn}→ T(Σ̂) be the substitution with σ ′′(xi) = pi for i =
1, . . . ,n. For each negative premise u 6 γ−→ in H we have P `ws σ ′(u) 6 γ−→, and thus, by induction, G (P) `ws

σ ′′(u) 6 γ−→. Likewise, for each positive premise µ = (u
γ−→ yµ) in H, P `ws σ ′(u)

γ−→ σ ′(yµ), and thus,

by induction, G (P) `ws σ ′′(u)
γ−→ rµ for some rµ with řµ = σ ′(yµ). Let σ : V ⇀ T(Σ̂) be a substitution

with σ(xi) = pi for i = 1, . . . ,n and σ(yµ) = rµ for each positive premise µ in H. Then G (P) `ws σ(µ)

for each premise µ in H, and thus G (P) `ws p α−→ σ(t). Take q := σ(t). Then q̌ = σ ′(t) = q∗.
Next consider the case P `ws p̌ 6α−→. Suppose that N

p α−→
is irredundantly provable from G (P). Then, by

Lem. 41, P `irr
Ň∪N′

p̌ α−→
for a set N′ of closed negative literals λ with P `ws λ . By Def. 11 Ň∪N′ contains a

literal r′ 6 γ−→ such that r′
γ−→ is ws-provable from P by means of a strict subproof of π . By the consistency

of `ws, (r′ 6
γ−→) /∈ N′. Hence N contains a literal r 6 γ−→ with ř = r′. By induction G (P) `ws r

γ−→, and this
literal denies a literal in N. From this it follows that G (P) `ws p 6α−→.

“⇐”: We prove both statements by simultaneous induction on the well-founded proof π of p α−→ q
or p 6α−→ from G (P). First consider the case G (P) `ws p α−→ q.

Assume that p has the form r̂, so that p̌ = r. Since G (P) has no rules whose source is a variable, the
last step of π must be an application of a rule r̂ α−→ ŝ, introduced in step 4 of the construction of G (P).
It follows that q = ŝ, so q̌ = s, and P `ws r α−→ s.

Alternatively, p = f (p1, . . . , pn) with f ∈ Σ, so that p̌ = f (p̌1, . . . , p̌n). Then the last step of π must
be an application of a decent ntyft rule H

f (x1,...,xn)
α−→t

and a substitution σ : V ⇀ T(Σ̂) with σ(xi) = pi for

i = 1, . . . ,n and σ(t) = q. Let σ ′ : V ⇀ T(Σ) be the substitution with σ ′(x) = σ̌(x) for each x ∈V such
that σ(x) is defined, and undefined otherwise. For each premise µ in H we have G (P) `ws σ(µ), by
means of a subproof of π , and thus, by induction, P `ws σ ′(µ). It follows that P `ws p̌ α−→ q̌.

Finally, consider the case G (P) `ws p 6α−→. Suppose that N′

p̌ α−→
is irredundantly provable from P. Then,

by Lem. 41, either P 6`ws λ for a literal λ ∈ N′, or G (P) `irr
N

p α−→
for some N with Ň ⊆ N′. In the first

case, by the completeness of P, P `ws µ for a literal µ denying λ , and we are done. So assume the second
case. By Def. 11 N contains a literal r 6 γ−→ such that r

γ−→ is ws-provable from G (P) by means of a strict
subproof of π . By induction P `ws ř

γ−→, and this literal denies a literal in N′. From this it follows that
P `ws p̌ 6α−→. �

Corollary 43 Let P = (Σ,Aτ ,R) be a complete standard TSS in decent ntyft format. Then also G (P) is
complete.

Proof: Let p ∈ T(Σ̂) and α ∈ Aτ . Since P is complete, either P `ws p̌ α−→ or P `ws p̌ 6α−→. Consequently,
by Prop. 42, either G (P) `ws p α−→ or G (P) `ws p 6α−→. �
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4.2.3 Comparison of G (P) and AFO(P)

G (P) and AFO(P) differ on the account of rules with premises and conclusions labelled ι and ω ∈ O.
We note that actions ω ∈ O play no role in the next lemma and proposition.

Lemma 44 Let P = (Σ,Aτ ,R) be a standard TSS in ntyft format. Let a range over A and p,q over T(Σ̂).
• AFO(P) `irr

N
p a−→q

for a set of closed negative literals N iff there is a set of closed negative literals

N′ such that G (P) `irr
N′

p a−→q
and N = {s 6 a−→ | (s 6 a−→) ∈ N′}∪{t 6 τ−→, t 6 ι−→ | (t 6 τ−→) ∈ N′}.

• AFO(P) `irr
N

p α−→q
, with α = τ or α = i, for a set of closed negative literals N, iff there is an N′

such that G (P) `irr
N′

p τ−→q
and N = {s 6 a−→ | (s 6 a−→) ∈ N′}∪{t 6 τ−→, t 6 ι−→ | (t 6 τ−→) ∈ N′}.

Proof: “If”: Both statements follow by a straightforward simultaneous induction on irredundant prov-
ability from G (P).

“Only if”: Both statements follow by a straightforward simultaneous induction on irredundant prov-
ability from AFO(P). �

Proposition 45 Let P = (Σ,Aτ ,R) be a standard TSS in ntyft format. Let a range over A and p,q over
T(Σ̂).
• G (P) `ws p a−→ q ⇔ AFO(P) `ws p a−→ q.

• G (P) `ws p τ−→ q ⇔ (AFO(P) `ws p τ−→ q ∨ AFO(P) `ws p ι−→ q).

• G (P) `ws p 6 a−→ ⇔ AFO(P) `ws p 6 a−→.

• G (P) `ws p 6 τ−→ ⇔ (AFO(P) `ws p 6 τ−→ ∧ AFO(P) `ws p 6 ι−→).

Proof: Using Lem. 44, the lemma follows by two straightforward inductions on well-supported prov-
ability, one for⇒, covering all four claims, and one for⇐. �

Corollary 46 Let P be a standard TSS in decent ntyft format. If P is complete, then so is AFO(P).

Proof: By Cor. 43, G (P) is complete. Hence, for each p ∈ T(Σ̂) and a ∈ A, either G (P) `ws p 6 a−→ or
G (P) `ws p a−→. So by Prop. 45, either AFO(P) `ws p 6 a−→ or AFO(P) `ws p a−→.

Each p ∈ T(Σ̂) can be written as ρ(t) with t ∈ T(Σ) and ρ : var(t)→ PH. Let Γ be the largest
predicate for which P is Γ-patient. Now AFOΓ(P) `ws ρ(t) τ−→ if t has a Γ-liquid argument x for which
ρ(x) τ−→H. Otherwise, AFOΓ(P) `ws ρ(t) 6 τ−→.

Likewise, for any ω ∈O, AFOΓ(P) `ws ρ(t) ω−→ if t has a Γ-liquid argument x for which ρ(x) ω−→H.
Otherwise, AFOΓ(P) `ws ρ(t) 6ω−→.

A closed negative literal p 6α−→ is called true if AFO(P) `ws p 6 a−→, false if AFO(P) `ws p a−→, and
ambiguous if neither applies. Above we proved that there are no ambiguous literals labelled a ∈ A or τ

or ω ∈ O. It remains to show that there are no ambiguous literals labelled ι . Towards a contradiction,
assume that p 6 ι−→ is ambiguous.

There must exist a closed term q and set of closed negative literals N such that AFO(P) `irr
N

p ι−→q
and no literal in N is false. For if there were no such q and N, the literal p 6 ι−→ would be true by Def. 11.
Moreover, N must contain an ambiguous literal r 6 ι−→, for if all literals in N would be true, then the
literal p 6 ι−→ would be false by Def. 11. By Lem. 44 there is a set of closed negative literals N′ such
that G (P) `irr

N′

p τ−→q
and N = {s 6 a−→ | (s 6 a−→)∈N′}∪{t 6 τ−→, t 6 ι−→ | (t 6 τ−→)∈N′}. So N contains both

r 6 ι−→ and r 6 τ−→. If G (P) `ws r 6 τ−→ then r 6 ι−→ would be true by Prop. 45. Hence G (P) `ws r τ−→, by the
completeness of G (P). So by Prop. 45, AFO(P) `ws r τ−→ or AFO(P) `ws r ι−→. If follows that one of
the literals r 6 ι−→ or r 6 τ−→ must be false, contradicting the absence of false literals in N. �
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4.2.4 Comparison of AFO(P) and K

The LTS K = (PK,Aτ ∪O∪{ι},→K) has as states PK = {dec(p) | p ∈ T(Σ̂)}, and the transitions are the
ones generated by the following two rules:

x α−→ y

dec(x) α−→ dec(y)

x ι−→ y

dec(x) τ−→ dec(y)

where α ranges over Aτ . The operator dec : T(Σ̂)→ PK simply sends any process p ∈ T(Σ̂) to the state
dec(p) ∈ PK. Thus, dec erases all transitions with labels from O and renames labels ι into τ . All other
transitions are preserved.

Proposition 47 Let P = (Σ,Aτ ,R) be a standard TSS. Let a range over A and p,q over T(Σ̂).

• dec(p) a−→K q∗ ⇔ ∃q ∈ T(Σ̂). q∗ = dec(q)∧AFO(P) `ws p a−→ q.

• dec(p) τ−→K q∗ ⇔ ∃q ∈ T(Σ̂). q∗ = dec(q)∧
(

AFO(P) `ws p τ−→ q
∨ AFO(P) `ws p ι−→ q)

)
.

Proof: Straightforward. �

4.2.5 Verifying requirements 1 and 6 of Thm. 33

That requirement 1 of Thm. 33 is met is immediate by Cor. 46.
We end this section by verifying requirement 6 of Thm. 33. Intuitively, the behaviour of a process

f (p1, . . . , pn) in P is the same as that of the process f (p̂1, . . . , p̂n) in AFO(P), except that some τ-
transitions of the former are turned into ι-transitions of the latter process, and that some oracle transitions
may have been added in the latter. Since any rule in AFO(P) with a conclusion labelled by Aτ ∪{ι} has
positive and negative premises with labels from Aτ ∪{ι} only, these oracle transitions have no influence
on the derivation of any transitions from AFO(P) with labels in Aτ ∪{ι}. The operator dec removes all
oracle transitions and renames ι into τ , thereby returning the behaviour of f (p̂1, . . . , p̂n) to match that of
f (p1, . . . , pn) exactly.

Proposition 48 Let P be a complete standard TSS in decent ntyft format.
Then f (p1, . . . , pn)↔P]K dec( f (p̂1, . . . , p̂n)) for any n-ary f ∈ Σ and p1, . . . , pn ∈ T(Σ).

Proof: It suffices to show that the relation {(p̌,dec(p) | p ∈ T(Σ̂)} is a strong bisimulation.
So let p ∈ T(Σ̂). Suppose that dec(p) a−→K q∗, with a ∈ A. Then, by Prop. 47, there is a q ∈ T(Σ̂)

with q∗ = dec(q) and AFO(P) `ws p a−→ q. Hence, by Prop. 45, G (P) `ws p a−→ q. So, by Prop. 42,
P `ws p̌ a−→ q̌, which had to be shown.

The case that dec(p) τ−→K q∗ proceeds in the same way.
Now suppose that P `ws p̌ a−→ q∗, with a ∈ A. Then, by Prop. 42, there is a q ∈ T(Σ̂) with q∗ = q̌ and

G (P) `ws p a−→ q. Hence, by Prop. 45, AFO(P) `ws p a−→ q. So, by Prop. 47, dec(p) a−→K dec(q),
which had to be shown. Again the case P `ws p̌ τ−→ q∗ proceeds in the same way. �

4.3 Application of the general framework to divergence-preserving semantics

We now apply Thm. 33 to derive that the stability-respecting branching bisimulation format and its rooted
variant are congruence formats for↔∆>

b and↔∆
b , and↔∆>

rb and↔∆
rb, respectively.

As congruence format F in Thm. 33 we take the (rooted) stability-respecting branching bisimulation
format intersected with the decent ntyft format. If a TSS P is in this format, there exist predicates ℵ
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and Λ such that P is ℵ∩Λ-patient and only contains rules that are rooted stability-respecting branching
bisimulation safe w.r.t. ℵ and Λ. Although there may be some freedom in the choice of ℵ and Λ,
the predicate ℵ∩Λ is completely determined by P. Namely, each ℵ∩Λ-liquid argument of an operator
symbol f must have a patience rule, and conversely, each argument of f that has a patience rule must be
ℵ∩Λ-liquid, by conditions 1 and 3 of Def. 19. Hence there can be no ambiguity in the choice of Γ in
AFOΓ(P).

It is straightforward to check that the conversion AFO on standard TSSs defined in Sect. 4.2 pre-
serves the (rooted) stability-respecting branching bisimulation format, and thus satisfies requirement 2 of
Thm. 33. Here it is important that in step 6 of Def. 34 a term f (x1, . . . ,xn) inherits oracle transitions only
from its Γ-liquid arguments—else condition 3 of Def. 19 would be violated. Furthermore, condition 4a
of Def. 19 is preserved because premises v 6 τ−→ are kept in place in step 3 of Def. 34; and condition 4b
of Def. 19 is preserved because the transformation in Def. 34 does not introduce new positive premises
with the label τ .

4.3.1 A congruence format for weakly divergence-preserving branching bisimilarity

We first apply Thm. 33 with↔∆>
b and↔s

b in the roles of ∼ and ≈. In the construction of the LTS H
out of the LTS G (cf. Sect. 4.2) we take O={∆>} and let ζ (p)=∆> iff p is divergent. As observed in
Ex. 36, p̂ ∼H q̂ iff p̂ ∼G q̂. Hence, with Cor. 39, requirement 3 of Thm. 33 is satisfied. We proceed to
show that also requirement 4 is satisfied.

Lemma 49 Let t ∈ T(Σ) and ρ : var(t)→ PH. In AFOΓ(P), ρ(t) is divergent iff t has a Γ-liquid
occurrence of a variable x such that ρ(x) is divergent.

Proof: For “only if”, suppose ρ(t) is divergent, i.e., there is an infinite sequence of τ-transitions from
ρ(t). Since AFOΓ(P) is abstraction-free, each of these transitions must originate from a τ-transition
from a process ρ(x), where x occurs Γ-liquid in t. One of the variables x that occurs Γ-liquid in t must
contribute infinitely many of these transitions, so that ρ(x) is divergent.

“If” follows immediately from the fact that the TSS AFOΓ(P) is Γ-patient. �

Lemma 50 Let p ∈ T(Σ̂). Then AFOΓ(P) `ws p ∆>−→ iff p is divergent.

Proof: In AFOΓ(P) any term p ∈ T(Σ̂) can be written as ρ(t) with t ∈ T(Σ) and ρ : var(t)→ PH.
Suppose ρ(t) is divergent. Then t has a Γ-liquid occurrence of a variable x such that ρ(x) is divergent,

by Lem 49. Hence ρ(x) ∆>−→H by the construction of H. Thus AFOΓ(P) `ws ρ(t) ∆>−→, by Obs. 40. The
other direction proceeds likewise. �

The following proposition states that requirement 4 of Thm. 33 is satisfied indeed.

Proposition 51 On AFO(P) the equivalences↔∆>
b and↔s

b coincide.

Proof: It suffices to show that the relation↔s
b on AFO(P) is a weakly divergence-preserving branching

bisimulation. By definition it is a (stability-respecting) branching bisimulation. Hence it remains to show
that it is weakly divergence-preserving. To this end, it suffices to show that if p is divergent and p↔s

b q
then also q is divergent.

Suppose ρ(t) is divergent. Then by Lem. 50 AFO(P) `ws p ∆>−→. So AFO(P) `ws q ε
=⇒ q′ ∆>−→ for

some q′, by the definition of a branching bisimulation. So q′ is divergent, by Lem. 50, and thus q is
divergent. �
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The following example shows that Prop. 51 would not hold if we had skipped step 6 of Def. 34, inheriting
oracle transitions for Γ-liquid arguments, or if we had not used the oracle transitions at all.
Example 52 Let p ∈ T(Σ) be deadlock (a process without outgoing transitions) and q ∈ T(Σ) a process
having only a τ-transition to itself, and a τ-transition to p. Then in the LTS G we have p̂↔s

b G q̂ but
p̂ 6↔∆>

b G q̂. After translation to H, the processes p̂ and q̂ are distinguished by means of oracle transitions,
so that we have p̂ 6↔s

b H q̂ and p̂ 6↔∆>
b H q̂. Now let Σ feature a unary operator f with as only rule x τ−→y

f (x) τ−→ f (y)
.

If oracle transitions would not be inherited in AFO(P), then we would have f (p̂)↔s
bAFO(P) f (q̂) but

f (p̂) 6↔∆>
b AFO(P) f (q̂).

We now verify requirement 5 of Thm. 33.

Proposition 53 p↔∆>
b AFO(P) q ⇒ dec(p)↔∆>

b K dec(q).

Proof: Define the relation B on the states of K by

dec(p) B dec(q) ⇔ p↔∆>
b q .

It suffices to show that B is a weakly divergence-preserving branching bisimulation.

• Suppose p↔∆>
b q and dec(p) α−→ p†. By the semantics of dec there are two possibilities.

CASE 1: p α−→ p′ for some p′ with p† = dec(p′). Since p↔∆>
b q, either α = τ and p′↔∆>

b q,
or q ε

=⇒ q′ α−→ q′′ for some q′ and q′′ with p↔∆>
b q′ and p′↔∆>

b q′′. So either α = τ and
dec(p′)B dec(q), or dec(q) ε

=⇒dec(q′) α−→dec(q′′) with dec(p)B dec(q′) and dec(p′) B
dec(q′′).

CASE 2: α = τ , and p ι−→ p′ for some p′ with p† = dec(p′). Since p↔∆>
b q, q ε

=⇒ q′ ι−→ q′′

for some q′ and q′′ with p↔∆>
b q′ and p′↔∆>

b q′′. So dec(q) ε
=⇒ dec(q′) τ−→ dec(q′′) with

dec(p) B dec(q′) and dec(p′) B dec(q′′).

• Suppose p↔∆>
b q and there is an infinite sequence (p†

k)k∈N such that dec(p) = p†
0, p†

k
τ−→ p†

k+1
and p†

k B dec(q) for all k ∈N. Then there is an infinite sequence (pk)k∈N such that p0 = p and,
for all k ∈N, p†

k = dec(pk), pk↔∆>
b q and either pk

τ−→ pk+1 or pk
ι−→ pk+1. We distinguish two

cases.
CASE 1: For infinitely many of the k we have pk

ι−→ pk+1. Then there is an infinite sequence
(p′j) j∈N such that p′0 = p0 and p′j

ε
=⇒ ι−→ p′j+1 for all j ∈N. Since p↔b q, there must be

an infinite sequence (q′j) j∈N such that q = q′0, q′j
ε

=⇒ ι−→ q′j+1 and p′j↔b q′j for all j ∈N. It
follows that dec(q) = dec(q′0) and dec(p′j)

ε
=⇒ τ−→ dec(p′j+1) for all j ∈N. In other words,

there exists an infinite sequence (q†
`)`∈N such that dec(q) = q†

0 and q†
`

τ−→ q†
`+1 for all ` ∈N.

CASE 2: There is an n ∈ N such that pk
τ−→ pk+1 for all k ≥ n. Since p↔∆>

b q, there must
be a finite sequence (qk)

n
k=0 such that q = q0 and, for all 0 ≤ k < n, either qk

ε
=⇒ qk+1 or

qk
ε

=⇒ ι−→ qk+1, and pk+1↔∆>
b qk+1. Moreover, since pn↔∆>

b qn, and pk↔∆>
b q↔∆>

b pn↔∆>
b qn

for each k≥ n, there must be an infinite sequence (q`)`>n such that q`
τ−→ q`+1 for all `≥ n.

It follows that dec(q) = dec(q0)
ε

=⇒ dec(qn) and dec(q`)
τ−→ dec(q`+1) for all `≥ n. �

Corollary 54 F is a congruence format for↔∆>
b .

As indicated in Sect. 2.5, each standard TSS P in ready simulation format can be converted to a TSS
P′ in decent ntyft format. In [5] it is shown that this transformation preserves the set of ws-provable
closed literals, hence ∼ is a congruence for P iff P′ is. It is not hard to check that if P is in (rooted)
stability-respecting branching bisimulation format then so is P′. Thus we obtain the following congru-
ence theorem.
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Theorem 55 Let P be a complete standard TSS in stability-respecting branching bisimulation format.
Then↔∆>

b is a congruence for P. �

4.3.2 A congruence format for rooted weakly divergence-preserving branching bisimilarity

We now apply Thm. 33 with ↔∆>
rb and ↔s

rb in the roles of ∼ and ≈. The choice of O and ζ in the
construction of H is the same as above.

Again requirement 3 of Thm. 33 is satisfied: since any two processes g,h∈PG are↔∆>
b -equivalent in

G iff they are↔∆>
b -equivalent in H, if follows immediately from Def. 2 that any two processes g,h ∈ PG

are↔∆>
rb -equivalent in G iff they are↔∆>

rb -equivalent in H.
Requirement 4 of Thm. 33 is also satisfied: since on AFO(P) the equivalences↔∆>

b and↔s
b coin-

cide, it follows immediately from Def. 2 that also↔∆>
rb and↔s

rb coincide.
To check requirement 5 of Thm. 33 define the relation R on the states of K by

dec(p) R dec(q) ⇔ p↔∆>
rb q .

With Def. 2 it is straightforward to check that R is a rooted weakly divergence-preserving branching
bisimulation. Hence requirement 5 is satisfied.

Corollary 56 Rooted F is a congruence format for↔∆>
rb .

Exactly as above, this yields the following congruence theorem.

Theorem 57 Let P be a complete standard TSS in rooted stability-respecting branching bisimulation
format. Then↔∆>

rb is a congruence for P. �

4.3.3 A congruence format for divergence-preserving branching bisimilarity

Next, we apply Thm. 33 with↔∆
b and↔s

b in the roles of ∼ and ≈. In the construction of the LTS H, we
let O contain a unique name for each↔∆

b -equivalence class of processes in G, and let ζ (p) be the name
of the↔∆

b -equivalence class of p̂ ∈ PG, for any p ∈ T (Σ). Thus in H all states of G have a fresh outgoing
transition, labelled with the name of its ∼-equivalence class in G.

With this definition of H, requirement 3 of Thm. 33 is satisfied: any divergence-preserving branching
bisimulation B on G relates states in the same↔∆

b -equivalence class only, and thus is also a divergence-
preserving branching bisimulation on H (when adding

√
B
√

).
We proceed to show that also requirement 4 is satisfied. A few lemmas are needed.

Lemma 58 [16] Condition (D) in Def. 1 can be replaced by the following equivalent condition:

(D′) if p B q and there is an infinite sequence of processes (pk)k∈N such that p = p0, pk
τ−→ pk+1 and

pk B q for all k ∈N, then there is a process q′ such that q ε
=⇒ τ−→ q′ and pk B q′ for some k ∈N.

That is, the resulting definition also yields the relation↔∆
b .

Furthermore, we will employ the following property of↔∆
b .

Lemma 59 [16] If p0
τ−→ p1

τ−→ ·· · τ−→ pn and p0↔∆
b pn, then p0↔∆

b pi for all i = 0, . . . ,n.

The following proposition tells that requirement 4 of Thm. 33 is satisfied indeed.

Proposition 60 On AFO(P) the equivalences↔∆
b and↔s

b coincide.
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Proof: It suffices to show that the relation↔s
b on AFO(P) is a divergence-preserving branching bisim-

ulation. By definition it is a (stability-respecting) branching bisimulation. Hence it remains to show that
it is divergence-preserving. By Lem. 58 it suffices to show that it satisfies condition (D′). So assume that
p↔s

b q and there is an infinite sequence of processes (pk)k∈N such that p = p0, pk
τ−→ pk+1 and pk↔s

b q
for all k ∈N. We need to find a process q′ such that q ε

=⇒ τ−→ q′ and pk↔s
b q′ for some k ∈N. Towards

a contradiction, assume that there is no q′ with q ε
=⇒ τ−→ q′ and pk↔s

b q′ for some k ∈N.
Let p=ρ(t) and q=ρ(u) for univariate t,u∈T(Σ) with var(t)∩ var(u)= /0 and ρ:var(t)∪var(u)→

PH. Since AFO(P) is abstraction-free, all τ-transitions in the infinite sequence (pk
τ−→ pk+1)k∈N orig-

inate, through patience rules, from τ-transitions of the processes ρ(x) for variables x occurring Γ-liquid
in t. Let L be the set of variables x that occur Γ-liquid in t. Then ρ(x) = hx

0
τ−→H hx

1
τ−→H hx

2
τ−→H · · ·

for each x ∈ L, and for at least one x ∈ L—call it z—this sequence is infinitely long. For each k ∈N and
x ∈ L, let kx ≤ k keep track of how many of the τ-transitions in the sequence p0

τ−→ ·· · τ−→ pk originate
from ρ(x). Hence pk = ρk(t) where ρk(x) = hx

kx
for each x ∈ L and ρk(x) = ρ(x) for each x ∈ var(t)\L.

Since, by assumption, the sequence of τ-transitions originating from ρ(z) is infinite, for each `∈N there
exists a k ∈N such that kz = `.

Claim: There is a j ∈N such that hz
n↔∆

b hz
jz for all n≥ jz.

Proof of claim: Suppose there is no such j. Then, using Lem. 59, the processes hz
` for ` ∈ N

belong to infinitely many↔∆
b -equivalence classes. So there are infinitely many actions ω ∈ O such that

∃`. hz
`

ω−→H. For each of those actions ω , AFO(P) `ws pk
ω−→ for some k ∈N, by Obs. 40, and hence

AFO(P) `ws q ε
=⇒ q′′ ω−→ for some q′′ with pk↔s

b q′′, since pk↔s
b q. As we have assumed that there

is no q′ with q ε
=⇒ τ−→ q′ and pk↔s

b q′ for some k ∈N, we have q′′ = q, and thus AFO(P) `ws q ω−→.
However, according to Obs. 40 there can only be finitely many actions ω ∈ O with AFO(P) `ws q ω−→,
namely one for each variable occurring Γ-liquid in u.

Let ω be the name of the↔∆
b -equivalence class of the process ρ j(z) = hz

jz . Then ρ j(z)
ω−→H, and con-

sequently AFO(P)`ws ρ j(t)
ω−→ by Obs. 40. Since ρ j(t)↔s

b q, it follows that AFO(P)`ws q ε
=⇒q′′ ω−→

for some process q′′ with ρ j(t)↔s
b q′′. As we assumed that there is no q′ with q ε

=⇒ τ−→ q′ and pk↔s
b q′

for some k ∈N, we have q′′ = q, and thus AFO(P) `ws q = ρ(u) ω−→. So by Obs. 40 u has a Γ-liquid
occurrence of a variable y with ρ(y) ω−→H. It follows that in G we have hz

jz = ρ j(z)↔∆
b ρ(y). Thus, by

Lem. 58, there exists a g∈ PG with ρ(y) ε
=⇒ τ−→ g and hz

`
↔∆

b g for some `≥ jz. Since the TSS AFO(P)
is Γ-patient, we have q = ρ(u) ε

=⇒ τ−→ ρ ′(u) for a substitution ρ ′ with ρ ′(y) = g and ρ ′(x) = ρ(x) for all
variables x 6= y. As, using the claim, ρ(y)↔s

b ρ j(z) = hz
jz
↔s

b hz
`
↔s

b g = ρ ′(y), and↔s
b is a congruence on

AFO(P), it follows that ρ(u)↔s
b ρ ′(u). Since p↔s

b q = ρ(u)↔s
b ρ ′(u), it suffices to take q′ := ρ ′(u),

so that q ε
=⇒ τ−→ q′ and p↔s

b q′. This contradicts our assumption that no such q′ exists. �

We now verify requirement 5 of Thm. 33.

Proposition 61 p↔∆
b AFO(P) q ⇒ dec(p)↔∆

b K dec(q).

Proof: Define the relation B on the states of K by

dec(p) B dec(q) ⇔ p↔∆
b q .

By Lem. 58 it suffices to show that B is a branching bisimulation satisfying condition (D′). That it is a
branching bisimulation follows exactly as in the proof of Prop. 53. To show that it satisfies (D′), suppose
p↔∆

b q and there is an infinite sequence (p†
k)k∈N such that dec(p) = p†

0, p†
k

τ−→ p†
k+1 and p†

k B dec(q) for
all k ∈N. Then there is an infinite sequence (pk)k∈N such that p0 = p and, for all k ∈N, p†

k = dec(pk),
pk↔∆

b q and either pk
τ−→ pk+1 or pk

ι−→ pk+1. We distinguish two cases.
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CASE 1: There is a k ∈ N with pk
ι−→ pk+1—consider the first such k. Then p ε

=⇒ pk
ι−→ pk+1.

Since p↔∆
b q, there is a q′ with q ε

=⇒ ι−→ q′ and pk+1 ↔∆
b q′. Hence there is a dec(q′) with

dec(q) ε
=⇒ τ−→ dec(q′) and dec(pk+1) B dec(q′).

CASE 2: There is no such k. Then, since ↔∆
b satisfies (D′), there is a q′ such that q ε

=⇒ τ−→ q′ and
pk↔∆

b q′ for some k ∈N. It follows that there is a dec(q′) such that dec(q) ε
=⇒ τ−→ dec(q′) and

dec(pk+1) B dec(q′). �

Corollary 62 F is a congruence format for↔∆
b .

Exactly as above, this yields the following congruence theorem.

Theorem 63 Let P be a complete standard TSS in stability-respecting branching bisimulation format.
Then↔∆

b is a congruence for P. �

4.3.4 A congruence format for rooted divergence-preserving branching bisimilarity

We now apply Thm. 33 with ↔∆
rb and ↔s

rb in the roles of ∼ and ≈. The choice of O and ζ in the
construction of H is the same as in Sect. 4.3.3.

Again requirement 3 of Thm. 33 is satisfied: since any two processes g,h ∈ PG are↔∆
b -equivalent in

G iff they are↔∆
b -equivalent in H, if follows immediately from Def. 2 that any two processes g,h ∈ PG

are↔∆
rb-equivalent in G iff they are↔∆

rb-equivalent in H.
Requirement 4 of Thm. 33 is also satisfied: since on AFO(P) the equivalences↔∆

b and↔s
b coincide,

it follows immediately from Def. 2 that also↔∆
rb and↔s

rb coincide.
To check requirement 5 of Thm. 33 define the relation R on the states of K by

dec(p) R dec(q) ⇔ p↔∆
rb q .

With Def. 2 it is straightforward to check that R is a rooted weakly divergence-preserving branching
bisimulation. Hence requirement 5 is satisfied.

Corollary 64 Rooted F is a congruence format for↔∆
rb.

Exactly as above, this yields the following congruence theorem.

Theorem 65 Let P be a complete standard TSS in rooted stability-respecting branching bisimulation
format. Then↔∆

rb is a congruence for P. �

5 Related work

Ulidowski [27, 28, 29] proposed congruence formats, inside GSOS [6], for weak semantics that take
into account non-divergence, called convergence in [14]. In [27] he introduces the ISOS format, and
shows that the weak convergent refusal simulation preorder is a precongruence for all TSSs in the ISOS
format. The GSOS format—in our terminology the decent nxyft format—allows only decent ntyft rules
with variables as the left-hand sides of premises. The ISOS format is contained in the intersection of the
GSOS format and our stability-preserving branching bisimulation format. Its additional restriction is that
no variable may occur multiple times as the left-hand side of a positive premise, or both as the left-hand
side of a positive premise and in the conclusion of a rule.
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In [28, 29] he employs Ordered SOS (OSOS) TSSs [28]. An OSOS TSS allows no negative premises,
but includes priorities between rules: r < r′ means that r can only be applied if r′ cannot. An OSOS
specification can be seen as, or translated into, a GSOS specification with negative premises. Each rule
r with exactly one higher-priority rule r′ > r is replaced by a number of rules, one for each (positive)
premise of r′; in the copy of r, this premise is negated. For a rule r with multiple higher-priority rules r′,
this replacement is carried out for each such r′.

The ebo and bbo formats from [28] target unrooted convergent delay and branching bisimulation
equivalence, respectively. The bbo format is more liberal than the ebo format, which in turn is more
liberal than the ISOS format. The rebo and rbbo formats from [29] target rooted convergent delay
and branching bisimulation equivalence, respectively. These rooted formats are more liberal than their
unrooted counterparts, and the rbbo format is more liberal than the rebo format.

If patience rules are not allowed to have a lower priority than other rules, then the (r)bbo format,
upon translation from OSOS to GSOS, can be seen as a subformat of our (rooted) stability-respecting
branching bisimulation format. The basic idea is that in the rbbo format all arguments of so-called
τ-preserving function symbols [29], which are the only ones allowed to occur in targets, are declared
Λ-liquid; in the bbo format, all arguments of function symbols are declared Λ-liquid. Moreover, all
arguments of function symbols that occur as the left-hand side of a positive premise are declared ℵ-
liquid. Patience rules are in the (r)bbo format however, under strict conditions, allowed to be dominated
by other rules, which in our setting gives rise to patience rules with negative premises. This is outside
the realm of our rooted stability-respecting branching bisimulation format. On the other hand, the TSSs
of the process algebra BPAεδτ , the binary Kleene star and deadlock testing (see [10]), for which rooted
convergent branching bisimulation equivalence is a congruence, are outside the rbbo format but within
the rooted stability-respecting branching bisimulation format.

6 Conclusions

We showed how the method from [13] for deriving congruence formats through modal decomposition
can be applied to weak semantics that are stability-respecting. We used (rooted and unrooted) stability-
respecting branching bisimulation equivalence as a notable example. Moreover, we developed a general
method for lifting congruence formats from a weak semantics to a finer semantics, and used it to show
that congruence formats for stability-respecting branching bisimulation equivalence are also congruence
formats for their divergence-preserving counterparts. This research provides a deeper insight into the
link between modal logic and congruence formats, and strengthens the framework from [13] for the
derivation of congruence formats for weak semantics.

Almost every weak semantics has stability-respecting and divergence-preserving variants. Such vari-
ants have been studied most widely in the literature for branching, η-, delay and weak bisimulation
equivalence, but they have for instance also been considered for decorated trace semantics, such as ex-
hibited behaviour equivalence [26], the generalised failure preorder [22], refusal equivalence [24], and
copy+refusal equivalence [27]. We expect that the methods developed in this paper, combined with
the methods from [13, 10], can serve as a cornerstone in the generation of congruence formats for such
semantics. In particular, we conjecture that this will straightforwardly yield congruence formats for
stability-respecting and divergence-preserving variants of η-, delay and weak bisimulation equivalence.

Admittedly, the whole story is quite technical and intricate. Partly this is because we build on a rich
body of earlier work in the realm of structural operational semantics: the notions of well-supported proofs
and complete TSSs from [15]; the ntyft/ntyxt format from [19, 7]; the transformation to ruloids, which
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for the main part goes back to [9]; and the work on modal decomposition and congruence formats from
[5]. In spite of these technicalities, we have arrived at a relatively simple framework for the derivation
of congruence formats for weak semantics. Namely, for this one only needs to: (1) provide a modal
characterisation of the weak semantics under consideration; (2) study the class of modal formulas that
result from decomposing this modal characterisation, and formulate syntactic restrictions on TSSs to
bring this class of modal formulas within the original modal characterisation; and (3) check that these
syntactic restrictions are preserved under the transformation to ruloids. Steps (2) and (3) are very similar
in structure for different weak semantics, as exemplified by the way we obtained a congruence format
for stability-respecting branching bisimulation equivalence. And the resulting congruence formats tend
to be more liberal and elegant than existing congruence formats in the literature.

Our intention is to carve out congruence formats for all weak semantics in the spectrum from [14]
that have reasonable congruence properties. At first we expected that the current third instalment would
allow us to do so. However, it turns out that convergent weak semantics as considered in for instance
[28, 29, 31] still need extra work. The modal characterisations of these semantics are three-valued [14],
which requires an extension of the modal decomposition technique to a three-valued setting.
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A Modal characterisations

We prove Thm. 8, which states that Os
b is a modal characterisation of p↔s

b q, and Os
rb of p↔s

rb q. So we
need to prove, given an LTS (P,→), that p↔s

b q⇔ p∼Os
b

q and p↔s
rb q⇔ p∼Os

rb
q for all p,q ∈ P.

Proof: (⇒) We prove by structural induction on ϕ , resp. ϕ , that p↔s
b q∧ p |= ϕ ⇒ q |= ϕ for all

ϕ ∈Os
b, and p↔s

rb q∧ p |= ϕ⇒ q |= ϕ for all ϕ ∈Os
rb, The converse implications (q |= ϕ⇒ p |= ϕ and

q |= ϕ ⇒ p |= ϕ) follow by symmetry.

• ϕ =
∧

i∈I ϕi. Then p |= ϕi for all i ∈ I. By induction q |= ϕi for all i ∈ I, so q |=
∧

i∈I ϕi.

• ϕ = ¬ϕ ′. Then p 6|= ϕ ′. By induction q 6|= ϕ ′, so q |= ¬ϕ ′.

• ϕ = 〈ε〉ϕ1〈τ̂〉ϕ2. Then for some n there are p0, . . . , pn ∈ P with p0 = p, pi
τ−→ pi+1 for i ∈

{0, . . . ,n−1}, and pn |= ϕ1〈τ̂〉ϕ2. We apply induction on n.

n = 0 Then p |= ϕ1, so by induction on formula size, q |= ϕ1. Furthermore, either (1) p |= ϕ2 or
(2) there is a p′ ∈ P with p τ−→ p′ and p′ |= ϕ2. In case (1), by induction on formula size,
q |= ϕ2, so q |= 〈ε〉ϕ1〈τ̂〉ϕ2. In case (2), since p↔s

b q, by Def. 1 either (2.1) p′↔s
b q or

(2.2) q ε
=⇒ q′ τ−→ q′′ with p↔s

b q′ and p′↔s
b q′′. In case (2.1), by induction on formula size,

q |= ϕ2. In case (2.2), by induction on formula size, q′ |= ϕ1 and q′′ |= ϕ2. In both cases,
q |= 〈ε〉ϕ1〈τ̂〉ϕ2.

n > 0 Since p τ−→ p1, and p↔s
b q, according to Def. 1 there are two possibilities.

1. Either p1↔s
b q. Since p1 |= 〈ε〉ϕ1〈τ̂〉ϕ2, by induction on n, q |= 〈ε〉ϕ1〈τ̂〉ϕ2.

2. Or q ε
=⇒ q′ τ−→ q′′ with p1↔s

b q′′. Since p1 |= 〈ε〉ϕ1〈τ̂〉ϕ2, by induction on n, q′′ |=
〈ε〉ϕ1〈τ̂〉ϕ2. Hence q |= 〈ε〉ϕ1〈τ̂〉ϕ2.

• ϕ = 〈ε〉ϕ1〈a〉ϕ2. Then for some n there are p0, . . . , pn ∈ P with p0 = p, pi
τ−→ pi+1 for i ∈

{0, . . . ,n−1}, and pn |= ϕ1〈a〉ϕ2. We apply induction on n.

n = 0 Then p |= ϕ1, and there is a p′ ∈ P with p a−→ p′ and p′ |= ϕ2. Since p↔s
b q, by Def. 1

q ε
=⇒ q′ a−→ q′′ with p↔s

b q′ and p′ ↔s
b q′′. By induction on formula size, q′ |= ϕ1 and

q′′ |= ϕ2. Hence q |= 〈ε〉ϕ1〈a〉ϕ2.

n > 0 This case goes exactly as the the case n > 0 above.

• ϕ = 〈ε〉(¬〈τ〉> ∧ ϕ) with ϕ ∈ Os
rb. Then for some n there are p0, . . . , pn ∈ P with p0 = p,

pi
τ−→ pi+1 for i ∈ {0, . . . ,n−1}, and pn |= ¬〈τ〉>∧ ϕ . We apply induction on n.

n = 0 Then p |= ϕ and p 6 τ−→. Since p and q are related by a stability-respecting branching bisim-
ulation, there is a q′ with q ε

=⇒ q′ 6 τ−→ and p↔s
b q′. Because p and q′ are both stable, p↔s

b q′

implies p↔s
rb q′. So by induction on formula size, q′ |= ϕ . Hence q |= 〈ε〉(¬〈τ〉>∧ ϕ).

n > 0 This case goes exactly as the the case n > 0 above.

• ϕ =
∧

i∈I ϕ i. Then p |= ϕ i for all i ∈ I. By induction q |= ϕ i for all i ∈ I, so q |=
∧

i∈I ϕ i.

• ϕ = ¬ϕ
′. Then p 6|= ϕ

′. By induction q 6|= ϕ
′, so q |= ¬ϕ

′.

• ϕ = 〈α〉ϕ with ϕ ∈ Os
b. Then p α−→ p′ for some p′ with p |= ϕ . By Def. 2, q α−→ q′ for some q′

with p′↔s
b q′. So by induction q′ |= ϕ , and hence q |= 〈α〉ϕ .

• ϕ = ϕ ∈Os
b. Since p↔s

rb q implies p↔s
b q, we obtain q |= ϕ by the cases treated above.



36 Divide and Congruence III: Stability and Divergence

(⇐) We first prove that ∼Os
b

is a branching bisimulation. The relation is clearly symmetric. Let p∼Os
b

q.
Suppose p α−→ p′. If α = τ and p′ ∼Os

b
q, then the first condition of Def. 1 is fulfilled. So we can assume

that either (i) α 6= τ or (ii) p′ 6∼Os
b

q. We define two sets:

Q′ = {q′ ∈ P | q ε
=⇒ q′∧ p 6∼Os

b
q′}

Q′′ = {q′′ ∈ P | ∃q′ ∈ P : q ε
=⇒ q′ α−→ q′′∧ p′ 6∼Os

b
q′′}

For each q′ ∈Q′, let ϕq′ be a formula in Os
b such that p |= ϕq′ and q′ 6|= ϕq′ . (Such a formula always exists

because Os
b is closed under negation ¬.) We define

ϕ =
∧

q′∈Q′
ϕq′

Similarly, for each q′′ ∈ Q′′, let ψq′′ be a formula in Os
b such that p′ |= ψq′′ and q′′ 6|= ψq′′ . We define

ψ =
∧

q′′∈Q′′
ψq′′

Clearly, ϕ,ψ ∈Os
b, p |= ϕ and p′ |= ψ . We distinguish two cases.

1. α 6= τ . Since p |= 〈ε〉ϕ〈α〉ψ ∈Os
b and p∼Os

b
q, also q |= 〈ε〉ϕ〈α〉ψ . Hence q ε

=⇒ q′ α−→ q′′ with
q′ |= ϕ and q′′ |= ψ . By the definition of ϕ and ψ it follows that p∼Os

b
q′ and p′ ∼Os

b
q′′.

2. α = τ and p′ 6∼Os
b

q. Let ϕ̃ ∈Os
b such that p′ |= ϕ̃ and p,q 6|= ϕ̃ . Since p |= 〈ε〉ϕ〈τ̂〉(ϕ̃ ∧ψ) ∈Os

b
and p ∼Os

b
q, also q |= 〈ε〉ϕ〈τ̂〉(ϕ̃ ∧ψ). So q ε

=⇒ q′ with q′ |= ϕ〈τ̂〉(ϕ̃ ∧ψ). By definition of ϕ

it follows that p ∼Os
b

q′. Thus q′ 6|= ϕ̃ , so q′ τ−→ q′′ with q′′ |= ϕ̃ ∧ψ . By the definition of ψ it
follows that p′ ∼Os

b
q′′.

Both cases imply that the first condition of Def. 1 is fulfilled, i.e. that ∼Os
b

is a branching bisimulation.

Next we show that ∼Os
b

is stability-respecting. Let p ∼Os
b

q and p 6 τ−→. Define Q′ and ϕ ∈ Os
b ⊆ Os

rb as
above. Then p |= 〈ε〉(¬〈τ〉>∧ ϕ), and thus also q |= 〈ε〉(¬〈τ〉>∧ ϕ). Hence q ε

=⇒ q′ for some q′ with
q′ |= ¬〈τ〉>∧ ϕ . So q 6 τ−→ and by the definition of ϕ it follows that p∼Os

b
q′, which had to be shown.

Finally we show that ∼Os
rb

is a rooted stability-respecting branching bisimulation. Let p ∼Os
rb

q and
p α−→ p′. Let Qα = {q′ ∈ P | q α−→ q′∧ p′ 6∼Os

b
q′}. For each q′ ∈Q′, let χq′ be a formula in Os

b such that
p′ |= χq′ and q′ 6|= χq′ . We define χ =

∧
q′∈Q′ χq′ . Since p |= 〈α〉χ we have q |= 〈α〉χ , so q α−→ q′ for

some q′ with q′ |= χ . By the definition of χ it follows that p′ ∼Os
b

q′, which had to be shown. �
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