
Computation Tree Logic

with Deadlock Detection

Rob van Glabbeek 1,2, Bas Luttik 3,4 & Nikola Trčka 3

1 National ICT Australia, Sydney, Australia
2 School of Computer Science and Engineering, Univ. of New South Wales, Sydney
3 Dept. of Math. & Comp. Sc., Technische Universiteit Eindhoven, The Netherlands

4 CWI, The Netherlands

Abstract. We study the equivalence relation on states of labelled tran-
sition systems of satisfying the same formulas in Computation Tree Logic
without the next state modality (CTL

−X). This relation is obtained by De
Nicola & Vaandrager by translating labelled transition systems to Kripke
structures, while lifting the totality restriction on the latter. They char-
acterised it as divergence sensitive branching bisimulation equivalence.
We find that this equivalence fails to be a congruence for interleaving par-
allel composition. The reason is that the proposed application of CTL

−X

to non-total Kripke structures lacks the expressiveness to cope with dead-
lock properties that are important in the context of parallel composition.
We propose an extension of CTL

−X, or an alternative treatment of non-
totality, that fills this hiatus. The equivalence induced by our extension is
characterised as branching bisimulation equivalence with explicit diver-
gence, which is, moreover, shown to be the coarsest congruence contained
in divergence sensitive branching bisimulation equivalence.

1 Introduction

CTL
∗ [5] is a powerful temporal logic combining linear time and branching time

modalities; it generalises the branching time temporal logic CTL [4]. CTL
∗ is

interpreted in terms of Kripke structures. As the next state modality X is incom-
patible with abstraction of the notion of state, it is often excluded in high-level
specifications. By CTL

∗
−X we denote CTL

∗ without this modality. To characterise
the equivalence induced on states of Kripke structures by validity of CTL

∗
−X

for-
mulas, Browne, Clarke & Grumberg [2] defined the notion of stuttering equiv-
alence. They proved that two states in a finite Kripke structure are stuttering
equivalent if and only if they satisfy the same CTL

∗
−X

formulas, and moreover,
they established that this is already the case if and only if the two states satisfy
the same CTL−X formulas.

There is an intuitive correspondence between the notions of stuttering equiv-
alence on Kripke structures and branching bisimulation equivalence on labelled
transition systems (LTSs) as defined in [8]. De Nicola & Vaandrager [3] have
provided a framework for constructing natural translations between LTSs and
Kripke structures in which this correspondence can be formalised. Stuttering
equivalence corresponds in their framework to a divergence sensitive variant

2 Rob van Glabbeek, Bas Luttik & Nikola Trčka

of branching bisimulation equivalence, and conversely, branching bisimulation
equivalence corresponds to a divergence blind variant of stuttering equivalence.
The latter characterises the equivalence induced on states of Kripke structures
by a divergence blind variant of validity of CTL

∗
−X

formulas.

In [4, 5, 2] and other work on CTL
∗, Kripke structures are required to be total,

meaning that every state has an outgoing transition. These correspond with LTSs
that are deadlock-free. In the world of LTSs requiring deadlock-freeness is con-
sidered a serious limitation, as deadlock is introduced by useful process algebraic
operators like the restriction of CCS and the synchronous parallel composition
of CSP. Conceptually, a deadlock may arise as the result of an unsuccessful syn-
chronisation attempt between parallel components, and often one wants to verify
that the result of a parallel composition is deadlock-free. This is possible only
when working in a model of concurrency where deadlocks can be expressed.

Through the translations of [3] it is possible to define the validity of CTL
∗
−X

formulas on states of LTSs. To apply CTL
∗
−X-formulas to LTSs that may contain

deadlocks we consider Kripke structures with deadlocks as well, and hence lift the
requirement of totality. Following [3], we do so by using maximal paths instead
of infinite paths in the definition of validity of CTL

∗
−X formulas. Barring further

changes, this amounts to the addition of a self loop to every deadlock state.
As a consequence, CTL

∗
−X formulas cannot see the difference between a state

without outgoing transitions (a deadlock) and one whose only outgoing transition
constitutes a self loop (a livelock), and accordingly a deadlock state is stuttering
equivalent to a livelock state that satisfies the same atomic propositions. This
paper will challenge the wisdom of this set-up.

We observe that for systems with deadlock, the divergence sensitive branch-
ing bisimulation equivalence of [3] fails to be a congruence for interleaving op-
erators. We characterise the coarsest congruence contained in divergence sen-
sitive branching bisimulation equivalence as the branching bisimulation equiv-
alence with explicit divergence, introduced in [8]. This equivalence differs from
divergence sensitive branching bisimulation equivalence in that it distinguishes
deadlock and livelock. For deadlock-free systems the equivalences coincide.

That divergence sensitive branching bisimulation equivalence is not a con-
gruence for interleaving operators means that there are properties of concurrent
systems, pertaining to their deadlock behaviour, that cannot be expressed in
CTL

∗
−X, but that can be expressed in terms of the validity of a CTL

∗
−X formula

on the result of putting these systems in a given context involving an interleav-
ing operator. We find this unsatisfactory, and therefore propose an extension of
CTL

∗
−X in which this type of property can be expressed directly. We obtain that

two states are branching bisimulation equivalent with explicit divergence if and
only if they satisfy the same formulas in the resulting logic.

Treating CTL−X in the same way leads either to an extension of CTL−X or,
equivalently, to a modification of its semantics. The new semantics we propose
for CTL−X is a valid extension of the original semantics [4] to non-total Kripke
structures. It slightly differs from the semantics of [3] and it is arguably better
suited to deal with deadlock behaviour.

Computation Tree Logic with Deadlock Detection 3

Instead of extending CTL
∗
−X

or modifying CTL−X we also achieve the same
effect by amending the translation from LTSs to Kripke structures in such a way
that every LTS maps to a total Kripke structure.

2 CTL
∗

−X
and stuttering equivalence

We presuppose a set AP of atomic propositions. A Kripke structure is a tuple
(S,L,→) consisting of a set of states S, a labelling function L : S → 2AP and a
transition relation → ⊆ S × S. For the remainder of the section we fix a Kripke
structure (S,L,→).

A finite path from s is a finite sequence of states s0, . . . , sn such that s = s0
and sk−−→ sk+1 for all 0 ≤ k < n. An infinite path from s is an infinite sequence
of states s0, s1, s2, . . . such that s = s0 and sk −−→ sk+1 for all k ∈ ω. A path
is a finite or infinite path. A maximal path is an infinite path or a finite path
s0, . . . , sn such that ¬∃s′. sn −−→ s′. We write π � π′ if the path π′ is a suffix of
the path π, and π � π′ if π � π′ and π 6= π′.

Temporal properties of states in S are defined using CTL
∗
−X formulas.

Definition 1. The classes Φ of CTL
∗
−X state formulas and Ψ of CTL

∗
−X path

formulas are generated by the following grammar:

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃ψ ψ ::= ϕ | ¬ψ |
∧

Ψ ′ | ψ U ψ

with p ∈ AP, ϕ ∈ Φ, Φ′ ⊆ Φ, ψ ∈ Ψ and Ψ ′ ⊆ Ψ .

In case the cardinality of the set of states of our Kripke structure is less than some
infinite cardinal κ,1 we may require that |Φ′| < κ and |Ψ ′| < κ in conjunctions,
thus obtaining a set of formulas rather than a proper class. Normally, S is
required to be finite, and accordingly CTL

∗
−X

admits finite conjunctions only.

Definition 2. We define when a CTL
∗
−X

state formula ϕ is valid in a state s
(notation: s |= ϕ) and when a CTL

∗
−X path formula ψ is valid on a maximal

path π (notation: π |= ψ) by simultaneous induction as follows:

− s |= p iff p ∈ L(s);
− s |= ¬ϕ iff s 6|= ϕ;
− s |=

∧

Φ′ iff s |= ϕ for all ϕ ∈ Φ′;
− s |= ∃ψ iff there exists a maximal path π from s such that π |= ψ;
− π |= ϕ iff s is the first state of π and s |= ϕ;
− π |= ¬ψ iff π 6|= ψ;
− π |=

∧

Ψ ′ iff π |= ψ for all ψ ∈ Ψ ′; and
− π |= ψ U ψ′ iff there exists a suffix π′ of π such that π′ |= ψ′, and π′′ |= ψ

for all π � π′′ � π′.

A formula ψ U ψ′ says that, along a given path, ψ holds until ψ′ holds.
One writes ⊤ for the empty conjunction (which is always valid), Fψ for ⊤ U ψ
(“ψ will hold eventually”) and Gψ for ¬F¬ψ (“ψ holds always (along a path)”).

1 In fact it suffices to require that for every state s the cardinality of the set of states
reachable from s is less than κ.

4 Rob van Glabbeek, Bas Luttik & Nikola Trčka

The above is the standard, divergence sensitive interpretation of CTL
∗
−X

[5, 2],
but extended to Kripke structures that are not required to be total. Following [3],
this is achieved by using maximal paths in the definition of validity of CTL

∗
−X

formulas, instead of the traditional use of infinite paths [5, 2]. The resulting
definition generalises the traditional one, because for total Kripke structures a
path is maximal iff it is infinite.

An equivalent way of thinking of this generalisation of CTL
∗
−X

to non-total
Kripke structures is by means of a transformation that makes a Kripke structure
K total by the addition of a self loop s−−→ s to every deadlock state s, together
with the convention that a formula is valid in a state of K iff it is valid in the
same state of the total Kripke structure obtained by this transformation. It is
not hard to check that this yields the same notion of validity as our Definition 2.

The divergence blind interpretation of [3] (notation: s |=
db
ϕ and π |=

db
ψ)

is obtained by dropping the word “maximal” in the fourth clause of Definition 2.

Definition 3. A colouring is a function C : S → C, for C any set of colours.
Given a colouring C and a (finite or infinite) path π = s0, s1, s2, . . . from s,

let C(π) be the sequence of colours obtained from C(s0), C(s1), C(s2), . . . by con-
tracting all its (finite or infinite) maximal consecutive subsequences C,C,C, . . .
to C. The sequence C(π) is called a C-coloured trace of s; it is complete if π is
maximal.

A colouring C is [fully] consistent if two states of the same colour always
satisfy the same atomic propositions and have the same [complete] C-coloured
traces. Two states s and t are divergence blind stuttering equivalent, notation
s ≈dbs t, if there exists a consistent colouring C such that C(s) = C(t). They
are (divergence sensitive) stuttering equivalent, notation s ≈s t, if there exists a
fully consistent colouring C such that C(s) = C(t). The difference between ≈dbs

and ≈s is illustrated in the following example.

Example 1. Consider the Kripke structure and its colouring depicted in Fig-
ure 1a. This colouring is consistent, implying s ≈dbs t ≈dbs u and x ≈dbs y,
but it is not fully consistent because state t has a complete trace while u
does not. Note that t has, due to the self loop, a complete coloured trace that
consists of just the colour of a p-labelled state, whereas the unique complete
coloured trace of u contains the colour of a q-labelled state too. Since a consis-
tent colouring assigns different colours to states with different labels, every fully
consistent colouring must assign different colours to states t and u, i.e. it must
be that t 6≈s u. One such colouring is given in Figure 1b. This colouring shows
that x ≈s y.

Lemma 1. Let C be a colouring such that two states with the same colour satisfy
the same atomic propositions and have the same C-coloured traces of length two.
Then C is consistent.

Proof. Suppose C(s0) = C(t0) and C0, C1, C2, . . . is an infinite coloured trace of
s0. Then, for i > 0, there are states si and finite paths πi from si−1 to si, such
that C(πi) = Ci−1, Ci. With induction on i, for i > 0 we find states ti with

Computation Tree Logic with Deadlock Detection 5

a) s
p

�� ��
t

p''

��

u
p

��
x

q
y

q vv

b) s
p

�� ��
t

p''

��

u
p

��
x

q
y

q vv

Fig. 1. Difference between a) ≈dbs and b) ≈s.

C(si) = C(ti) and finite paths ρi from ti−1 to ti such that C(ρi) = Ci−1, Ci.
Namely, the assumption about C allows us to find ρi given ti−1, and then ti is
defined as the last state of ρi. Concatenating all the paths ρi yields an infinite
path ρ from t0 with C(ρ) = C0, C1, C2,

The case that C(s0) = C(t0) and C0, . . . , Cn is a finite coloured trace of s0
goes likewise. 2

Lemma 2. Let C be a colouring such that two states with the same colour satisfy
the same atomic propositions and have the same C-coloured traces of length two,
and the same complete C-coloured traces of length one. Then C is fully consistent.

Proof. Suppose C(s) = C(t) and σ is a complete C-coloured trace of s. Then
σ = C(π) for a maximal path π from s. By Lemma 1, σ is also a C-coloured
trace of t. It remains to show that it is a complete C-coloured trace of t. Let ρ
be a path from t with C(ρ) = σ. If ρ is infinite, we are done. Otherwise, let t′

be the last state of ρ. Then C(t′) is the last colour of σ. Therefore, there is a
state s′ on π such that the suffix π′ of π starting from s′ is a maximal path with
C(π′) = C(s′) = C(t′). By the assumption about C, C(t′) must also be a complete
C-coloured trace of t′, i.e. there is a maximal path ρ′ from t′ with C(ρ′) = C(t′).
Concatenating ρ and ρ′ yields a maximal path ρ′′ from t with C(ρ′′) = σ. 2

The following two theorems were proved in [3] and [2], respectively, for states s
and t in a finite Kripke structure. Here we drop the finiteness restriction.

Theorem 1. s ≈dbs t iff s |=db ϕ ⇔ t |=db ϕ for all CTL
∗
−X

state formulas ϕ.

Proof. “Only if”: Let C be a consistent colouring. With structural induction on
ϕ and ψ we show that

C(s) = C(t) ⇒ (s |=db ϕ ⇔ t |=db ϕ) and C(π) = C(ρ) ⇒ (π |=db ψ ⇔ ρ |=db ψ).

The case ϕ = p for p ∈ AP follows immediately from Definition 3. The cases
ϕ = ¬ϕ′ and ϕ =

∧

Φ′ follow immediately from the induction hypothesis.
Suppose C(s) = C(t) and s |=db ∃ψ. Then there exists a path π from s such

that π |=db ψ. C(π) is a coloured trace of s, and hence of t. Thus there must be
a path ρ from t with C(π) = C(ρ). By induction, ρ |=db ψ. Hence, t |=db ∃ψ.

6 Rob van Glabbeek, Bas Luttik & Nikola Trčka

The case ϕ ∈ Φ follows since the first states of two paths with the same colour
also have the same colour. The cases ψ = ¬ψ′ and ψ =

∧

Ψ ′ follow immediately
from the induction hypothesis.

Finally, suppose C(π) = C(ρ) and π |=db ψ Uψ′. Then there exists a suffix π′

of π such that π′ |=
db
ψ′ and π′′ |=

db
ψ for all π � π′′ � π′. As C(π) = C(ρ), there

must be a suffix ρ′ of ρ such that C(π′) = C(ρ′) and for every path ρ′′ such that
ρ � ρ′′ � ρ′ there exists a path π′′ with π � π′′ � π′ such that C(π′′) = C(ρ′′).
By induction, this implies ρ′ |=

db
ψ′ and ρ′′ |=

db
ψ for all ρ � ρ′′ � ρ′. Hence

ρ |=db ψ U ψ′.
“If”: Let C be the colouring given by C(s) = {ϕ ∈ Φ | s |=

db
ϕ}. It suffices

to show that C is consistent. So suppose C(s) = C(t). Trivially, s and t satisfy
the same atomic propositions. By Lemma 1 it remains to show that s and t
have the same coloured traces of length two. Suppose s has a coloured trace
C,D. Let s0, . . . , sk be a path from s such that C(si) = C for 0 ≤ i < k and
C(sk) = D 6= C. Let

U = {u | there is a path from t to u and C(u) 6= C},
V = {v | there is a path from t to v and C(v) 6= D}.

For every u ∈ U pick a CTL
∗
−X

formula ϕu ∈ C − C(u) (using negation on a
formula in C(u) − C if needed), and for every v ∈ V pick a CTL

∗
−X

formula
ϕ′
v ∈ D − C(v). Now s |=db ∃(

∧

u∈U ϕu) U (
∧

v∈V ϕ
′
v) and, as C(s) = C(t), also

t |=db ∃(
∧

u∈U ϕu) U (
∧

v∈V ϕ
′
v). Thus, there is a path t0, . . . , tℓ from t such that

tℓ |=db

∧

v∈V ϕ
′
v and tj |=db

∧

u∈U ϕu for 0 ≤ j < ℓ. It follows that tℓ 6∈ V and
tj 6∈ U for 0 ≤ j < ℓ. Hence C(tℓ) = D and C(tj) = C for 0 ≤ j < ℓ, so C,D is
also a coloured trace of t. 2

Theorem 2. s ≈s t iff s |= ϕ ⇔ t |= ϕ for all CTL
∗
−X state formulas ϕ.

Proof. “Only if” goes exactly as in the previous proof, reading |= for |=
db

, but
requiring C to be fully consistent and, in the second paragraph, the paths π and
ρ to be maximal and C(π) to be a complete coloured trace of s and t.

“If” goes as in the previous proof, but this time we have to show that C is fully
consistent. Thus, applying Lemma 2, and assuming C(s) = C(t), we additionally
have to show that s and t have the same complete coloured traces of length one.
Let π be a maximal path from s with C(π) = C. Let

U = {u | there is a path from t to u and C(u) 6= C}.

For every u∈ U pick a CTL
∗
−X formula ϕu ∈ C − C(u). Now s |= ∃G(

∧

u∈U ϕu)
and, as C(s) = C(t), also t |= ∃G(

∧

u∈U ϕu). Thus, there is a maximal path ρ
from t such that t′ |=

∧

u∈U ϕu for all states t′ in ρ. It follows that t′ 6∈ U . Hence
C(t′) = C and thus C(ρ) = C. 2

Corollary 1. ≈dbs and ≈s are equivalence relations. 2

Note that, for any colouring C, the C-coloured traces of a state s are completely
determined by the complete C-coloured traces of s, namely as their prefixes.

Computation Tree Logic with Deadlock Detection 7

Hence, any colouring that is fully consistent is certainly consistent, and thus ≈s
is a finer (i.e. smaller, more discriminating) equivalence relation than ≈dbs .

Above, the divergence blind interpretation of CTL
∗
−X is defined by using paths

instead of maximal paths. It can equivalently be defined in terms of a transfor-
mation on Kripke structures, namely the addition of a self loop s−−→ s for every
state s. Now s ≈dbs t holds in a certain Kripke structure iff s ≈s t holds in
the Kripke structure obtained by adding all these self loops. This is because the
colour of a path doesn’t change when self-loops are added to it, and up to self
loops any path is maximal. Likewise, s |=db ϕ in the original Kripke structure
iff s |= ϕ in the modified one.

Just like ≈dbs can be expressed in terms of ≈s by means of a transformation
on Kripke structures, by means of a different transformation, at least for finite
Kripke structures, ≈s can be expressed in terms of ≈dbs . This is done in [3],
Definitions 3.2.6 and 3.2.7.

3 Branching bisimulation in terms of coloured traces

We presuppose a set A of actions with a special element τ ∈A. A labelled tran-
sition system (LTS) is a structure (S,→) consisting of a set of states S and a
transition relation → ⊆ S × A × S. For the remainder of the section we fix an
LTS (S,→). We write s

a
−−→ s′ for (s, a, s′) ∈ →.

A path from s is an alternating sequence s0, a1, s1, a2, s2, . . . of states and
actions, ending with a state if the sequence is finite, such that s = s0 and
sk−1

ak−−→ sk for all relevant k > 0. A maximal path is an infinite path or a finite
path s0, a1, s1, a2, . . . , an, sn such that ¬∃a, s′. sn

a−−→ s′. We write π � π′ if the
path π′ is a suffix of the path π, and π � π′ if π � π′ and π 6= π′.

Definition 4. A colouring is a function C : S → C, for C any set of colours.
For π = s0, a1, s1, a2, s2, . . . a path from s, let C(π) be the alternating se-

quence of colours and actions obtained from C(s0), a1, C(s1), a2, C(s2), . . . by con-
tracting all (finite or infinite) maximal consecutive subsequences C, τ, C, τ, C, . . .
to C. The sequence C(π) is called a C-coloured trace of s; it is complete if π is
maximal; it is divergent if it is finite whilst π is infinite.

A colouring C is [fully] consistent if two states of the same colour always
have the same [complete] C-coloured traces. Two states s and t are (divergence
blind) branching bisimulation equivalent, notation s↔b t, if there exists a consis-
tent colouring C such that C(s) = C(t). They are divergence sensitive branching
bisimulation equivalent, notation s↔λ

b t, if there exists a fully consistent colour-
ing C such that C(s) = C(t).

A consistent colouring preserves divergence if two states of the same colour al-
ways have the same divergent C-coloured traces. Two states s and t are branching
bisimulation equivalent with explicit divergence, notation s ↔∆

b t, if there exists
a consistent, divergence preserving colouring C with C(s) = C(t).

The difference between ↔b, ↔λ
b , and ↔∆

b is illustrated in the following example.

8 Rob van Glabbeek, Bas Luttik & Nikola Trčka

a) s

τ

��

τ

τ

��
tτ

''

a

��

u

a

��

v

a

��
x y z τ

vv

b) s

τ

��

τ

τ

��
tτ

''

a

��

u

a

��

v

a

��
x y z τ

vv

c) s

τ

��

τ

τ

��
tτ

''

a

��

u

a

��

v

a

��
x y z τ

vv

Fig. 2. Difference between a) ↔b, b) ↔λ

b , and c) ↔∆

b .

Example 2. Consider first the LTS and its colouring depicted in Figure 2a. This
colouring is consistent and we have s ↔b t ↔b u ↔b v and x ↔b y ↔b z. It
is not fully consistent because state s has a complete trace whereas t has
not. It is easy to see that every fully consistent colouring must assign different
colours to states t and u, and so that t 6↔λ

b u. One such colouring is given in
Figure 2b and it shows that u↔λ

b v and x↔λ
b y ↔λ

b z. Note, however, that this
colouring, although fully consistent, does not preserve divergence. State v has a
divergent trace a whereas u has not, and similarly state z has a divergent
trace whereas y has not. Any colouring that preserves divergence must assign

different colours to states u and v and to states y and z, meaning that u 6↔∆
b v

and y 6↔∆
b z. One such colouring is given in Figure 2c. It shows that x ↔∆

b y.
In fact, these are the only two (different) states that are branching bisimulation
equivalent with explicit divergence.

In the definition of ↔∆
b above, consistency and preservation of divergence appear

as two separate properties of colourings. Instead we could have integrated them
by adding an extra bit (∆) at the end of those finite coloured traces that stem
from infinite paths. Likewise, ↔λ

b could have been defined by adding such an
extra bit at the end of those finite coloured traces that stem from maximal
paths.

Lemmas 1 and 2 about colourings on Kripke structures apply to labelled
transition systems as well. The proofs are essentially the same.

Lemma 3. Let C be a colouring such that two states with the same colour have
the same C-coloured traces of length three (i.e. colour - action - colour). Then C
is consistent. 2

Lemma 4. Let C be a consistent colouring such that two states with the same
colour have the same complete C-coloured traces of length one. Then C is fully
consistent. 2

Lemma 5. Let C be a consistent colouring such that two states with the same
colour have the same divergent C-coloured traces of length one. Then C preserves
divergence.

Computation Tree Logic with Deadlock Detection 9

Proof. Exactly like the proof of Lemma 2, but letting σ be a divergent C-coloured
trace of s; π, π′ infinite paths; C(t′) a divergent C-coloured trace of t′; and ρ′, ρ′′

infinite paths. 2

Branching bisimulation equivalence and branching bisimulation equivalence with
explicit divergence were originally defined in Van Glabbeek & Weijland [8].
There, only finite coloured traces are considered, and a consistent colouring was
defined as a colouring with the property that two states have the same colour
only if they have the same finite coloured traces. By Lemma 3 this yields the
same concept of consistent colouring as Definition 4 above.

In [8], a consistent colouring is said to preserve divergence if no divergent
state has the same colour as a nondivergent state. Here a state s is divergent
if it is the starting point of an infinite path of which all nodes have the same
colour. This is the case if s has a divergent coloured trace of length one. Now
Lemma 5 says that the definition of preservation of divergence from [8] agrees
with the one proposed above. Hence the concepts of branching bisimulation and
branching bisimulation with explicit divergence of [8] agree with ours.

Theorem 3. ↔b, ↔λ
b and ↔∆

b are equivalence relations.

Proof. We show the proof for ↔b; the other two cases proceed likewise.
We will regard any equivalence relation on S as a colouring, the colour of a

state being its equivalence class. Conversely, any colouring can be considered as
an equivalence relation on states.

The diagonal on S (i.e., the binary relation {(s, s) | s ∈ S}) is a consis-
tent colouring, so ↔b is reflexive. That ↔b is symmetric is immediate from the
required symmetry of colourings.

To prove that ↔b is transitive, suppose s ↔b t and t ↔b u. So there exist
consistent colourings C and D with C(s) = C(t) and D(t) = D(u). Let E be the
finest equivalence relation containing C and D. Then E(s) = E(t) = E(u). It
suffices to show that E is consistent.

First of all note that the E-colour of a state is completely determined by its
C-colour, as well as by its D-colour: C(p) = C(q) ⇒ E(p) = E(q) and D(p) =
D(q) ⇒ E(p) = E(q) for all p, q ∈ S. Thus, if two states have the same sets of
C-coloured traces or the same sets of D-coloured traces, they must also have the
same sets of E-coloured traces.

Suppose E(p) = E(q). Then there must be a sequence of states (pi)0≤i≤n
such that p = p0, q = pn and for 0 ≤ i < n we have either C(pi) = C(pi+1) or
D(pi) = D(pi+1). As C and D are consistent colourings, pi and pi+1 have the
same C-coloured traces or the same D-coloured traces. In either case they also
have the same E-coloured traces. This holds for 0 ≤ i < n, so p and q have the
same E-coloured traces. Thus E is consistent. 2

Lemma 6. Let C be a consistent colouring and s ∈ S. Then the complete C-
coloured traces of s consist of the C-coloured traces of s that are infinite, diver-
gent, or maximal, in the sense that they cannot be extended.

10 Rob van Glabbeek, Bas Luttik & Nikola Trčka

Proof. By definition, infinite and divergent C-coloured traces of s are complete.
Let σ be a maximal C-coloured trace of s, and let π be a path from s such that
C(π) = σ. Let π′ be an extension of π to a maximal path. As σ is a maximal
C-coloured trace, in the sense that it cannot be extended, we have C(π′) = σ.
Hence σ is a complete C-coloured trace of s.

Now let σ be a complete C-coloured trace of s that is not infinite, nor a
divergent C-coloured trace of s. In that case σ = C(π) for π a finite maximal
path from s. Let t be the last state of π. We have ¬∃a, t′. t a−−→ t′. Suppose,
towards a contradiction, that σ is not maximal, i.e. there is a path π′ from s
such that C(π′) is a proper extension of σ. Then there must be a state u on π′

with C(u) = C(t), such that u has a coloured trace σ′ of length > 1, which is a
suffix of C(π′). As C is consistent, σ′ is also a coloured trace of t, contradicting
¬∃a, t′. t a−−→ t′. 2

As for Kripke structures, for any colouring C, the C-coloured traces of a state
s are the prefixes of the complete C-coloured traces of s. Moreover, Lemma 6
says that the complete C-coloured traces of a state s are completely determined
by the C-coloured traces of s together with the divergent C-coloured traces of
s. Hence, any colouring that is consistent and preserves divergence is also fully
consistent. Therefore, ↔∆

b is finer than ↔λ
b , which is finer than ↔b.

The difference between ↔λ
b and ↔∆

b is that only the latter sees the difference
between those maximal finite coloured traces that stem from finite paths (ending
in deadlock) and those that stem from infinite paths (ending in livelock). For
deadlock-free LTSs (having no states s with ¬∃a, s′. s a−−→ s′) the equivalences
↔λ
b and ↔∆

b coincide.

4 Translating between Kripke structures and labelled

transition systems

We presuppose a set A of actions with a special element τ ∈ A, and a set AP

of atomic propositions. A doubly labelled transition system (L2TS) is a structure
(S,L,→) that consists of a set of states S, a labelling function L : S → 2AP

and a labelled transition relation → ⊆ S × A × S. From an L2TS one naturally
obtains an LTS by omitting the labelling function L, and a Kripke structure
by replacing the labelled transition relation by one from which the labels are
omitted. We call these the LTS or Kripke structure associated to the L2TS. An
L2TS (S,L,→) is consistent if it satisfies the following three conditions:

(i) if s
a−−→ t, then (L(s) = L(t) iff a = τ);

(ii) if s
a

−−→ t, s′
a−−→ t′ and L(s) = L(s′), then L(t) = L(t′); and

(iii) if s
a−−→ t, s′ b−−→ t′, L(s) = L(s′) and L(t) = L(t′), then a = b.

Consistent L2TSs were introduced in De Nicola & Vaandrager [3] for studying
relationships between notions defined for Kripke structures and notions defined
for LTSs. Condition (iii) says that the label of a transition is fully determined
by the labels of its source and target state, whereas condition (ii) entails that

Computation Tree Logic with Deadlock Detection 11

the label of a state t reachable from a state s is completely determined by the
label of s and the sequence of labels of the transitions leading from s to t.

Example 3. The three L2TSs from Figure 3a are not consistent because they vio-
late condition (i), (ii), and (iii) respectively; the L2TS in Figure 3b is consistent.

a)
p

a

-- p

a

����
��
��
�

a

��/
//

//
//

q r

p

a

����
��
��
�

b

��/
//

//
//

q q

b)
p

a

����
��

��
��

�

a

��

b

��;
;;

;;
;;

;;

q τ // q r

Fig. 3. a) Three inconsistent L2TSs and b) a consistent L2TS.

Many semantic equivalences on LTSs, such as ↔b, ↔λ
b and ↔∆

b , are considered
in the literature; for an overview see [6].

Definition 5. Any semantic equivalence ∼ on LTSs extends to L2TSs by declar-
ing, for all states s and t in an L2TS, that s ∼ t iff L(s) = L(t) and s ∼ t in the
associated LTS.

Any semantic equivalence ∼ on Kripke structures extends to L2TSs by declar-
ing, for all states s and t in an L2TS, that s ∼ t iff s ∼ t in the associated Kripke
structure.

The following theorem was proved in [3] for finite consistent L2TSs. Here we drop
the finiteness restriction.

Theorem 4. On a consistent L2TS, ≈dbs equals ↔b, and ≈s equals ↔λ
b .

Proof. Suppose s ≈dbs t [or s ≈s t]. Then there is a colouring C on the states
of the L2TS that is [fully] consistent on the associated Kripke structure K and
satisfies C(s) = C(t). By definition, this entails L(s) = L(t). It remains to show
that C is [fully] consistent on the associated LTS L. So let C(p) = C(q), and
let σ be a [complete] coloured trace of p in L. Using symmetry, it suffices to
show that σ is also a [complete] coloured trace of q in L. Let ρ be obtained by
omitting all actions from the alternating sequence of states and actions σ. Using
direction “only if” of clause (i) in the definition of a consistent L2TS, ρ must be
a [complete] coloured trace of p in K. As C is [fully] consistent on K, ρ must also
be a [complete] coloured trace of q in K. Finally, using clauses (i) “only if” and
(iii), σ must be a [complete] coloured trace of q in L.

Now suppose s↔b t [or s↔λ
b t]. Then L(s) = L(t) and there is a colouring

C on the states of the L2TS, with C(s) = C(t), that is [fully] consistent on L. Let
D be the colouring given by D(p) := (C(p),L(p)) for all p ∈ S, so that we have
D(p) = D(q) ⇔ [C(p) = C(q)∧L(p) = L(q)]. It suffices to show that D is [fully]

12 Rob van Glabbeek, Bas Luttik & Nikola Trčka

consistent on K. The requirement D(p) = D(q) ⇒ L(p) = L(q) is built into the
definition of D. So let D(p) = D(q), and let ν be a [complete] D-coloured trace of
p in K. Using symmetry, it suffices to show that ν is also a [complete] D-coloured
trace of q in K. Using clause (i) “only if”, there must be a [complete] D-coloured
trace ρ of p in L such that ν is obtained from ρ by omitting its actions. Let σ be
the [complete] C-coloured trace of s in K obtained from ρ by omitting the second
component of each D-colour of a state. As C(p) = C(q) and C is [fully] consistent
on L, σ must also be a [complete] C-coloured trace of q in L. By applying clauses
(i) “if” and (ii) one derives that ρ is a [complete] D-coloured trace of q in L.
Therefore, again using clause (i) “only if”, ν must be a [complete] D-coloured
trace of q in K. 2

Observation 1. For every Kripke structure K there exists a consistent L2TS D
such that K is the Kripke structure associated to D.

One way to obtain D is to label any transition s −−→ t by the pair (L(s),L(t))
(or simply by L(t)) when L(s) 6= L(t), or τ when L(s) = L(t). An alternative
is the label (L(s) − L(t),L(t) − L(s)), where (∅, ∅) is identified with τ .

Unlike the situation for Kripke structures (Observation 1) it is not the case
that every LTS can be obtained as the LTS associated to a consistent L2TS. A
simple counterexample is presented in [3]. Thus, in encoding LTSs as L2TSs, it
is in general not possible to keep the set of states the same.

Definition 6. An LTS-to-L2TS transformation η consist of a function taking
any LTS L to a consistent L2TS η(L), and in addition taking any state s in L
to a state η(s) in η(L). Such a transformation should at least satisfy s ↔λ

b t ⇔
η(s) ↔λ

b η(t), that is, it preserves (“⇒”) and reflects (“⇐”) divergence sensitive
branching bisimulation equivalence, and likewise for ↔b, and ↔∆

b .

A common LTS-to-L2TS transformation is presented in [3]. It takes an LTS
L = (S,→) to an L2TS η(L) by inserting a new state halfway any transition
s

a−−→t with a 6= τ . This new state is labelled {a}, and each of the two transitions
replacing s a−−→ t (from s to the new state and from there to t) is labelled a.
Transitions s

τ−−→ t are untouched. One takes η(s) = s for s ∈ S and all such
states from L are labelled {⊥} in η(L). (Consult [3] for the formal definition and
examples.) In [3] it is shown that this transformation preserves and reflects ↔λ

b ;
the same proof applies to ↔b and ↔∆

b .
An LTS-to-L2TS transformation η yields an LTS-to-Kripke-structure trans-

formation that we also call η, namely the one transforming an LTS L into the
Kripke structure associated to η(L). In fact, using Theorem 4 and Observa-
tion 1, any LTS-to-Kripke-structure transformation η that preserves and reflects
the required equivalences can be obtained in this way.

An LTS-to-L2TS transformation η makes it possible to define when a state s
in an LTS satisfies a CTL

∗
−X

formula ϕ. Namely, one defines s |=η
ϕ iff η(s) |= ϕ.

This way, CTL
∗
−X can be used as temporal logic on LTSs.

Theorem 5. Let s and t be states in an LTS, and let η be an LTS-to-L2TS
transformation. Then

Computation Tree Logic with Deadlock Detection 13

s↔b t iff s |=η
db
ϕ ⇔ t |=η

db
ϕ for all CTL

∗
−X

state formulas ϕ
s↔λ

b t iff s |=η ϕ ⇔ t |=η ϕ for all CTL
∗
−X state formulas ϕ.

Proof. This is an immediate consequence of the requirement that η preserves
and reflects ↔b and ↔λ

b , in combination with Theorems 1, 2 and 4. 2

5 Parallel composition

For a behavioural equivalence to be useful in a process algebraic setting, it is
essential that it is a congruence for the operations under consideration. In this
section we prove that ↔∆

b and ↔b are congruences for the merge or interleav-
ing operator ‖. This operator is often used to represent (asynchronous) parallel
composition. However, ↔λ

b fails to be a congruence for ‖. We characterise the
least discriminating congruence that makes all the distinctions of ↔λ

b as ↔∆
b .

Definition 7. A binary operation ‖ on the states of an LTS is a merge if for all
s, t, u ∈ S and for all a ∈ A it holds that s ‖ t

a
−−→ u iff

− there exists s′ ∈ S such that s
a

−−→ s′ and u = s′ ‖ t; or
− there exists t′ ∈ S such that t

a−−→ t′ and u = s ‖ t′.

Using well known techniques from structural operational semantics [1] any LTS
can be augmented with a merge. Moreover, an LTS with merge is generated
by the structural operational semantics of any process calculus that includes an
operation for pure interleaving. Henceforth we deal with LTSs with a merge ‖.

Theorem 6. The relation ↔∆
b is a congruence for ‖, i.e., if s ↔∆

b t and u ↔∆
b v,

then s ‖ u ↔∆
b t ‖ v.

Proof. Let R be the reflexive and transitive closure of the relation

{(p‖q, p′‖q′) | p↔∆
b p′ & q ↔∆

b q′} .

Let C be the function that assigns to each state its equivalence class with respect
to R. It suffices to prove that C is a consistent divergence preserving colouring.
So suppose C(r) = C(r′). Using Lemmas 3 and 5 it suffices to show that r and
r′ have the same C-coloured traces of length three and the same divergent C-
coloured traces of length one. It is straightforward, but notationally cumbersome,
to establish this in the special case that r = p ‖ q and r′ = p′ ‖ q′ with p ↔∆

b p′

and q ↔∆
b q′. The general case then follows by induction on the length of a chain

of pairs from the relation displayed above showing that the pair (r, r′) is in its
reflexive and transitive closure. 2

A similar proof shows that also ↔b is a congruence for ‖. However, ↔λ
b is not.

Example 4. Consider an LTS with merge that contains a state 0 without out-
going transitions, a state ∆0 with a τ -loop (an outgoing τ -labelled transition
to itself) and no other outgoing transitions, and a state a with a

a−−→ 0 and no
other outgoing transitions. (Note that such an LTS is, e.g., generated by the

14 Rob van Glabbeek, Bas Luttik & Nikola Trčka

structural operational semantics of CCS with recursion.) Then 0 ↔λ
b ∆0. Fig-

ure 4a shows the fragment consisting of the states 0, ∆0 and a of the LTS under
consideration. Figure 4b shows a fragment where the merge is applied. Observe
that 0 ‖ a 6↔λ

b ∆0 ‖ a. The reason is that ∆0 ‖ a has a maximal path that stays
in its initial state, whereas 0 ‖ a has not. This problem does not apply to ↔b

because 0 ‖ a↔b ∆0 ‖ a. It does not apply to ↔∆
b because 0 6↔∆

b ∆0.

a) a

a

��
∆0

τ
��

↔λ

b 0

b) 0‖a

a

��

6↔λ

b
∆0‖a

a

��

τ

!!

0‖0 ∆0‖0

τ

LL

Fig. 4. ↔λ

b is not a congruence for parallel composition

The example above involves a deadlock state, namely 0. This is unavoidable, as
on LTSs without deadlock ↔λ

b coincides with ↔∆
b (cf. Section 3) and hence is a

congruence for ‖.
The standard solution to the problem of an equivalence ∼ failing to be a

congruence for a desirable operator Op is to replace it by the coarsest congruence
for Op that is included in ∼ [10]. Applying this technique to the current situation,
the coarsest congruence for ‖ included in ↔λ

b turns out to be ↔∆
b .

Theorem 7. ↔∆
b is the coarsest congruence for ‖ that is included in ↔λ

b .
2

Proof. We have already seen that ↔∆
b is a congruence for ‖, and that it is

included in ↔λ
b . To show that it is the coarsest, it suffices to show that whenever

s 6↔∆
b t, we can find a state u such that s ‖ u 6↔λ

b t ‖ u. In fact, we can always
take u to be the state a from Example 4, for a an action that does not occur in
any path from s or t.

Namely, suppose that s ‖ a ↔λ
b t ‖ a. Let C be a fully consistent colouring

with C(s‖a) = C(t‖a). Define the colouring D by D(p) = C(p‖a) for p a state

2 Strictly speaking, we merely show that ↔∆

b is the coarsest congruence for ‖ that
is included in ↔λ

b and satisfies the Fresh Atom Principle (FAP). This principle,
described in [7], is satisfied by a semantic equivalence ∼ on LTSs when ∼ on an
LTS L can always be obtained as the restriction of ∼ on any given larger LTS of
which L is a subLTS, and whose transition labels may be drawn from a larger set of
actions than those of L. FAP allows us to use the state a that figures in the proof of
Theorem 7, regardless of whether such a state, or the fresh action a, occurs in the
given LTS or not. FAP is satisfied by virtually all semantic equivalences documented
in the literature, and can be used as a sanity check for meaningful equivalences [7].

Computation Tree Logic with Deadlock Detection 15

reachable from s or t, and D(p) = p otherwise. Then D(s) = D(t). It suffices to
show that D is consistent and preserves divergence, implying s↔∆

b t.
So suppose D(p) = D(q) with p 6= q. Then C(p‖a) = C(q‖a).
First we show that p and q have the same D-coloured traces. Let σ be a

D-coloured trace of p. Then σ is also a C-coloured trace of p‖a. As p‖a and q ‖a
have the same complete C-coloured traces, they surely have the same C-coloured
traces (for the coloured traces of a state are the prefixes of its complete coloured
traces). Hence σ is a C-coloured trace of q ‖ a. As p is reachable from s or t,
the action a cannot occur in σ. Therefore, σ must also be a D-coloured trace of
q. By symmetry, any D-coloured trace of q is also a D-coloured trace of p, and
hence p and q have the same D-coloured traces.

Next, we show that p and q have the same divergent D-coloured traces. So
let σ be a divergent D-coloured trace of p. Then σ is also a divergent C-coloured
trace of p‖a. Hence σ is a complete C-coloured trace of p‖a and thus also of q‖a.
As the action a cannot occur in σ, it is not possible that σ stems from a finite
maximal path from q ‖ a. Therefore, σ must be a divergent C-coloured trace of
q ‖ a, and hence a divergent D-coloured trace of q. Again invoking symmetry, p
and q have the same divergent D-coloured traces.

It follows that D is consistent and preserves divergence; thus s↔∆
b t. 2

So if one is in search of a semantics such that, for s and t states in an LTS,
− if there is a CTL

∗
−X

state formula ϕ such that s |=η ϕ but t 6|=η ϕ, then s
and t should be distinguished,

− if s and t can be distinguished after placing them in a context ‖u for some
u, then they should be distinguished to start with

− and no two states should be distinguished unless this is required by the
previous two conditions,

then branching bisimulation semantics with explicit divergence is the answer,
for s↔∆

b t iff for all u and all ϕ ∈ Φ we have s ‖ u |=η
ϕ ⇔ t ‖ u |=η

ϕ.

6 Adding deadlock detection to CTL
∗

−X

We saw above that there are important properties of states s in an LTS that
can be expressed in terms of a context ‖ u and a CTL

∗
−X

formula ϕ, namely
as s‖u |=η

ϕ, but that cannot be directly expressed in terms of CTL
∗
−X

. This
is somewhat unsatisfactory, and therefore we propose an extension of CTL

∗
−X in

which this type of property can be expressed directly. We add a path modality
∞ that is valid on a path π iff π is infinite. This path modality, or actually an
equally expressive one, was studied prior by Kaivola & Valmari [9] in the context
of Linear Temporal Logic without the next state operator—see Section 9.

Definition 8. The syntax of CTL
∗
∞ is given by

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃ψ ψ ::= ϕ | ¬ψ |
∧

Ψ ′ | ψ U ψ | ∞

with p ∈ AP, ϕ ∈ Φ, Φ′ ⊆ Φ, ψ ∈ Ψ and Ψ ′ ⊆ Ψ .
Validity is defined as in Definition 2, but adding the clause

16 Rob van Glabbeek, Bas Luttik & Nikola Trčka

− π |= ∞ iff the path π is infinite.

We write ∃∞ψ for ∃(∞ ∧ ψ); this formula holds in a state s if there exists an
infinite path π from s such that π |= ψ. Likewise ∀∞ψ = ∀(∞ → ψ) holds in s
if for all infinite paths π from s we have that s |= ψ. These constructs are dual,
in the sense that s |= ¬∃∞ψ iff s |= ∀∞¬ψ.

The negation of ∞ holds for a maximal path π iff π is finite, and hence ends
in a deadlock. It is tempting to simply extend CTL

∗
−X with a state formula δ

such that s |= δ iff ¬∃s′. s −−→ s′. This would make it possible to express ∞
as ¬Fδ. However, this would make the resulting logic too expressive: the two
states in the Kripke structure ◦ −−→ ◦ (with the empty labelling) are branching
bisimulation equivalent with explicit divergence, yet they would be distinguished
by this extension of CTL

∗
−X, as only the last state satisfies δ.

CTL
∗
∞ is an extension of CTL

∗
−X

. There is no need for a similar extension
of CTL

∗, for δ can be expressed as ¬∃X⊤. In particular, CTL
∗
∞ is not more

expressive than CTL
∗.

The definition of branching bisimulation equivalence with explicit divergence
lifts easily to Kripke structures: s ↔∆

b t, for s and t states in a Kripke struc-
ture, iff there exists a consistent and divergence preserving colouring C such that
C(s) = C(t). Here divergence preserving is defined as in Section 3; by Lemma 5,
this time applied to Kripke structures, a consistent colouring preserves diver-
gence iff, for any states s and t, C(s) = C(t) implies

for any infinite path π from s with C(π) = C(s)
there is an infinite path ρ from t with C(ρ) = C(t).

Theorem 8. s↔∆
b t iff s |= ϕ ⇔ t |= ϕ for all CTL

∗
∞ state formulas ϕ.

Proof. “Only if” goes as in the proof of Theorem 1, reading |= for |=
db

, requir-
ing C to be consistent and divergence preserving, and, in the second paragraph,
requiring the paths π and ρ to be maximal and C(π) to be a complete coloured
trace of s and t. Here we use that if a colouring is consistent and divergence
preserving, then two states with the same colour must also have the same com-
plete coloured traces. This follows from Lemma 6, this time applied to Kripke
structures.

There is one extra case to check. Suppose C(π) = C(ρ) and π |= ∞, but
ρ 6|= ∞. Then the last state t of ρ has the same colour C(t) as one of the states s
of π. Let π′ be the (infinite) suffix of π starting at s. Then C(π′) = C(s) = C(t),
yet there is no infinite path from t, contradicting that C is divergence preserving.

“If” goes as in the proof of Theorem 1, but this time we have also to show
that C preserves divergence. So let s and t be states and π an infinite path from
s with C(π) = C(s) = C(t) = C. Let

U = {u | there is a path from t to u and C(u) 6= C}.

For every u∈ U pick a CTL
∗
∞ formula ϕu ∈ C − C(u). Now s |= ∃∞G(

∧

u∈U ϕu)
and, as C(s) = C(t), also t |= ∃∞G(

∧

u∈U ϕu). Thus, there is an infinite path ρ
from t such that t′ |=

∧

u∈U ϕu for all states t′ in ρ. It follows that t′ 6∈ U . Hence
C(t′) = C and thus C(ρ) = C. 2

Computation Tree Logic with Deadlock Detection 17

7 Adding deadlock detection to CTL−X

CTL−X is the sublogic of CTL
∗
−X

that only allows path formulas of the form
ϕUϕ′ and ¬(ϕ Uϕ′), where ϕ and ϕ′ are state formulas. Equivalently, it can be
defined as only allowing path formulas of the form ϕ U ϕ′ and Gϕ, for we have

s |= ∃Gϕ iff s |= ∃¬(⊤ U ¬ϕ)

s |= ∃¬(ϕ U ϕ′) iff s |= ∃[(¬ϕ′) U ¬(ϕ ∨ ϕ′)] ∨ ∃G¬ϕ′ .

Theorems 1 and 2 are also valid when using CTL−X instead of CTL
∗
−X

, for their
proofs use no other temporal constructs than ∃(ϕ U ϕ′) and ∃Gϕ.

A natural proposal for CTL∞ would be to add the path quantifier ∃∞ to
CTL−X, thus yielding the syntax

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃(ϕ U ϕ) | ∃∞(ϕ U ϕ) | ∃Gϕ | ∃∞Gϕ .

However, we can economise on that, for

s |= ∃∞(ϕ U ϕ′) iff s |= ∃(ϕ U (ϕ′ ∧ ∃∞G⊤))

s |= ∃Gϕ iff s |= ∃∞Gϕ ∨ ∃(ϕ U (∀Gϕ))

where ∀Gϕ is an abbreviation for ¬∃(⊤U¬ϕ). Hence CTL∞ can be given by the
syntax

ϕ ::= p | ¬ϕ |
∧

Φ′ | ∃(ϕ U ϕ) | ∃∞Gϕ .

It follows immediately from the proof of Theorem 8 that this language is suf-
ficiently expressive to characterise branching bisimulation equivalence with ex-
plicit divergence:

Theorem 9. s↔∆
b t iff s |= ϕ ⇔ t |= ϕ for all CTL∞ formulas ϕ. 2

It is tempting to simply write ∃∞G as ∃G; that is, to keep the same syntax as
for CTL−X but define its semantics in such a way that ∃(ϕ Uϕ′) asks merely for
a finite path, whereas ∃Gϕ asks for an infinite one. This deadlock sensitive inter-
pretation of CTL−X is an alternative for the interpretation of [3]. It is consistent
with the classical interpretation of CTL [5, 2], as for total Kripke structures there
is no difference between ∃∞ and ∃.

8 The deadlock extension of Kripke structures

Following De Nicola & Vaandrager [3] we have applied CTL
∗
−X to non-total

Kripke structures by using maximal instead of infinite paths in the definition
of validity. As remarked in Section 2, the same effect can be obtained by trans-
forming a non-total Kripke structure into a total one by adding a self loop s−−→s
to every deadlock state s, and applying the standard CTL

∗
−X

semantics to the
resulting total Kripke structure. However, the latter does not apply to CTL

∗
∞,

because the self loop s −−→ s invalidates the formula ∃¬∞ that holds in any
deadlock state s. Here we define another transformation on Kripke structures
that makes any Kripke structure total, and allows encoding of CTL

∗
∞ in terms

of CTL
∗
−X

.

18 Rob van Glabbeek, Bas Luttik & Nikola Trčka

Definition 9. The deadlock extension D(K) of a Kripke structure K is obtained
by the addition of a fresh state sδ, labelled by the fresh atomic proposition δ,
together with a transition from sδ and from every deadlock state in K to sδ.

An example of this transformation is depicted in Figure 5.

K :
p��

��

// q

r

D(K) :
p��

��

// q

��
r // sδ

δ

SS

Fig. 5. Deadlock extension of a Kripke structure

Theorem 10. Let K be a Kripke structure, with states s and t. Then s ↔∆
b t

within the Kripke structure K iff s↔∆
b t within the Kripke structure D(K).

Proof. “If”: Let D be a consistent and divergence preserving colouring on D(K).
Note that D(sδ) 6= D(s) for any state s 6= sδ in D(K). Let C be the restriction of
D to the states of K. Then the C-coloured traces of a state s in K equal the D-
coloured traces of s in D(K), but with the colour D(sδ) omitted from the end of
such traces. It follows that C is consistent. It preserves divergence by Lemma 5.

“Only if”: Let C be a consistent and divergence preserving colouring on K.
Extend it to a colouringD onD(K) by assigning a fresh colour δ to the extra state
sδ of D(K). It suffices to check that D is consistent and divergence preserving.

Claim. From any state s in K with the same colour as a deadlock state t in
K there must be a path π to a deadlock state such that C(π) = C(t).

Proof of claim. As t has no C-coloured traces of length two, neither does s,
and as t has no divergent C-coloured traces, neither does s. Thus, all paths from
s are finite and only pass through states with colour C(t).

Application of the claim. The D-coloured traces of length two of a state s 6= sδ
in D(K) are the C-coloured traces of length two of the state s in K, together
with the trace C(t)δ in case s has the same colour as a deadlock state t in K.
Thus D is consistent by Lemma 1, and preserves divergence by Lemma 5. 2

The “if”-direction of the theorem, with a similar proof, also applies to ≈s and
≈dbs , but the “only if”-direction does not. As a counterexample, let K be a
Kripke structure with a deadlock state d (having no outgoing transitions) and
a livelock state l (with a self-loop as its only one outgoing transition); neither
state satisfies any atomic propositions. In K we have d ≈s l, and hence d ≈dbs l,
but in D(K) we have d 6≈dbs l, and hence d 6≈s l.

Considering that Kripke structures of the form D(K) are total, and that on
total Kripke structures ≈s and ↔∆

b coincide, it is in fact impossible to define a
transformation like D for which Theorem 10 holds for both ↔∆

b and ≈s.

Computation Tree Logic with Deadlock Detection 19

Now let η be an arbitrary LTS-to-L2TS-transformation, yielding an LTS-to-
Kripke-structure transformation that is also called η (see Section 4). Then D ◦ η
is not a valid LTS-to-Kripke-structure transformation as intended in [3], for it
fails to preserve ↔λ

b / ≈s and ↔b / ≈dbs (cf. Definition 6). Yet, it satisfies

s↔∆
b t ⇔ D ◦ η(s) ≈s D ◦ η(t)

(because s↔∆
b t ⇔ η(s) ↔∆

b η(t) ⇔ D◦η(s) ↔∆
b D◦η(t) and on total Kripke

structures ↔∆
b and ≈s coincide), and as such it is a suitable transformation for

defining validity of CTL
∗
−X

formula on states in LTSs. We obtain:

Corollary 2. Let s and t be states in an LTS, and let η be an LTS-to-L2TS
transformation. Then

s↔∆
b t iff s |=D◦η ϕ ⇔ t |=D◦η ϕ for all CTL

∗
−X state formulas ϕ. 2

Thus, one way to make CTL
∗
−X

suitable for dealing with deadlock behaviour
on LTSs is to stick to total Kripke structures and translate LTSs to Kripke
structures by a translation D◦η instead of a transformation η as proposed in [3].
This way branching bisimulation equivalence with explicit divergence becomes
the natural counterpart of stuttering equivalence on Kripke structures, and we
have the modal characterisation of Corollary 2.

An alternative is to stick to more natural transformations η meeting the
criteria on Definition 6, apply the definition of validity of CTL

∗
−X

formulas to
non-total Kripke structures as in [3], and extend CTL

∗
−X to CTL

∗
∞ as indicated

in Section 6.
Below we show that these solutions lead to equally expressive logics on LTSs.

Definition 10. Given a set of atomic propositions, let CTL
∗
δ be the logic CTL

∗
−X

extended with an extra atomic proposition δ. The mappings D from CTL
∗
∞ to

CTL
∗
δ formula and E from CTL

∗
∞ to CTL

∗
δ formula are defined inductively by

D(p) = p E (p) = p
D(¬ϕ) = ¬δ ∧ ¬D(ϕ) E(¬ϕ) = ¬E(ϕ)

D(
∧

i∈I ϕi) =
∧

i∈I D(ϕi) E(
∧

i∈I ϕi) =
∧

i∈I E(ϕi)
D(∃ψ) = ∃D(ψ) E(∃ψ) = ∃E(ψ)
D(¬ψ) = ¬δ ∧ ¬D(ψ) E(¬ψ) = ¬E(ψ)

D(
∧

i∈I ψi) =
∧

i∈I D(ψi) E(
∧

i∈I ψi) =
∧

i∈I E(ψi)
D(ψ U ψ′) = D(ψ) U D(ψ′) E(ψ U ψ′) = (E(ψ) U δψ′) ∨ (E(ψ) U E(ψ′))

D(∞) = ¬Fδ E(δ) = ¬⊤.

Here δψ′ =

{

δ if sδ |= ∃ψ′

¬⊤ otherwise
, and ψ U δ abbreviates ¬∞ ∧ Gψ.

Theorem 11. Let K be a Kripke structure and s a state in K.
Then for any CTL

∗
∞ state formula ϕ we have s |= ϕ in K iff s |= D(ϕ) in D(K),

and for any CTL
∗
δ state formula ϕ we have s |= ϕ in D(K) iff s |= E(ϕ) in K.

20 Rob van Glabbeek, Bas Luttik & Nikola Trčka

Proof. For a state formula ϕ, let [[ϕ]]K denote the set of states s in K with s |= ϕ.
Likewise, for a path formula ψ, [[ψ]]K denotes the set of maximal paths π in K
with π |= ϕ. Note that there is a bijective correspondence between the maximal
paths in K and those in D(K) not starting in sδ. A straightforward structural
induction shows that [[ϕ]]K = [[D(ϕ)]]D(K) for any CTL

∗
∞ state formula ϕ and,

up to the aforementioned bijective correspondence, [[ψ]]K = [[D(ψ)]]D(K) for any
CTL

∗
∞ path formula ψ.

For the second statement, let πδ be the unique path in D(K) starting in sδ.
A straightforward structural induction shows that [[ϕ]]D(K) − {sδ} = [[E(ϕ)]]K
for any CTL

∗
δ state formula ϕ and, up to the above bijective correspondence,

[[ψ]]D(K) − {πδ} = [[E(ψ)]]K for any CTL
∗
δ path formula ψ. 2

In CTL
∗
∞ the path modality ∞ is equally expressive as the path modality ψUδ of

Definition 10, saying of a path that it is finite and all its suffixes satisfy ψ. This is
because π |= ψUδ ⇔ π |= ¬∞∧Gψ and π |= ∞ ⇔ π |= ¬Fδ ⇔ π |= ¬⊤Uδ.
In this light, the encoding D of CTL

∗
∞ into CTL

∗
δ merely adds a conjunct ¬δ here

and there. These conjuncts are not optional; they enable, for instance, the correct
translation of the CTL

∗
∞ path formula Gp by the CTL

∗
δ formula ¬δ ∧ G(δ ∨ p).

Theorem 12. Also the logics CTLδ and CTL∞ are equally expressive.

Proof. This follows because D can be restricted to a mapping from CTL∞ to
CTLδ formula and E to a mapping from CTL∞ to CTLδ formula. In particular,

D(∃(ϕ U ϕ′)) = ∃(D(ϕ) U D(ϕ′)) D(∃G∞ϕ) = ∃G(¬δ ∧ D(ϕ))

E(∃(ϕ U ϕ′)) =

{

∃(E(ϕ) U E(ϕ′)) ∨ ∃(E(ϕ) U (¬∃∞G⊤ ∧ ∃GE(ϕ))) if sδ |= ϕ′

∃(E(ϕ) U E(ϕ′)) otherwise

and E(∃Gϕ) =

{

∃G∞E(ϕ) if sδ |= ϕ′

∃GE(ϕ) otherwise.
2

9 Concluding remark: linear lemporal logic

Linear Temporal Logic [11] (LTL) is the sublogic of CTL
∗ that allows proposi-

tional variables p∈AP but no other state formulas to be used as path formulas.
Path formulas are applied to states by an implicit universal quantification: s |= π
iff s |= ∀π. Kaivola & Valmari [9] study equivalences on LTSs with the prop-
erty that under all plausible transformations of LTSs into Kripke structures two
equivalent states (transformed into states of Kripke structures) satisfy the same
formulas in either LTL−X (LTL without the next state modality) or LTL

∞ (LTL−X

augmented with an operator that is equally expressive as our modality ∞).
They characterise the coarsest such congruences for a selection of standard pro-
cess algebra operators—including the merge—as NDFD -equivalence (for LTL−X)
and CFFD-equivalence (for LTL

∞). There are two striking differences with the
branching time case: Whereas ↔∆

b , the equivalence characterising validity in

Computation Tree Logic with Deadlock Detection 21

CTL∞, is a congruence for the selected process algebra operators directly, in the
case of LTL

∞ the resulting equivalence becomes much finer as a result of con-
gruence closure. Furthermore, the addition of ∞ to LTL−X leads to distinctions
that are not made by CFFD-equivalence. Kaivola & Valmari do not consider the
question of raising the expressiveness of LTL−X to the level where it characterises
NDFD- or CFFD-equivalence directly.

References

1. L. Aceto, W.J. Fokkink & C. Verhoef (2001): Structural operational semantics.

In J.A. Bergstra, A. Ponse & S.A. Smolka, editors: Handbook of Process Algebra,
Elsevier, pp. 197-292.

2. M.C. Browne, E.M. Clarke & O. Grumberg (1988): Characterizing finite Kripke

structures in propositional temporal logic. Theoretical Computer Science 59, pp.
115–131.

3. R. De Nicola & F.W. Vaandrager (1995): Three logics for branching bisimulation.

Journal of the ACM 42(2), pp. 458–487.
4. E.A. Emerson & E.M. Clarke (1982): Using branching time temporal logic to synthe-

size synchronization skeletons. Science of Computer Programming 2(3), pp. 241–266.
5. E.A. Emerson & J.Y. Halpern (1986): ‘Sometimes’ and ‘Not Never’ revisited: on

branching time versus linear time temporal logic. Journal of the ACM 33(1), pp.
151–178.

6. R.J. van Glabbeek (1993): The linear time - branching time spectrum II. In E. Best,
editor: Proceedings of CONCUR’93, LNCS 715, Springer, pp. 66–81.

7. R.J. van Glabbeek (2005): A characterisation of weak bisimulation congruence.

In A. Middeldorp, V. van Oostrom, F. van Raamsdonk & R. de Vrijer, editors:
Processes, Terms and Cycles: Steps on the Road to Infinity: Essays Dedicated to

Jan Willem Klop on the Occasion of His 60th Birthday, LNCS 3838, Springer, pp.
26–39.

8. R.J. van Glabbeek & W.P. Weijland (1996): Branching time and abstraction in

bisimulation semantics. Journal of the ACM 43(3), pp. 555–600.
9. R. Kaivola & A. Valmari (1992): The weakest compositional semantic equivalence

preserving Nexttime-less Linear Temporal Logic. In W.R. Cleaveland, editor: Pro-

ceedings of CONCUR’02, LNCS 630, pp. 207–221.
10. R. Milner (1989): Communication and Concurrency. Prentice Hall, Englewood

Cliffs.
11. A. Pnueli (1977): The Temporal Logic of Programs. In: Proceedings of FOCS’77,

IEEE Computer Society Press, pp. 46-57.

